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Summary. We give necessary and sufficient criteria for a sequence (X~) of  i.i.d. 
r.v.'s to satisfy the a.s. central limit theorem, i.e., 

lim 1---~k~<NlI {S---~k --bk <x}=~(x)  a.s. forall x 
N~c~ logN k ak 

for some numerical sequences (a,), (b,) where S, = Xj + . . -  + Xn and 1 denotes 
indicator function. Our method leads also to new results on the limit distributional 
behavior of  Sn/a, - bn along subsequences ("partial attraction"), as well as to 
necessary and sufficient criteria for averaged versions of  the central limit theorem 
such as 

lim 1 ~  (S~-~k ) N ~ N -  P - b k  < x  =~b(x) for all x .  
k<N 

Mathematics Subject Classification (1991)." 60F05, 60F15 

1 Introduction 

Let us say that a sequence (X,) of  r.v's satisfies the a.s. central limit theorem 
(ASCLT) if there exist numerical sequences (a , ) , (b , )  such that setting S~ = 
Xt + . . .  +Xn we have 

(1.1) ~-1 - b k  < x  =q~(x) a.s. f o r a l l x  
k<N 

where I denotes indicator function. The purpose of this paper is to give necessary 
and sufficient criteria for an i.i.d, sequence (X,) to satisfy the ASCLT. 

* Research supported by Hungarian National Foundation for Scientific Research, Grant No. 1905 



2 I. Berkes 

The first to prove a.s. central limit theorems were Brosamler (1988) and 
Schatte (1988) who proved independently that if (Xn) are i.i.d, with EX1 = O, 
EX 2 = 1,EIXI[ 2+~ < +oc for some (5 > 0 ((5 = 1 for Schatte) then 

(1.2) lim 1 l { S k }  N - ~ Z k - I  - ~  < x  =(h(x) a.s. f o r a l l x .  
k<N 

(Actually, in [9, p. 270] L6vy formulated a result very similar to (1.2) but he 
gave no proof). Lacey and Philipp [8] showed that (1.2) remains valid assuming 
only EX1 = 0, EX~ = 1 and in [2] we proved that the converse is also valid: if 
an i.i.d, sequence (X,,) satisfies (1.2) then EX1 = O, EX~ = 1. Thus in the special 
case a~z = v/n, bn = 0 the ASCLT (1.1) is equivalent to the ordinary CLT 

(1.3) Sn/an - bn ---+N(O, 1). 

For general (a,) ,  (bn) the situation is different and more delicate. Let us first 
note, as observed in [2], [3], that for general (an), (bn) the ASCLT (1.1) can hold 
in a curious (but degenerate) situation when the distribution of Sn/an - b, is near 
degenerate for all n and thus (1.3) is not valid. Indeed, the ASCLT can even hold 
for nonrandom sequences, i.e., there exists a numerical sequence (cn) such that 

(1.4) lira 1 11 u ~ ~ Z k -  {ck < x } = 4 ) ( x )  f o r a l l x .  
k < N  

To get such a sequence let e.g. (c~n) be a sequence in (0,1) unformly distributed 
in the Weyl sense, i.e., 

lim --1 Z l { c ~ k  < x } = x  for all 0 < x  < 1. 
U--+~ N 

k < N  

(For example, we can choose c~, = {nc~} where ~ is any irrational number and 
{ } means fractional part.) Then letting cn = ~b-l(c~) we clearly have 

Y ' ,  = eor 
N --+<:~ IV 

which immediately implies (1.4) (cf. Lemma 7). Now if (X,) is a sequence of 
r .v 's  with Sn = Xl + . . .  + Xn and (an), (bn),(dn) are numerical sequences such 
that 

(1.5) S, d, P 
- -  - -  ) 0  

an 

and the sequence c, = d,, -bn  satisfies (1.4) then clearly (Xn) satisfies the ASCLT 
(l.1) but the validity of  (1.1) in this case is due not to the random fluctuations 
of Sn but the fluctuations of the numerical sequence d n -  b, .  To give further 
degenerate examples for (1.1) let #~ denote the upper log density of sets H C N,  
i.e., 
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(1.6) #~(H)  = lim sup 1 ~ l 
N--,~ log N k- 

k<N,kCH 

If  in (1.6) actually the limit exists then #~(H)  reduces to the log density of  H 
which will be denoted by #L(H). Let now N = Hi UH2 where HI,H2 are disjoint 
sets of  positive integers with positive upper log density and let (X~) be a sequence 
of i . i .d . r .v ' s  such that for some numerical sequences (an), (bn), (cn), (dn) we have 

Sn P 
(1.7) - - - d n  ~0 as n ~ ,  n c H 1  

an 

(1.8) --Sn _ bn - -~  ~ N(O, 1) 
an 

and ck = dk -- bk satisfies 

as  n --~ oo~ n E H2 

(1.9) Z l{ck < x } , ' ~  Z ~- ~b(x) 
k<N ,kCHi k<N,kEHI 

as N - - - ~ .  

(Again, sequences satisfying (1.9) are easy to construct; for example, if (o~,) is 
uniformly distributed as above then 

0 if k ~' H~ 
ck = q~-I(c~n) if k is the n-th element of Hl 

satisfies (1.9) by Lemma 7.) From Lemma 5 it follows that the sequence (X,) 
satisfies the ASCLT (1.1) but the validity of (1.1) is again due partly to a non- 
random effect, namely the fluctuations of the numerical sequence d n -  bn on 
H1. To avoid such degenerate situations, let us say that a sequence (Xn) of  r .v 's  
satisfies the ASCLT nontrivially if (1.1) holds for some (an), (b,)  but there is 
no numerical sequence (dn) such that (1.5) holds on a set H _C N with positive 
upper log density. In [2] the following result was proved. 

Theorem.  Let X1, X2 , . . .  be i.i.d, r.v's with distribution function F. If  

(1.10) lira x2(1 - F(x) + F ( - x ) )  = 0 
x - ~  fltl<_x t2dF(t) 

then there exist numerical sequences (an), (bn) such that the ASCLT (1.1) holds 
nontrivially. On the other hand, if the ASCLT (1.1) holds nontrivially for some 
(an), (bn) then 

(1.11) lim inf x2(1 - F ( x )  + F ( - x ) )  = 0 .  
x--.~ fltt<x t2dF(t) 

Neither implici~tion can be reversed: (1.10) is not necessary and (1.11) is not 
sufficient for the ASCLT (1.1) to hold nontrivially for some (an), (bn), 
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Note that (1.10) is the classical necessary and sufficient condition for an i.i.d. 
sequence (X,) with distribution function F to satisfy the ordinary CLT (1.3) for 
some (an), (b,) while (1.11) is the necessary and sufficient condition for (1.3) to 
hold along an infinite sequence of n's tending to +oo (see e.g. [9] p. 113). Hence 
the above theorem shows that the ASCLT (1.1) is a strictly weaker result than 
the distributional CLT (1.3), a rather surprising conclusion. Conditions (1.10) and 
(1.11 ) are very similar but in reality (1.11) is essentially weaker than (1.10): while 
(1.10) implies (1.3) and thus completely determines the weak limit behavior of 
S,, (1.11) gives information on Sn only on a (possibly thin) sequence of n's, 
leaving its behavior undetermined for all other n's. (For example, in [2] we 
constructed an i.i.d, sequence (Xn) such that (1.11) holds but except a thin set 
of n 's  where (1.3) is valid, S,ffan - bn has a limiting Cauchy distribution). The 
purpose of this paper is to close the gap between (1.10) and (1.11) and to find a 
necessary and sufficient condition for the ASCLT (1.1). To formulate our results, 
we need some notation. Given a nondegerate distribution function F, define for 
a n y 0 < c <  1 andn >_ 1 

(1.12) 

cn (O = i n f { x > 0 " n ( 1 - F ( x ) + F ( - x ) ) < < e }  

d(O = ~x xdF(x)  
I<d ~) 

cr~ ~) = V ~  I<_~ ~) x2dF(x)  - 1<4 ~) xdF(x )  

bn(e ) [x2(1 - F(x)  + F ( - x ) ) ]  

= L fl'l<- xt2dF(t) Jx:c~ ~) 

Then we have 

Theorem 1. Let XI , X2, . �9 be i.i.d, r.v's with continuous distribution function F 
centered at median and satisfying f x2 dF (x ) = +oo. Then the following statements 
are equivalent: 

(A) Xn satisfies the ASCLT (1.1) nontriviallyfor s o m e  (an), (bn). 
(B) There exist numerical sequences (an), (bn) and a set H c__ N with #L(H) = 1 

such that the CLT (1.3) holds as n ~ oo, n E H .  
(C) For e a c h O < e <  1 # L { n : b ~  ~)>_c 2 } = 0 .  
(D) There exists a set H CC_ N with #L(H) = 1 such that for  each 0 < E < 1 the 

inequality b(n ~) > ~2 can hold only for  finitely many n E H .  

Clearly, centering the Xn at medians in Theorem 1 is no restriction of gener- 
ality and neither is f x 2 d F ( x )  = +co since the case f x 2 d F ( x )  < +co is covered 
by the theorem of Lacey and Philipp [8]. The assumption of the continuity of 
F is also unessential and serves only to make the formulation of Theorem 1 
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simpler; the theorem remains valid for discontinuous F with a slightly modified 
definition of b, {~). For general F define the ' jump factor'  p{~) by 

p(~) = e/n(1 - F(c(n ~)) + F(-c(~)))+ 

and change the definition of b~ e) in (1.12) to 

(1.12a) b(~)= p(~, Ix2(1 - -  F(x)+ F( -x ) )+ . ]  

fltl<_x t2dF(t) Jx=c~, 

wheref(x)+ denotes the right limit o f f  at x. Clearly n(1 -F(c~ne))+F(-c~E)))+ < e 
and thus p~) > 1; also, P~2 = 1 if F is continuous and hence in the continuous 
case (1.12a) reduces to the original definition of  bn {~) in (1.12). If, however, c~ {~) is 
a point of  discontinuity of  1 - F ( x ) + F ( - x ) ,  the new bn {~) can be essentially larger 
than the original one in (1.12). As we shall see, with the modified definition of 
b~ e), Theorem 1 will be valid for arbitrary distribution functions F.  The same 
remark applies for Theorems 2 and 3 below. 

Theorem 1 shows that the validity of  the ASCLT depends on the behavior of  
b~ e), i.e., the behaviour of the fraction 

(1.13) 
x2(1 - F(x) + F ( - x ) )  

fltl<_x t2dF (t ) 

along the values x = cn {~). Note that the ASCLT does not require that b~ ~) --+ 0 
as n ---+ oo (which holds if (1.10) is valid), only that b~ ~) is small for small e 
and most n 's .  Theorem 1 also shows that even though (1.1) and (1.3) are not 
equivalent, (1.1) implies (1.3) for 'almost all n ' ,  the exceptional set having log 
density zero. Note however, that permitting an exceptional set of  log density zero 
in (1.3) changes the nature of  the CLT (1.3) radically: for example, while the 
validity of  (1.3) for all n implies that an = v/-ffL(n) with a slowly varying function 
L, in [2] we constructed an example where (1.3) holds with the exception of a 
log zero set of n ' s  but lim supn__+e ~ an/n 2 > O. 

As we observed earlier, the ASCLT (1.1) can hold in a trivial way if Sn/an 
becomes asymptotically degenerate on a set H C N with positive upper log 
density and Sn satisfies the ordinary CLT on the complement H c of H .  Such 
cases were excluded in Theorem I by considering only the nondegenerate case, 
i.e., assuming that (1.5) cannot hold on a set of  n ' s  with positive upper log 
density. As the proof of  Theorem 1 will show (cf. Lemma 8) there are no other 
cases: if (Xn) satisfies (1.1) then either it does it nontrivially or it belongs to the 
type described above. 

It is worth noting that the proof of  Theorem 1 leads to new information 
even in the classical central limit theorem. As we mentioned above, (1.10) is the 
necessary and sufficient condition for the CLT (1.3) to hold for some (an),(b~) 
("F belongs to the domain of attraction of  the normal law"), while (1.11) is the 
necessary and sufficient condition for the CLT (1.3) to hold, with some (an), (bn), 
along a suitable infinite sequence of n ' s  ( "F  belongs to the domain of partial 
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attraction of the normal law"). No condition seems to be known, however, for 
(1.3) to hold along a specified sequence of n ' s .  (Clearly, the condition for this 
lies between (1.10) and (1.11).) The following theorem answers this question, 
showing the significance of the inequality b~ ~) > c 2 in the asymptotic behavior 
of  Sn and in the fine structure of the domain of partial attraction of the normal 
law. 

T h e o r e m  2. Let X1,X2, . . .  be i.i.d, r.v's satisfying the conditions o f  Theorem 1 
and let H C N be an arbitrary set of  positive integers. Then the following state- 
ments are equivalent: 

(A) There exist sequences (an), (bn) such that the CLT (1.3) holds along H. 
(B) For each 0 < ~ < 1 the inequality b~n ~) > C 2 c a n  hold only for  finitely many 

n E H .  

In conclusion, we formulate one more theorem concerning certain 'average '  
forms of the CLT. Let q = (q l ,q2 , . - . )  be a weight vector where the qn are 
positive numbers with S q ,  = +oe; let Qn = ~-~i<,~ qi. We say that (Xn) satisfies 
the CLT in q-average if there exist numerical sequences (an),(bn) such that 
setting Sn = X1 + .  �9 �9 + X~ we have 

(1.14) N~lim QNN k_<NZqkP ~ - - b k  < x  =~b(x) fora l i  x .  

Clearly, (1.14) holds if (Xn) satisfies the ordinary CLT (1.3) but the converse is 
false: (1.14) can hold as the result of an averaging effect even if (1.3) fails. To 
formulate a necessary and sufficient condition for (1.14) let us define, analogously 
to the log density, 

(1.15) #q(H)  = l imsup 1 
k<N ,kEH 

for any H C_ N. If in (1.15) actually the lim exists then we shall write/~q instead 
of/~q and we call it the q-density of H .  We then have 

T h e o r e m  3. Let q = (ql,q2 . . . .  ) be a f ixed weight vector and (Xn) an i.i.d, se- 
quence of  r.v's satisfying the conditions o f  Theorem 1. Then the following state- 
ments are equivalent: 

(A) There exist numerical sequences (an), (bn) such that the average CLT (1.14) 
holds nontrivially. 

(B) There exist numerical sequences (an), (bn) and a set H C N with t z q ( H )  = 1 
such that the CLT (1.3) holds as n ~ +oo, n E H. 

(C) For each 0 < e < 1 J.tq{n " b~ s) >_ if2} = 0.  

The nontriviality of (1.14) is defined similarly as in the case of the ASCLT 
(1.1): we require that (1.5) cannot hold for some (dn) on a set H C_ N with 
~,~(/4) > o. 
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Note that, in contrast to Theorem 1, the weights in Theorem 3 are arbitrary, 
subject only to Z'qn = +oe. Thus, there is an essential difference between the 
situations when we have I or P in (1.1). Theorem 1 itself is not valid for arbitrary 
weights qk i.e., 

(1.16) lim 1 ~-~ {S~-kk } N---+O~ ON qkl  - bk < x = r a.s. for all x 
k<<_N 

is generally not equivalent to the condition 

(1.17) #q{n " b~ (e) _> e 2} = 0 for each 0 < e < 1 . 

Since (1.16) clearly implies (1.14) by the bounded convergence theorem, Theo- 
rem 3 shows that (1.17) is a necessary condition for (1.16). However, the implica- 
tion (1.17) ~ (1.16) is false in general as one can see in the case qk = 1,EXI = O, 
EX~ = 1, at = x/k-, bk = 0 when (1.10) holds and thus lim,__.oo b~ (~) = 0 for any 
e > 0 i.e., (1.17) is valid but (1.16) fails for x = 0 by the arc sine law (see [8]). 

2 Proof of the theorems 

In what follows, the continuity of the distribution function F of the r.v.'s Xn will 
not be assumed and b~ (~) will be defined by (1.12a). 

L e m m a  1. Let  X 1 , X 2 , . . .  be i.i.d, r.v's centered at medians. Then letting Sn = 
XI + . . . + Xn we have f o r  any O < e < 1, all real d, x > 2 and  n > 2x 

, , x 

(2.1) v [ I  �9 

Proo f  Throughout this proof, [t] will denote the integral part of t. Let F* denote 
X* be i.i .d.r.v's (on some the symmetrized distribution function of F,  let XI* , 2 , - "  

probability space) with distribution function F* and set S,* = XI*+...+X~*. Letting 
G(x)  = 1 - F ( x ) +  F ( - x )  we have by the definition of  a (e), p(~) and (1.12a) 

( C(nr ) ~2 (c(ne))2G(c(e))+ = p(e) (c(e))2G(c(r b(e) 
(2.2) \,::,.(? j > nG(c(~))+ flxL<,:(,?x2dF(x) e ftxt<_4,,x2dF(x) = 

and thus using L6vy's inequality (see e.g, [5, p. 149, Lemma 2]) and the sym- 
metrization inequalities in [10, p. 245] it follows that the left hand side of (2.1) 
is 

, 
-> ~ P  ~ ( - - ~ -  

1 1 
_> 5-P {IS~*] _> xc(~)/8} > -~P {IS~*I > [x]c(~)/4} 
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, } (2.3) > ~P Xi* > c(~)/4, 0 < l < [ x ] - l ,  X/* > 0  
1, i=l[n/x]+l i=[x][n/x]+l 

>- 4 - >- -4 e{Ist"/xJl >- c("~/4} 

1(, 
- - P {  max [Xk*l > c ~ / 4 }  

>- 4 \ 4  k<[n/x] 

= (1 -- {1 -- 2(1 -- r*(c~/4))}["/xl) x 

By the definition of c~ ~) and a further application of the symmetrization inequal- 
ities in [10, p. 245] we see that 

n(1 - F*(c~)/4)) > lnG(c~e~/2) > e/4 
- 4 

and thus the last expression of (2.3) is 

> ( ~ ) x + '  ( 1 - - ( 1  2e~[n/x]~ x (1 2 e [ n / x ] ~  x 
- -4nJ j > ( ~ ) x + , - e x p ( - - ~ n  JJ 

(2.4) 

>- \ 4 J  ( ~ x ) r  -> 4 ( ~ )  

using the fact that t /2  < 1 - exp(- t )  < t for 0 < t < 1/2. This completes the 
proof of Lemma 1. 

Lemma 2. Let XI ,X2, . . .  be i.i.d, r.v's with distribution function F satisfying 
f x2dF(x) = +c~. Then setting Sn = X1 + . . .  + Xn we have for any 0 < e < 1, 
n > no and all real x 

p (Sn - nd(~ ~) 
(2.5) 

\ 
< x  - < 9 6  e+  . 

P r o o f  Let Xk* = Xkt(IXkl ~< cs 1 < g < n,  Y :  -- X ;  - E X ;  = X~ - d~ ~), $2 = 

Xl* + . . .  +Xn*. Choosing x0 so large that flxl>_xodF(x) < 1/6 we get, using the 

Cauchy-Schwarz inequality, f x 2 d F ( x ) =  +cx~ and observing that c~ (~ --~ +oe as 
n -+ c~, uniformly in e, 

j(~l<c~xdF(x) <- ~lxKxoXdF(x) 
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and thus 

1/2 

for n 5- no 

'(/x )/2 (2.6) ~E) > ~ V ~  i<?r x2dF(x) (n >__ no). 

Hence for n > no we have a converse inequality to (2.3): 

{ c~) .~2 4(c~))2 G (c~)) + _ 4b~ ) 

(2.7) k , ~ J  <- nG(c~e))+ flxl<_c~,x2dF(x ) - e 

Also Ir**l _< 2c~ ~), elY~*l 2 _< EIX;I 2 and thus using (2.6) we get for n > no 

~(e)r~(e)~2 ~-~ EtY;I 3 < 2c~) ~ E]Y;] 2 < 2c~) ~-~ EIX;I 2 < 8~. w .  , 
k<n k<n k<n 

whence by (2.7) 

(cr~') -3 ~ E[Yk*[ 3 <_ 8c,(~'/~,,-'~) < 1 6 ~ .  
k<__n 

The last relation and the Berry-Esseen theorem (see e.g. [5, p. 544]) show that 

replacing Sn by S~*, the left side of (2.5) will be < 96~b~)/e .  Since we have 

P(Sn 5t S~) <_ nG(c~))+ <_ E, Lemma 2 is proved. 

Remark, For later reference we note the obvious fact that for any i.i.d, sequence 
(Xn) we have (even without f x2dF(x)  = +oo) 

(2.8) P ( Sn - nd~n') I ) a~n~ ) > t < e + t-2 for any t > 0 .  

Indeed, P(S, ~r < e as noted above so (2.8) is immediate from the Chebisev 
inequality. 

Lemma 3. Let Xt ,X2. . .  be i.i.d, r.v's with distribution function F centered at 
median and set Sn = X1 + . . .  + Xn. Assume that for some infinite set H C N and 
numerical sequences (a,), (bn) we have 

(2.9) S, _b ,Z_~N(0 ,1 )  as n ~ o o ,  n E H .  
an 

Then for any 0 < e < 1 the inequality b~n ~) > e 2 can hold only for finitely many 
n G H .  
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Proof Set K = e - l , x  = c -4 and 

H* = {n E U ' b ~  ( ~ ) > s  2, a~ <Kcr(~ ~)} 
(2.10) 

H** = (n E N ' b ~  ( ~ ) > s  2, a ,  >K~r~ ~)} 

It suffices to prove that both H n H* and H N H** are finite. Clearly 

x a n ~nn e) x - - (7  (e) H* x/~-< V~-~ . for n E 
K 

and thus we get by Lemma 1 for 0 < s < 1/32 

p {  Sn-anbn I l ~KXf~}  > P{lSn-anbn x b ~  
a;  -> - Z -> VTj 

. .  > - n E  
- 4 

i.e., 

(2.11) P Sn _ _> s -5/2 > ~(s  /32) > ~ s  n C 
an  

If the set H N H* were infinite then we could choose an infinite sequence of n ' s  
along which both (2.9) and (2.11) would hold, but then letting n --~ oe in (2.11) 
we get, in view of (2.9), 

(2.12) 2 (1 -- ~ ( ~ 6 C - 5 / 2 ) )  '>  4C6e-4 

which is a contradiction for small enough s > 0 since 1 - ~b(x) _< e x p ( - x 2 / 2 )  
for x >_ 1 and thus the ratio of the left and right side of (2.12) is 

< 8 e x p ( - ~ 1 2  c - 5 - 6 c - 4 1 n ~ ) -  \ 51 < 8 e x p ( - e - 5 ( 5 @ 2 + g e l n s ) )  =O(eS)  

which tends to 0 if e --~ 0. Hence for e small enough, the set H n H* is finite. 
To prove the finiteness of H N H** let us note that by the Remark preceding 
Lemma 3 we have 

Sn--ndt~ e) 1 2 ,{ } 
(2.13) <_ P { ~ > Kc'/2} < 2s n E H * * .  

The last relation shows that for n C H** the distribution of Sn/an, and thus also 
the distribution of Sn/an - bn, attach probability > 1 - 2r to an interval of length 
< 2s 1/2. Since for 0 < s _< so such a sequence S n / a n  - bn obviously cannot 
converge to the standard normal distribution, the set H n H** cannot be infinite. 
Thus we proved Lemma 3 for 0 < s <_ e0; changing the definition of K and x 
to K = ClC -1, x = c2s -4 and replacing s 1/2 in the first probability of (2.13) by 
c3 r for suitably chosen Cl, c2 c3, we easily get the statement of  the lemma for 
all 0 < s < 1. 
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L e m m a  4. Let H C N be a set o f  positive integers .with ZkEH 1/k  = +cx~ and 

{~i, i E H }  a uniformly bounded sequence o f  r.v's with E~i = 0 and 

(2.14) ]E(~k~t)l _< const ( k / l )  ~ k <_ l, k , l  E H 

fo r  some constant c~ > O. Then letting AN = ~ k < N , k E H  1/k  we have 

lim 1 

i<N,iEH 
a.s. 

For H = N this lemma is a key ingredient in the proof  of most a.s. central 
limit theorems (see e.g. [1], [4], [8], [11]). To prove the general case assume, 
without loss of generality, that c~ < 1 and let C denote a uniform upper bound 
for the [~i1. Then we get, using (2.14), 

(2.15) 

E 
const 1 1 ~--~ ~i < _ _ ~  

i , j ~ H ,  
- -  l < i ~ j < N  

1 1 const 1 const const ~ i , _~ - -~_ i~_d  < - -  ~ _ _ _  
~k---~'-N i<_N, iEH j>_i J - A 2 i AN i<_N,iEH 

Since AN --~ + ~  and )kN+ 1 -- "~N --~ 0, there exists an increasing sequence (Ark) 
of  positive integers such that Auk "-' k 2. Hence letting TN = AN 1 ~-~i<_N,iEH i - l ~ i  

we get by (2.15) E ( T ~ )  <_ const k -2 whence by the Beppo Levi theorem 
~ k > l  Tu2k < +oo a.s. and thus Tuk ~ 0 a.s. Now for Ark < N < Nk+l we have 

C 1 C (ANk., -- AUk) ITNJ<ITNkI+  =<lrNkl+ 
--  l --  ANk Nk <i<N 

i E H  

Since Auk+,/Auk --~ 1, it follows that TN --+ 0 a.s., as stated. 

L e m m a  5. Let H C_ N be a set o f  positive integers with Sk~H 1/k  = +cx~ and 

let X1 ,X2,.  . �9 be i.i.d, r.v's such that, setting Sn = XI + . . . X n ,  we have f o r  some 
numerical sequences (an), (b,), 

_ _ _  c_~ (2.16) Sn bn ----+N(0, 1) as n ~ cx~, n E H . 
an 

Then letting AN = Sk<U,kCH 1/k  we have 

(2.17) a.s. for all x . 
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Under additional moment conditions such as 

S_ 
El -~ - bnl p = O(1) for some p > 0 

an 

the statement of Lemma 5 can be proved essentially in the same way as the 
ASCLT's  in our earlier paper [1]. However, to prove the precise characterization 
results in this paper we need to show the implication (2.16) =~ (2.17) without 
any additional conditions on (Xn). 

Proof of Lemma 5. Let dn = anbn/n, Y(k n) = Xk - d~, 1 < k < n,S~n = Sk<_nY(k n), 
S* = k:k<,Y(k")I(IY(k")[ < an), Mn = maxl<k<n IYk(n)l �9 (2.16) and (2.17) can then 
be written equivalently 

(2.16a) S ~ / a n ~ N ( O ,  1) as n - - - o o ,  n E H  

and 

(2.17a) lim 1 
N~oo ~ -  u Z 

k<_N,kEH 

1 {S~ < x } - -  =~b(x) ~-I ak a.s. for all x 

respectively. Clearly 

II{S~/an < x } -  l{S*/a ,  < x}l < l{Mn > a,} (n >_ 1) 

and thus (2.17a) will follow if we show that 

(2.18) lim 1 

k<N,keH 

and 

1 (S~  < x } = r  a.s. for all x 

1 1 
(2.19) lim 7.- N---,cc-~N ~ ,~I{Mk > ak}=O 

k <N ,k CH 

a . s .  

To prove (2.18) let us note that (2.16a) and the standard normal convergence 
criterion (see e.g., [10, p. 316]) imply 

(2.20) n f dFn(x)--~ 0 for any e > 0 as n ~ oo, n E H 
JIx I>_~a, 

(2.21) 
/fx n x2dFn(x)-  xdFn(x) ~ 1 

a~ i<a .  I <a .  

as n ---+ cxD, n C H  

(2.22) - -  xdFn(x)~O as n ~ c ~ ,  n C H  
an [ <a. 
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where Fn is the common distribution function of the r.v. 's  Y~"), 1 < k < n. By a 
standard observation in the theory of the ASCLT (see e.g., [8]) (2.18) will follow 
if we show that 

�9 

(2.23) uli~m- ~-~--u ~ ~f kak / oof(x)d+(x) a.s. 
k_<N,k6~/ 

for any f " R ~ R belonging to the bounded Lipschitz class BL of functions 
satisfying 

(2.24) ~(x) - f (y ) l  -< K I x  - Yl, be(x)l <_ K, x , y  E R 

for some K > 0. Since P(S~ 5iS*) <_ n flxl_>a, dF,(x) --+ 0 for n ~ ~ , n  E H 

by (2.20), relation (2.16a) remains valid if S" is replaced by Sn* and thus 

whence 

Ef --+ as n ---~ ~o, n E H 
\a n  } 

lim Z = f(x)d(a(x) 
u-,oo ~ k<N,kCH \ ak / o~ ' 

Hence setting 

t a k  / t a k  / 
relation (2.23) is equivalent to 

(2.25) u--+A--NNlim 1 1 ~ k = O  a.s. 
k_<N,k6H 

which, in view of Lemma 4, will be proved if we show that 

(2.26) IE(~k~t)l < const (k/l)  ~ k <_ l, k, 1 E H 

for some a > 0. Setting Sk* t = ~-]~<i<_t Yi(Ol(IYi(OI < az) we get by using (2.21), 
(2.22), (2.24) and Observing that Sk* and S~*,l are independent, 

<_ 4KZE 1 Zi<k Yi(l)l(lYi(t)l < al) 

< 4K2E 1 y~{Yi(t)l(lYi < a , ) -  xaF,(x)) 
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+4K2kal fJIxl <a, <_ const + const k,l E H 

proving (2.26) and thus (2.18). To prove (2.19) it will be again sufficient to verify 

(2.27) lim Z ~-f ~ =f(O) a.s. 
N--*cx~ ~N k<N,kEH 

for any function f satisfying (2.24). Now Mk/ak e ,0 as k --+ c%k E H by 
(2.20) and thus Ef(Mk/ak) ~ f(O) as k ~ cc, k E H. Hence (2.27) is again 
equivalent to (2.25) where now 

~k =f(Mk/at) Ef(Mk/ak) 

and in view of Lemma 4 it remains to show that (2.26) holds. Set Mk,t = 
maxk<i<_t ]Yi(t)l, M~*,t = maxi<k IYi(l)l for k < l; clearly Mk and Mk,l are in- 
dependent and IM~ -Mk,tl  < Ms Also, (2.16a) and a well known lemma from 
central limit theory (see e.g. [10], p.307) imply 

nE(IYl~n)/an I A 2) 2 = O(1) (n E H) 

and thus by Chebishev's inequality 

P(IY(")I >_ ta,) <_ P(lYlr A2 > t) <_ C/(nt 2) (n E H,  0 < t < 2) 

for some constant C > 0. Thus 

Mt 

K M~'! 2K M~l 2 ~02 <__ 4KE - -  A = 4KZE A _< 4K z P(M~t >_ tat)dr 
I at at 

[; 1 <_ 4K 2 T + kP(]Y(t) t > tal)dt 

<4K2[T+-~- fr2t -2dt]  <4K2(T+C--f--~T -1) , k , l E H  

for any 0 < T < 2. Choosing T = (k/l) 1/2 we get again (2.26), completing the 
proof of Lemma 5. 

The following two lemmas are well known and easily proved; we formulate 
them here for purposes of reference. 
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Lemma 6. (see [1], [6].) Let (Xn) be a numerical sequence. Then the following 
statements are equivalent: 

(i) There exists a set H C N o f  log density l such that xn --~ O as n ~ cx),n E H 
(ii) For all 6 > 0 the set {n E N : ]xnl >_ 6} has log density O, i.e., 

lim ~ k < ~ N l l { I x k ] > 6 } = 0 .  
N---+oo 

Lemma 7. (see e.g. [7], p. 63) Let (Cn) be a numerical sequence satisfying 
l i m n ~ ( c l  + . . .  + cn)/n = c for  some finite c. Then for  any positive decreas- 
ing sequence (An) with ~ An = +oo we have 

/~ lCl  + . . . + /~nCn 
lim = c . 

n~oo A I + . . . + A n  

Proof  of  Theorem 1. Assume first that (A) holds i.e., (1.1) is valid nontrivially 
for some (an),(bn). Since the expression (log N) -J ~k<_N{ } on the left hand 
side of (1.1) is uniformly bounded, (1.1) can be integrated to give 

(2.28) U~oolim 1ogl N ~ k-P1 (S_~ ) - b k  < x  =r  for all x .  
k~N 

Set now K = c - t , x  = 6 -4 and define H*,H**  by (2.10), let further 

H***={n  E N  :bn (~)<6  2 } .  

Define also, for any r.v. X, 

p(X) = 

"dx ) = 

inf ~(dis t (X),  ~Sa) 
aER 

inf ~ (d i s t (  X - b),N(O, 1)) 
a,bER,a>O a 

where dist ( ) denotes the distribution of the r.v. in the brackets, 6, is the probabil- 
ity distribution concentrated at a and S denotes the L6vy distance of probability 
distributions. By (2.28) and (2.11) we get 

> limsup 1 1 le6e-* 1 6e-4 . . . . . .  
-- U ~  l o g N  Z ~-,+ = ~ c  #Ltn ) 

k<_N,kEH* 

whence 

(2.29) # ~ ( H * ) < 8 6 - 6 ~ - 4 ( 1 - r  _< const- 6' 

since the ratio of the left and right sides of (2.12) was shown to be 0(65 ) in the 
proof of Lemma 3. (In (2.29), and in the relations below, the constants depend 
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only on the sequence (Xn) i.e., they are independent of e.) On the other hand, 
(2.13) gives 

(2.30) p _< 2e 1/2 for n E H** . 

Finally, on the set H*** we can apply Lemma 2 to get 

.~  (dist ( Sn ~-nd(n~)'~ ,N (O, 1)) ~(n~ ~ j _ < constv/'c n E H*** 

i,e,~ 

(2.31) 

Let now 

r(S~) <_ cons tv~  n e H*** . 

( ~, = min r(Sn), p 

Clearly N = H* U H** to H*** and thus (2.29)-(2.31) imply 

(2.32) #~{n C N �9 7r, > const e 1/2} < cons t - e  

Since 7v,, depends only on n (but not on e), the left side of  (2.32) is independent 
of e and thus letting e ~ 0 in (2.32) we get 

#*L{n6N'Tr,  > 6 } = 0  foral l  6 > 0 .  

Hence in view of Lemma 6 there exists a set H C N with #L(H) = 1 such that 
~-, -~ 0 on H,  i.e., 

m i n ( r ( S , ) , p ( S - ~ ) ) - - - * 0  as n - - * ~ ,  n E O .  

Setting 

{ (':)} { HI= n e H : r(Sn) <_ p , H2 = n E H " 7-(S,) > p 

it follows that pL(H1 tO/42) = 1 and ~-(S,) --+ 0 on Hl,p(S , /a , )  ~ 0 on H2 
provided that both Hi and H2 are infinite; if one of Hi and H2 is finite, only the 
convergence relation formulated for the other one holds. By the definition of p 
and r this means that 

(2.33) S, , /d  n - b: ~-~N(O, 1) on H1 for some (a~), (b~) 

on H2 for some (d,) (2.34) S, /a ,  - dn e 0 

in case HI resp. H2 are infinite. If  now (Xn) satisfies (1.1) nontrivially then the 
set Hz in (2.34) cannot have positive upper log density, i.e., #L(H2) = 0 and thus 
~L(H1) = 1 but then (2.33) shows that (Xn) satisfies statement (B) of Theorem 1. 

Let us note that in the just completed proof of  (A) =~ (B) the nontriviality of 
(X~) was used only at the very end and our argument actually yields the following 
more general statement. 
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Lemma 8. Let (X~) be an i.i,d, sequence satisfying the conditions of Theorem 1. 
If (Xn) satisfies the ASCLT (1.1) (nontrivially or not) then there exist disjoint sets 
H1,1-12 C N such that #L(H1 U H2) = 1 and (2.33), (2.34) are valid (assumed 
again that HI resp. 142 are infinite.) 

Continuing the proof of Theorem 1, the implication (B) =:~ (D) is contained in 

Lemma 3 while (D) =~, (C) is obvious. Thus we proved (A) =:> (B) =:> (D) =:> (C) 

and it remains to verify (C) =~ (A). To this end assume that (C) holds, then by 

Lemma 2 we get 

#L{n E N : r(Sn) <_ constx/~} = 1 for all e > O. 

Since "r(Sn) depends only on n but not on e, the last relation and Lemma 6 imply 

that "c(Sn) --~ 0 on a suitable set H C_ N with log density 1 i.e., (2.16) holds 

with suitable (an), (bn). But then Lemma 5 implies the ASCLT (2.17) where now 

AN "~ log N and the restriction k c H in the sum (2.17) can be removed since 

#L(H) = 1. Hence (Xn) satisfies (1.1), moreover (2.16) and #L(H) = 1 obviously 

imply the impossibility of (1.5) on a set Ht of positive upper log density and 

thus (A) holds. This completes the proof of Theorem 1. 

The proofs of Theorem 2 and Theorem 3 are immediate consequences of the 

proof of Theorem 1. In Theorem 2, the implication (A) ~ (B) is contained in 

Lemma 3 while (B) =~ (A) follows from the observation that (B) and Lemma 2 

together imply that for any e > 0 we have T(Sn) < constx/~ f o r n  E H,n >_ 
no(e) i.e. "r(Sn) --~ 0 on H which is equivalent to (A). To get Theorem 3 observe 

that the proof of Theorem 1 remains valid with arbitrary weights q, (satisfying 

YTq,, = + ~ )  with the exception of an application of Lemma 5 in the proof of 

the implication (C) =:> (A) where the special nature of the weights qk = 1/k was 

used in an essential way. (Note that Lemma 6 remains valid for arbitrary qn, 

see [6], Lemma (4.9).) However, replacing I by P in (2.17), Lemma 5 becomes 

obvious with arbitrary weights and Theorem 3 follows. 
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