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Summary. Consider  part ial  sums S, of  an  i.i.d, sequence X1 X2, ..., of  cen- 
tered r a n d o m  variables having a finite m o m e n t  generat ing function 4, in 
a ne ighbo rhood  of  zero. The asymptot ic  behaviour  of  U , =  max (Sk+b, 

O<k<n-bn 

-Sk) is investigated, where 1 < b, < n denotes an integer sequence such that  
b,/ log n ~ oo as n --. oo. In  particular,  if b, = o (log ~ n) as n --. oo for some p > 1, 
the exact convergence rate of  U,/b,c~,=l+o(1) is determined,  where ~, 
depends u p o n  b, and the dis tr ibut ion of  X~. In  addition, a weak limit law 
for U, is derived. Finally, it is shown how st rong invariance takes over 
if lim b,( loglog n)2/log 3 n =  oo. 

n --4 oo 

1. Introduction 

Consider  a sequence X 1 ,  X 2 . . . .  of independent ,  identically distr ibuted r a n d o m  
variables with m o m e n t  generat ing funct ion r ( t )=  E(exp (tX1)) and satisfying the 
condi t ions  

Let 

(A) E ( X 1 ) = O ;  a2=E(X2,)<oo; 

(B) X 1 is nondegenerate ,  i.e. P (X 1 ~ -  X) < 1 for all x;  

(C) t o = s u p { t :  qS(t) < 0o} >0 ,  tl = inf{ t"  ~b(t) < oo} <0 .  

p(~)--inf{q~(t) e -~} ,  and  
t 

So=-O,S,=XI +... + X , (n=I ,  2 . . . .  ). 

We are interested in the asymptot ic  behavior  of  

U, = max  (Sk+b.-- Sk), 
O<_k<_n-bn 
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where { b , , n > t }  denotes an integer sequence satisfying l<b ,<n and other 
assumptions specified below. 

In 1970, ErdSs and R6nyi proved that, for any c~e {qS'(t)/q5 (t):0 < t < to}, 

lira (U,/b,~)= 1 a.s., (1.1) 
n ~ o o  

if b, = [c log n] and c = c(c0 is related to c~ via the equation 

exp ( - 1/c) = p (c0. (1.2) 

This fundamental result was followed by a number of extensions and refine- 
ments (see, e.g., S. CsSrg5 (1979); M. Cs6rg6 and Steinebach (1981), Deheuvels, 
Devroye and Lynch (t986); Deheuvels and Devroye (1987); Steinebach (1985). 

Let 
m(t)=(~'(t)/~?(t), t 1 <t<to, 

to 

A=limm(t) and co=l/~tm'(t)dt. 
tTto 0 

Deheuvels et al. (1986) showed that (1.1) holds for any Co<C< ~ and 0 < ~  
< A  related via (1.2). Furthermore, if t =  t * =  t(~) is the positive solution of 

m(t)=~, (1.3) 
they proved that 

t*(U,-b,c~) I t*(U,--b,a) 1 
= - -  - -  - -  ~ a . s .  l imsup loglogn 2' l iminf loglogn 

n ~ c t 3  n ~ o 9  

(1.4) 

and 
t*(U,--b,a) 1 

lim - in probability, (1.5) 
-~ co l o g l o g  n 2 

where b, = [-c log n] and c = c (~). 
The distributions for which Co >0, together with the limiting behaviour of 

U. when b, = [c log hi, 0 < c < Co are treated in Deheuvels et al. (1986), Deheuvels 
and Devroye (1987) and Deheuvels (1985). It appears that the case b , =  [c log n] 
is critical under (A), (B) and (C), and that one needs further assumptions on 
the distribution of X1 to characterize the limiting behaviour of U, when b. 
= o (log n). 

For the reasons above, we will specialize in the sequel in the case where 
b,/log n--* oo. Cs6rg6 and Steinebach (1981) have proved that if b ,=  [~',], where 
~'n is a sequence such that 

g,/lognl"oo; ~,/logPn---,O forsome p > l ;  0 < ~ ' , < n ;  g,/n{, (1.6) 

then 

U,-b,a,=o(b l/z) a.s. as n ~ o o ,  (1.7) 



Increments of Partial Sums 371 

where a, is the unique positive solution of the equation 

b.  
c (a,) = log (n/b,)" (1.8) 

They also showed by the use of strong invariance principles that if b, = [b,], 
where b, is a sequence such that 

log(n/b'.) 
- -  =ao" 0 < g . < n ;  b./n.L, (1.9) b./log 2 n -+ oo ; limoo loglog n ' - 

then 

U,-crl/2b, log(n/b,)=o(b~/2) a.s. as n-+oo. (1.10) 

In this paper we obtain the exact rates of convergence of (1.7) and (1.i0) 
together with a weak law for U, after a suitable normalization. Our results 
extend also those of Deheuvels, Devroye and Lynch (1986) to the case where 
b, is a general sequence satisfying b, = O (log n). 

Note that it is possible to prove by asymptotic expansions that (1.7) coincides 
with (1.10) in the range b,/logZn ~ 0% bJlogPn--. 0 for some p>2.  In this case, 
strong invariance takes over by the Koml6s-Major-Tusnfidy (1976) approxima- 
tion of partial sums by Wiener processes. On the other hand, for [c log n] < b. 
= O(log 2 n), there exists a grey zone between strong invariance and strong nonin- 
variance, with respect to the precision of the results given above. 

In the sequel, we shall give expansions similar to (1.7) and (1.10) with the 
o(b 1/2) replaced by O(b]/2(loglog n) (log/7) -1/2) together with precise lim inf and 
lim sup results including the best constants. Because of this increased precision, 
the range uncovered by strong invariance principles will be extended to 
/-c log n] < b, = O ((log s n)/(loglog n)2). 

Before stating our results in detail, we need to discuss asymptotic expansions 
related to the moment generating function ~b and some auxiliary large deviation 
results for the sequence {S,}. This will be done in Sects. 2 and 3, respectively. 
Section 4 presents the above mentioned weak limit law for {U,}, and Sect. 5 
contains the almost sure results. Finally, Sect. 6 discusses what strong invariance 
principles give in our present situation. 

2. Expansions Related to the Moment Generating Function 

Let X1 be a random variable satisfying conditions (A), (B) and (C) of Sect. 1. 
In the sequel, we shall make use of the following notations. Let 

~)(t)=E(exp(tXa)), O(t) = log  q5 (t), 

~2 (0  = m'(O = ~'"(0. 

Let also 
to 

A=limm(t) and co=l/~tm'( t )d t  , 
t~to 0 

d 
m(t)=d~(log{p(t))-~b'(t)=c~'(t)/O(t ), 

with the convention that 1/0o = 0. 
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t t  is well known (see, e.g., Deheuvels et al. (1986)) that q~,O,m and o-2(.) 
are infinitely differentiable on (tl, to). Furthermore o-2(0>0 and re(t) is strictly 
increasing on [0, to) with m(0)= 0. It follows that, for any 0 < a < A, the equation 
re(t)= a has a unique positive solution t =  t * =  t(~) such that 

p = p (a) = inf{ r (t) e-t~} _- r (t*) e-t* ~. 
t 

Let e = c ( a ) = - - 1 / l o g p ( a ) .  It may be proved (see Deheuvels, Devroye and 
Lynch (1986)) that c(a) is a decreasing differentiable function of aE(0, A) with 

l ime(a)=oo and limc(a)=Co. 
a~0 ~ A  

Hence e(a) takes all values in (co, ~ )  as a decreases from A to 0. Likewise 
t* = t(a) increases from 0 to to as a increases from 0 to A. 

Next, the finiteness of r for [t[ < r a i n ( t o , -  t l) implies the existence of all 
moments of X1 and the fact that the expansion 

~ p ( t ) - - ~ t 2 M z + ~ t 3 M 3 +  ..., whereMk=E(X~),  

holds for t in a neighborhood of 0 (see e.g., Lukacs, (1970), Chap. 7). The same 
is true for the cumulant generating function 

(t) = log _ 1 2 1 3 ( o ( t ) - ~ t  t%+~-,t Jc3+ ..., (2.1) 

where ~c, =0 , /~2=M2,  K a = M 3 ,  x a = M 4 - - 3 M ~ ,  ... are the cumulants o f X  1. 
F rom there follow the expansions 

re(t) = tM2 + ~-t2 M3 + O(t3), 

and a2( t )=M2+tM3+O( t  2) as t-+O. 

In the sequel, it will be convenient to set a 2 = a 2 ( 0 ) = M 2  and ? = M  3 M2 3/2. 
Straightforward computations show that, when a -+ 0, 

a M3 ~2 +O(~3) ' (2.2) 
t *=t (~ )=M2 2M32 

and 

1 az M3 3 
c (a) - log q~ (t*) -- t* a = -- 2 M~- § ~ a + 0 (a4). (2.3) 

Let {b,, n ~  1} be a sequence such that 

(D) b,/log n--+ ~ as n ~ o~. 

By the arguments above, there exists always an no such that b,/log n>c  o 
for n > no, and hence for which the equation in a 

b, [ b , \  1 b(a) 1, 
e (a) = 1-og-ng n "~>exp ~-- c - ~ )  = n P "  = n  (2.4) 
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has a unique solution c~=%e(0, A). For  sake of simplicity, we shall always 
assume in the sequel that n > n o. 

Clearly (D)~z.c(~,)~co, which implies that e , ~ 0  as n ~ c o .  Hence (2.3) 
guarantees that 

(2  log n') 1/2 O'y log n 

( b . J  
as n ~ co. (2.5) 

Put, in the sequel, t, = t(a,). By (2.2) and (2.5), we have 

f 2  log n] 1/2 2y f log  n )  o , ( l~  n~ 3/2 
t " = a - l l ~  - 3 a a l - ~ - .  ~ + t b~ J as n-~co. (2.6) 

Define likewise for n large enough a=a~ as the unique positive solution 
of the equation 

log(n/b,)bn \~tuJ!/ b, ~ =n "*~pb" b =nb"' c(a)- ~=~ exp | - - -~ '~  } " ( a ) ( 2 . 7 )  

where we assume, in addition to (D): 

(E) There exists a p > 1 such that b,/log p n ~ 0 as n ~ co. 

In the sequel, we shall make use of the following expansions, whose proofs 
are similar to those of (2.5) and (2.6) and will therefore be omitted. We have 

a =~r~2 log(n/bn)) ~ +~_l_ ~ . a T  flog(n/b,))~+O(<~log(n/bn)]~3/2,~ -j (2.8) 

and 

b,e,-t2 l logb.=b.a.+o(t~ ~ loglogn) as n + c o ,  (2.9) 

if {b,} satisfies (D) and (E). 

3. Auxiliary Large Deviation Results 

In this section, we use the hypotheses and notations of Sects. 1 and 2. Moreover, 
define #=Px~ (resp. #k=Psk) as the probability distribution of X 1 (resp. Sk), 
and let G(#) denote the smallest additive subgroup oflR containing all differences 
of numbers in supp(#). Note that, since # is nondegenerate, either G(#)=IR 
or G(p)=ITZ for s o m e / > 0 .  Let further 

and 

eX/2 m 
U ( X ) = ~  S ~ e-t2/2dt,  x>O,  

v(x,Y)=2~ ~ exp{x(eir d~, x > 0 ,  
-~ 1 -- ye ir y>O. 
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Some applications of the following large deviation result will play a key 
role in the proof  of our main theorems. It is an extension due to H6glund 
(1979) of an earlier result of Petrov (1965). 

Theorem A. a) i f  G(#)=N,  and if 0 < a < A  is fixed, then uniformly in ~e(O, a), 
as k ~  ~ ,  

P(Sk>=k~)=pk(a) u(kt2(~) a2(t(a))) {1 + 0(1)}. (3.1) 

b) I f  G(#)=IZ ,  and if O < a < A  is fixed, then uniformly in ~ ( 0 ,  a) such that 
k~supp(#k) ,  we have, as k ~ ~ ,  

P(Sk>k~)=pk(cOv(k0-2~(~)) ,e -m~)){ l+O/(k  ,/2)}. (3.2) 

In the sequel, we shall apply Theorem A to the special case where k = b ,  
and 

= % -  b,- 1 tn- 1 {log b, + O(1og2 n)}. (3.3) 

By (2.5) and (2.6) we have % b, t , ~ 2  log n as n ~  0% whenever (D) holds. 
In order to have e ~ ,  in (3.1), we shall make the complementary assumption 
that 

(F) (log b,)/log n --+ 0 as n-+ oo. 

In the remainder of this section, we assume that the assumptions (D) and 
(E) are satisfied and investigate the behaviour of the corresponding coefficients 
of pk(~) in (3.1) and (3.2) for e = ~ , ,  k = b ,  and n--+ oo. Making use of the facts 

u(x) ~ 1/~2~zx as x --+ oo, (3.4) 

and 

b 2 / 1 \  2 Iv(x,e ) - u ( x b  ) ] < K [ b + ~ x ) U ( x b  ), x > 0 ,  b>0 ,  (3.5) 

where K is a constant (see, e.g., H6glund (1979), pp. 106-107), we immediately 
obtain the following expansions. 

Lemma 1. Let {c,} be a positive sequence such that c2/log n 4 0  as n ~ oo. Let 
k = bn and assume that ~ = c~, + b21 t21 z,. Then, there exists a constant C depend- 
ing upon the distribution of X t only, such that, uniformly over all sequences {z,} 
such that Iz, I <%,  we have 

P(Sk>=kcO~C(logn)-l/2pk(co as n ~ c ~ .  

Proof. Note that 
k t 2 (00 0 -2 (t  (00) ~ 2 log n ~ oo as n --+ 0% (3.6) 

and combine (3.1~(3.6). 
Observe here that the result of Lemma 1 holds without restrictions on c~ 

such as those required in Theorem A (b). 
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Lemma 2. Let  {Cn} be a positive sequence such that c,2/log n--+ 0 as n--* oo. Let  
k = bn and assume that c~ = o~ + b~ 1 t~ 1 z~. Then, there exists a constant C, depend- 
ing upon the distribution of  X1 only, such that, uniformly over all sequences {zn} 
such that hz, I <=c,, we have 

[ m  

P (Sk > k ~) ~ n (log n)- 1/2 exp ( - z,). 

Proo f  Observe that pk(%)=l /n .  Also, by the Taylor expansion of - l o g p ( e ) ,  
we have 

- l o g  p (a)  = - l o g  p (an) + t (a)  ( a - -  a,), 

where ~ is between an and a. By our assumptions and (2.2), it can be seen 
that 

t (5 ) - - t ,  t(a)--t(an) a--oc n 
~ = o { z n / ( b n  tn)} = O {z~ n}, 

t, t(c~n) c~n 

where we have used (2.5) and (2.6). It follows that 

( logn l z , + l o { z 2 / l o g n } ) ,  
p(e )=exp  - k - k  

which, by Lemma 1, gives the result we seek. 

4. A Weak Law of the ErdSs-R~nyi Type 

In this section, we prove the following theorem. 

Theorem 1. Assume that 1 <- b, < n is an integer sequence such that 
(i) bn/log n--* oo as n --* oo ; 

(ii) bn/log p n ~ 0 as n ~ oo for  some p > 1. 
Then 

(Un-b,c~n) t n + l o g b  . 1 
lira = -  in probability, 

. - .  co loglog n 2 
(4.1) 

where o~ n is the unique positive solution o f  the Eq. (2.4) and tn is as in (2.5). Further- 
more 

(U"-bnan)  tn (21~ ( U n - b ,  an)= 2 inprobability (4.2) 
limoo loglog n - n~oolim aba/2 loglog n 

where an is the unique positive solution o f  the Eq. (2.7). 

Remark  t. Deheuvels et al. (1986) have proved that (4.1) holds for bn = [c log hi, 
where c~(co, oo) is fixed. A close look to their proofs shows that they remain 
valid without modification whenever 

ca l o g n < b n < c  2 logn,  
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where co<c~<cz<oo  are fixed. It follows that (4.1) holds for any sequence 
b, such that b,/log n converges to a limit as n --+ oo and satisfying 

l imb, / logn6(co,  oO-], and b,/logPn--.O as n ~ o o ,  forsome p > l .  
n --+ co 

Remark 2. A direct application of Theorem 1 shows, without any further regulari- 
ty assumption on the sequence {b,}, that 

lim inf ( U , -  b, e,) t, + log b, < 1 a.s., (4.3) 
, - ,  oo loglog n = 2 

and 
lira sup (U,--b,  ~,) 6 + l o g  b, > 1 

- a . s .  ( 4 . 4 )  
. _ ,  ~ l o g l o g  n = 2 

The proof  of Theorem 1 is captured in the following sequence of lemmas. 

L e m m a  3. Let 1 <_ i <_ k and let Si = X 1 +. . .  + Xi ,  S'k- i = Xi  + 1 +. . .  Xk,  S'{ = X k + 1 

+ .. .Xk+i. Then, for any x and y and for any t~(O, t,), we have, i f k = b ,  

t ~ t t!  P(S i+Sk_ i=x ,  Sk_i+Sk >X)<(O(t,))k-ie-t"q+P(Sk>X)((a(t))ie -t(x-q). 

Proof See Deheuvels et al. (1986), Lemma 4. 
We shall apply Lemma 3 with the following choices of k, x and q: 

k = b , ,  c~=c~,,  t=t , /2 ,  q = a k - ( i / t . )  log ~(t ,)+(2/t ,)  log k, 

x = e k + ((1_ e) loglog n - log k)/t,. 

Note that, by Lemma 2, we have 

C 
P ( S k > X ) ~ n ( k / l o g N ) ( l o g n ) ~  as n ~ o o .  (4.5) 

Consider the events 

Ai={S~+k--Si>x},  O<_i<n-k .  (4.6) 

By Lemma 3, we have, for 0 _< i_< k and 0 < e < 1/2, 

P(Ao c~ Ai) < (q~(tn)) k -  i e-t"q + P(Ao ) (~(t))i e-t(x-q) 

<=n- t k -  Z + P(Ao) kS/2 e -~ 

where, by (2.1) and (2.6), 

a 2 0 -2 1 log n 
t" ~ 4 k as n--*oo. 0 = t((1/t,) log qS(t,)-(1/O log q5 ( t ) ) ~ -  t ( t , - t ) = ~ -  2 

Let le~ ,  be such that 1 < l<_k. We have evidently, for 0 < e <  1/2 and n suffi- 
ciently large, uniformly in l, 

k [t] k 

P ( A o ~ A i ) =  ~, P ( A o n A i ) +  ~ P(Ao,~A3 
i = 1  i = l  i = [ / ] +  I 

<_ n-  1 k -  1 + p (Ao) 1 + P(Ao) k 5/2 e-  lo. 
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Let us now choose l=(k/log n) (log n) ~/2. Using (4.5) and assumption (ii) of 
Theorem 1, we have 

k 

n ~ P(Ao c~ Ai)< {1 + o(1)} nIP(Ao)= {1 + o(1)} C(k/log n)2(log n) 3~/2 (4.7) 
i = 1  

=-o{(nP(Ao)) 2} as n--+ oo. 

We will now make use of the following lemma, due to Chung and Erd6s 
(1952). 

Lemma 4. For arbitrary of events Ao, ..., A,,, we have 

i = 0  / - -  i i l < i * j < N  

Lemma 5. Under the assumptions of Theorem 1, for any ~ > O, 

l imP((U,-b,c~,)tn+l~ 
, ~  l o g l o g n  = 2  ~ = 1 .  

Proof. Let A o . . . . .  AN, N=n- - k ,  k=b, ,  be as in (4.5). We have P(Ao)-+0 and 

N 

P ( Ai) = N P ( Ao) ~ C ( k/log n)(log n ) ~  oo 
i = 0  

a s  n --~ o o .  

Likewise 

Z P(Ai)+ ~, P(Ai~Aj)--  P(A~ + Z (P(A~)-p2(A,)) 
i = 0  l <=i*j<=N i i = 0  

+ ~ (P(Ai~Aj) -P(Ai)  P(Aj))~(nP(Ao)) 2, 
l < [ i - j i < k  

by (4.7). 
Making use of Lemma 4 renders the proof complete. 

Remark 3. In view of the proof of Lemma 7, we see that a critical step occurs 
in the proof of (4.7), where we have to show that, for an arbitrary e > 0, 

k s/2 ( 1 + o ( 1 )  n) 
--e-Z~ exp log ~ 4 0  as n--+ oo. 

l 4 

It follows that the conclusion of Lemma 5 remains true if k = bn satisfies 

loglog b, 
b , / l o g n ~  oo and loglogn "0 as n--+ oo. (4.9) 

Lemma 6. Let WN=max{[Si[, l <_i<_N}. There exists constants f i>0  and a > 0  
such that, for any s > 0 and N >_ 1, we have 

P(WN > s]/N) < 2 {exp (-- fls 2) + exp(-- 5 s 1/~)}. 
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Proof By (2.1), for any  0 <  T<to,  there exists a cons tan t  0 < D <  oe such tha t  

log ~b(t)< 1 (4.10) 
s u p  t 2 = 2D" O<t<T 

Let  V/v=max{S i, l<_i<N}.  Consider  the funct ion h~(x)=e t(x-~) which is 
convex  and  nondecreas ing  in x for any  fixed t > 0 and  co MR. I t  is s t ra ight forward  

(see, e.g., Hal l  and  Heyde  (1980), pp. 13-14) tha t  {h~~ n > 1} is a submar t inga le  
whenever  0 < t < t o, f rom where, by the submar t inga le  inequality,  we get 

P(ht  (V/v) > 1) = P(V} > a) <= E(h'~ (SN) ) = ~)u (t) e -t~. 

By tak ing  ca=s~/ -N and  using the r e m a r k  tha t  the right hand  side of the 
inequal i ty  above  is con t inuous  in co, it follows tha t  

n(v/v>=s~/N)<=~N(t)exp(-ts~/N), for O < t < T  and a rb i t ra ry  s > 0 .  

I f  s < T ~ / N / D ,  choose t = D s / ~ / N < T ,  so tha t  the inequal i ty  above,  jo int ly  
with (4.10) yields 

P (V/v >= s l /N)  < dp N (D s/[/-N) exp ( -- D s 2) < exp ( - D s 2/2). 

I f  s > T~/N/D, choose  t = T. We get likewise 

(Nr22o P(V}>>_s ) < 4 N ( r ) e x p ( -  r s__)<=exp  • ] / N  I / N  r s  . 

N T  2 < T s ] / N  Hence  we get Since in this case N < (sD/T)]/-N, we have  2 ~ = ~ .  

P ( V / v ' > s ] / N ) < e x p ( - D s 2 / 2 ) + e x p ( - 2 s ] / - N  ), s > 0 .  

The  same a rguments  used for V~" = m a x  { - Si, 1 <_ i <_ N} yield 

T '  
P ( V } ' > s ] / N ) < e x p ( - - D ' s 2 / 2 ) + e x p ( - - ~ - s ] / N ) ,  s > 0 ,  

where D' > 0 and  T '  > 0 are constants .  The  result follows by the inequal i ty  

P(WN>=s~/N) <=P(V/v < s ~ N )  + P(V/v' >=s~N), 

and by tak ing  fl = min  (D, D')/2 and 5 = rain (T, T')/2. 

L e m m a  7. Let 0 < R  < oo be a constant, and let {c,} be a positive sequence such 
that c,2/log n-~ 0 as n ~ oo. There exists constants 0 < C1 < C2 < oo and no < 0% 
such that, for all n>_no, [k--b,,[ < Rb,/ log n and Iznl < cn, we have 

__C1 1 C2 ( logn) -1/2 exp ( - z , )<P(Sk>=b ,a ,+ t~  z,)<<_~-(logn) -1/2 e x p ( - z , ) .  
n 
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Proof. Let c~=e(k) be defined as in (2.4), to be the unique positive solution 
of c(ct)=k/logn. Since c(~)~b, / logn  as n ~  o% the expansions given in Sect. 2 
yield, as n ~ 0% 

lognl  2, 

and 

t = t ( . )  ~ . / a  ~ ~ ~ . / o 2 _  t . ,  

(~. - ~ ) / ~ .  ~ ( k  - b . ) / 2  b . .  

Hence, by the condition imposed on k, it follows that there exists an no < oo 
such that, for n > no and uniformly in k, 

]k~-b .c~ . l<[k-b . l~+b. lc~ . -c~ l=O{(bJ logn) l /2}=O( t -1 )  as n- -*~.  

Likewise, we obtain that t - t .  ~ ( ~ -  :~.)/a 2, and hence 

t - l z . - - t 2 1 z 2 1 : t  lz .  = z .O  = t - l z . O  as n-~oo. 
t. 

By all this, we see that 

P(Sk>b,  c~,+t2 l z , ) = P ( S k > k c t + t -  t (z, + O(1))), 

from where the result follows by Lemma 1 and 2. 

Remark 4. It is immediate from the proof of Lemma 7 that if Ik-b.] < r,, where 
r ,=o(b,]logn) as n--+oo, then the constants C~ and C2 can be replaced by 
C(1 +o(1)), where C is as in Lemmas 1 and 2. 

Lemma 8. Let 0 <A,  B < oo be arbitrary constants. Let N = [A b,]log n] and let 
k be an integer such that [k -b , I  <BN.  Define, for all n sufficiently large, T,=S'k 
+ WN + W}, where S'k, WN and W/v are independent, S'~ following the same distribu- 
tion as Sk, while WN is defined as in Lemma 6 and following the same distribution 
as W~l. 

Then, for any e ~ N  and v>0,  we have, as n--~ o% uniformly in k, 

nP(T, > b. ~, + t2 ~ ( -  log b, + (�89 + e) loglog n)) = + O {(log n) ~- g}. 

Proof. Let log2 n = loglog n. By Lemmas 2 and 7, we have 

{,(+) } P~=P(Sk=b.c~.+t.  l ( - l o g b . + ( l  + e - l v )  log2n))=O n (l~ ' 

the result being uniform in III <d , ,  where d = d .  is any sequence such that d, 

= o( ll//log n/log2 n). Take in the sequel d, = [(log n)l/4/log2 n], and consider 

d d 
~'1 =Po + Z (Pt--PI-1)P(WN + W l ~ t n l ( l - - 1 )  v log2 n)<2P~ + ~ PzQz, 

l=l 1=2 
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where by Lemma 6, Ql = P(WN + W~(t >_ t21(t - 1)v log2 n) is such that 

Ql<2P(WN>�89 log2 n)<4{exp(-B(l-1) 2 log 2 n) 

+exp ( -  E(l-1) ( + )  1/z log2 n)}, 

where B and E are appropriate positive constants. It is now straightforward 
that 

s logn) ~-~ as n ~ o e .  

Consider now the sequence c=c,= [K(log n)/log 2 n], where 0 < K <  oo is 
fixed. By Lemma 6 

N2 = ~ (Pt-Pz-1) Q I < Q c < 2 P ( W N > � 8 9  - 1)v log2 n)=o(1/nZ)=o(P1). 
l=c+l 

Here, we have used the fact that b,/log n ~ ~ .  
Finally, we need consider only 

Z3---~ ~ (P/-- P/- 1) QI-~ < ~ P/Ql. 
~=d+l I=d+l 

We note that, in the range of interest for Z3,P~ is of the form P(Sk>k~ 
+ t - '  z,), where ~ and t are as in Lemma 7, and where Iz,]=O(logn). By the 
same arguments as used in the proofs of Lemmas 1 and 2, we see that for 

E 
such z,'s, there exists constants 7 > 0 and E > 0, such that Pz < n  e x p ( - 7  z,). This 

last result follows from the fact that, whenever 0<~,  ~+h<A, pk(~+h) 
=-pk (~) exp (--k h t (~)), where ~ lies between c~ and ~ + h. 

In the present case, h = k -  1 t -  x z,--  O [ \ ~ - ]  j so that, for some appro- 

priate constants 0 < G < H <  0% 0 < G ~ < 8 < H c c  Finally, we use (2.5) and (2.6) 
to show that t(8)~8/a z as n ~  oo. We have used here the fact that 0 < K < o o  
may be chosen as small as desired, which enables us to have G > 0. 

By all this, in X 3, 

( Pz Q~ _-< ~ -  exp 7 v { 1 + o (1)} ( l -  1) log2 n 

so that, as n ~ o% 

x 3 = l o  fexp[ 1Bd 2 2 1 1 14 log2n)}=nO{exp(--~B(logn)/)}=o(P~). 
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The proof  of the lemma follows from the fact that  the probabil i ty we seek 
is bounded above by S~ + ~2 ~- ~3" 

Lemma 9. For any e > O, 

n =<~+~)=1. 

Proof In the proof, we will use the remark that U, < V,, where 

V,=max {(Sj+b,-- Sj+N)+(Sj+u-- Sj+i)+(Si+b.+I--Sj+b,), 

O<_i,l<=N, j=O,N,  2N  . . . .  ,j<=n}, 

where we choose N = [-b,/log n]. 
Note  that V, < max { V,i , 1 < i < 1 + (n/N)}, where 

V,i = (S~i- 1)u + b , -  SiN) + m a x  (SiN -- S(i_ 1)N + l, 0 ~ / ~ N }  

+max{S<i-1)N+b.+t--S~i-1)N+b.,O<l<N}. 

We now apply Lemma  8, with the following choices of k, A and B. Let 
k = b , - N ,  A = B = I .  If 

d = b, ct n + t~- 1 ( _ log b, + (�89 + 5) loglog n), 

then, for any fixed v > 0, as n--* ~ ,  

n ( n /  b .  \ ~ ) 

Take now e > 0  and v=e/2. It is straightforward that P(V,>d)--+O as n--* oo. 
Since e > 0 may  be chosen as small as desired, we have the proof  of Lemma 9. 

Proof of Theorem 1. (4.1) follows from Lemmas  5 and 9. The equivalence between 
(4.1) and (4.2) follows from (2.9). 

Remark 5. The proof  of Theorem 1 shows that the results can be extended 
to the case where ~b(t)<oo for 0 < t < t  0 only (without assuming that ~b(t)<co 
for some t < 0). However,  in the expansions of the moment  generating function, 
we have used the existence of a 2 = E ( X  2) and we would need to assume (say) 
that E(]Xl[2+6)< oo for some 6 > 0 .  On the other hand, in view of Sect. 6, such 
an assumption looses interest because of the lack of sharpness in the Koml6s-  
Major-Tusnfidy strong approximat ion of partial sums if one does not assume 
the finiteness of ~b(t) in a neighborhood of zero. This explains why we assume 
throughout  that  (C) holds. 

5. Strong Laws 

In this section, we shall prove the following theorem. 

Theorem 2. Assume that b,~ is an integer sequence such that 1 < b. <= n, b,/log n 
oo, and bJlogVn ~ 0 for some p> 1. Assume further that there exists a real 
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valued sequence ~n such that 

(i) b , -  b, = O \log n] 

Then 

and 

and 

( U , - b , a , ) t , + l o g b ,  3 
lim sup loglog n - 2 a.s., (5.1) 

n ~ o 9  

l iminf(U,-b,c~,) tn+logb,  1 
. ~ oo l o g l o g  n - 2 a.s., (5 .2 )  

where ~, is the unique positive solution of the Eq. (2.4) and t, is as in (2.5). Further- 
m o r e  

(Un-b.  a,) t, (2 log n) 1/2 3 
(U, - b ,  a,) a.s., (5.3) lim sup loglog n - l i r a  sup abln /2  loglog n = 2  

n --* o o  n --+ oo  

and 
( U . - b .  ab) t. (2  log n) 1/2 1 

l iminf loglogn -li,rn~infab~,/Zloglogn(U"-b"a")=2 a.s., (5.4) 

where a, is the unique positive solution of the Eq. (2.7). 

Remark 6. (5.1) and (5.2) are in agreement with (1.4), proved by Deheuvels et al. 
(1986), when b, = [c log n], c > Co. By using the same arguments as in their proofs, 
one may extend the validity of (5.1) and (5.2) to the case where b,/log n 

c~(Co, oo), where {b,} is a sequence satisfying assumptions (i) and (ii) in Theo- 
rem 1. 

Remark 7. Some regularity assumptions on the sequence b, are used in our 
proofs. We will now discuss these conditions. Let a > 1 be a fixed number, and 
consider the integer sequence n j =  [-a~], j =  1, 2 . . . .  ; let B j =  b,~, A j =  c% and T~ 
= t,~. We shall denote by (G a) the assumption that (recall that log2 t = loglog t) 

/b,j log 2 n j\ n [Bj logj~ 

Observe that the sequence Bj=Eexp(logaj)] satisfies (Ga) for all a > l  iff 
1 < 3 < 2 .  It is also straightforward that the range of interest covered by (Ga) 
includes all sequences of the form 

b, = [exp (log~ n)], 1 =< 6 < 2, 

b, = [log pn], p > 1, 

among others. 
The reason for assuming (Ga) is that (by the same arguments as used in 
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the proof  of Lemma 7) we have, as j --, o% 

jlog n F2 
BJ+I AJ+I--BjAj~Y ( 2Bj J ( B j +  1 --Bj) 

1_ ?og n j )  
(Bj +1 -- B j) = ~ o (log n j). 

T~[ B~ J 

Simple sets of conditions which imply (G a) for all a > 0 are as follows: 
(G2) There exists a real sequence {b',} such that 

/b .  l~ n~ 
(i) b.+,-5 .=o\-n~ogn--  / as n ~ o o ;  

b.-bn=o(b' l~-:n n-) as n ~ c ~ ;  (ii) 

(G1) There exists a real sequence {b'.} such that 

(i) ~', + 1 -- b', = O ( ~ )  as n-~oo;  

b,-b,,=O(l~--gn) as n ~ o o .  (ii) 

Note that (G1)~(G2)=~(Ga) for all a > 0 .  (G1) , in turn is satisfied under 
the following assumption: 

(G) There exists a real sequence {g.} such that 

(i) b,/log n ]'; 

(ii) b./log p n $ for some p > 1 ; 

(iii) b. = [b.]. 

In the remainder of this section, and unless otherwise specified, we shall 
assume that (G1) holds, even though most of our arguments remain valid under 
weaker assumptions. 

Lemma 10. Under (G1) , there exists a constant 0 < D < o o  and a J<oo such 
that, for all j > J and nj_ 1 < n <_ nj, 

lb , -  b,jl < 1) (b , j log n j), 
and 

I~, b , -  c% b,~t < D (b,jlog n~). 

Proof We use the same arguments as in the proof  of Lemma 7. Details are 
omitted. 

Let us now define, as in the proof  of Lemma 9, 

V, = m a x  {(Sj+bn -- Sj+N)~- (S j+ N -- Sj+i)  -~ (Sj+bn+ l - -  Sj+b.),  

O<i,I<_N,j=O,N, 2N, ...,j<=N}, 

where we choose here N =  [2Db,/log n], D being as in Lemma 10. 
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By such a definition of V., we see evidently that, for all n~_ 1 ~  n < n~, we 
have U. < V.~. By Lemma 8, using the same arguments as in the proof of Lem- 
ma 9, it follows that 

P( U {U.>=~.b.+t;l(-l~176 
hi- I <n<=nj 

<= P (Vnj~ O~nj bnj + t~ l ( -  log bnj +(g2 + 2) log2 nj))= O((log nj) -l-e~4) 

as  j ----~ o0. 

Observe that ~( log  nj)- 1 -~/4 < or. By Boret-Cantelli, we have just proved: 
J 

Lemma 11. Under (GO, if b./log n ~ ~,  we have 

(U.-b.e . ) t .+logb.  3 
lira sup < a.s. 

. ~ ~ l o g l o g  n = 2 

In order to prove that the upper bound given in Lemma 11 is sharp, one 
needs only show that 

lira sup (U.j-b.j a.~) t . j+ log  b.j > 3  a.s. 
i~ ~ loglog nj = 2 

This, in turn, will follow from 

lim sup (~"j-  b.j a.j) t.j + log b.j > 3 
- a . s . ,  

j ~ ~ loglog nj = 2 

where we define here ~.j by ~nj=max{Si+b. -Si ,  nj-l<=i<=nj-bns}. It is note- 
worthy that the ~.j are independent for di~erent values of j. Hence, by Borel- 
Cantelli, all we need is to show that, for any e > 0, 

t -  1 ( _  log b.~ + (2 a - e) log 2 n j)) = o% Z Pi= E P(~.~-b.j e.j>= .~ 
J J 

The latter relation will be obtained by deriving a lower bound for P~. Let k = b.j 
and N = lb . / log  nil. We have evidently ~.j > (.j, where 

(.j=max{S.j_l +i+k--S.j_l+ i, i=0,  N, 2N, ..., i<nj/-nj_l -k} .  

x=b. j~ . j+t - l ( - logb . j+(~-e)  log 2 nj)and R=[ nj -nJ- l -k-]  Let "J N . We have 

Pj>=P((.>=x)=P( ~) {Sm+k--Sm>=x})=P ( U A,). 
l <_l<_R l <=l<_R 

By Lemma 2, we have 

p(A1)=P(A1) C(  b.j ~(lognj)_l+ ~ 
nj \ log nil 

a s  j ----~ oo, 
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Hence  

P(AI)=RP(A1)~C (loga)-l+~j-l+~=cj -1+~, 
l = l  

a s  j ----~ oo. 

Let  us now use the Chung-Erd6s  evaluat ion (i.e. L e m m a  4). We have 

I=I 

where Ao = {Sk > x} and m = [K/N] + 1 ~ log n j ~ j  log a as j - -  co (we use the 
fact that  A~ and A I are independent  for l i - l ]  > m). Observe that,  for 0 < e < 1, 

RP(A1)+(RP(A1))2~RP(AO~cj -1+~ as j ~ o e .  

In the sequel, we will show that,  as j ~ o% 

m 

R ~ P(A o ~ AI) = 0(]  -1 + a~/2), (5.5) 
1 = 1  

which will in turn  imply that,  for a suitable constant  d > 0, 

PJ>=P( U Al)>=dJ -1+~/2 
l <_l<_R 

This, in turn, will imply that  ~ P ] =  0% which suffices for our  needs. By Lem- 
J 

ma 3, we have, for any 0 < t < t,j, x and q, 

P (Ao c~ AI) < (4) (t,j)) k- N I exp ( -  t,j q) + P (Ao) (4) (t)) N1 exp ( -  t (x - q)) = Q'z + QI', 

where k = b,j. We shall now make  the following choices for x and q. Let  

log 1 
q = b.j ~ . j -  (N lit.j) log q~ (t.j) + K - - ,  

tn~ 
where K = K.j  = (log ny/4, a n d  

x=b..  c% + t ~ l ( - - l o g  b.j+(~-e) log a n~). 

Fo r  these choices, we have Q'i= ni 1 l-K, while 

Q'[=P(Ao) e x p { - - N l t ( ~ l o g  qS(t,~)--I log q5 (t)) 

Q ( - - l o g  b . j + ( ~ - e ) l o g  2 n j - K  log l)}. % \ 



386 P. Deheuvels and J. Steinebach 

Take  now t = t , j 2 .  By (2.1) and (2.6), and  using the fact tha t  N t ~ j ~ 2 / a  2, we 
get 

K/2 1 / 2 0  - - 4 + 2  Q' /=P(Ao)  eX p - {1+o(1)}  1 b,j (1 gnj)  

K/2 - l / 8  3/2 + = o  1 t e b,j ( lognj) 4 as j --*oo.  

Let  r = [(log ny/a] ~ m ~/2. W e  have  

m 1 - K ) _ - !  
i~= QJ'=n70(r* n~ O{( l~  

and 

Q/I' = - -  O ( e  - r /16)  = o ( P ( A o ) )  ' 
l = r n j  

where we have used the a s sumpt ion  (E) tha t  b,=O(logPn)  for some p > l ,  or  
the weaker  a s sumpt ion  (log b,)/log n ~ 0. 

Us ing  the trivial uppe r  b o u n d  P(A  o c~ At)<= P(Ao), we have 

P(Ao ~ Az) <= rP(Ao) ~ (log a)e/zj ~/2 P(Ao) = R 10  {j -  1 + 3~/2}. 
/=1 

Recall  tha t  P ( A o ) ~ R  l c j - l+~  a s j ~  Go. 
In  order  to comple te  the p roo f  of  (5.5), only one piece of the puzzle is missing, 

namely  to show tha t  

m R 
Rz~=rQ, l=~O{f (1 -K) /Z}=O{  j 1+3~/2} as j--+oo. 

This last s t a tement  is in turn  equivalent  to 

jl --~-+~-(1 --K)--~ 0 [ l o g  njJ as j ~ 0% 

which evidently holds  since K = K, j  -* oo and b, / log n -~ oo. 
By all this, we have  comple ted  the p r o o f  of  (5.5). Observe  tha t  we did not  

m a k e  use in our  a rgumen t s  of regular i ty  condi t ions  on b,.  We  have just  p roved :  

L e m m a  12. Let 1 <= b, <_ n be an arbitrary integer sequence such that b, / log n --* oo 
and b,/log p n --+ 0 as n --+ oo for  some p > 1. Then 

lim sup (U, - b, ~,) t, + log b, > 3 
. ~  l o g l o g  n = 2 a . s .  



Increments of Partial Sums 387 

All we need to conclude the proof  of Theorem 2 is to show that 

( U . - b . ~ . ) t . + l o g b .  1 
lim inf > -  a.s. 

, ~ ~ l o g l o g  n = 2 

For  this, we will first evaluate, for M > 1 integer to be precised later on, 

P (max  {Si+b - Si, i=0 ,  M, 2M, ..., i<=b.} 

1 
=>b. c~. + t  ( - - log b .+( �89  logz n) = P  i~,__ Ai ' 

1 
where A~={S,_I )M+b--S ,_I )M>b.c~ .+~.  (-- log b. + ( �89 0 logzn}, 

= [b./M] + 1. 
Bonferroni's inequality yields 

P A~ > R P ( A o ) - - 2 R  P(AonA~). 
i = 1  / / = 1  

By a proper choice of M=o(b.) ,  we want to ensure that, as n ~  o% 
R 

P(A o (~ A,) = o(P(Ao) ). 
/ = 1  

Note that by Lemma 2, 

and 

C 
RP(Ao) ~ n  (b./M) (b./log n) (log n) ~ as n ~ oe. 

For  the proof  of (5.7), we use again Lemma 3 with k = b., t = t./2, i = M l, 

x = b .  e . +  t~ 1 ( - l o g  b . + ( 1 - 0  log2 n), 

and 

q =- b. oe.- t2 1 Ml  log ~b (t~) + 2 t.- 1 log (M l). 

Observe by (2.1) and (2,6) that, as n ~ o% 

log q~(t.) 

It follows from Lemma 3 that 

togn _ . .  logn 
b. and logq)(t)~ 4b. ' 

P(Ao c~ Az)< ~ +  P(Ao) Ml  b~/2(log n)a 
1 
4 exp (-~--~/{1 +o(1)} logn]  

1 ~ 1 ( M l l o g n ] ,  
< - - - k  P(Ao) M l  b~/2(log n)2 4 exp = n M l  2 8 ~ -] 

R 

(5.6) 

(5.7) 

for n large enough. 
Let us now choose M~(b . / l ogn)  b~ If we assume that, for some p >  i, 
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b,/ log ~ n ~ 0 as n ~ oo, the condi t ion  (5 < 1/p ensures  tha t  M = o (b,). Fu r the rmore ,  

R 1 TC 2 
~1 M - a  nml  2<=7-on =o(P(Ao)) as n--+oo, 

1 = 

whenever  c5 > - e .  Us ing  the fact tha t  b, / log n ~ oo for the remaind ing  terms, 
we see that,  for any  0 < c5 < l/p, (5.7) holds with the above  choice of M. 

By (5.6), this, in turn, implies tha t  

P A i ~RP(Ao)~b l , -O( log  n) ~ as n ~  oo. (5.7) 
i 

Let  now Q~=max {S~+~+b -- S~+ i, i = 0 ,  M, 2M .. . .  , i<b,}. We see tha t  

U,>=max {Qj,j=O, 2b,, 4b,, . . . , j<n-b , } .  

Hence,  not ing tha t  the QSs are independen t  and  identically distr ibuted,  we 
have  

P(U,<x)<= [I (1 --P(Qtb >=X)) 
0 < l < [(n - b n ) / 2  bn] 

< exp ( -- 2 n C b ~  ~ b~" -a  (l~ n)~ { 1 + ~ (1)}) . (5.8) 

F r o m  there, we deduce  the l emma:  

L e m m a  13. Assume that b, / log n ~ o% and that, for some p >  1, b , / log p n ~ 0. 
Then, for any 0 < e < 1, if C is as in Lemma 1, 

P (U, < b~ c~, + ~ ( - log  b, + (�89 e) loglog n)) 

=O@xp(-C(logn)~/2)}  as n--,  oo. 

Proof In  (5.8), take c5 =e/(2p)< 1/1). 
In  the sequel, we will use the r e m a r k  tha t  if b,=j is cons tan t  for  all N~ < n  

<_-N2, then UNl=min{U, ,  N1 <n<Nz}. Since c(~) is decreasing in c~ and c~, sat-  
isfies c (~ , )= j / l og  n +, it follows tha t  c~~ as well as t, = t(c~,) is increasing on IN1, N2]. 
Let  

- I  

x = x (n, 5) = b, % + ~ ( -  log b, + (�89 ~) loglog n) ) .  

We see evidently that,  for any  e > 0 and  all N1 ~ n < N2, 

x(n, e)<x(N~, e)+(bN2 ~uz--bN1 C~N 1) (1 + O(1)) as N1 -~ oo. (5.9) 

Assume  now tha t  N2/Na < a < oo. Then,  by  (2.5) and  (2.6), we have  

bN2~2-bN~ c% = O { c ~ ,  ~ log(N2/N~)}=o{t~ ~ logtog N~}, as N1 ~ o o .  
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It follows that, if N2/N~ < a, we have, for large enough N1, and a fixed e > 0, 

x(n,e)<x(Nbe/2), Nt <n<N2 (5.10) 

Hence, if (5.10) holds, 

~) {U,<x(n, e)} c {UN, <x(Na, e/2)}. (5.11) 
N1 <_n<_N2 

Consider now the sequence n j =  [a;], where a > 1 is fixed, and the sequence 
m; defined recursively by 

m l = l ,  m~=min{m>mi_l, bm>bm_~}, j = 2 ,  3, .... 

Because of (5.10), all we need is to show that, for all 0 < e <  1, 

Y P(c . ,  __< x (n;, ~/2)) < 0% (5.12) 
J 

and 
~P(gm<=x(mj, 42))< oo. (5.13) 
J 

By Lemma 13, (5.12) is straightforward. Next, observe that (5.13) is equiva- 
lent to 

~P(U,<=x(n,e/2)) lt0,>b,_l~< oe, all 0 < e < l ,  
n 

where 1A denotes the indicator function of A. This, in turn, follows from 

~l{b.>b,,_l} exp --~-(logn) ~/2 <0% all 0 < e < l ,  
n 

Evidently, when b, is nondecreasing, 

~l{b,>b,_l}<b,=O(logVn) as n --+ c~. 
i = 1  

On the other hand, for 0 < e < 1, 

exp(--C(log(n+l))~/2)-exp(-C(logn)~/e)=O(n-1 log-p-2n) as n--+ oo. 

But this suffices for our needs by Abel's lemma. By all this, we have just proved: 

Lemma 14. Assume that b,/Iog n --, 0% b, ~ and for some p > I, b,/log p n -+ O. Then 

(U,-b ,~ , ) t ,+logb,  1 
lim inf > -  a.s. 

. ~ ~ l o g l o g  n = 2 

Proof of Theorem 2. It follows from (4.3) and Lemmas 11, 12 and 14. The equiva- 
lence between (5.1) (resp. (5.2)) and (5.3) (resp. (5.4)) follows from (2.9). 
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Remark 8. It is noteworthy that the results 

l iminf(U,-b,c~,)+logb, 1 and l imsup(U"-b"e")+l~ 3 
= - -  a . s .  

. ~ ~ l o g l o g  n 2 ._+ 0o l o g l o g  n = 2 

are valid under the sole assumptions that b,/log n---, 0% b,/logVn ~ 0 for some 
p > l ,  and b,i". 

6. W h a t  S trong  Invar iance  Pr inc ip le  G i v e  

Consider U s as defined in Sect. 1, and assume conditions (A), (B) and (C). Then, 
by the Koml6s-Major-Tusnfidy (1976) approximation, there exists a probability 
space which carries a Wiener process {W(t), t>0} and a sequence with the 
same distribution as X1, X2 . . . .  (and which will be assumed to be our original 
sequence, without loss of generality), such that, almost surely, 

S,--aW(n)=O(logn) as n--* oo. (6.1) 

For  0 < h < t, denote by 

R(t,h)= max (W(s+h)-W(s)),  
O<_s<_t - -h  

the maximal increment of size h of the Wiener process in (0, t). Let also (bt, t > 0} 
be a function of t such that 

0 < ~ t < t ,  and b, -~ ,=O(logn)  as n--.oo. (6.2) 

We have then (see, e.g., M. Cs6rg6 and R6v6sz (1981), Theorem 1.2.1): 

U,-aR(n,g,)=O(logn) a.s. as n-~oo. (6.3) 

It follows from (6.2) that we can characterize the limiting behaviour of U, 
up to the precision O(logn) by the corresponding results known for R(t, h). 
In the sequel, we shall use the results of R6v~sz (1982) and Ortega and Wschebor 
(1984). As in R~v6sz (1982), we assume that 

(H) t -~ b'~ ~, lim (log(t/bt))/loglog t = 0% and /~ ]'. 
t ~ c t ?  

From Theorem 2.1 of R6vbsz (1982), by expanding the functions a3(t ) and 
a4(t ) give there, we deduce that 

( + ( l + e )  log2t ]  [LLC, e<0,  
ao(t)=(2 log(t/~t)) ~/2 1 2(2 log(t/~t))] e~LUC, e>0,  

provided loglog(t/gt)~loglog t. This gives" 

L e m m a  15. Under the assumptions above, 

. oR(t, b't)-{2~t log(t/bt)} '/2 1 
timbre ~]~og(~}~7~l~glo~-= ~ a.s. 
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Ortega and Wschebor (1984) consider the upper classes of b't- 1/2 R(t,  ~t). They 
introduce an additional assumption which can be stated as follows in the case 
we consider. 

(I) ~ has a continuous first derivative br"t such that 

o( t log(t/ ' as t--* oe. 

It is noteworthy that (I) is the continuous version of condition (G1) (i), namely 

~', +~ - - /~ .  = O \ n  l o g  n] as  n ~ oe. 

If (H) and (I) hold, an immediate consequence of Theorems 2 and 4 in Ortega 
and Wschebor is that 

(3+e) log2t  \ (UUC,  e>0,  
al (t) = (2 log (t/~O) 1/2 14 ~(2 ~g(~fftJ)) E \ ULC, < 0, 

provided loglog(t//~)~loglog t. This gives" 

Lemma 16. Under the assumptions above, 

R(t,  b t ) -  {2~'~ log(t/bt)} 1/2 
lim sup 

t ~  ~2b]log(t/bt)} 1/2 loglog t 
3 

=- a . s .  
2 

Now, in order to obtain a precise rate in the limiting behaviour of U, by 
the above strong approximation approach, we need assume that 

log t 
- -  ~ _  0 7 lim {~t/log(t/bt)} 1/2 loglog t t --+ oO 

which amounts to 

lim b~(loglog t)2/log 3 t = ~ .  (6 .4)  
r ~ a o  

By Lemmas 15 and 16, we prove easily the following result. 

Theorem 3. Assume that b~ is an integer sequence such that l < b , < n ,  
bn(loglog n)Z/log 3 n ~ oo and (loglog(n/b~))/loglog n ~ 1 as n --+ oo. Assume further 
that there exists a real valued sequence ~, T, such that 

(i) b.-g. = O(log n), 

(ii) b.+ t-~.= O (n l @ g  n) 
(iii) n-1 ~" $. 

a s  n - ~ ,  
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Then 

and 

(2 log(n/b.)) 1/2 
lim.~oosup abel2 loglog n 

lim inf (2 log(n/b.)) 1/2 
n-~oo 6b 1/2 loglogn 

P. Deheuvels and J. Steinebach 

12 3 (Un-~7(2b . l o g ( n / b . ) ) / ) = ~  a.s., (6.5) 

1 
( U . - a ( 2 b .  log(n/b.))'/2)=~ a.s. (6.6) 

Remark 9. In the range where b.(loglog n)2/log2n---, o% b./log p n--*0 for some 
p >  3, the results of Theorems 2 and 3 coincide almost exactly, as can be seen 
from the expansions (2.5) and (2.6). In fact, Theorem 2 is there slightly stronger 
since it does not require that g./n to be nonincreasing, and allows b . -b ' ,  to 
be as large as O (b./log n). 

On the other hand, it can be verified from the same expansions that the 
results of Theorem 3 are invalid in general if one drops the assumption that 
b.(loglog n)2/log 3 n ~ oo. 

This can be seen from the following corollary of Theorem 2: 

Corollary 1. Under the assumptions of  Theorem 2, / f  b./log 2 n ~ oo and b./log p n 
0 for some p > 2, we have 

l imsup(21og(n/b.)) l /2(  ~ ) 3 
.-.~o ab~/Zloglog n U . - a ( 2 b .  log(n/b.)) 1/2-  l o g n =  a.s., (6.7) 

and 
~7 ) 1 lim inf (2 log(n/b.)) 1/2 U.-cr(2b.  log(n/b.)) a / 2 - ~ -  log n = ~  a.s., (6.8) 

.~oo ab~/z loglogn 

where 7 = E(X~)/E(X2) 3/2. 
In the particular case where b.(loglog n)2/log 3 n ~ dE(O, 00), we have 

and 

lim._~sup~o (2abl./21~ n ( U . - a ( 2 b .  l~ 2; + l / d 3  ~/]~ a.s., 

lim.40osup (2crbl/Zloglog nl~ (U.-o-(2 b. log(n/b.))l/e)= 2 + 3~dd a.s. 

Proof Straightforward by the expansions in Sect. 1. 
We will discuss now weak laws. In the case, the following result holds: 

Theorem 4. Assume that bn is an integer sequence 
b.(loglog n)2/log 3 n --* oo and b./n --+ 0 as n ~ oo. Then 

(2 log(n/b.)) 1/2 1 2 1 
l i rn  o- b. ~/2 loglog (n/b.) (U" - a (2 b. log (n/b.)) / ) = 

(6.9) 

(6.10) 

such that l < b . < n ,  

in probability. (6.10) 
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Proof A proof  of this result, together with additional weak laws for U n in the 
range covered by Theorem 4, is given in Deheuvels and R6v6sz (1986). It can 
be seen that (6.10) is a simple consequence of Theorem (1.5.5) in M. Cs6rg6 
and R6v6sz (1981). We omit details. 

Remark 10. In the case where X1, X2, ... are i.i.d. Gaussian N(0, a2) random 
variables, we get exactly a, b,=o-(2b,  log(n/b,)) l/a, so that the results in Theo- 
rems 2 and 3 (resp. 1 and 4) coincide for all sequences b,, in study. 

In general, the range of validity of Theorems 3 and 4 depends of the index 
m of the first non-zero cumulant ~cr, r>__ 3, in the expansion (2.1). The case where 
~c r = 0  for all r >  3 coincides with the normal distribution, and corresponds to 
the most general situation where these theorems can be applied. 

Remark 11. Several extensions of our results are possible, in particular for Shepp's 
statistic, i.e. max (Sk + b~-- Sk), or for the maximal modulus of continuity max 

O<_k<_n O<_k<_n-bn 

max (Sk+i--Sk). The corresponding theorems will be published elsewhere. 
O<i<bn 

References 

Chung, K.L., Erd6s, P.: On the application of the Borel-Cantelli lemma. Trans. Am. Math. Soc. 
72, 179-186 (1952) 

Cs6rg6, S.: Erd6s-R6nyi laws. Ann. Statist. 7, 772-787 (1979) 
Cs6rg/5, M., R6v6sz, P.: Strong approximations in probability and statistics. New York: Academic 

Press 1981 
Cs6rg6, M., Steinebach, J.: Improved Erd6s-R~nyi and strong approximation laws for increments 

of partial sums. Ann. Probab. 9, 988-996 (1981) 
Deheuvels, P.: On the Erd6s-R~nyi theorem for random fields and sequences and its relationships 

with the theory of runs and spacings. Z. Wahrscheinlichkeitstheor. Verw. Geb. 70, 91-115 (1985) 
Deheuvels, P., Devroye, L., Lynch, J.: Exact convergence rates in the limit theorems of Erd6s-R6nyi 

and Shepp. Ann. Probab. 14, 209-223 (1986) 
Deheuvels, P., Devroye, L. : Limit laws of Erd6s-R6nyi-Shepp type. Ann. Probab. (to appear) 
Deheuvels, P., R6v6sz, P.: Weak laws for the increments of Wiener processes, Brownian bridges, 

empirical processes and partial sums of i.i.d.r.v's. Proc. 6th Pannonian Symp. (to appear) 
Erd6s, P., R+nyi, A.: On a new Iaw of iarge numbers. J. Analyse Math. 23, 103-111 (1970) 
Hall, P., Heyde, C.C.: Martingale Limit Theory and its Application. New York: Academic Press 

1980 
H6glund, T. : A unified formulation of the central limit theorem for small and large deviations from 

the mean. Z. Wahrscheinlichkeitstheor. Verw. Geb. 49, 105-117 (1979) 
Koml6s, J., Major, P., Tusnfidy, G. (1976) An approximation of partial sums of independent r.v's. 

and the sample d.f. II. Z. Wahrscheinlichkeitstheor. Verw. Geb. 34, 33-58 (1976) 
Lukacs, E.: Characteristic functions, 2rid. edn. London: Griffin 1970 
Ortega, J., Wschebor, M.: On the increments of the Wiener process. Z. Wahrscheinlichkeitstheor. 

Verw. Geb. 65, 329-339 (1984) 
Petrov, V.V.: On the probabilities of large deviations of sums of indpendent random variables. Theory 

Probab. Appl. 10, 613 622 (1982) 
R6v6sz, P.: On the increments of Wiener and related processes. Ann. Probab. 10, 613-622 (1982) 
Steinebach, J.: Best convergence rates in strong approximation laws for increments of partial sums. 

Techn. Rep. 59, Lab. Res. Star. Probab., Carleton University, Ottawa, Canada (1985) 

Received March 21, 1986; received in revised form October 1, 1986 


