CORRECTION AND COMPLEMENTS TO

"ON THE SYMMETRIC AND REES ALGEBRAS OF AN IDEAL"

GIUSEPPE VALLA

In [2, pag. 248] I gave the definition of "generalized almost complete intersection ideal" and I proved some properties of such ideals (Lemma 3.3, Lemma 3.4 and Proposition 3.5). Unfortunately, for the proof of Lemma 3.3 I referred to a result of Vasconcelos (see [4]) which is in fact correct; but not all assumptions needed in Vasconcelos' paper were fullfilled.

Moreover, Lemma 3.3, Lemma 3.4 and Proposition 3.5 are not true.

To fill in the gap, I must replace the above definition and results by the following.

Definition 3.3. A prime ideal I is said to be a "generalized almost complete intersection" (g.a.c.i.) if I=(J,x) where J is an ideal generated by a regular sequence such that J:x=J:x².

The above definition is motivated by the following theorem where $\mu(\mathbf{I})$ denotes the smallest number of elements that can generate the ideal I.

Theorem 3.4. Let I be a prime ideal of the ring R such that $\mu(I) \leq \operatorname{grade}(I) + 1$.

<u>If</u> a) h.d._RI<∞

or

b) R is a Cohen-Macaulay ring and $R_{\rm I}$ is regular, then I is a generalized almost complete intersection.

0025-2611/80/0033/0059/\$01.00

2 VALLA

Proof.Let t=grade(I), then t<height(I)< μ (I)<t+1; hence if height(I)= μ (I), I is a complete intersection (see[3, Theorem 2.6]), and in any case we have height(I)=t. Furthermore, since R_T is a regular local ring of dimension t, using a result of Lazard (see[1,Theorem 1]), we can find an ideal J generated by a regular sequences of t elements and an element x in R such that I=(J,x) and $IR_T=JR_T$. We are going to prove that $J=I\cap(J:I)$ and then the conclusion easily follows. Let $a_{\epsilon}I\cap(J:I)$ and \emptyset be a β -primary component of J; if I $\not\subset \P$ and $b_{\epsilon}I$, $b_{\epsilon}\P$, we have $ab_{\epsilon}J\subseteq Q$, hence $a_{\epsilon}Q$. Therefore it suffices to prove that if ♠ I is an associated prime of J, then (=I. This is obvious if R is Cohen-Macaulay, since in this case every ideal generated by a regular sequences is unmixed. Hence assume that h.d. $R^{I<\infty}$; then h.d. $R_{\bullet}^{(IR_{\bullet})<\infty}$ and we have depth R_{\bullet} =h.d. $R_{\bullet}^{(R_{\bullet})}$ /IR +depth(Rp /IRp). But since p is an associated prime of an ideal generated by a regular sequences of t elements, we have t=depth R_{k} =grade(IR $_{k}$); furthermore grade(IR,)
-h.d., (R, /IR,). Hence we get depth(R, /IR,)=0 and this clearly implies &=I.

Proposition 3.5. Let I be a g.a.c.i. Then $S_R(I)$ is isomorphic to $pow_R(I)$ Proof.Let I=(J,x) where J is generated by a regular sequences and $J:x==J:x^2$. By repeated use of Theorem 2.1 of [2], it is enough to prove that $S_{R/J}(I/J) \simeq pow_{R/J}(I/J)$; but it is almost trivial that, for a principal ideal (x) in a ring A, we have $S_A(x) \simeq pow_A(x)$ if and only if $0:x=0:x^2$. This gives the conclusion of the proposition.

REFERENCES

- [1] D.Lazard, Suites regulieres dans les ideaux determinantiels; Comm. in Al. 4 (1976), 327-340
- [2] G.Valla, On the symmetric and Rees algebras of an ideal, Man.Math. 30 (1980), 239-255

VALLA 3

[3] G.Valla, Remarks on generalized analytic independence, Math. Proc. Cam. Phil. Soc. 85 (1979), 281-289

[4] W. Vasconcelos, On the homology of I/I², Comm. in Al. 6 (1978), 1801-1809

GIUSEPPE VALLA

ISTITUTO DI MATEMATICA

UNIVERSITA DI GENOVA
GENOVA, ITALIA

(Received August 20, 1980)