Probability
 Theory wimme

© Springer-Verlag 1995

On the almost sure central limit theorem and domains of attraction

István Berkes*

Mathematical Institute of the Hungarian Academy of Sciences, P.O.B. 127, H-1364 Budapest, Hungary (e-mail: h1127ber@ella.hu)

Received: 28 February 1994 / In revised form: 4 October 1994

Summary. We give necessary and sufficient criteria for a sequence (X_{n}) of i.i.d. r.v.'s to satisfy the a.s. central limit theorem, i.e.,

$$
\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{k \leq N} \frac{1}{k} I\left\{\frac{S_{k}}{a_{k}}-b_{k}<x\right\}=\phi(x) \text { a.s. for all } x
$$

for some numerical sequences $\left(a_{n}\right),\left(b_{n}\right)$ where $S_{n}=X_{1}+\cdots+X_{n}$ and I denotes indicator function. Our method leads also to new results on the limit distributional behavior of $S_{n} / a_{n}-b_{n}$ along subsequences ("partial attraction"), as well as to necessary and sufficient criteria for averaged versions of the central limit theorem such as

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k \leq N} P\left(\frac{S_{k}}{a_{k}}-b_{k}<x\right)=\phi(x) \quad \text { for all } x
$$

Mathematics Subject Classification (1991): 60F05, 60F15

1 Introduction

Let us say that a sequence (X_{n}) of r.v's satisfies the a.s. central limit theorem (ASCLT) if there exist numerical sequences $\left(a_{n}\right),\left(b_{n}\right)$ such that setting $S_{n}=$ $X_{1}+\ldots+X_{n}$ we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{k \leq N} \frac{1}{k} I\left\{\frac{S_{k}}{a_{k}}-b_{k}<x\right\}=\phi(x) \quad \text { a.s. for all } x \tag{1.1}
\end{equation*}
$$

where I denotes indicator function. The purpose of this paper is to give necessary and sufficient criteria for an i.i.d. sequence (X_{n}) to satisfy the ASCLT.

[^0]The first to prove a.s. central limit theorems were Brosamler (1988) and Schatte (1988) who proved independently that if $\left(X_{n}\right)$ are i.i.d. with $E X_{1}=0$, $E X_{1}^{2}=1, E\left|X_{1}\right|^{2+\delta}<+\infty$ for some $\delta>0$ ($\delta=1$ for Schatte) then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{k \leq N} \frac{1}{k} I\left\{\frac{S_{k}}{\sqrt{k}}<x\right\}=\phi(x) \quad \text { a.s. for all } x . \tag{1.2}
\end{equation*}
$$

(Actually, in [9, p. 270] Lévy formulated a result very similar to (1.2) but he gave no proof). Lacey and Philipp [8] showed that (1.2) remains valid assuming only $E X_{1}=0, E X_{1}^{2}=1$ and in [2] we proved that the converse is also valid: if an i.i.d. sequence (X_{n}) satisfies (1.2) then $E X_{1}=0, E X_{1}^{2}=1$. Thus in the special case $a_{n}=\sqrt{n}, b_{n}=0$ the ASCLT (1.1) is equivalent to the ordinary CLT

$$
\begin{equation*}
S_{n} / a_{n}-b_{n} \xrightarrow{\mathscr{G}} N(0,1) . \tag{1.3}
\end{equation*}
$$

For general $\left(a_{n}\right),\left(b_{n}\right)$ the situation is different and more delicate. Let us first note, as observed in [2], [3], that for general $\left(a_{n}\right),\left(b_{n}\right)$ the ASCLT (1.1) can hold in a curious (but degenerate) situation when the distribution of $S_{n} / a_{n}-b_{n}$ is near degenerate for all n and thus (1.3) is not valid. Indeed, the ASCLT can even hold for nonrandom sequences, i.e., there exists a numerical sequence $\left(c_{n}\right)$ such that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{k \leq N} \frac{1}{k} I\left\{c_{k}<x\right\}=\phi(x) \quad \text { for all } x . \tag{1.4}
\end{equation*}
$$

To get such a sequence let e.g. $\left(\alpha_{n}\right)$ be a sequence in $(0,1)$ unformly distributed in the Weyl sense, i.e.,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k \leq N} I\left\{\alpha_{k}<x\right\}=x \quad \text { for all } \quad 0 \leq x \leq 1
$$

(For example, we can choose $\alpha_{n}=\{n \alpha\}$ where α is any irrational number and $\left\}\right.$ means fractional part.) Then letting $c_{n}=\phi^{-1}\left(\alpha_{n}\right)$ we clearly have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k \leq N} I\left\{c_{k}<x\right\}=\phi(x) \quad \text { for all } x
$$

which immediately implies (1.4) (cf. Lemma 7). Now if $\left(X_{n}\right)$ is a sequence of r.v's with $S_{n}=X_{1}+\ldots+X_{n}$ and $\left(a_{n}\right),\left(b_{n}\right),\left(d_{n}\right)$ are numerical sequences such that

$$
\begin{equation*}
\frac{S_{n}}{a_{n}}-d_{n} \xrightarrow{P} 0 \tag{1.5}
\end{equation*}
$$

and the sequence $c_{n}=d_{n}-b_{n}$ satisfies (1.4) then clearly $\left(X_{n}\right)$ satisfies the ASCLT (1.1) but the validity of (1.1) in this case is due not to the random fluctuations of S_{n} but the fluctuations of the numerical sequence $d_{n}-b_{n}$. To give further degenerate examples for (1.1) let μ_{L}^{*} denote the upper \log density of sets $H \subseteq N$, i.e.,

$$
\begin{equation*}
\mu_{L}^{*}(H)=\limsup _{N \rightarrow \infty} \frac{1}{\log N} \sum_{k \leq N, k \in H} \frac{1}{k} \tag{1.6}
\end{equation*}
$$

If in (1.6) actually the limit exists then $\mu_{L}^{*}(H)$ reduces to the log density of H which will be denoted by $\mu_{L}(H)$. Let now $N=H_{1} \cup H_{2}$ where H_{1}, H_{2} are disjoint sets of positive integers with positive upper \log density and let $\left(X_{n}\right)$ be a sequence of i.i.d. r.v's such that for some numerical sequences $\left(a_{n}\right),\left(b_{n}\right),\left(c_{n}\right),\left(d_{n}\right)$ we have

$$
\begin{equation*}
\frac{S_{n}}{a_{n}}-d_{n} \xrightarrow{p} 0 \quad \text { as } \quad n \rightarrow \infty, n \in H_{1} \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
\frac{S_{n}}{a_{n}}-b_{n} \xrightarrow{\mathscr{L}} N(0,1) \quad \text { as } \quad n \rightarrow \infty, \quad n \in H_{2} \tag{1.8}
\end{equation*}
$$

and

$$
c_{k}=d_{k}-b_{k} \text { satisfies }
$$

$$
\begin{equation*}
\sum_{k \leq N, k \in H_{1}} \frac{1}{k} I\left\{c_{k}<x\right\} \sim\left(\sum_{k \leq N, k \in H_{1}} \frac{1}{k}\right) \phi(x) \quad \text { as } \quad N \rightarrow \infty . \tag{1.9}
\end{equation*}
$$

(Again, sequences satisfying (1.9) are easy to construct; for example, if $\left(\alpha_{n}\right)$ is uniformly distributed as above then

$$
c_{k}=\left\{\begin{array}{rll}
0 & \text { if } & k \notin H_{1} \\
\phi^{-1}\left(\alpha_{n}\right) & \text { if } & k \text { is the } n \text {-th element of } H_{1}
\end{array}\right.
$$

satisfies (1.9) by Lemma 7.) From Lemma 5 it follows that the sequence (X_{n}) satisfies the ASCLT (1.1) but the validity of (1.1) is again due partly to a nonrandom effect, namely the fluctuations of the numerical sequence $d_{n}-b_{n}$ on H_{1}. To avoid such degenerate situations, let us say that a sequence (X_{n}) of r.v's satisfies the ASCLT nontrivially if (1.1) holds for some $\left(a_{n}\right),\left(b_{n}\right)$ but there is no numerical sequence (d_{n}) such that (1.5) holds on a set $H \subseteq N$ with positive upper log density. In [2] the following result was proved.

Theorem. Let X_{1}, X_{2}, \ldots be i.i.d. r.v's with distribution function F. If

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x^{2}(1-F(x)+F(-x))}{\int_{|t| \leq x} t^{2} d F(t)}=0 \tag{1.10}
\end{equation*}
$$

then there exist numerical sequences $\left(a_{n}\right),\left(b_{n}\right)$ such that the ASCLT (1.1) holds nontrivially. On the other hand, if the ASCLT (1.1) holds nontrivially for some $\left(a_{n}\right),\left(b_{n}\right)$ then

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} \frac{x^{2}(1-F(x)+F(-x))}{\int_{|t| \leq x} t^{2} d F(t)}=0 . \tag{1.11}
\end{equation*}
$$

Neither implication can be reversed: (1.10) is not necessary and (1.11) is not sufficient for the ASCLT (1.1) to hold nontrivially for some $\left(a_{n}\right),\left(b_{n}\right)$.

Note that (1.10) is the classical necessary and sufficient condition for an i.i.d. sequence (X_{n}) with distribution function F to satisfy the ordinary CLT (1.3) for some $\left(a_{n}\right),\left(b_{n}\right)$ while (1.11) is the necessary and sufficient condition for (1.3) to hold along an infinite sequence of n 's tending to $+\infty$ (see e.g. [9] p. 113). Hence the above theorem shows that the ASCLT (1.1) is a strictly weaker result than the distributional CLT (1.3), a rather surprising conclusion. Conditions (1.10) and (1.11) are very similar but in reality (1.11) is essentially weaker than (1.10): while (1.10) implies (1.3) and thus completely determines the weak limit behavior of S_{n}, (1.11) gives information on S_{n} only on a (possibly thin) sequence of n 's, leaving its behavior undetermined for all other n 's. (For example, in [2] we constructed an i.i.d. sequence $\left(X_{n}\right)$ such that (1.11) holds but except a thin set of n 's where (1.3) is valid, $S_{n} / a_{n}-b_{n}$ has a limiting Cauchy distribution). The purpose of this paper is to close the gap between (1.10) and (1.11) and to find a necessary and sufficient condition for the ASCLT (1.1). To formulate our results, we need some notation. Given a nondegerate distribution function F, define for any $0<\varepsilon<1$ and $n \geq 1$

$$
\begin{align*}
c_{n}^{(\varepsilon)} & =\inf \{x>0: n(1-F(x)+F(-x)) \leq \varepsilon\} \\
d_{n}^{(\varepsilon)} & =\int_{|x| \leq c_{n}^{(\varepsilon)}} x d F(x) \tag{1.12}\\
\sigma_{n}^{(\varepsilon)} & =\sqrt{n}\left[\int_{|x| \leq c_{n}^{(c)}} x^{2} d F(x)-\left(\int_{|x| \leq c_{n}^{(\epsilon)}} x d F(x)\right)^{2}\right]^{1 / 2} \\
b_{n}^{(\varepsilon)} & =\left[\frac{x^{2}(1-F(x)+F(-x))}{\int_{|t| \leq x} t^{2} d F(t)}\right]_{x=c_{n}^{(\varepsilon)}}
\end{align*}
$$

Then we have
Theorem 1. Let X_{1}, X_{2}, \ldots be i.i.d. r.v's with continuous distribution function F centered at median and satisfying $\int x^{2} d F(x)=+\infty$. Then the following statements are equivalent:
(A) X_{n} satisfies the ASCLT (1.1) nontrivially for some $\left(a_{n}\right),\left(b_{n}\right)$.
(B) There exist numerical sequences $\left(a_{n}\right),\left(b_{n}\right)$ and a set $H \subseteq N$ with $\mu_{L}(H)=1$ such that the CLT (1.3) holds as $n \rightarrow \infty, n \in H$.
(C) For each $0<\varepsilon<1 \quad \mu_{L}\left\{n: b_{n}^{(\varepsilon)} \geq \varepsilon^{2}\right\}=0$.
(D) There exists a set $H \subseteq N$ with $\mu_{L}(H)=1$ such that for each $0<\varepsilon<1$ the inequality $b_{n}^{(\varepsilon)} \geq \varepsilon^{2}$ can hold only for finitely many $n \in H$.

Clearly, centering the X_{n} at medians in Theorem 1 is no restriction of generality and neither is $\int x^{2} d F(x)=+\infty$ since the case $\int x^{2} d F(x)<+\infty$ is covered by the theorem of Lacey and Philipp [8]. The assumption of the continuity of F is also unessential and serves only to make the formulation of Theorem 1
simpler; the theorem remains valid for discontinuous F with a slightly modified definition of $b_{n}^{(\varepsilon)}$. For general F define the 'jump factor' $\rho_{n}^{(\varepsilon)}$ by

$$
\rho_{n}^{(\varepsilon)}=\varepsilon / n\left(1-F\left(c_{n}^{(\varepsilon)}\right)+F\left(-c_{n}^{(\varepsilon)}\right)\right)_{+}
$$

and change the definition of $b_{n}^{(\epsilon)}$ in (1.12) to

$$
\begin{equation*}
b_{n}^{(\varepsilon)}=\rho_{n}^{(\varepsilon)}\left[\frac{x^{2}(1-F(x)+F(-x))_{+}}{\int_{|t| \leq x} t^{2} d F(t)}\right]_{x=c_{n}^{(\varepsilon)}} \tag{1.12a}
\end{equation*}
$$

where $f(x)_{+}$denotes the right limit of f at x. Clearly $n\left(1-F\left(c_{n}^{(\varepsilon)}\right)+F\left(-c_{n}^{(\varepsilon)}\right)\right)_{+} \leq \varepsilon$ and thus $\rho_{n}^{(\varepsilon)} \geq 1$; also, $\rho_{n}^{(\varepsilon)}=1$ if F is continuous and hence in the continuous case (1.12a) reduces to the original definition of $b_{n}^{(\varepsilon)}$ in (1.12). If, however, $c_{n}^{(\varepsilon)}$ is a point of discontinuity of $1-F(x)+F(-x)$, the new $b_{n}^{(\varepsilon)}$ can be essentially larger than the original one in (1.12). As we shall see, with the modified definition of $b_{n}^{(\varepsilon)}$, Theorem 1 will be valid for arbitrary distribution functions F. The same remark applies for Theorems 2 and 3 below.

Theorem 1 shows that the validity of the ASCLT depends on the behavior of $b_{n}^{(\varepsilon)}$, i.e., the behaviour of the fraction

$$
\begin{equation*}
\frac{x^{2}(1-F(x)+F(-x))}{\int_{|t| \leq x} t^{2} d F(t)} \tag{1.13}
\end{equation*}
$$

along the values $x=c_{n}^{(\varepsilon)}$. Note that the ASCLT does not require that $b_{n}^{(\varepsilon)} \rightarrow 0$ as $n \rightarrow \infty$ (which holds if (1.10) is valid), only that $b_{n}^{(\varepsilon)}$ is small for small ε and most n 's. Theorem 1 also shows that even though (1.1) and (1.3) are not equivalent, (1.1) implies (1.3) for 'almost all n ', the exceptional set having log density zero. Note however, that permitting an exceptional set of log density zero in (1.3) changes the nature of the CLT (1.3) radically: for example, while the validity of (1.3) for all n implies that $a_{n}=\sqrt{n} L(n)$ with a slowly varying function L, in [2] we constructed an example where (1.3) holds with the exception of a \log zero set of n 's but $\lim \sup _{n \rightarrow \infty} a_{n} / n^{2}>0$.

As we observed earlier, the ASCLT (1.1) can hold in a trivial way if S_{n} / a_{n} becomes asymptotically degenerate on a set $H \subseteq N$ with positive upper \log density and S_{n} satisfies the ordinary CLT on the complement H^{c} of H. Such cases were excluded in Theorem 1 by considering only the nondegenerate case, i.e., assuming that (1.5) cannot hold on a set of n 's with positive upper log density. As the proof of Theorem 1 will show (cf. Lemma 8) there are no other cases: if $\left(X_{n}\right)$ satisfies (1.1) then either it does it nontrivially or it belongs to the type described above.

It is worth noting that the proof of Theorem 1 leads to new information even in the classical central limit theorem. As we mentioned above, (1.10) is the necessary and sufficient condition for the CLT (1.3) to hold for some $\left(a_{n}\right),\left(b_{n}\right)$ (" F belongs to the domain of attraction of the normal law"), while (1.11) is the necessary and sufficient condition for the CLT (1.3) to hold, with some $\left(a_{n}\right),\left(b_{n}\right)$, along a suitable infinite sequence of n 's (" F belongs to the domain of partial
attraction of the normal law'). No condition seems to be known, however, for (1.3) to hold along a specified sequence of n 's. (Clearly, the condition for this lies between (1.10) and (1.11).) The following theorem answers this question, showing the significance of the inequality $b_{n}^{(\varepsilon)} \geq \varepsilon^{2}$ in the asymptotic behavior of S_{n} and in the fine structure of the domain of partial attraction of the normal law.

Theorem 2. Let X_{1}, X_{2}, \ldots be i.i.d. r.v's satisfying the conditions of Theorem 1 and let $H \subseteq N$ be an arbitrary set of positive integers. Then the following statements are equivalent:
(A) There exist sequences $\left(a_{n}\right),\left(b_{n}\right)$ such that the CLT (1.3) holds along H.
(B) For each $0<\varepsilon<1$ the inequality $b_{n}^{(\varepsilon)} \geq \varepsilon^{2}$ can hold only for finitely many $n \in H$.

In conclusion, we formulate one more theorem concerning certain 'average' forms of the CLT. Let $q=\left(q_{1}, q_{2}, \ldots\right)$ be a weight vector where the q_{n} are positive numbers with $\Sigma q_{n}=+\infty$; let $Q_{n}=\sum_{i \leq n} q_{i}$. We say that (X_{n}) satisfies the CLT in q-average if there exist numerical sequences $\left(a_{n}\right),\left(b_{n}\right)$ such that setting $S_{n}=X_{1}+\ldots+X_{n}$ we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{Q_{N}} \sum_{k \leq N} q_{k} P\left(\frac{S_{k}}{a_{k}}-b_{k}<x\right)=\phi(x) \text { for all } x . \tag{1.14}
\end{equation*}
$$

Clearly, (1.14) holds if (X_{n}) satisfies the ordinary CLT (1.3) but the converse is false: (1.14) can hold as the result of an averaging effect even if (1.3) fails. To formulate a necessary and sufficient condition for (1.14) let us define, analogously to the \log density,

$$
\begin{equation*}
\mu_{q}^{*}(H)=\limsup _{N \rightarrow \infty} \frac{1}{Q_{N}} \sum_{k \leq N, k \in H} q_{k} \tag{1.15}
\end{equation*}
$$

for any $H \subseteq N$. If in (1.15) actually the lim exists then we shall write μ_{q} instead of μ_{q}^{*} and we call it the q-density of H. We then have

Theorem 3. Let $q=\left(q_{1}, q_{2}, \ldots\right)$ be a fixed weight vector and $\left(X_{n}\right)$ an i.i.d. sequence of r.v's satisfying the conditions of Theorem 1. Then the following statements are equivalent:
(A) There exist numerical sequences $\left(a_{n}\right),\left(b_{n}\right)$ such that the average CLT (1.14) holds nontrivially.
(B) There exist numerical sequences $\left(a_{n}\right),\left(b_{n}\right)$ and a set $H \subseteq N$ with $\mu_{q}(H)=1$ such that the CLT (1.3) holds as $n \rightarrow+\infty, n \in H$.
(C) For each $0<\varepsilon<1 \quad \mu_{q}\left\{n: b_{n}^{(\varepsilon)} \geq \varepsilon^{2}\right\}=0$.

The nontriviality of (1.14) is defined similarly as in the case of the ASCLT (1.1): we require that (1.5) cannot hold for some $\left(d_{n}\right)$ on a set $H \subseteq N$ with $\mu_{q}^{*}(H)>0$.

Note that, in contrast to Theorem 1, the weights in Theorem 3 are arbitrary, subject only to $\Sigma q_{n}=+\infty$. Thus, there is an essential difference between the situations when we have I or P in (1.1). Theorem 1 itself is not valid for arbitrary weights q_{k} i.e.,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{Q_{N}} \sum_{k \leq N} q_{k} I\left\{\frac{S_{k}}{a_{k}}-b_{k}<x\right\}=\phi(x) \quad \text { a.s. for all } x \tag{1.16}
\end{equation*}
$$

is generally not equivalent to the condition

$$
\begin{equation*}
\mu_{q}\left\{n: b_{n}^{(\varepsilon)} \geq \varepsilon^{2}\right\}=0 \quad \text { for each } 0<\varepsilon<1 . \tag{1.17}
\end{equation*}
$$

Since (1.16) clearly implies (1.14) by the bounded convergence theorem, Theorem 3 shows that (1.17) is a necessary condition for (1.16). However, the implication $(1.17) \Rightarrow(1.16)$ is false in general as one can see in the case $q_{k}=1, E X_{1}=0$, $E X_{1}^{2}=1, a_{k}=\sqrt{k}, b_{k}=0$ when (1.10) holds and thus $\lim _{n \rightarrow \infty} b_{n}^{(\varepsilon)}=0$ for any $\varepsilon>0$ i.e., (1.17) is valid but (1.16) fails for $x=0$ by the arc sine law (see [8]).

2 Proof of the theorems

In what follows, the continuity of the distribution function F of the r.v.'s X_{n} will not be assumed and $b_{n}^{(\varepsilon)}$ will be defined by (1.12a).

Lemma 1. Let X_{1}, X_{2}, \ldots be i.i.d. r.v's centered at medians. Then letting $S_{n}=$ $X_{1}+\ldots+X_{n}$ we have for any $0<\varepsilon<1$, all real $d, x \geq 2$ and $n \geq 2 x$

$$
\begin{equation*}
P\left\{\left|\frac{S_{n}-d}{\sigma_{n}^{(\varepsilon)}}\right| \geq \frac{1}{16} x \sqrt{\frac{b_{n}^{(\varepsilon)}}{\varepsilon}}\right\} \geq \frac{1}{4}\left(\frac{\varepsilon}{32 x}\right)^{x} \tag{2.1}
\end{equation*}
$$

Proof. Throughout this proof, [t] will denote the integral part of t. Let F^{*} denote the symmetrized distribution function of F, let $X_{1}^{*}, X_{2}^{*}, \ldots$ be i.i.d. r.v's (on some probability space) with distribution function F^{*} and set $S_{n}^{*}=X_{1}^{*}+\ldots+X_{n}^{*}$. Letting $G(x)=1-F(x)+F(-x)$ we have by the definition of $\sigma_{n}^{(\varepsilon)}, \rho_{n}^{(\varepsilon)}$ and (1.12a)

$$
\begin{equation*}
\left(\frac{c_{n}^{(\varepsilon)}}{\sigma_{n}^{(\varepsilon)}}\right)^{2} \geq \frac{\left(c_{n}^{(\varepsilon)}\right)^{2} G\left(c_{n}^{(\varepsilon)}\right)_{+}}{n G\left(c_{n}^{(\varepsilon)}\right)_{+} \int_{|x| \leq c_{n}^{(\varepsilon)}} x^{2} d F(x)}=\rho_{n}^{(\varepsilon)} \frac{\left(c_{n}^{(\varepsilon)}\right)^{2} G\left(c_{n}^{(\varepsilon)}\right)_{+}}{\varepsilon \int_{|x| \leq c_{n}^{(\varepsilon)}} x^{2} d F(x)}=\frac{b_{n}^{(\varepsilon)}}{\varepsilon} \tag{2.2}
\end{equation*}
$$

and thus using Lévy's inequality (see e.g. [5, p. 149, Lemma 2]) and the symmetrization inequalities in [10, p. 245] it follows that the left hand side of (2.1) is

$$
\begin{aligned}
& \geq \frac{1}{2} P\left\{\left|\frac{S_{n}^{*}}{\sigma_{n}^{(\varepsilon)}}\right| \geq \frac{1}{8} x \sqrt{\frac{b_{n}^{(\varepsilon)}}{\varepsilon}}\right\} \\
& \geq \frac{1}{\rho} P\left\{\left|S_{n}^{*}\right| \geq x c_{n}^{(\varepsilon)} / 8\right\} \geq \frac{1}{2} P\left\{\left|S_{n}^{*}\right| \geq[x] c_{n}^{(\varepsilon)} / 4\right\}
\end{aligned}
$$

$$
\begin{align*}
& \geq \frac{1}{2} P\left\{\sum_{i=l[n / x]+1}^{(l+1)[n / x]} X_{i}^{*} \geq c_{n}^{(\varepsilon)} / 4,0 \leq l \leq[x]-1, \sum_{i=[x][n / x]+1}^{n} X_{i}^{*} \geq 0\right\} \tag{2.3}\\
& \geq \frac{1}{4} P\left\{S_{[n / x]}^{*} \geq c_{n}^{(\varepsilon)} / 4\right\}^{[x]} \geq \frac{1}{4}\left(\frac{1}{2} P\left\{\left|S_{[n / x]}^{*}\right| \geq c_{n}^{(\varepsilon)} / 4\right\}\right)^{x} \\
& \geq \frac{1}{4}\left(\frac{1}{4} P\left\{\max _{k \leq[n / x]}\left|X_{k}^{*}\right|>c_{n}^{(\varepsilon)} / 4\right\}\right)^{x} \\
& =\left(\frac{1}{4}\right)^{x+1}\left(1-\left\{1-2\left(1-F^{*}\left(c_{n}^{(\varepsilon)} / 4\right)\right)\right\}^{[n / x]}\right)^{x}
\end{align*}
$$

By the definition of $c_{n}^{(\varepsilon)}$ and a further application of the symmetrization inequalities in [10, p. 245] we see that

$$
n\left(1-F^{*}\left(c_{n}^{(\varepsilon)} / 4\right)\right) \geq \frac{1}{4} n G\left(c_{n}^{(\varepsilon)} / 2\right) \geq \varepsilon / 4
$$

and thus the last expression of (2.3) is

$$
\begin{align*}
& \geq\left(\frac{1}{4}\right)^{x+1}\left(1-\left(1-\frac{2 \varepsilon}{4 n}\right)^{[n / x]}\right)^{x} \geq\left(\frac{1}{4}\right)^{x+1}\left(1-\exp \left(-\frac{2 \varepsilon[n / x]}{4 n}\right)\right)^{x} \tag{2.4}\\
& \geq\left(\frac{1}{4}\right)^{x+1}\left(\frac{\varepsilon}{8 x}\right)^{x} \geq \frac{1}{4}\left(\frac{\varepsilon}{32 x}\right)^{x}
\end{align*}
$$

using the fact that $t / 2 \leq 1-\exp (-t) \leq t$ for $0 \leq t \leq 1 / 2$. This completes the proof of Lemma 1.

Lemma 2. Let X_{1}, X_{2}, \ldots be i.i.d. r.v's with distribution function F satisfying $\int x^{2} d F(x)=+\infty$. Then setting $S_{n}=X_{1}+\ldots+X_{n}$ we have for any $0<\varepsilon<1$, $n \geq n_{0}$ and all real x

$$
\begin{equation*}
\left|P\left(\frac{S_{n}-n d_{n}^{(\varepsilon)}}{\sigma_{n}^{(\varepsilon)}}<x\right)-\phi(x)\right| \leq 96\left(\varepsilon+\sqrt{\frac{b_{n}^{(\varepsilon)}}{\varepsilon}}\right) \tag{2.5}
\end{equation*}
$$

Proof. Let $X_{k}^{*}=X_{k} I\left(\left|X_{k}\right| \leq c_{n}^{(\varepsilon)}\right), 1 \leq k \leq n, Y_{k}^{*}=X_{k}^{*}-E X_{k}^{*}=X_{k}^{*}-d_{n}^{(\varepsilon)}, S_{n}^{*}=$ $X_{1}^{*}+\ldots+X_{n}^{*}$. Choosing x_{0} so large that $\int_{|x| \geq x_{0}} d F(x) \leq 1 / 6$ we get, using the Cauchy-Schwarz inequality, $\int x^{2} d F(x)=+\infty$ and observing that $c_{n}^{(\varepsilon)} \rightarrow+\infty$ as $n \rightarrow \infty$, uniformly in ε,

$$
\begin{gathered}
\left|\int_{|x| \leq c_{n}^{(\varepsilon)}} x d F(x)\right| \leq\left|\int_{|x| \leq x_{0}} x d F(x)\right| \\
+\left(\int_{x_{0} \leq|x| \leq \leq_{n}^{(\epsilon)}} d F(x)\right)^{1 / 2}\left(\int_{|x| \leq c_{n}^{(\epsilon)}} x^{2} d F(x)\right)^{1 / 2}
\end{gathered}
$$

$$
\leq \frac{1}{2}\left(\int_{|x| \leq c_{n}^{(\epsilon)}} x^{2} d F(x)\right)^{1 / 2} \quad \text { for } n \geq n_{0}
$$

and thus

$$
\begin{equation*}
\sigma_{n}^{(\varepsilon)} \geq \frac{1}{2} \sqrt{n}\left(\int_{|x| \leq c_{n}^{(\epsilon)}} x^{2} d F(x)\right)^{1 / 2} \quad\left(n \geq n_{0}\right) \tag{2.6}
\end{equation*}
$$

Hence for $n \geq n_{0}$ we have a converse inequality to (2.3):

$$
\begin{equation*}
\left(\frac{c_{n}^{(\varepsilon)}}{\sigma_{n}^{(\varepsilon)}}\right)^{2} \leq \frac{4\left(c_{n}^{(\varepsilon)}\right)^{2} G\left(c_{n}^{(\varepsilon)}\right)_{+}}{n G\left(c_{n}^{(\varepsilon)}\right)_{+} \int_{|x| \leq c_{n}^{(c)}} x^{2} d F(x)}=\frac{4 b_{n}^{(\varepsilon)}}{\varepsilon} . \tag{2.7}
\end{equation*}
$$

Also $\left|Y_{k}^{*}\right| \leq 2 c_{n}^{(\varepsilon)}, E\left|Y_{k}^{*}\right|^{2} \leq E\left|X_{k}^{*}\right|^{2}$ and thus using (2.6) we get for $n \geq n_{0}$

$$
\sum_{k \leq n} E\left|Y_{k}^{*}\right|^{3} \leq 2 c_{n}^{(\varepsilon)} \sum_{k \leq n} E\left|Y_{k}^{*}\right|^{2} \leq 2 c_{n}^{(\varepsilon)} \sum_{k \leq n} E\left|X_{k}^{*}\right|^{2} \leq 8 c_{n}^{(\varepsilon)}\left(\sigma_{n}^{(\varepsilon)}\right)^{2}
$$

whence by (2.7)

$$
\left(\sigma_{n}^{(\varepsilon)}\right)^{-3} \sum_{k \leq n} E\left|Y_{k}^{*}\right|^{3} \leq 8 c_{n}^{(\varepsilon)} / \sigma_{n}^{(\varepsilon)} \leq 16 \sqrt{b_{n}^{(\varepsilon)} / \varepsilon}
$$

The last relation and the Berry-Esseen theorem (see e.g. [5, p. 544]) show that replacing S_{n} by S_{n}^{*}, the left side of (2.5) will be $\leq 96 \sqrt{b_{n}^{(\varepsilon)} / \varepsilon}$. Since we have $P\left(S_{n} \neq S_{n}^{*}\right) \leq n G\left(c_{n}^{(\varepsilon)}\right)_{+} \leq \varepsilon$, Lemma 2 is proved.

Remark. For later reference we note the obvious fact that for any i.i.d. sequence $\left(X_{n}\right)$ we have (even without $\int x^{2} d F(x)=+\infty$)

$$
\begin{equation*}
P\left(\left|\frac{S_{n}-n d_{n}^{(\varepsilon)}}{\sigma_{n}^{(\varepsilon)}}\right| \geq t\right) \leq \varepsilon+t^{-2} \quad \text { for any } t>0 . \tag{2.8}
\end{equation*}
$$

Indeed, $P\left(S_{n} \neq S_{n}^{*}\right) \leq \varepsilon$ as noted above so (2.8) is immediate from the Chebisev inequality.

Lemma 3. Let $X_{1}, X_{2} \ldots$ be i.i.d. r.v's with distribution function F centered at median and set $S_{n}=X_{1}+\ldots+X_{n}$. Assume that for some infinite set $H \subseteq N$ and numerical sequences $\left(a_{n}\right),\left(b_{n}\right)$ we have

$$
\begin{equation*}
\frac{S_{n}}{a_{n}}-b_{n} \xrightarrow{\mathscr{P}} N(0,1) \quad \text { as } n \rightarrow \infty, n \in H . \tag{2.9}
\end{equation*}
$$

Then for any $0<\varepsilon<1$ the inequality $b_{n}^{(\varepsilon)} \geq \varepsilon^{2}$ can hold only for finitely many $n \in H$.

Proof. Set $K=\varepsilon^{-1}, x=\varepsilon^{-4}$ and

$$
\begin{align*}
H^{*} & =\left\{n \in N: b_{n}^{(\varepsilon)} \geq \varepsilon^{2},\right. & & \left.a_{n} \leq K \sigma_{n}^{(\varepsilon)}\right\} \tag{2.10}\\
H^{* *} & =\left\{n \in N: b_{n}^{(\varepsilon)} \geq \varepsilon^{2},\right. & & \left.a_{n}>K \sigma_{n}^{(\varepsilon)}\right\}
\end{align*}
$$

It suffices to prove that both $H \cap H^{*}$ and $H \cap H^{* *}$ are finite. Clearly

$$
\frac{x a_{n}}{K} \sqrt{\varepsilon} \leq x \sqrt{\frac{b_{n}^{(\varepsilon)}}{\varepsilon}} \sigma_{n}^{(\varepsilon)} \quad \text { for } \quad n \in H^{*}
$$

and thus we get by Lemma 1 for $0<\varepsilon<1 / 32$

$$
\begin{aligned}
P\left\{\left|\frac{S_{n}-a_{n} b_{n}}{a_{n}}\right| \geq \frac{x}{16 K} \sqrt{\varepsilon}\right\} & \geq P\left\{\left|\frac{S_{n}-a_{n} b_{n}}{\sigma_{n}^{(\varepsilon)}}\right| \geq \frac{x}{16} \sqrt{\frac{b_{n}^{(\varepsilon)}}{\varepsilon}}\right\} \\
& \geq \frac{1}{4}\left(\frac{\varepsilon}{32 x}\right)^{x} \quad n \in H^{*}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
P\left\{\left|\frac{S_{n}}{a_{n}}-b_{n}\right| \geq \frac{1}{16} \varepsilon^{-5 / 2}\right\} \geq \frac{1}{4}\left(\varepsilon^{5} / 32\right)^{\varepsilon^{-4}} \geq \frac{1}{4} \varepsilon^{6 \varepsilon^{-4}} \quad n \in H^{*} \tag{2.11}
\end{equation*}
$$

If the set $H \cap H^{*}$ were infinite then we could choose an infinite sequence of n 's along which both (2.9) and (2.11) would hold, but then letting $n \rightarrow \infty$ in (2.11) we get, in view of (2.9),

$$
\begin{equation*}
2\left(1-\phi\left(\frac{1}{16} \varepsilon^{-5 / 2}\right)\right) \geq \frac{1}{4} \varepsilon^{6 \varepsilon^{-4}} \tag{2.12}
\end{equation*}
$$

which is a contradiction for small enough $\varepsilon>0$ since $1-\phi(x) \leq \exp \left(-x^{2} / 2\right)$ for $x \geq 1$ and thus the ratio of the left and right side of (2.12) is

$$
\leq 8 \exp \left(-\frac{1}{512} \varepsilon^{-5}-6 \varepsilon^{-4} \ln \varepsilon\right) \leq 8 \exp \left(-\varepsilon^{-5}\left(\frac{1}{512}+6 \varepsilon \ln \varepsilon\right)\right)=O\left(\varepsilon^{5}\right)
$$

which tends to 0 if $\varepsilon \rightarrow 0$. Hence for ε small enough, the set $H \cap H^{*}$ is finite. To prove the finiteness of $H \cap H^{* *}$ let us note that by the Remark preceding Lemma 3 we have

$$
\begin{align*}
P & \left\{\left|\frac{S_{n}-n d_{n}^{(e)}}{a_{n}}\right| \geq \varepsilon^{1 / 2}\right\} \tag{2.13}\\
& \leq P\left\{\left|\frac{S_{n}-n d_{n}^{(\varepsilon)}}{\sigma_{n}^{(\sigma)}}\right| \geq K \varepsilon^{1 / 2}\right\} \leq 2 \varepsilon \quad n \in H^{* *}
\end{align*}
$$

The last relation shows that for $n \in H^{* *}$ the distribution of S_{n} / a_{n}, and thus also the distribution of $S_{n} / a_{n}-b_{n}$, attach probability $\geq 1-2 \varepsilon$ to an interval of length $\leq 2 \varepsilon^{1 / 2}$. Since for $0<\varepsilon \leq \varepsilon_{0}$ such a sequence $S_{n} / a_{n}-b_{n}$ obviously cannot converge to the standard normal distribution, the set $H \cap H^{* *}$ cannot be infinite. Thus we proved Lemma 3 for $0<\varepsilon \leq \varepsilon_{0}$; changing the definition of K and x to $K=c_{1} \varepsilon^{-1}, x=c_{2} \varepsilon^{-4}$ and replacing $\varepsilon^{1 / 2}$ in the first probability of (2.13) by $c_{3} \varepsilon^{1 / 2}$ for suitably chosen $c_{1}, c_{2} c_{3}$, we easily get the statement of the lemma for all $0<\varepsilon<1$.

Lemma 4. Let $H \subseteq N$ be a set of positive integers with $\Sigma_{k \in H} 1 / k=+\infty$ and $\left\{\xi_{i}, i \in H\right\}$ a uniformly bounded sequence of r.v's with $E \xi_{i}=0$ and

$$
\begin{equation*}
\left|E\left(\xi_{k} \xi_{l}\right)\right| \leq \text { const }(k / l)^{\alpha} \quad k \leq l, \quad k, l \in H \tag{2.14}
\end{equation*}
$$

for some constant $\alpha>0$. Then letting $\lambda_{N}=\sum_{k \leq N, k \in H} 1 / k$ we have

$$
\lim _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \sum_{i \leq N, i \in H} \frac{1}{i} \xi_{i}=0 \quad \text { a.s. }
$$

For $H=N$ this lemma is a key ingredient in the proof of most a.s. central limit theorems (see e.g. [1], [4], [8], [11]). To prove the general case assume, without loss of generality, that $\alpha<1$ and let C denote a uniform upper bound for the $\left|\xi_{i}\right|$. Then we get, using (2.14),

$$
\begin{align*}
& E\left(\frac{1}{\lambda_{N}} \sum_{i \leq N, i \in H} \frac{1}{i} \xi_{i}\right)^{2} \leq \frac{\mathrm{const}}{\lambda_{N}^{2}} \sum_{\substack{i, j \in H, 1 \leq i \leq j \leq N}} \frac{1}{i j}\left(\frac{i}{j}\right)^{\alpha} \tag{2.15}\\
& \leq \frac{\text { const }}{\lambda_{N}^{2}} \sum_{i \leq N, i \in H} \frac{1}{i^{1-\alpha}} \sum_{j \geq i} \frac{1}{j^{1+\alpha}} \leq \frac{\text { const }}{\lambda_{N}^{2}} \sum_{i \leq N, i \in H} \frac{1}{i}=\frac{\text { const }}{\lambda_{N}} .
\end{align*}
$$

Since $\lambda_{N} \rightarrow+\infty$ and $\lambda_{N+1}-\lambda_{N} \rightarrow 0$, there exists an increasing sequence $\left(N_{k}\right)$ of positive integers such that $\lambda_{N_{k}} \sim k^{2}$. Hence letting $T_{N}=\lambda_{N}^{-1} \sum_{i \leq N, i \in H} i^{-1} \xi_{i}$ we get by (2.15) $E\left(T_{N_{k}}^{2}\right) \leq$ const k^{-2} whence by the Beppo Levi theorem $\sum_{k \geq 1} T_{N_{k}}^{2}<+\infty$ a.s. and thus $T_{N_{k}} \rightarrow 0$ a.s. Now for $N_{k} \leq N \leq N_{k+1}$ we have

$$
\left|T_{N}\right| \leq\left|T_{N_{k}}\right|+\frac{C}{\lambda_{N}} \sum_{\substack{N_{k}<i \leq N \\ i \in H}} \frac{1}{i} \leq\left|T_{N_{k}}\right|+\frac{C\left(\lambda_{N_{k+1}}-\lambda_{N_{k}}\right)}{\lambda_{N_{k}}} .
$$

Since $\lambda_{N_{k+1}} / \lambda_{N_{k}} \rightarrow 1$, it follows that $T_{N} \rightarrow 0$ a.s., as stated.
Lemma 5. Let $H \subseteq N$ be a set of positive integers with $\Sigma_{k \in H} 1 / k=+\infty$ and let X_{1}, X_{2}, \ldots be i.i.d. r.v's such that, setting $S_{n}=X_{1}+\ldots X_{n}$, we have for some numerical sequences $\left(a_{n}\right),\left(b_{n}\right)$,

$$
\begin{equation*}
\frac{S_{n}}{a_{n}}-b_{n} \xrightarrow{\mathscr{O}} N(0,1) \quad \text { as } n \rightarrow \infty, n \in H . \tag{2.16}
\end{equation*}
$$

Then letting $\lambda_{N}=\Sigma_{k \leq N, k \in H} 1 / k$ we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \sum_{k \leq N, k \in H} \frac{1}{k} I\left\{\frac{S_{k}}{a_{k}}-b_{k}<x\right\}=\phi(x) \quad \text { a.s. for all } x . \tag{2.17}
\end{equation*}
$$

Under additional moment conditions such as

$$
E\left|\frac{S_{n}}{a_{n}}-b_{n}\right|^{p}=O(1) \text { for some } p>0
$$

the statement of Lemma 5 can be proved essentially in the same way as the ASCLT's in our earlier paper [1]. However, to prove the precise characterization results in this paper we need to show the implication $(2.16) \Rightarrow(2.17)$ without any additional conditions on (X_{n}).

Proof of Lemma 5. Let $d_{n}=a_{n} b_{n} / n, Y_{k}^{(n)}=X_{k}-d_{n}, 1 \leq k \leq n, S_{n}^{\prime}=\Sigma_{k \leq n} Y_{k}^{(n)}$, $S_{n}^{*}=\Sigma_{k \leq n} Y_{k}^{(n)} I\left(\left|Y_{k}^{(n)}\right|<a_{n}\right), M_{n}=\max _{1 \leq k \leq n}\left|Y_{k}^{(n)}\right|$. (2.16) and (2.17) can then be written equivalently

$$
\begin{equation*}
S_{n}^{\prime} / a_{n} \xrightarrow{\mathscr{O}} N(0,1) \quad \text { as } n \rightarrow \infty, n \in H \tag{2.16a}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \sum_{k \leq N, k \in H} \frac{1}{k} I\left\{\frac{S_{k}^{\prime}}{a_{k}}<x\right\}=\phi(x) \text { a.s. for all } x \tag{2.17a}
\end{equation*}
$$

respectively. Clearly

$$
\left|I\left\{S_{n}^{\prime} / a_{n}<x\right\}-I\left\{S_{n}^{*} / a_{n}<x\right\}\right| \leq I\left\{M_{n} \geq a_{n}\right\} \quad(n \geq 1)
$$

and thus (2.17a) will follow if we show that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \sum_{k \leq N, k \in H} \frac{1}{k} I\left\{\frac{S_{k}^{*}}{a_{k}}<x\right\}=\phi(x) \quad \text { a.s. for all } x \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \sum_{k \leq N, k \in H} \frac{1}{k} I\left\{M_{k} \geq a_{k}\right\}=0 \quad \text { a.s. } \tag{2.19}
\end{equation*}
$$

To prove (2.18) let us note that (2.16a) and the standard normal convergence criterion (see e.g., [10, p. 316]) imply

$$
\begin{align*}
& n \int_{\left\{x \mid \geq \varepsilon a_{n}\right.} d F_{n}(x) \rightarrow 0 \text { for any } \varepsilon>0 \text { as } n \rightarrow \infty, \quad n \in H \tag{2.20}\\
& \frac{n}{a_{n}^{2}}\left[\int_{|x|<a_{n}} x^{2} d F_{n}(x)-\left(\int_{|x|<a_{n}} x d F_{n}(x)\right)^{2}\right] \rightarrow 1 \tag{2.21}\\
& \text { as } n \rightarrow \infty, \quad n \in H
\end{align*}
$$

$$
\begin{equation*}
\frac{n}{a_{n}} \int_{|x|<a_{n}} x d F_{n}(x) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty, \quad n \in H \tag{2.22}
\end{equation*}
$$

where F_{n} is the common distribution function of the r.v.'s $Y_{k}^{(n)}, 1 \leq k \leq n$. By a standard observation in the theory of the ASCLT (see e.g., [8]) (2.18) will follow if we show that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \sum_{k \leq N, k \in H} \frac{1}{k} f\left(\frac{S_{k}^{*}}{a_{k}}\right)=\int_{-\infty}^{+\infty} f(x) d \phi(x) \quad \text { a.s. } \tag{2.23}
\end{equation*}
$$

for any $f: R \rightarrow R$ belonging to the bounded Lipschitz class BL of functions satisfying

$$
\begin{equation*}
|f(x)-f(y)| \leq K|x-y|, \quad|f(x)| \leq K, \quad x, y \in R \tag{2.24}
\end{equation*}
$$

for some $K>0$. Since $P\left(S_{n}^{\prime} \neq S_{n}^{*}\right) \leq n \int_{|x| \geq a_{n}} d F_{n}(x) \rightarrow 0$ for $n \rightarrow \infty, n \in H$ by (2.20), relation (2.16a) remains valid if S_{n}^{\prime} is replaced by S_{n}^{*} and thus

$$
E f\left(\frac{S_{n}^{*}}{a_{n}}\right) \rightarrow \int_{-\infty}^{+\infty} f(x) d \phi(x) \quad \text { as } n \rightarrow \infty, \quad n \in H
$$

whence

$$
\lim _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \sum_{k \leq N, k \in H} \frac{1}{k} E f\left(\frac{S_{k}^{*}}{a_{k}}\right)=\int_{-\infty}^{+\infty} f(x) d \phi(x)
$$

Hence setting

$$
\xi_{k}=f\left(\frac{S_{k}^{*}}{a_{k}}\right)-E f\left(\frac{S_{k}^{*}}{a_{k}}\right)
$$

relation (2.23) is equivalent to

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \sum_{k \leq N, k \in H} \frac{1}{k} \xi_{k}=0 \quad \text { a.s. } \tag{2.25}
\end{equation*}
$$

which, in view of Lemma 4, will be proved if we show that

$$
\begin{equation*}
\left|E\left(\xi_{k} \xi_{l}\right)\right| \leq \mathrm{const}(k / l)^{\alpha} \quad k \leq l, \quad k, l \in H \tag{2.26}
\end{equation*}
$$

for some $\alpha>0$. Setting $S_{k, l}^{*}=\sum_{k<i \leq l} Y_{i}^{(l)} I\left(\left|Y_{i}^{(l)}\right|<a_{l}\right)$ we get by using (2.21), (2.22), (2.24) and observing that S_{k}^{*} and $S_{k, l}^{*}$ are independent,

$$
\begin{aligned}
& \left|E\left(\xi_{k} \xi_{l}\right)\right|=\left|\operatorname{Cov}\left(f\left(\frac{S_{k}^{*}}{a_{k}}\right), f\left(\frac{S_{l}^{*}}{a_{l}}\right)\right)\right| \\
& =\left|\operatorname{Cov}\left(f\left(\frac{S_{k}^{*}}{a_{k}}\right), f\left(\frac{S_{l}^{*}}{a_{l}}\right)-f\left(\frac{S_{k, l}^{*}}{a_{l}}\right)\right)\right| \\
& \leq 4 K^{2} E\left|\frac{1}{a_{l}} \sum_{i \leq k} Y_{i}^{(l)} I\left(\left|Y_{i}^{(l)}\right|<a_{l}\right)\right| \\
& \leq 4 K^{2} E\left|\frac{1}{a_{l}} \sum_{i \leq k}\left\{Y_{i}^{(l)} I\left(\left|Y_{i}^{(l)}\right|<a_{l}\right)-\int_{|x|<a_{l}} x d F_{l}(x)\right\}\right|
\end{aligned}
$$

$$
\begin{aligned}
& +4 K^{2} \frac{k}{a_{l}}\left|\int_{|x|<a_{l}} x d F_{l}(x)\right| \\
& \leq 4 K^{2}\left\{\frac{1}{a_{l}^{2}} k\left[\int_{|x|<a_{l}} x^{2} d F_{l}(x)-\left(\int_{|x|<a_{l}} x d F_{l}(x)\right)^{2}\right]\right\}^{1 / 2} \\
& +4 K^{2} \frac{k}{a_{l}}\left|\int_{|x|<a_{l}} x d F_{l}(x)\right| \leq \mathrm{const}\left(\frac{k}{l}\right)^{1 / 2}+\mathrm{const}\left(\frac{k}{l}\right) \quad k, l \in H
\end{aligned}
$$

proving (2.26) and thus (2.18). To prove (2.19) it will be again sufficient to verify

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \sum_{k \leq N, k \in H} \frac{1}{k} f\left(\frac{M_{k}}{a_{k}}\right)=f(0) \quad \text { a.s. } \tag{2.27}
\end{equation*}
$$

for any function f satisfying (2.24). Now $M_{k} / a_{k} \xrightarrow{P} 0$ as $k \rightarrow \infty, k \in H$ by (2.20) and thus $E f\left(M_{k} / a_{k}\right) \rightarrow f(0)$ as $k \rightarrow \infty, k \in H$. Hence (2.27) is again equivalent to (2.25) where now

$$
\xi_{k}=f\left(M_{k} / a_{k}\right)-E f\left(M_{k} / a_{k}\right)
$$

and in view of Lemma 4 it remains to show that (2.26) holds. Set $M_{k, l}=$ $\max _{k<i \leq l}\left|Y_{i}^{(l)}\right|, M_{k, l}^{*}=\max _{i \leq k}\left|Y_{i}^{(l)}\right|$ for $k \leq l$; clearly M_{k} and $M_{k, l}$ are independent and $\left|M_{l}-M_{k, l}\right| \leq M_{k, l}^{*}$. Also, (2.16a) and a well known lemma from central limit theory (see e.g. [10], p.307) imply

$$
n E\left(\left|Y_{1}^{(n)} / a_{n}\right| \wedge 2\right)^{2}=O(1) \quad(n \in H)
$$

and thus by Chebishev's inequality

$$
P\left(\left|Y_{1}^{(n)}\right| \geq t a_{n}\right) \leq P\left(\left|Y_{1}^{(n)} / a_{n}\right| \wedge 2 \geq t\right) \leq C /\left(n t^{2}\right) \quad(n \in H, 0 \leq t \leq 2)
$$

for some constant $C>0$. Thus

$$
\begin{aligned}
& \left|E\left(\xi_{k} \xi_{l}\right)\right|=\left|\operatorname{Cov}\left(f\left(\frac{M_{k}}{a_{k}}\right), f\left(\frac{M_{l}}{a_{l}}\right)\right)\right| \\
& =\left|\operatorname{Cov}\left(f\left(\frac{M_{k}}{a_{k}}\right), f\left(\frac{M_{l}}{a_{l}}\right)-f\left(\frac{M_{k, l}}{a_{l}}\right)\right)\right| \\
& \leq 4 K E\left|K \frac{M_{k, l}^{*}}{a_{l}} \wedge 2 K\right|=4 K^{2} E\left|\frac{M_{k, l}^{*}}{a_{l}} \wedge 2\right| \leq 4 K^{2} \int_{0}^{2} P\left(M_{k, l}^{*} \geq t a_{l}\right) d t \\
& \leq 4 K^{2}\left[T+\int_{T}^{2} k P\left(\left|Y_{1}^{(l)}\right| \geq t a_{l}\right) d t\right] \\
& \leq 4 K^{2}\left[T+\frac{C k}{l} \int_{T}^{2} t^{-2} d t\right] \leq 4 K^{2}\left(T+\frac{C k}{l} T^{-1}\right), \quad k, l \in H
\end{aligned}
$$

for any $0<T \leq 2$. Choosing $T=(k / l)^{1 / 2}$ we get again (2.26), completing the proof of Lemma 5 .

The following two lemmas are well known and easily proved; we formulate them here for purposes of reference.

Lemma 6. (see [1], [6].) Let $\left(x_{n}\right)$ be a numerical sequence. Then the following statements are equivalent:
(i) There exists a set $H \subseteq N$ of log density 1 such that $x_{n} \rightarrow 0$ as $n \rightarrow \infty, n \in H$
(ii) For all $\varepsilon>0$ the set $\left\{n \in N:\left|x_{n}\right| \geq \varepsilon\right\}$ has \log density 0 , i.e.,

$$
\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{k \leq N} \frac{1}{k} I\left\{\left|x_{k}\right| \geq \varepsilon\right\}=0
$$

Lemma 7. (see e.g. [7], p. 63) Let $\left(c_{n}\right)$ be a numerical sequence satisfying $\lim _{n \rightarrow \infty}\left(c_{1}+\ldots+c_{n}\right) / n=c$ for some finite c. Then for any positive decreasing sequence $\left(\lambda_{n}\right)$ with $\sum \lambda_{n}=+\infty$ we have

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{1} c_{1}+\ldots+\lambda_{n} c_{n}}{\lambda_{1}+\ldots+\lambda_{n}}=c .
$$

Proof of Theorem 1. Assume first that (A) holds i.e., (1.1) is valid nontrivially for some $\left(a_{n}\right),\left(b_{n}\right)$. Since the expression $(\log N)^{-1} \sum_{k \leq N}\{ \}$ on the left hand side of (1.1) is uniformly bounded, (1.1) can be integrated to give

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{k \leq N} \frac{1}{k} P\left(\frac{S_{k}}{a_{k}}-b_{k}<x\right)=\phi(x) \text { for all } x \tag{2.28}
\end{equation*}
$$

Set now $K=\varepsilon^{-1}, x=\varepsilon^{-4}$ and define $H^{*}, H^{* *}$ by (2.10); let further

$$
H^{* * *}=\left\{n \in N: b_{n}^{(\epsilon)}<\varepsilon^{2}\right\} .
$$

Define also, for any r.v. X,

$$
\begin{aligned}
\rho(X) & =\inf _{a \in R} \mathscr{B}\left(\operatorname{dist}(X), \delta_{a}\right) \\
\tau(X) & =\inf _{a, b \in R, a>0} \mathscr{C}\left(\operatorname{dist}\left(\frac{X}{a}-b\right), N(0,1)\right)
\end{aligned}
$$

where dist () denotes the distribution of the r.v. in the brackets, δ_{a} is the probability distribution concentrated at a and \mathscr{C} denotes the Lévy distance of probability distributions. By (2.28) and (2.11) we get

$$
\begin{aligned}
2\left(1-\phi\left(\frac{1}{16} \varepsilon^{-5 / 2}\right)\right) & =\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{k \leq N} \frac{1}{k} P\left\{\left|\frac{S_{k}}{a_{k}}-b_{k}\right| \geq \frac{1}{16} \varepsilon^{-5 / 2}\right\} \\
& \geq \limsup _{N \rightarrow \infty} \frac{1}{\log N} \sum_{k \leq N, k \in H^{*}} \frac{1}{k} \frac{1}{4} \varepsilon^{6 \varepsilon^{-4}}=\frac{1}{4} \varepsilon^{6 \varepsilon^{-4}} \mu_{L}^{*}\left(H^{*}\right)
\end{aligned}
$$

whence

$$
\begin{equation*}
\mu_{L}^{*}\left(H^{*}\right) \leq 8 \varepsilon^{-6 \varepsilon^{-4}}\left(1-\phi\left(\frac{1}{16} \varepsilon^{-5 / 2}\right)\right) \leq \text { const } \cdot \varepsilon^{5} \tag{2.29}
\end{equation*}
$$

since the ratio of the left and right sides of (2.12) was shown to be $O\left(\varepsilon^{5}\right)$ in the proof of Lemma 3. (In (2.29), and in the relations below, the constants depend
only on the sequence (X_{n}) i.e., they are independent of ε.) On the other hand, (2.13) gives

$$
\begin{equation*}
\rho\left(\frac{S_{n}}{a_{n}}\right) \leq 2 \varepsilon^{1 / 2} \quad \text { for } n \in H^{* *} \tag{2.30}
\end{equation*}
$$

Finally, on the set $H^{* * *}$ we can apply Lemma 2 to get

$$
\mathscr{C}\left(\operatorname{dist}\left(\frac{S_{n}-n d_{n}^{(\varepsilon)}}{\sigma_{n}^{(\epsilon)}}\right), N(0,1)\right) \leq \operatorname{const} \sqrt{\varepsilon} \quad n \in H^{* * *}
$$

i.e.,

$$
\begin{equation*}
\tau\left(S_{n}\right) \leq \operatorname{const} \sqrt{\varepsilon} \quad n \in H^{* * *} . \tag{2.31}
\end{equation*}
$$

Let now

$$
\pi_{n}=\min \left(\tau\left(S_{n}\right), \rho\left(\frac{S_{n}}{a_{n}}\right)\right)
$$

Clearly $N=H^{*} \cup H^{* *} \cup H^{* * *}$ and thus (2.29)-(2.31) imply

$$
\begin{equation*}
\mu_{L}^{*}\left\{n \in N: \pi_{n} \geq \text { const } \varepsilon^{1 / 2}\right\} \leq \text { const } \cdot \varepsilon \tag{2.32}
\end{equation*}
$$

Since π_{n} depends only on n (but not on ε), the left side of (2.32) is independent of ε and thus letting $\varepsilon \rightarrow 0$ in (2.32) we get

$$
\mu_{L}^{*}\left\{n \in N: \pi_{n} \geq \delta\right\}=0 \quad \text { for all } \delta>0
$$

Hence in view of Lemma 6 there exists a set $H \subseteq N$ with $\mu_{L}(H)=1$ such that $\pi_{n} \rightarrow 0$ on H, i.e.,

$$
\min \left(\tau\left(S_{n}\right), \rho\left(\frac{S_{n}}{a_{n}}\right)\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty, n \in H
$$

Setting

$$
H_{1}=\left\{n \in H: \tau\left(S_{n}\right) \leq \rho\left(\frac{S_{n}}{a_{n}}\right)\right\}, \quad H_{2}=\left\{n \in H: \tau\left(S_{n}\right)>\rho\left(\frac{S_{n}}{a_{n}}\right)\right\}
$$

it follows that $\mu_{L}\left(H_{1} \cup H_{2}\right)=1$ and $\tau\left(S_{n}\right) \rightarrow 0$ on $H_{1}, \rho\left(S_{n} / a_{n}\right) \rightarrow 0$ on H_{2} provided that both H_{1} and H_{2} are infinite; if one of H_{1} and H_{2} is finite, only the convergence relation formulated for the other one holds. By the definition of ρ and τ this means that

$$
\begin{equation*}
S_{n} / a_{n}^{\prime}-b_{n}^{\prime} \xrightarrow{\mathscr{Q}} N(0,1) \quad \text { on } H_{1} \text { for some }\left(a_{n}^{\prime}\right),\left(b_{n}^{\prime}\right) \tag{2.33}
\end{equation*}
$$

$$
\begin{equation*}
S_{n} / a_{n}-d_{n} \xrightarrow{P} 0 \text { on } H_{2} \text { for some }\left(d_{n}\right) \tag{2.34}
\end{equation*}
$$

in case H_{1} resp. H_{2} are infinite. If now $\left(X_{n}\right)$ satisfies (1.1) nontrivially then the set H_{2} in (2.34) cannot have positive upper \log density, i.e., $\mu_{L}\left(H_{2}\right)=0$ and thus $\mu_{L}\left(H_{1}\right)=1$ but then (2.33) shows that $\left(X_{n}\right)$ satisfies statement (B) of Theorem 1.

Let us note that in the just completed proof of $(A) \Rightarrow(B)$ the nontriviality of $\left(X_{n}\right)$ was used only at the very end and our argument actually yields the following more general statement.

Lemma 8. Let $\left(X_{n}\right)$ be an i.i.d. sequence satisfying the conditions of Theorem 1. If $\left(X_{n}\right)$ satisfies the $\operatorname{ASCLT}(1.1)$ (nontrivially or not) then there exist disjoint sets $H_{1}, H_{2} \subseteq N$ such that $\mu_{L}\left(H_{1} \cup H_{2}\right)=1$ and (2.33), (2.34) are valid (assumed again that H_{1} resp. H_{2} are infinite.)

Continuing the proof of Theorem 1, the implication $(B) \Rightarrow(D)$ is contained in Lemma 3 while $(D) \Rightarrow(C)$ is obvious. Thus we proved $(A) \Rightarrow(B) \Rightarrow(D) \Rightarrow(C)$ and it remains to verify $(C) \Rightarrow(A)$. To this end assume that (C) holds, then by Lemma 2 we get

$$
\mu_{L}\left\{n \in N: \tau\left(S_{n}\right) \leq \operatorname{const} \sqrt{\varepsilon}\right\}=1 \quad \text { for all } \varepsilon>0
$$

Since $\tau\left(S_{n}\right)$ depends only on n but not on ε, the last relation and Lemma 6 imply that $\tau\left(S_{n}\right) \rightarrow 0$ on a suitable set $H \subseteq N$ with \log density 1 i.e., (2.16) holds with suitable $\left(a_{n}\right),\left(b_{n}\right)$. But then Lemma 5 implies the ASCLT (2.17) where now $\lambda_{N} \sim \log N$ and the restriction $k \in H$ in the sum (2.17) can be removed since $\mu_{L}(H)=1$. Hence (X_{n}) satisfies (1.1), moreover (2.16) and $\mu_{L}(H)=1$ obviously imply the impossibility of (1.5) on a set H_{1} of positive upper log density and thus (A) holds. This completes the proof of Theorem 1.

The proofs of Theorem 2 and Theorem 3 are immediate consequences of the proof of Theorem 1. In Theorem 2, the implication $(A) \Rightarrow(B)$ is contained in Lemma 3 while $(B) \Rightarrow(A)$ follows from the observation that (B) and Lemma 2 together imply that for any $\varepsilon>0$ we have $\tau\left(S_{n}\right) \leq \operatorname{const} \sqrt{\varepsilon}$ for $n \in H, n \geq$ $n_{0}(\varepsilon)$ i.e. $\tau\left(S_{n}\right) \rightarrow 0$ on H which is equivalent to (A). To get Theorem 3 observe that the proof of Theorem 1 remains valid with arbitrary weights q_{n} (satisfying $\Sigma q_{n}=+\infty$) with the exception of an application of Lemma 5 in the proof of the implication $(C) \Rightarrow(A)$ where the special nature of the weights $q_{k}=1 / k$ was used in an essential way. (Note that Lemma 6 remains valid for arbitrary q_{n}, see [6], Lemma (4.9).) However, replacing I by P in (2.17), Lemma 5 becomes obvious with arbitrary weights and Theorem 3 follows.

References

1. Berkes, I., Dehling, H.: Some limit theorems in log density. Ann. Probab. 21, 1640-1670 (1993)
2. Berkes, I., Dehling, H.: On the almost sure central limit theorem for random variables with infinite variance. J. Theor. Probab. 7, 667-680 (1994)
3. Berkes, I., Dehling, H., Móri, T.: Counterexamples related to the a.s. central limit theorem. Stud. Sci. Math. Hung. 26, 153-164 (1991)
4. Brosamler, G.: An almost everywhere central limit theorem. Math. Proc. Cambridge Philos. Soc. 104, 561-574 (1988)
5. Feller, W.: An introduction to probability theory and its applications, Vol. II, 2nd Edition. New York: Wiley 1971
6. Fisher, A.: A pathwise central limit theorem for random walks (preprint 1989)
7. Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. New York: Wiley 1974
8. Lacey, M.T., Philipp, W.: A note on the almost everywhere central limit theorem. Statist. Probab. Lett. 9, 201-205 (1990)
9. Lévy, P.: Théorie de l'addition des variables aléatoires. Paris: Gauthier-Villars 1937
10. Loève, M.: Probability theory. New York: Van Nostrand (1955)
11. Schatte, P.: On strong versions of the central limit theorem. Math. Nachr. 137, 249-256 (1988)

[^0]: * Research supported by Hungarian National Foundation for Scientific Research, Grant No. 1905

