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Multiple Points in the Sample Paths 
of a L6vy Process 

Steven N. Evans 
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Summary. We obtain a sufficient condition for the sample paths of a L6vy 
process to contain multiple points. Our condition is close to one conjectured 
by Hendricks and Taylor. 

1. Introduction 

Suppose that Y is a L6vy process with transition function Qt(x, B) and potential 
function 

V~(x, B)= ; exp( -  at) Qt(x, B) dt. 
0 

A problem that has aroused a considerable degree of interest is to determine 
necessary and sufficient conditions on Q which will ensure for some integer 
k>2  that almost surely the sample paths of Y possess k-tuple points (we say 
that a point x is a k-tuple point of Y if the cardinality of set Y-l({x}) is at 
least k). 

The case of Brownian motion was dealt with by Dvoretzky et al. [2, 3], 
and Dvoretzky et al. [4], and that of stable processes by Taylor [15, 167 and 
Fristedt [7]. Fairly complete results were obtained in Hendricks [11, 12] for 
processes with independent stable components and in Hawkes [8] for spherically 
symmetric processes which possess a suitably behaved family of transition densi- 
ties. 

All of the above work deals with processes for which 

Qt(x, dy)= q~(y-x) dy (1.1) 

for some measurable function qt, t > 0, and hence 

V~ d y) = v~(y- x) d y (1.2) 
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for some measurable function vL In all cases k-tuple points are present whenever 

(vl(x))k dx < oO (1.3) 
Ixl=<l 

and it has been conjectured by Hendricks and Taylor [13] that the condition 
(1.3) coupled with some form of 'non-singularity'  condition to rule out cases 
such as processes with subordinator projections should be necessary and suffi- 
cient for the existence of k-tuple points. 

Work of the author in Evans [5] shows that for symmetric processes (1.1) 
(which in this case is equivalent to (1.2)) and (1.3) are indeed sufficient for the 
existence of k-tuple points. The most general sufficient condition known to us 
is found in LeGall et al. [14]. There the authors work with processes which 
possess a strong-Feller semigroup (these are precisely the processes for which 
(1.1) holds) and they prove a theorem which implies that (1.3) and the non- 
singularity condition 

v x (0) > 0 (1.4) 

are together sufficient for the existence of k-tuple points. 
In this paper we shall improve this last result by replacing the assumption 

(1.1) by the weaker assumption (1.2), which is equivalent to the assumption 
that the resolvent of Y is strong-Feller. Furthermore, we provide another 
approach to this type of result in that our proofs are potential theoretic and 
Fourier analytic in spirit, as opposed to the local time methods of LeGall et al. 
[14]. 

The main tool which we use is a theorem from Evans [5] which provides 
a sufficient condition for a multiparameter process formed from several indepen- 
dent L~vy processes to 'hi t '  a given set. We recall this result in Sect. 2 along 
with some relevant notation. The precise statement and proof of our result 
are given in Sect. 3 along with an example of a process which satisfies the 
conditions of our theorem but does not posses a strong-Feller semigroup. 

2. A Multiparameter Result 

Suppose that Xi=(f2/, J/gi, J/d~, XI~, 0~i, P]0, 1< iNk ,  are standard Markov 
processes (see, e.g., Sect. I-9 of Blumenthal and Getoor [1]) with state spaces 
(E i, N/) augmented by N. As usual, we set E~,=E/u{A ~} and let ~ be the 
~-field on E~ generated by ~i. 

Set E=~IE /  and N = I ~ N / .  Define E~ and N~ similarly. We will adopt 
i i 

the convention that when the domain of a function is not expressly stated it 
will be assumed to be E. We extend such functions to E3 by setting them 
to be 0 on Ea\E. We also adopt the analogous convention for measures. 

Define a measurable space (f2, J~) by setting/2 = ~ I  ~i and ~ = ]~I ~(i. For 
i i 

t = ( t  1 . . . . .  tk)e[0, oe[ k, CO=(CO 1 . . . .  , cok)~f2 and x=(x  1 . . . . .  xk)eEA set Xt(co) 
= (X~, (col)) and P~ = H P/,. 

i 
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If Z (resp. Z i) is a random variable defined on (f2, ~ )  (resp. (f2 i, jr we 
will denote the expectation of Z (resp. Z i) with respect to Px (resp. p~,) by Ex Z 
(resp. E~, Zi). 

If # is a a-finite measure on (E~, ~a) we may define a measure P, on (Q, 
-A0 by P~(-)=~#(dx) P~(-). 

Consider now the special case of this general construction that obtains when 
each of the X ~ are L6vy processes on U =~e~. We say that a set B e N  is essentially 
polar if P~(3te-]0, ~ [ k : X t e B ) = O  , where 2 = [ I  2i is Lebesgue measure on E. 

i 

Theorem (7.4) in Evans [5] provides a sufficient condition for a set not to 
be essentially polar. We restate this result below as Theorem (2.2). Since it 
has been pointed out to the author that it is not clear from the proof in Evans 
[5] how one deals with certain difficulties presented by the existence of disconti- 
nuities in the paths of the process, we also provide a more complete proof 
of this result. First, however, we will require some more notation and a Fourier 
analytic lemma which appears as part of Theorem 1 in Hawkes [-9]. 

Notation. If # is a measure we denote the Fourier-Stieltjes transform of # by 
9. I f C  is a measurable set we denote the Lebesgue measure of C by [C[. 

Lemma (2.1). Let A and B be compact subsets oflR", n >_ 1. I f  there exist non-trivial 
finite measures # and v supported on A and B respectively and such that 

]~(z) l  2 le(z) l  2 dz  < 

then 

]{x:(x + A)c~B+O)]>O.  

Notation. As usual, define the exponent o f X  j to be the function ~J such that 

exp ( - t j ~i  (z J)) = Uo exp (i X j (t J) . z J). 

If # is a measure on E and fl > 0 set 

l(fl; q/;/z) = f [l-I Re ((fl + q) i(zi))- 1)] i/~(z)12 d z. 
i 

Theorem (2.2). I f  K is a compact subset of E then a sufficient condition for 
K to be not essentially polar is that there exists fl > 0 and a finite measure # 
supported on K such that I (fl; ~ ; I~) < ~ .  

Proof  Let _~i denote the standard process obtained by killing X i at constant 
rate fl(see, e.g., III.3 of Blumenthal and Getoor [1]). Denote the lifetime of 
_~i by (i. Let )7 be the multiparameter process formed from the family {)~i: 
1 _< i_< k} using the construction described above and consider the measures 

~(A)--~ IA(:?(t)) dr, A e N  
~i(Ai) = ~ IA~(Xi(ti)) d t  i, A l a n  i. 
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In an obvious notation we have 

/~]f~(u)l 2 =/~ol ; exp(iu.Xj(t)) dt[ 2 
0 

=/~o ; [ exp (i u. (XJ (t) - ~i(s)))d t d s 
0 0 

= ~ ~ exp(- f l ( sv t ) )Eo exp(iu-(XJ(t)-XJ(s)))dtds 
0 0 

= 2 R e  ~ ~ exp ( - f l t )  e x p ( -  (t-- s) ~bJ(u)) dt ds 
{(s,t):t > s} 

= 2 R e  ~ exp(--fls) ~ exp(--(t--s)(fl+OJ(u)))dtds 
0 s 

= 2fi-  1 Re((fl + OJ(u)) - 1), 

and so 

/~o I~(z)l 2 = [ I  E~ I~i(zi)l 2 
i 

= 2  k fi k H Re((fl+0i(z/)) - 1). 
i 

Now ~i is almost surely finite and ~i is supported on the compact set 

C i = {X ~ (s~), 2 ~ (s ~ - ) :  0 __< s ~ < r ~ {X i (~i _)}. 

Applying Lemma (2.1) gives 

(Po • ~)({(~o, x): H ci(w) ~ ( K  - x) + 0}) > 0 (.). 
i 

Let 7~Z:E-~ U denote the usual projection map and set 

D z = {_~/(si): 0 =< s' < ~i}. 

Observe that the statement of Proposition 1.10.20 in Blumenthal and Getoor 
[1] still holds if the a-field of Borel sets is replaced by the family of analytic 
sets so that if F ~ E ~ is analytic we have 

poi(Ci m F + O ) :  poi(Di (~ F ~ O). 

Thus for any x we see from Fubini's Theorem that 

Po(I] C~ n ( K - x ) + O ) = P o (  c '  ~ ( (  E~ x I I  C ~ ) ~ ( K -  x)) *0) 
i i>1 

= P o (  D1 (57ct((  E I •  H C i ) ( ~ ( g - - x ) )  4:0) 
i>1 

=Po( DI •  H Cir *0) 
i>1 
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Combining this with (*) we have 

(~o • ~)({(~o, ~): 1-1 D'(~) ~ ( K -  ~) 4: 0}) > 0 
i 

and from the relationship between J~" and X ~ this certainly implies 

0<(Po x 2)({((~, x) : (x+X([O,  or,) I-k)) c~K # 0}) 

= J2(dx)P~(X([O, oo [k) ~ K  #0 )  

and so 

If 
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,~({x:e(x([o, ~ [ k ) c ~ K , 0 } ) > 0 .  

)4{x :~(X([0, c~ [~\] 0, c~ I-~) ~ K , 0 ) >  0})=0 

then we have nothing more to prove, so we assume that this is not the case. 
By renumbering the X i if necessary, we may suppose for some j, 1 < j  < k, that 

,~({x: P~ ( { ( x  1, . . . ,  x j) (o, . . . ,  o)) x (xJ  + 1, . . . ,  x k) (3 o, oo [~ - J[) c~ K 4= 0) > 0}) > 0. 

Set X' -=(X 1, .. . ,  XJ), X " = ( X  J+ 1, . . . ,  X k) and decompose 2 and P~ similarly. By 
assumption we have 

(P; x ,v• x")({x: {x'} x (x"(3o, ~ [ " - J ) - x " ) ~ K , 0 } ) > 0  

and so 

' " )~ ..... x " ' . , 0 < ( P o x  ~ x ) : x  )it  : { X ( 1 , . . . ,  1) - -x '}x(X"( ]0 ,oo[k-J ) - -x" )c~K~-0})  

= j 2(d x) P~(X({(1, ..., 13} x ] 0, oo [~-J) m K 4: O) 

which certainly implies 

,~({x:P~(X00, c~[k):~ K , 0 ) > 0 } ) > 0 .  

3. A Sufficient Condition for Multiple Points 

Notation. Suppose that Y is a L6vy process on IR a with transition function 

Q.(-,-): [0, oo [ x IR~ • ~(IR ~) --, [0, 13. 

Set 

V~(z, B)= ~ exp(- -~s)  Q~(z, B) ds 
0 

for , > 0 ,  zEIR a and B ~ O R a ) .  Assume that Y has a strong-Feller resolvent. 
We have from Propositions 1 and 3 in Hawkes  [10] that this will be the ease 
if and only if there exists for each a > 0 a unique measurable function v" such 
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that  
i) for each y, z ~ v~ (y - z )  is e-excessive (and hence lower  semicont inuous) ;  

ii) V~(z, B))= ~ v ~ ( y - z )  dy; 
B 

iii) v ~ -  v # = ( f i -  c 0 v ~ * vL 
We call {v~:e > 0} the family of  canonical  resolvent  densities. 

Theorem (3.1). Let Y be a Ldvy process on IR d with canonical resolvent densities 
{v~}. I f  for some k6{2,  3 . . . .  } there exists fl, e > 0  such that 

i) v#(O) > 0 

and 

ii) ~ (v#(z))~ dz < oo 
Izl<=~ 

then the sample paths of Yhave k-tuple points almost surely. 

Proof. Let  X 1, . . . ,  X k be k copies of  Y, and  form a process X f rom these in 
the m a n n e r  of  Sect. 2. We will begin by showing tha t  the set 

= {x e (~-d)k: x l  . . . . .  x ~} 

is not  essentially po la r  for X. 
F o r  x = (x t, . . . ,  xk)s(lRd) k put  

u(x)  = d ( x l ) . . ,  v~(xk) 

and let # be Lebesgue  measure  on ~3 restricted to {ye~?:ly i] <~/3, 1 < j <  k}. N o t e  
that  if xs(IRd) k with IxJI __<e/3, 1 < j < k ,  then for some cons tan t  c 

(u,~,~)(x)<c ~ vqz -x l ) . . . d ( z - x~ )dz  

k 

<=c I1 ( # (d(~-xJ))kdz) '/~ 
d = l  Izl < 2e/3  

<=c ~ (d(z))~ dz. 

Thus  if we put  

and  

then 

k 

w (x) = 2 - k [ I  ( vp (x2) + vp ( - x J)) 
j = l  

f ( x )  = (w * # * #)(x) 

s u p { f ( x ) : x ~ ( N J )  k, [xil<_e/3, l <=j<=k}=c' < oo. 

Note  also that,  since v ~ is integrable,  w and hence f are also integrable.  
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Observe that if we set g = f then 

g(~) = I-[ Re((fl + (p ({J))- ~)[fi({)l 2 
J 

>__0, ~---(~l,...,~b~(Rd) ~, 

where q~ is the exponent of Y From the obvious multidimensional analogue 
to Eq. (3.4) in Chap. XV of Feller [6] we have, for a > 0, that 

(2~) -dk , g ( 0 e x p ( - - a 2  '~[2) (2@2 ]2) d~=(2ZC)-ak/2a-nk ~ exp f (x)dx  
(Rd) k (Rd)k 

_ _ ~ 2  <=c'-F(2~)-ak/2 a-akexP( l@a2 ) ~ f(x)dx. 
(Rd) k 

Letting a J, O, it is clear from the above that 

S g(0d~<oo 
(~a) k 

and so Theorem (2.2) gives that 0 is not essentially polar for X. 
Consider the following construction. By possibly enlarging the probability 

space on which Y is defined, construct exponential random variables PI, P2, . - "  

with means fi- ~ which are mutually independent of Y for all initial distributions. 
Define To=0 and T~=pl + ... +pj,j--- 1, 2 . . . . .  Suppose that 

that is 

k - 1  

{Y(t):t~ET2j, T2j+ 1[} = 0  a.s., (**) 
j = 0  

k - 2  

(~ {Y(t):te[T2j, T2~+1[} 
j=O 

~(Y(Tzk-3 +(Y(T2a- 2)- Y(TEk- 3)))+ {Y(t)-- Y(T2a_ 2): 
t e [T2 , -2 ,  T2,- 1[} =O 

almost surely. Since the a-fields 

a{Y(t)--Y(Tj):teETj, Tj+ 1[}, j = 0 ,  1 . . . .  

are mutually independent and Y(T2k_2)--Y(T2k_3) has density fly p which, by 
the following Lemma (3.2) is every where positive, we see that (**) implies that 
for all z 2_ 1 not belonging to a set of zero Lebesgue measure we have 

k--2 

{Y(t):teET2j, T2i+ 1[} 
j = o  

{zj_t + r(t)-- r(T2k_ 2): tE[T2k_2, r2k_ 1[} =0 
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almost surely. Continuing in this fashion we find that (**) implies that for all 
(zl, z2 . . . . .  zj. 1) not belonging to a set of zero Lebesgue measure we have 

k - 1  

{Y(t):t~[To, TI[ } c~ (-] {zj+ Y(t)- Y(T2j):t~ET2j, T2j+IE} --0 
j=a 

almost surely. This is, however, not possible since 0 is not essentially polar 
for X. 

We therefore have that 

Po(3x:card(Y-l({x})c~ [To, T2k-l[)>=k)=P>O; 

and hence 

Po (3 x:card Y-l({x})>k) 
>=Po(gn, 9x: card( (Y(- ) -  Y(T,(2k_ l)))- l({x})c~ [T~(2k_ 1), T~,+ t)(2k_ l)[)>-k) 
lira 1 - ( 1  _p)m= 1 

? n ~  oo 

as claimed. [] 

Lemma (3.2). Under the conditions of Theorem (3.1), vB(z)> O, z~lR a. 

Proof Observe that 

VP(0,') * V~( 0, ")=S J" e x p ( -  fls) e x p ( -  fl t) Qs(0,')* Qr(0,') ds dt 
= S ~ e x p ( -  fl (s + t)) Qs+,(O,.) ds d t 

=~ r e x p ( - f l r )  Qr(0,') dr 

and so it is clear that 

supp V~(0, ')= supp V~(0,.). V~(0, -) 

= supp V ~ (0,') + supp V r (0,.). 

From the lower semicontinuity of v ~ it is clear that supp V~(0, -) contains a 
neighbourhood of 0 and hence from the above supp V~(0, ')=]R a. It is shown 
in Hawkes [10] that v ~ is positive on int supp V~(0, ") and so the lemma fol- 
lows. []  

The following example shows that there are processes satisfying the condi- 
tions of Theorem (3.2) which do not posses a strong-Feller semigroup. 

Example. Let Z be a simple Poisson process with parameter 1. Consider the 
process Ygiven by Y(t)=Z(t)-t. Since the distribution of Y(t)-Y(O) is atomic, 
it is clear that (1.1) does not hold for this process. However, a straightforward 
calculation shows that Y has canonical resolvent densities given by 

I ~ exp(-(l+~)(k-x+[x]--l) l(k-x+[x]--l)k/k!,  if x > 0 ;  

v ~ ( x )  = ~ = ~ 1  

~ e x p  ( - (1 + a) (k -- x)) (k - x)g/k !, otherwise. 
k = 0  
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I t  is c lea r  t h a t  (1.4) h o l d s  a n d  the  i n t e g r a l  in (1.3) is f in i te  for  all  k > 2 .  A p p l y i n g  

T h e o r e m  (3.1) g ives  t h a t  for  all  k > 2  the  s a m p l e  p a t h s  of  Y possess  k - tup le  

p o i n t s  a l m o s t  surely.  T h i s  c o n c l u s i o n  is o f  c o u r s e  a lso  o b v i o u s  f r o m  to t a l l y  
e l e m e n t a r y  c o n s i d e r a t i o n s .  
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