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Summary. Let (t/.) be the infinite particle system on 2~ whose evolution is as 
follows. At each unit of time each particle independently is replaced by a new 
generation. The size of a new generation descending from a particle at site 
x has distribution F~ and each of its members independently jumps to site x +  1 
with probability ( l •  he[0,  1]. The sequence {Fx} is i.i.d, with uniformly 
bounded second moment  and is kept fixed during the evolution. The initial 
configuration No is shift invariant and ergodic. 

Two quantities are considered: 

(1) the global particle density D, 
(=  large volume limit of number of particles per site at time n); 

(2) the local particle density d, 
(=  average number of particles at site 0 at time n). 

We calculate the limits p and )~ of n -1 log(D,) and n -1 log(d,) explicitly 
in the form of two variational formulas. Both limits (and variational 
formulas) do not depend on the realization of {Fx} a.s. By analyzing 
the variational formulas we extract how p and 2 depend on the drift 
h for fixed distribution of Fx. It turns out that the system behaves in a 
way that is drastically different from what happens in a spatially homogeneous 
medium: 

(i) Both p(h) and 2(h) exhibit a phase transition associated with local- 
ization vs. delocalization at two respective critical values h~ and h 3 in 
(0, 1). Here the behavior of the path of descent of a typical particle in the 
whole population resp. in the population at 0 changes from moving on 
scale o(n) to moving on scale n. We extract variational expressions for hi and 
h 3 . 

(it) Both p(h) and 2(h) change sign at two respective critical values h2 and 
h 4 in (0, 1) (for suitable distribution of Fx). That  is, the system changes from 
survival to extinction on a global resp. on a local scale. 

(iii) p (h) > 2 (h) for all h; p (h) = 2 (h) for h sufficiently small and p (h) > 2 (h) 
for h sufficiently large. This means that the system develops a clustering phenom- 
enon as h increases: the population has large peaks on a thin set. 



196 A. Greven and F. den Hollander 

(iv) p(h)>0 >2(h) for a range of h. (extreme clustering of the system) 

We formulate certain technical properties of the variational formulas that 
are needed in order to derive the qualitative picture of the phase diagram in 
its full glory. The proof of these properties is deferred to a forthcoming paper 
dealing exclusively with functional analytic aspects. 

The variational formulas reveal a selection mechanism: the typical particle 
has a path of descent that is best adapted to the given {Fx} and that is atypical 
under the law of the underlying random walk. The random medium induces 
"selection of the fittest". 

0 Introduction and main results 

Oa Introduction 

Infinite particle systems evolving in a random environment, i.e. systems of locally 
interacting components with a spatially inhomogeneous evolution mechanism, 
exhibit interesting new phenomena not present in their spatially homogeneous 
counterparts. Although this area is still largely unexplored and only few models 
have so far been investigated, it has become clear that new intuition and new 
techniques are needed to understand the nature of these effects. For reference 
see: Dawson and Fleischmann [4], [5], [6]; Greven [12], [13], [14]; Bramson 
et al. [2]; Ferreira [10]; G/irtner and Molchanov [11]; Chen and Liggett [3]; 
Liggett [17]; Baillon et al. [0]. A common feature of all of these papers is 
that the central question reduces, via some duality relation or some comparison 
techniques, to a problem involving a single particle in a random environment. 
It is after this reduction that the real work starts. Therefore these papers stand 
in the tradition of the literature on classical single particle models in random 
media, although the problems that come up are of a rather different nature. 

In the present paper we study a model for population growth in random 
media. The new aspect of our approach is that we extract explicit variational 
formulas. From these we deduce a very rich phase diagram as a function of 
a single parameter. 

We shall be interested in branching random walks on 7Z, where the branching 
mechanism is spatially inhomogeneous and the underlying random walk kernel 
has a drift. That is, particles perform independent random walks and along 
the way branch according to a law depending on their location. It was observed 
by Greven [13] that in systems of such type the drift of the underlying random 
walk kernel plays an important role for the long term behavior of the population 
density. In fact, it was conjectured that a phase transition occurs as the drift 
varies: for suitable choice of parameters describing the environment the popula- 
tion grows when the drift is small but dies out when the drift is large. 

We shall study both the local and the global population density. By the 
latter we mean the large volume limit of the number of particles per site. We 
shall show that both these densities grow or decay exponentially and we shall 
calculate their growth rates explicitly by giving a representation in the form 
of two variational formulas. These formulas will tell us that three significant 
changes occur from the spatially homogeneous model (see Fig. 1): (1) If we ran- 
domly pick a particle at time n (drawn either locally or globally from the popula- 
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Fig. 1. Qualitative picture of the phase diagram for p (h) and 2 (h), the global resp. local exponen- 
tial growth rate of the particle density as a function of the drift h. The dashed curve is log [M(I 
-h2)1/2]. The end points are log ~b/~(db) resp. Slog b/~(db) (see sect. 0d) 

tion), then its history will be very different from that in the homogeneous situa- 
tion. The random environment causes a selection very much following a "surviv- 
al of the fittest" principle: the population will largely consist of those particles 
whose ancestors had a pattern of migration that was best adapted to the given 
environment. For  example, if with each particle we associate its path of descent, 
then it will turn out that for a typical particle this path moves at a speed 
different from the drift of the underlying random walk kernel. In fact, for drift 
below two respective critical values it only moves on scale o(n), a phenomenon 
which we call localization, while beyond the critical value it moves on scale 
n, which we call deIocalization; (2)Both the local and the global exponential 
growth rate may exhibit another phase transition as the drift increases, changing 
from positive to negative at two respective critical values. That  is, the system 
changes from survival to extinction. This can only happen when the environment 
has both super and subcritical offspring distributions. (3)Interesting enough, 
the two growth rates are equal or are different depending on the drift. In the 
latter situation the population experiences clustering. In particular, the critical 
points from point two above may be different and we may have the following 
remarkable picture: at small drift the population grows everywhere, at intermedi- 
ate drift it locally dies out but globally grows, and at large drift it dies out 
both locally and globally. This says that there is an intermediate phase where 
the particles exhibit extreme clustering and the population concentrates on a 
thinning set carrying a growing amount  of particles. All these phenomena are 
absent in the homogeneous model, where the two growth rates not only are 
identical but also do not depend on the drift. 

The study of our system proceeds via a duality relation expressing the two 
densities of interest in terms of a functional of a single random walk in random 
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scenery. From this relation, via a sequence of manipulations and combinatorial 
estimates, we reduce the problem to the study of a quantity of the form 

-1 l~ E~ {exp [2SmO<)/J  - . :  o . 

Here f~ is a fixed convex function in the global case and a random linear 
function depending on the environment at site x in the local case, {/(x)}x>=o 
is the sequence of local times of the random walk, E o denotes expectation with 
respect to the random walk with drift 0~(0, 1), and )~ denotes indicator. Via 
the observation that {/(x)}x_> o is a two-block functional of a specific Markov 
sequence (on infinite state space) associated with the random walk, we are then 
able to characterize the limiting behavior of this quantity in terms of a variational 
formula using large deviation techniques (not quite in a standard form). By 
subsequently analyzing the two variational formulas we deduce the above 
described phase transitions. In addition, the variational formulas allow for a 
nice interpretation in terms of the branching random walk: they give us informa- 
tion about the path of descent of a typical particle. 

Even though our analysis makes use of special properties offx and {/(x)}x>= o, 
it has various new aspects that make it interesting in the broader  context of 
Markov chains in random scenery. In particular, we stress the role of empirical 
pair distributions along the level sets of the random scenery. 

In the rest of this section we define the model, state the two main theorems 
and their consequences for the phase diagram, give extensions and finally formu- 
late some conjectures. 

O b The model 

We now define a system of discrete time branching random walks on ;~ evolving 
in a spatially inhomogeneous environment which is chosen randomly and is 
kept fixed as the system evolves. To do so we need the following ingredients: 

(i) A random environment F = {Fx}x~ e, given by a sequence of i.i.d, random vari- 
ables taking values in the set of probability measures on N u {0}. Fx plays 
the role of offspring distribution for particles at site x. We focus on the case 

(0.1) P(Fx=F~)=q 

P(F~= F2)= I --q 

with F1 and F2 two different given offspring distributions satisfying 

(0.2) • nFl(n)=bl 
n = O  

~ nf2(n) = b2 
.=o 

0 < ~ n 2 [F~ (n) + F2 (n)] < oo .  

r~=0 
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This simple form of the environment is not really necessary for our treatment. 
However, since it makes our results and statements more transparent, we shall 
stick with it for a while and defer extension to Sect. 0d. 

(ii) A homogeneous transition kernel ph(X, y) on 7Z • ~, given by 

(0.3) ph(X, y)=  �89 _+ h) for y = x _+ 1, zero otherwise. 

ph(X, y) is the transition kernel of the random walk controlling the motion of 
particles, and h is the drift parameter. 

(iii) An initial configuration t/o={~/o(X)}x~ g, distributed according to a shift 
invariant and ergodic probability measure on (N u {0}) z with 

(0.4) E (q 0 (x)) = y 

(x)) < oo. 

qo is independent of the environment and ~ o (x) represents the number of particles 
at site x at time O. 

For  f ixed  F our branching random walk 

t/. = {t/.(X)}x~g ( n e N  u {0}) 

is now defined as the Markov chain on n(Nw{O}) Z starting in qo, where at 
each unit of time each particle is independently replaced by a new generation. 
The size of a new generation descending from a particle at site x is distributed 
according to F~, and the members are located independently according to Ph (X, y). 
Formally, 

nn(x+ 1) Z?(x+ 1) ~ n ( x -  1) Z ? ( x -  1) 

Z Z .... Z Z w ,J .... 1 
i = 1  j = l  i = 1  j = l  

with 

L({ZT(x)}, { W  i+ 4 . . . .  }) = [-@i=1 ..... ,.(x) fx] @ [-@i,j~N,.~N~O},~z B(1, �89 + h))] 

Wi_,j . . . .  = 1 - I / l f i ' J  . . . .  vr+ 

(L is law, B is the Bernoulli distribution). 

0 c Theorems 

We are interested in how ( t l . )n~o}  behaves for fixed F. In order to describe 
its local and global behavior we introduce the following objects: 

(0.5) d.(F) = E(rl.(O ) IF) 
N 

(0.6) D.(F , t / . )=  lim ( 2 N + l )  -1 ~ ~/n(X). 
N--+ oo 

x = - -N 
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It is straightforward to check that qn, for each fixed n, is a shift invariant random 
sequence (when considered also as a random variable in F) satisfying 

E(~.  ~ (x)) < oo 
N 

lim ( 2 N + 1 )  -1 Z Cov(q,(x),q,(0))=0. 
N ~ o o  

x = - N  

Here (0.2) and (0.4) are used. Hence q, is L2-ergodic and by the ergodic theorem 

(0.7) D, (V, tln) = E (~, (0)) = E (d, (F)) a.s. 

We are interested in the long term behavior of d,(F) and D,(F, q,). In particu- 
lar, we want to investigate their dependence on the drift h while keeping the 
other parameters q, bl,  b 2 and 7 fixed. 

To formulate our main results, contained in Theorems 1 and 2 below, we 
need to define the following symbols the role and interpretation of which will 
become clear along the way: 

Mo={V~gd(NZ):~v( i , j )=~v( j , i ) fora l l i eN, (a ,v )=O -~ } (0El0, 1]) 
) J 

f(i)=log(q[b~]i+(1 - q) [b2] i) ( ieN) 

io(v)=~v(i , j) log { v(i,j) ~ ( 0 ~ ( -1 ,  1) ,ve~(N2))  
i.i \g(i) Po(i,j)] 

1 + 0  1 
Ih(o)=l( l+O) log ( ~ ) + ~  ( 1 -  0) log ( 1 1 ~  h 0) ( 0 c [ - 1 ,  1], h e ( - 1 ,  1)) 

where go (N z) denotes the set of probability measures on N 2, ( - , - )  denotes inner 
product, a(i,j) = i + j -  1, g(i)=~, v(i,j), and 

J 

i--1 [�89 (O~(-1,1),i,  j e N )  

First we consider the global population density D.(F, tl, ) and identify its expo- 
nential growth rate in terms of a variational formula. 

Theorem 1 (global growth rate): Under conditions (0.1~) 

(0.8) 

For he(O, 1) 

(0.9) p(h)= 

For h = 0 and h = 1 

(0.10) 

1 
lim -- log D, (F, q,) = p (h) a.s. 

n ~ c ~  n 

sup sup (0 [( fo  a, v ) - I o ( v ) ]  - -  I h (0 ) ) .  
Oe(O,1)veMo 

p(0) = log(max {bl, b2}) 

p(1)=log(qbl +(1 - q )  b2). 
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Corollary 1 (global localization vs. delocalization and survival vs. extinction): 

(1) p( .)  is continuous; 
(2) if q~(O, 1) and bl + b2, then there exists h 1 e(O, 1) such that 

p (h) = log [(1 - h 2 ) 2/2 max {b l, b2}] 

p (h) > log [(1 - h 2)1/2 max {b 1, b2}] 

if h<=hl 

if h>hl ; 

(3) if q~(0, 1) and max{b1, b2} > 1 >qbl + ( l - q )  b2, then there exists h2e(0, 1) 
where p (.) changes sign. 

We shall now give the somewhat informal interpretation of the above results. 
For  a more formal discussion see Baillon et al. [-0] Sect. 3. 

The variational formula (0.9) tells us that a selection mechanism is at work. 
If in a homogeneous branching random walk we randomly pick a particle at 
time n (by randomly selecting from the population in a large box), say the 
position of this particle is x, then its ancestor at time 0 was located at site 

x - h  n. That  is, if with each particle we associate its path of descent running 
backwards in time, then for the particle we randomly pick this path will look 
like a typical n-step path of the reversed random walk with kernel P-h (see 
(0.3)) starting at x. However, in the inhomogeneous case this is quite different. 
If b l > b 2 ,  then paths which happen to spend a lot of time on hi-sites and 
little time on b2-sites create a lot of offspring and therefore contribute substan- 
tially to the population at time n. Consequently, for large n most of the popula- 
tion consists of particles whose path of descent slows down on bt-sites and 
speeds up on b2-sites. The quantitative statement is contained in (0.9): if for 
the particle we pick randomly at time n at site x we write the position of 
its ancestor at time 0 as x-Onn, then the law of 0 n concentrates on the value 
0* where (0.9) realizes its first supremum. This can be phrased by saying that 
particles which assume effective drift O* optimize their progeny. In general 0* 
will be different from h. 

But there is not only a selection of paths of descent according to their 
effective drift. Also important  is the frequency at which sites are visited along 
the way. Namely, we shall see that the sequence of local times {l(x)} for the 
path is given by l ( x )=m(x -1 )+m(x ) -1  with {re(x)} a Markov sequence (see 
Sect. 3.a). Consequently, this frequency is controlled by the empirical pair distri- 
bution v n of {re(x)} along the path. Equation (0.9) says that the law of v n concen- 
trates on the measure v* where the second supremum is realized. We call v* 
the effective empirical pair distribution. Like 0* it optimizes the progeny. In 
general v* will be different from the equilibrium empirical pair distribution 
of {re(x)} under the kernel Ph(i,j) or Po.(i,j). 

In fact, the law of {m(x)} for the typical path of descent converges to the 
stationary Markov chain with transition kernel v* (i,j)/g* (i). 

We can now explain the structure of (0.9). If a path of descent has the 
property that 0n ~ 0 and vn ~ v, then its probability decays at a rate Ih(O ) + OIo(V) 
per step while it produces offspring at a rate O~f( i+j-1)v( i , j ) .  Here Ih(O ) 

i , j  

is the rate function for the drift and Io(v) is the rate function for the empirical 
pair distribution of {re(x)} along the path under the kernel Po(i,j). Note that 
0 appears twice as a factor because it determines the range of the path. To 
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match 0 and v we must have ~. ( i+ j -1 )v ( i , j )=O 1 in Mo, Hence the optimal 
i , j  

strategy of the path is to choose 0 = 0* and v = v*, as this maximizes its contribu- 
tion to the progeny. In other words, the population will predominantly consist 
of those particles whose path of descent has this limiting behaviour. 

A further interesting aspect of (0.9) is that there is a critical value h~ such 
that for h<hl  the first supremum is attained at 0 " = 0 ,  so that the typical path 
of descent moves only o(n). This phenomenon we call localization. For h>ha,  
on the other hand, 0* > 0 and the path moves on scale n, which we call delocaliza- 
tion. This is also why p(h) takes on such a simple analytic form for h<h~ 
and at the critical value h~ has a non-analyticity, A related effect was found 
by Eisele and Lang [-8] for the Wiener Sausage with drift. 

There is a second critical value h 2 where the process changes from survival 
to extinction. This can only happen when the random environment has both 
super and subcritical offspring distributions. 

Now we turn to the local population density d,(F), which is more difficult 
because it depends on the environment F. We need the following symbols: 

i=(i l ,  i2) J=(Jl ,J2) 
i l , j a ~ N  i2,j2~{bl,b2} 

f( i , j )  = log j2 
Ct(i,j) = il +Jl - 1 
fl(bl) = q fl(b2) = 1 - q  

and 

Mo,~| ~ = {wgo ((N|  {b,, b2})2): ~ v( i , j )=~v( j ,  i) 
J J 

for all i eN ,  (4, v) = 0- ~, ~=fl|  

Io,r = -- ~ v(i,j) log (P0(ii , j0/?(J2))- sup (h(Q)) 
i , j  Q ~ A ~ . ~  

A~,r = {Q ~ fo ((N| {bl, b2})e): Q shift invariant, 7c 2 Q = v, Q =/~e} 

h(Q) = Kolmogorov-Sinai entropy of Q. 

(Ellis [9] p. 24) where (~ and g are the projections of Q and v on the medium 
coordinates, ~2 is taking the two-dimensional marginal of Q. 

The exponential growth rate of d~(F) can be identified in terms of a variation- 
al formula. The (limiting) growth rate is F-a.s. independent of the realization 
of the medium. 

Theorem 2 (local growth rate): Under conditions (0.1M) 

(0.11) lira l logd~(F)=2(h)  F-a.s. 

For he(O, 1) 

(0.12) 2(h)= sup sup (oE(fgt, v)--Io,~(v)]--Ih(O)). 
0~(0,1) v~Mo, B| 



Branching random walk in random environment 203 

For h = 0 and h = 1 

(0.13) 2(0) = log(max {b~, b2}) 
2(1) = q log bt +(1 - q )  log b2. 

Corollary 2 (local localization vs. delocalization and survival vs. extinction): 
(1) 2(-) is continuous; 

(2) if q~(0, 1) and bl 462, then there exists h3e(0, 1) such that 

2(h) =log  [(1 - h2) 1/2 max {bx, b2}] 

2(h) > log [(1 - h2) 1/2 max {b~, b2}] 
if h<=h 3 

if h>h3, 

(3) if q~(0, 1) and log(max{b1, b2})>0> q log b1 +(1 - q )  log b2, then there exists 
h4~(0, 1) where 2(-) changes sign. 

The same informal interpretations apply as for Theorem 1, with the difference 
that this time the particle we pick randomly at time n must be chosen from 
the population at 0 (and not from a large box). Again there is a selection of 
paths of descent; (0.12) tells us that there is again an effective drift 0* but 
this time the effective empirical pair distribution v* is vector-valued: it is the 
optimal empirical pair distribution of the Markov sequence (underlying the 
local times) and the random environment combined, i.e. {re(x), bx}. It determines 
the optimal asymptotic frequencies at which the hi-sites and the b2-sites are 
visited in the fixed environment F and is the 2-dimensional marginal of the 
optimizing process Q* for {re(x), bx}. 

Contrary to the global case, in the local case the law of {re(x), bx} for the 
typical path of descent converges to the stationary process Q* that optimizes 
Io,~(v* ) and will in general not be Markov. An interesting question that 
comes up here is: What  is the behavior of the optimal path of descent like? 
Could Q* be some random walk in random environment? If so, can one calculate 
its transition probabilities and how do these relate to 0", v* ? 

In order to be able to speak of a "phase transition" when the system moves 
locally from survival to extinction one should really also establish that for every 
h with 2(h)>0 a law of large numbers holds: 

(0.14) L(~I.(O)/d.(F)IF) ~ 61 F-a.s. (n ~ oe). 

This would require techniques which are rather different from the ones used 
in this paper. We shall discuss this question elsewhere. 

A remarkable feature of Theorems 1 and 2 is that apparently d,(F) and 
Dn(F, G) are controlled by different forces. 

Corollary 3 (clustering): 

(1) 
(2) 
(3) 

p(h)>2(h) for all hE[0, 1]; 
hl <=h3 and ha<h2;  

if q~(0,1) and blab2,  then: 
p(h)=2(h) for h<hl 
p(h)> 2(h) for h close to I. 
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We shall see that the global growth rate is the supremum of local growth 
rates over random environments that are stationary processes. If both the local 
and the global optimal path of descent delocalize (i.e. if h > h3), then this is 
to be interpreted as saying that the global population is mostly made up of 
particles whose path of descent has moved through a part of the space where 
the random environment looks like the optimizing environment Q* rather than 
the i.i.d, environment with distribution fiz. If (~*=~ fiz then this says that the 
global population density is carried by a thin subset of the space and p(h)> 2(h). 
If, on the other hand, both the local and the global optimal path of descent 
localize (i.e. if h < hi), then the variational problem is degenerate and the paths 
of descent do not properly sample the medium). Almost all of the time is spent 
on sites where the growth is maximal, in which case p(h)=2(h)= 
log({bl, b2})-Ih(O). In the mixed situation (i.e. ha < h < h3) we know from Corol- 
lary 1 and 2 that p(h)>2(h). 

Od Extensions 

Instead of (0.1) and (0.2) all that is really required to assume about the random 
environment F is that 

(0.15) 

If we define 

(0.16) 

0<K -1< ~ n2F~(n)<K< ~ 
n = 0  

F-a.s. 

nFx(n)=b~ 
n = O  

fi= L(b~), 

then Theorem 1 remains true with f in (0.9) replaced by 

(0.17) f(i) = log S bi fl (db) 

and with (0.10) replaced by 

(0.18) p(0) = log M 
p(1)=f(1) 

where 

(0.19) M = maximal value in support of ft. 

Corollary 1 generalizes accordingly. 
The extension of Theorem 2 suggests itself: replace fi by (0.16) and {bl, b2} 

by supp fi and instead of (0.13) the following holds 

(0.20) 2 (0) = log M 
2(1) =S log bfi(db). 

Corollaries 2 and 3 generalize accordingly. 
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To extend the notion of entropy when supp fl is not countable, see e.g. 
Ellis [-9] Theorem A. 9.9. For  Theorem 2 we shall assume that fl has finite 
entropy with respect to some appropriate reference measure. 

Oe Remarks 

Corollaries 1, 2 and 3 contain a lot of information about the phase diagram. 
However, there are still some vital parts missing in order to fully corroborate 
the qualitative picture drawn in Fig. 1. We conjecture that the following addi- 
tional properties hold (when fi has positive variance): 

(1) p(-) and 2(-) are strictly decreasing on [0, 13; 
(2) p(h)>2(h) forall  h > h l ;  
(3) O*(h)<h for all 0 < h <  1 both locally and globally; 
(4) hi < h3 and h4 < h2. 

The investigation of these properties requires functional analytic techniques of 
some depth. We adress this question in Baillon et al. [-1]. In Sect. 6 we shall 
see why (1-4) are quite plausible. 

In Baillon et al. [0] and in Greven and den Hollander [15] we study the 
simpler version of our model where the random walk kernel in (0.3) is replaced 
by ph(x,y)= 1--h for y=x  and ph(x,y)=h for y = x + l .  For this situation the 
analysis simplifies considerably, we end up with variational formulas that can 
be solved explicitly, and the properties (1)-(4) are verified. 

Clearly, (1) implies that h2 and h 4 are unique (provided they exist). An inter- 
esting consequence of (2) and (4) is the existence of an intermediate phase of 
extreme clustering: 

p(h)>O> 2(h) for h4 <h<h2. 

This means that an overwhelming part of the population lives on a random 
set thinning out as time proceeds but carrying fast growing clusters of particles. 
Naturally, this raises the question how one can describe this set and what the 
clusters look like. 

Finally, we have seen that the optimal path of descent slows down on sites 
where bx is large and speeds up on sites where bx is small; (3) says that the 
net effect of the random environment is to slow the path down. 

The rest of this paper is devoted to the proofs. In Sect. 1 we first outline 
the general scheme of proof and isolate the mathematical problems whose treat- 
ment is the core of this work. 

1 General scheme of proof and key propositions 

This section consists of three parts in which we formulate four key propositions 
(Propositions 2 5) and explain how these imply Theorems 1 and 2. These propo- 
sitions will then be proved in Sects. 2-5. Corollaries 1-3 will be proved in Sect. 6, 
where we analyze the variational formulas. 
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I a Duality with random walk in random scenery 

Let (Sk)k~N~lO I be random walk with transition kernel Ph(X, y)= Ph(Y, X) starting 
at 0, let /~h denote expectation with respect to it, and define the local times 
at time n 

(1.1) 1,(~)= ~ z{S~=x} (xc:g,n~N). 
k=l 

Proposition 0 With 7, b~ and f as defined in (0.4), (0.16) and (0.17) 

(1.2) d.(F) = 7/~h(exp [ ~ 1.(x) log(bx)]) 
x c Z  

(1.3) D,(F,t/,)=7/~h(exp[ ~ f(l,(x))]) a.s. 
x ~  

Proof. Introduce an independent collection of single ancestor branching random 
walks 

y,k (~.),~,, (ye~, k~N). 

Here for each k, (t/~'k),~N~o~ is our process starting from one particle at site 
y and no particles elsewhere. If we add to this collection an independent realiza- 
tion of the initial configuration t/o , then we can define a version of our process 
as follows: 

qo(Y) 
~.(~)= X F, ~'~(~). 

y~7/ k = l  

This gives 

(1.4) E (?In (X) IF) = '~ Z E (~n y'I (x) IF). 
yET/ 

Next use the fact that at each step each particle at site x independently creates 
offspring of expected size bx, to calculate 

(1.51 E(t]n y'I ( x ) I f )  = Z [by Ph(Y, Zl)] --- [b ..... ph(Zn_l, X)] 
Z I , . - . , Z n  1 

= 2 E~h(x,z, 1) b . . . .  3...[~h(zl,y) b,1 
Z l , . . . , ~ n  1 

=E'h(exP[k~=llOg(bx+sk)]Z{Sn=y--x} )" 

The last equality uses the shift invariance of i0 h. Combination of (0.5), (1.1), 
(1.4) and (1.5) gives (1.2). Now (1.3) follows by averaging over F in (1.2) using 
(0.7), (0.17), the i.i.d, property of the random environment, and Fubini' theo- 
rem. []  
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I b Dependence on the drift h 

From now on we drop the superscript ^ because instead of/~h =P-h  we may 
as well work with Ph and assume h~l-0, 1]. Let Ph and E h denote probability 
and expectation for the random walk with kernel Ph" Our first observation is 
that the quantities in (1.2) and (1.3) are of the form 

(1.6) E h (exp [~f~  (l, (x))]) 
x 

with, respectively, 

Write (1.6) as 

f~(i) = { i  log(bx)f(i). 

Eh(eX p [~f~(l .(x))]  IS. = [On]) Ph(S. ~d [On])+ integrand at 0 = 1. 
0 e [ - - 1 , 1 )  x 

Since all n-step paths have equal probability when conditioned on S,=[On] 
(with [x] denoting the largest integer < x), we have 

Eh(exp [~fx(1,(X))] IS, = [On]) is constant in h. 
x 

Therefore, replacing h by 0 we get for (1.6) 

(1.7) ~ E0 (exp E~f~(l. (x))] IS. = E0n]) Ph (S,e d E0n])+ integrand at 0 = 1. 
O e [  -- 1 , 1 ]  x 

The significance of this expression lies in the fact that the drift parameter h 
only appears in the integrating measure. This allows us to isolate the drift depen- 
dence: 

Proposition 1 Suppose that there exists J:  [ - 1 ,  1] ~ , ~  bounded and continuous 
such that 

(1.8) lim 1 log E0(ex p [~f~(l,(x))] Z {S, = [On]})=J(0) 
n ~ o o  n x 

F-a.s. 

and suppose that the same limit is obtained along any sequence 0,--*0. Then 
for he [-0, 1], and with Ih(O) as defined prior to Theorem I, 

1 _ 
(1.9) l im=lOgEh(exp[Zf~(l , (x))])= sup (J (O)-- Ih(O)) F-a.s. 

n ~ c o  n x 0 E [ -  1 , 1 ]  

Proof. It is well known that Ph(S,]nedO) is a large deviation family with rate 
function Ih(0) (Ellis [9] p. 11). Since Ih(O ) is continuous in 0, it follows that 
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the same is true for Ph(Sned[On]). Hence (1.9) follows by applying Varadhan's 
Theorem (see [20], Theorem 3.4) to (1.7), using (1.8). We also need that 

Po-l(Sn=[On])=O(ntl2)=exp(o(n)) uniformly in 0 

to turn the condition in (1.7) into an indicator in (1.8). [] 

If J~(.) and JP (.) denote the J-functions in (1.8) corresponding to the two choices 
offx in (1.6), then (1.9) tells us that 

(1.10) 2(h)= sup (J'z(O)--Ih(O)) 
0 ~ [  - 1 ,  11 

p(h)= sup (JP(O)--Ih(O)). 
0 e [ - 1 , 1 ]  

Thus, to prove Theorems 1 and 2 what we have to do is verify the assumptions 
in Proposition 1 identify JZ(O) and J~ and argue that the supremum may 
be restricted to 0s(0, 1). Equation (1.10) will then give us (0.9) and (0.12). The 
continuity and boundedness of J ( ' )  will be settled in Sect. 6. At the end of 
Sects. 3 and 5 we check that for n~oo 

(1.11) llogEo,(exp[~,f~(In(x))]z{Sn=[Onn]})~J(O) forevery On--*O. 
X 

1 c Proof of Theorem I and 2 

The following two propositions combined prove existence of and identify JP(O). 
Let 

(1.12) l(x)= ~ z{Sk=x}=6o(x)+ lim ln(x) (xe2g). 
k = O  n--, ae 

Proposition 2 For every 0~(0, 1) 

(1.13) Eo(exp[~f(ln(x)) ] z{Sn=[0n]}) 
x 

/ r t0nl ] ( [~ 

: exp (o (n))E o [exp [ L  f (l(x))Jz ~ L l(x): n})~ {/(0)= l([On]):1 }). 

Proposition 3 For every Oe(O, 1) 

lim l_ log Eolexprt 1 ctO,,J n~oo n z~L l ( x )=n  ~ Z{/(O)= =1}) (1.14) L~=of (l(x)) ] l([On]) 

=0 sup [(foa,  vS--I0(v)]. 
vEMO 

The proof of these two propositions will be given in Sects. 2 and 3, respectively. 
The following two propositions combined prove existence of and identify 

J;~(O). 
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Proposition 4 For every 0~(0, 1) 

(1.15) E0(ex p [ ~  /, (x) log (b~)] x{S,,= [On]}) 
x 

=exp(o(n))Eo(eXP[xE~=loZ(X)log(bx)]z{~l(x)=n}z{l(O)=Z([On])=l} ), F-a.s. 

Proposition 5 For every 0~(0, 1) 

(1.16) lim l logEo / rt0.a ] cto,,l -~ ,-*~o Cexp[:~=ol(X) log(bx) Z #x~=ol(X)=n ~ z{l(O)--l([On]) 

= 0  sup [(fa, v)-Io,~,(v)] F-a.s. 

The proof is in Sects. 4 and 5, respectively. 
We remark that the extra indicator in (1.13-16) requiring that 

/(0)= l([On])= 1 is important and its origin will become clear from the proofs. 
The regularity suppositions in Proposition 1 will be verified at the end of 

Sects. 3 and 5. 
Combination of Propositions 2-5 with (1.10) completes the proof of (0.9) 

and (0.12) after the following observations concerning the range 0E(0, 1) in the 
variational formulas. 

Since J~(O) and JP(O) are symmetric in 0 and since Ih(O)<=Ih(--O ) for all 
0e[ - -1 ,  1], h>0 ,  the supremum in (1.10) may be restricted to 0~[0, 1]. The 
boundary cases 0 = 0  and 0=  1 are degenerate. Indeed, if 0=  1 then l ,(x)= 1 
for 0 < x < n and zero elsewhere, and substitution into (1.8) immediately gives 

Ja(1) = S log bfl(db) 
JP(1) = f(1). 

For 0 = 0, on the other hand, the random walk is symmetric and it was shown 
by Greven [13] that 

Ja (0) = JP (0) = log M. 

(The idea behind this equality is that for symmetric random walk the growth 
rate is maximal because the probability for the walk to stay in a large box 
consisting of sites where bx is maximal decays at a rate which tends to zero 
as the box becomes large.) Thus we know the cases 0 = 0  and 0--1, which 
is why for the proof of Propositions 2-5 we need only consider 0e(0, 1). Now, 
in Sect. 6 we shall see that J;'(0) and JP(0) are continuous, in particular at 
0 = 0  and 0=1.  Since Ih(O) is continuous in 0, this explains why in (0.9) and 
(0.12) the supremum over 0 may be restricted to (0, 1). 

Finally, for all 0e(0, 1] we have from (0.18) 

y~(o)__<y~(o) 
JP (0) __< JP (0) 

since fx(i) < i log M and ~l,(x) = n. So now also (0.18) and (0.20) follow, because 
g 

to(0)>Io(0)=0 for 0+0,  I1 ( i )=0  and t1(0)=oo for 0@1. [] 
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2 Proof of Proposition 2 

Equation (1.13) states that, up to a subexponential factor, its r.h.s, and 1.h.s. 
are determined by those paths that stay between 0 and [On] until time n, cross 
[On] at time n, and then stay to the right of [On] forever. That  is, on a scale 
of order n the expectations apparently are determined by those paths that  move 
out to infinity at speed 0 equal to the drift of the underlying random walk 
kernel. In other words, the indicators in (1.13) force the path  to assume effectively 
drift 0 at any place and at any time. On a scale o(n) there will of course be 
fluctuations, and we must  build these in the proof  without affecting 0. The 
proof  of (1.13) consists of mappings of paths and of combinatorial  estimates 
showing that indeed paths not having effective drift 0 contribute negligibly. 

This section consists of two parts in which we prove upper and lower bounds, 
the upper bound being the hard one. The following properties of the function 
f in (0.17) hold in general and are all that will be needed for the proof: 

(2.1) f (i) = i log M -  g(i) 

g (o) = o 

g ( ')  is non-decreasing and concave 

g(i)=o(i) as i--* oo. 

Before we start the proof  let us agree on some notation. It will be expedient 
to extend the random walk to negative times by running an copy of the reversed 
random walk with opposite drift - 0 from 0 and conditioning it on never return- 
ing to 0. In this way we get a two-sided path, denoted by 

s=(s . ) .~  (So =0), 

which is the random walk with drift 0 starting from - o o  at time - o o  and 
conditioned on first hitting 0 at time 0. Define 

t~ s)= ~ z{sk=x} (~eg, n~N) 
k = l  

k =  - c o  

Note that l,(x, S) is the same as l,(x) in (1.1), while l(x, S) is the same as l(x) 
in (1.12) for x > 0 .  It is straightforward to check that {l(x, S)} is shift-invariant 
on Z. (Use the strong Markov  property of random walk.) By Eo we shall denote 
expectation w.r.t .S. 

Furthermore,  we pick a function ~: N ~ N such that 

(2.2) 6(n) ~ 

6(n) g(n)= o(n) (n ~ ~) 
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and n will be taken large enough so that 5 (n)< [0 n]. We abbreviate 

I n = [0, [On]]  

Jn = E -  5(n), [On] + 6(n)]. 

In the sequel the symbols ~ ,  ~ ,  and ~ will be used to denote (in)equality 
up to a subexponential factor exp(o(n)). 

(2.4) 

with 

(2.5) 

2a Upper bound 

The object of this section is to prove that 

(2.3) 1.h.s.(1.13) ~ r.h.s. (1.13). 

First use (2.1) and write 

1.h.s.(1.13)= M" Eo(exp [--G,(S)] z{S~A,~}) 

o o  

G.(s)= g(t.(x, s)) 
X =  - -  o O  

A 1 = {S:  S .  = [ O n ] } .  

The first lemma shows that the walk does not want to leave int(J,) between 
time 0 and n, the idea being that anything the walk can do outside I ,  it can 
also do inside I, .  Let 

A~--A,1 n {S: Sieint(J,) for 0 < i < n } .  

Lemma 1 E0(exp [--  Gn(S)] Z {SeA,t})~ E0(exp [ -  G,(S)] Z {SEA2}). 

Proof. It suffices to show that 

E0(exp [ - Gn(S)] Z {SeA~,\Aa~}) ~ E0(exp [ -  Gn(S)] Z {SeA~}). 

We shall do this by comparing paths in 1 2 2 A n \ A  n and A n, for which we shall 
need the following definition: 

(i) a small excursion to the left of x is a path beginning and ending at x and 
staying inside (x - 5 (n), x); 

(ii) a large excursion to the left of x is a path beginning and ending at x, staying 
inside ( -  0% x) but not  inside (x -6(n) ,  x); 

similarly for small and large excursions to the right of x. Thus, small excursions 
outwards from 0 (In) stay inside int (J,), but large excursions do not. 

Next, let 
T~" A~\A2 ~ A 2 

be the following map acting on the path S between time 0 and n (and leaving 
the rest invariant): 
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First the large excursions to the left of 0 are reflected around 0. 
Then the large excursions to the right of [0n] are reflected around 
[On], including any new large excursions that may have arisen from 
the previous reflection. This procedure is repeated until the image 
path lies entirely inside int(Jn). 

In other words: T. maps a path in 1 2 A. \A .  onto an image path in An 2 by alternately 
folding large excursions outwards from 0(I.) around 0(I.). Only the large excur- 
sions occurring between time 0 and n are reflected around 0(I.) until they lie 
inside int(I.); the small excursions are untouched, as well as the large excursions 
not occurring between time 0 and n. 

We shall need three properties of T. : 

(2.6) T. preserves probability: any path and its image under T. have the same 
probability; 

(2.7) G.(T.(S))--G.(S)<o(n) uniformly for SeA.\A..1 2 
(2.8) 1 2. I{SeA,\A,, T.(S) = S'}I = exp(o(n)) uniformly for S'eA 2. 

Proof of (2.7). Split I. (x, S) for x r into contributions coming from small respec- 
tively large excursions outwards from 0 (I.): 

Z.(x, s) = t. ~ (x, s)  + l." (x, s)  (x r x.). 

Next split I. > (x, S) further into contributions coming from parts of the path 
that under T. are mapped inside int(I.) respectively int(J . ) \ I .  : 

t2 (x, s) = t2 '+ (x, s) + t : , -  (x, s) (~r 

Now use (2.1), by which g(i)+g(i)>g(i+j) for all i and j, to obtain 

g(l.(x, S))+ ~ g(l.>'+ (x, S))> ~ g(/.(x, T.(S))). 
X~In x~In X~In 

Here the crucial point is that T. stacks local times 12'+(x, S) at sites x(el. on 
top of local times I.(x, S) at sites xeI.. It is important to realize that for each 
xr all of l 2 '+ (x, S) is mapped onto a single site inside I. ,  so that the inequality 
follows by induction on the number of reflections. Thus, for SeA.\A.,1 2 

G.(T. (S) ) -  C.(S) < ~ [g (t>. ,+ (x, S)) - g (I.(x, S)) + g (t. (x, T. (S)))]. 
x(~I~ 

Since g is increasing and since ln(x, T.(S))= 0 for xr this gives via (2.2) 

G.(T.(S))-G.(S)< ~ g(/.(x, T.(S)))<Z6(n)g(n)=o(n). [] 
x~int(Jn)\In 

Proof of (2.8). Here just note that for each 1 2 S~A.\A.  the total number of large 
excursions that get reflected by T. is at most n/26(n) (=length of path prior 
to time n/minimum length of large excursion). Each reflection gives rise to a 
multiplicity 2: in T.(S) each large excursion to the right of 0 or to the left 
of [On] can either occur already in S or can be the reflected image of a large 



Branching random walk in random environment 213 

excursion in S to the left of 0 or to the right of [0 n]. Hence the total multiplicity 
of S is at most 2"/2~(")=exp(o(n)). [] 

Applying first (2.7) and then (2.6) and (2.8), we obtain 

Eo(exp[-G,(S)] z{S~A~\AZ})~Eo(exp[-G,(T.(S))]  z{S~A,\A,})a 2 
[-c.(s)]  z{s cA.}), ~- E o (exp , , 2 

which completes the proof of Lemma 1. [] 

The second lemma shows that, because of the positive drift 0, the walk 
quickly enters J, from the left before time 0 and quickly leaves J, from the 
right after time n. Let 

A~ =A~ ~ {S: S j= j  for --5(n)<j<O, S j< -6(n)  for j <  --b(n)} 
c~ {S: S.+~= [On] +j for 0 < j <  5(n), S,+i> [On] + 6(n) for j >  6 (n)}. 

Lemma 2 E o (exp [ -  G,(S)] Z {SEA,2}) ~ E0(exp [ -  G. (S)] Z {SeA,3})- 

Proof. Observe that G,(S) only depends on S between time 0 and n and that 
the difference between A 2 and A, 3 only involves what S does before and after- 
wards. Therefore the Markov property gives 

E o (exp [ -  G, (S)] Z {S ~ A2})= P0- I(A~[ A2) Eo (exp [-- G, (S)] Z {S e A~}). 

But 
P0 (A~ ] A2) = 0[�89 4- 0)] 2~("), 

since a step to the right has probability �89 + 0) and escaping to the right has 
probability 0. (Recall here the reversed random walk that was used to extend 
the path S to negative times.) Now use that 6 (n)= o(n). [] 

At this point we know enough to replace 1,(x, S) by l(x, S) and restrict the 
sum (2.5) in the exponent of (2.4) to J,. Therefore define 

(2.9) G*(S)= ~ g(l(x,S)). 
xEJn 

Lemma 3 Eo(exp[-G,(S)] z{S~A3,})_~Eo(exp[-G*(S)] z{S~A~}). 

Proof. On A. 3 we have (recall (1.12)) 

l,,(x, S)= l(x, S)-6o(X ) 
In(x, S) = l(x, S) - 1 
l.(x, S)~-O 

for X ~ I  n 

for x e J , \ I ,  
for xr 

Hence from comparison of (2.5) and (2.9), and since g(0)= 0, 

O<G*(S)-G,(S)= ~ [g(l(x,S))--g(l(x,S)-l)]<(2O(n)+ l)g(1)=o(n), 
x~(Jn\i~) u (o} 

where the inequality follows from g ( i ) - g ( i -  1)<g(1) via (2.1). [] 
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Combining Lemmas 1 3 with (2.4) we arrive at 

(2.10) 1.h.s. (1.13)~ M"Eo(exp [ -  G* (S)] Z {S~A3}) �9 

Finally, note that 

A~ c { S: ~ l(x, S) = n + 26 (n), l( -- (5 (n), S) = l( [0 n] + c~ (n), S) = 1 } 
x~Jn 

to obtain via (2.1) that 

(2.11) 1.h.s.(1.13)~Eo(exp[ ~ f(l(x, S))] Z{ ~ l(x, S)=n+26(n)} 
X~Jn X~Jn 

x z{l(-fi(n), S)=l([On] +~(n), S)-- 1}) 

[ F[On]+Zb(n) S)=n+26(n)} 
= E ~  L f ( l (x ,S))JZt  LfE~ 

x Z {/(0, S)= l([On] + 26(n), S)= 1}). 

The latter equality uses the stationarity of {l(x,S)}. Now, the r.h.s, of (2.11) 
almost equals the r.h.s, of (1.13), the only difference being that n and [On] 
are perturbed by terms of order 6(n)= o(n). However, from the proof of Proposi- 
tion 3 in Sect. 3 it will become clear that this is a lower order effect (see the 
end of Sect. 3.e), i.e. 

(2.12) r.h.s. (2.11)~ r.h.s. (1.13). [] 

2b Lower bound 

The proof of the opposite inequality 

(2.13) 1.h.s. (1.13) ~ r.h.s. (1.13) 

is trivial. Just note that 

{S: ~ l(x, S)= n, l(O, S)= l([On], S)= 1} c {S: Sn = [On]}. 
xffln 

Indeed, since 0 and [On] are hit only once the path spends all its local time 
inside In in one piece: after entering I,  at time 0 it must stay inside I n during 
n steps and cross [On] at exactly time n. This, moreover, implies that l(x, S) 
=6o(X)+In(x, S) for x~I,, and ln(x)=O for x(~I, (recall (1.12)), so that via (2.1) 

~f(l.(x,S))> ~" f(l(x,S))-logM. [] 
x~Z x ~ l .  

Combination of (2.3) and (2.13) completes the proof of Proposition 2. [] 
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3 Proof of Proposition 3 

3a l(x) as functional of a Markov process 

We start by introducing the Markov process driving the local times. Let 

(3.1) m(x)= ~ ;g{Sk=x, Sk+l=x+l}  (xe2g) 
k = O  

denote the total number of steps x ~ x + 1 in the random walk. Since the path 
is continuous and has positive drift, every step x ~ x - 1  must eventually be 
followed by a step x - 1 --+ x (with probability 1). Hence (recall (1.12)) 

(3.2) l ( x )=m(x -  1) + m ( x ) -  1 (x>  1). 

This is nice because re(x) has the following properties. 

Lemma 4 The sequence {m(x)}x>__o is stationary Markov with transition kernel 
and invariant probability measure 

i + j - 2  
(3.3) P0(i,j)=( i - 1  ) [ � 8 9 1 8 9  ( i , j> l ) ,  

,., 20 / 1 - - 0 \  i-1 
(3.4) ~0tt) = ~ / ~ - 0 )  (i >_- 1). 

In fact {m(x)}x_> o is a branching process with one immigrant and with subcritical 
offspring distribution." 

(3.5) re(x+ 1)=Z1 + ... + Zm(x)+ 1 

(3.6) P(Z~=k)=�89189 k (k>=0). 

Proof. For  every x > 0 

. . .  Z t m ( x + l ) = Z ~ +  +Z,,(x) 1+ 

with 

Zi = ~ steps x + 1 --+ x + 2 between i-th and (i + 1)-st step x ~ x + 1 

Z' = #e steps x + 1 ~ x + 2 following last step x ~ x + 1. 

The Zi are i.i.d, and count the excursions to the right of x + 1 until the next 
step x ~ x +  1; Z' is independent of the Zi and Z ' - 1  counts the excursions 
to the right of x + 1 following the last step x ~ x + 1. Since each of these excur- 
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sions has probability �89  0), it follows that the Z i and Z ' - 1  have the distribu- 
tion given in (3.6), and also that (3.5) holds. Now (3.3) is straightforward, and 
(3.4) follows by checking that ~zo(i ) Po(i,j)= rc0(j)P0(J, i), so that rc 0 is a reversible 
equilibrium. Finally, the stationarity follows by using (3.1) to check that P(m(O) 
= i)= 7zo(i), so that the process, tarts in equilibrium. [] 

In view of (3.2), our process of local times is a simple two-block functional 
of a Markov process. This is nice because it means that at this stage in the 
proof we can forget about the random walk: Proposition 3 is a large deviation 
problem for a Markov process of a very specific structure. In particular, what 
we need is a large deviation property for the empirical process of pairs associated 
with {m(X)}x> o, the so-called level-2 analysis for pairs, under the sum restriction 
enforced by the indicator in the 1.h.s. of (1.14). Via (3.2) this will give us a 
large deviation property for the empirical process of {l(x)}x>o. This is what 
we are looking for because the exponent in the 1.h.s. of (1.14) can be expressed 
as a functional of this empirical process. 

For  Markov processes large deviations have been studied quite extensively 
in the papers by Donsker and Varadhan [7], Stroock [19], Ney and Nummelin 
[18]. However, our process has infinite state space N and is not uniformly 
recurrent, so it does not belong to the class of countable Markov processes 
for which level-2 large deviation principles have been derived in the literature. 
Therefore we shall need to do some work to get Proposition 3 going. 

The rest of this section consists of four parts. In Sect. 3.b we formulate 
the right framework by using the Markov property of {re(x)} to reduce the 
problem to ii.d. random variables. We then point out a number of technical 
difficulties. In Sects. 3.c and 3.d we do a truncation and perturbation analysis 
in order to circumvent these difficulties and to prepare for the final large devia- 
tion analysis in Sect. 3.e. The analysis in Sects. 3.c-e is nonstandard because 
of the presence of the indicator in (1.14). On the one hand, this forces us to 
establish a large deviation principle for a sequence of conditional probability 
measures. On the other hand, the indicator plays an important  role in handling 
the infinite state space. 

3b Passing to i.i.d, random variables 

For  K and L positive integer let us abbreviate 

(3.7) Eo(K,L)=Eo(exp[~f(l(x))]Z{x~_ol(X)=L}z{l(O)=l(K)=l}). 

In the previous section we have seen that Eo(K, L) is the expectation of a func- 
tional of a Markov process, {re(x)}. In this section we shall further simplify 
Eo(K, L) by rewriting it as a new functional of an ii.d. sequence. This reduction 
will at first appear rather hopeful in that it will seem to lead us to known 
territory, but unfortunately this is not the case. We shall then point out what 
the main obstacles are that have to be removed and indicate how this will 
be carried through in Sect. 3.c and 3.d. 
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Substitute (3.2) into (3.7) and write 

K K 
Eo(K,L)=Eo(exp[x~=of(m(x--1)+m(x)--l)]z{x~=o [m(x--1)+m(x)--l]=L} 

x z{m(-- 1)=m(O)=m(K-- 1) =re(K) = 1}) 

K 
=exp(f(1)) [�89 + 0)~ Eo(exp[x~=,f(m(x--1)+rn(x)--l)] 

K-2 
xz{x~= m(x)=�89 ). 

Here we first use the Markov property of {re(x)} to get rid of the left boundary 
term m ( -  1)= 1, and then we introduce periodic boundary conditions by putting 
m(K)=m(O) in the last term of the sum in the exponent (this just comes in 
handy). Next write out the probabilities of {m(x)}~= 0 by inserting the kernel 
(3.3), use (3.4) for the initial value m(0)= 1, and write 

(3.8) Eo(K,L)=Oexp(f(1)) ~ exp[F(m)+P(m)] 
mEV(K,L) 

where 

(3.9) f K-2 t V(K, L)=  msNK:  Z m(x)=�89 m(O)=m(K-- 1)= 1 
x=l 

K 
(3.10) F(m)= ~,f(m(x--1)+m(x)--l) 

X=l 

K 
(3.11) P(m)= ~ logPo(m(x-1),m(x)). 

x=l  

Our next step is to introduce i.i.d, random variables X 1 . . . .  , XK-2 with com- 
mon geometric distribution 

P(Xk=l)=(1--e)d -1 (I_>--1) 

where c~(O, 1) is arbitrary. In terms of these auxiliary objects we may write 

(3.12) Eo(K, L)=O exp (f(1))(1 --c)-K+2c -{L-K- 1)/2S(K, L) 

where we define 

(3.13) S (K, L) = E (exp [F (X) + P (X)] Z {X ~ V(K, L)}) 

X=(1,  X1 . . . . .  X/~_ 2, 1) 

and E denotes expectation w.r.t.X. Here we use that all X have the same proba- 
bility ( l - c ) r - %  ~(L+K-5)-K-2, because V(K, L) fixes both length and sum of 
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X. Finally, to turn (3.13) into a more standard form we introduce the empirical 
pair distribution of X 

K 

VK=K-1 2 (~(Xk-~,Xk) 
k = l  

(recall X K = Xo) and write 

Lemma 5 For every 0c(0, 1) 

(3.14) 

where 

S (K, L) = E (exp { K IF (vK) + P (vK)] } Z { vK ~ V(K, L)}) 

(3.15) ~'(K, L)=  {rE gd (N2): ~v( i , j )=~v( j ,  i) for all i eN,  
J J 

~(i  +j-- 1) v( i , j )=(L-  1)/K} 
i,j 

(3.16) F(v) = ~ v(i,j) f (i +j-- 1) 
i , j  

(3.17) P(v) = ~ v(i,j) log Po(i,j). 
i,j 

Pro@ Combine (3.9-11) and (3.13) with the definition of v K. Note that 
Xc  V(K, L) if f vKc I~(K, L). One direction is obvious, the other follows from 
a classical theorem on the existence of Eulerian circuits on Eulerian graphs 
(see Kasteleyn [16]). [] 

Equation (3.14) tells us that S(K,L) is the expectation of an exponential 
functional in level-2 form on the set ~(K, L) where the underlying process is 
an i.i.d, sequence of geometric random variables. That is, we have achieved 
our first goal of this section. This reduction was possible because the probability 
of a path of a Markov process can be directly expressed in terms of its empirical 
pair distribution, which is why fi(v) appears in the exponent in (3.14). 

Remember that in order to prove Proposition 3 we must show that, in 
the notation of (3.7), 

lim 1 log Eo([On ], n)=J~ 
n ~  n 

jo (0) = r.h.s. (1.14). 

By (3.12) this amounts to proving that 

(3.18) lim 1 log S([On], n)=JP(O)+O log(1 -c )+ �89  --0) log c. 
n ~ o o  n 

To see how this should come about, observe that for e > 0 small and n large 

P'([0 n], n)=mlo,1 c Ui01__<~M0+a 
n - - 1  

with Mo the set appearing in the variational formula (see 0.9). Now, if ~'([0n], n) 
were a fixed set and equal to M o and if M o were closed in the weak topology, 
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then (3.18) would have immediately followed by applying Varadhan's Theorem 
([20], Theorem 3.4) to (3.14). Indeed, both/7 and P are bounded and continuous 
on Mo and the laws of vK form a large deviation family with rate function 

log{- _v(i,j) _] 
(3.19) /~(v) = Zv(i,j) \9(i)(1 - c )  c i -  l j  

i , j  

(cf. Ellis [-9], p. 19). Therefore we would get 

lira 1 log S ([0 n], n) = 0 sup IF (v) + P (v) --/'~ (v)], 
n ~ o o  n v c M o  

where the factor 0 is picked up because K=[On]. From there (3.18) would 
easily follow after substitution of (3.16) and (3.17) and after absorbing P(v) into 
It(v). (Note that the terms containing c can be computed because the two proper- 
ties in the definition of Mo imply that ~ ( j - 1 ) v ( i , j ) = ( 1 -  8)/28). Incidentally, 

i , j  

the form of [c(v) in (3.19) can be deduced via a classical estimate on the number 
of Eulerian circuits on Eulerian graphs (see Kasteleyn [16]). 

But unfortunately, V([0n], n) is not fixed and M o is not closed, and this 
is a serious problem. For instance, if we try to remove the first obstacle by 
replacing V([0n], n) in (3.14) by the slab 

m~o = U mo+o 

(assuming we could show that in the limit as e ~ 0 this has no effect on the 
growth rate of S([On], n)), then we run into trouble because f and P are no 
longer continuous on M~ (and M~ is still not closed). If we try to repare this 
problem by passing to the natural stronger topology, namely the La-topology, 
then the level sets of [c are no longer compact and so Varadhan's Theorem 
does not apply. 

What we need is to collect more information on/7 and P in order to make 
the large deviation analysis possible. To do so we shall follow the traditional 
route of truncation of the X k and combine this with a perturbation argument 
in 8. That is, we shall replace V([On], n) in (3.14) by the set 

M~o'R=M~oc~ fd ([1, R] 2) 

and prove that in the limit as e ~ 0 and R--,oe this does not affect the growth 
rate of S([On],n). This will be carried out in Sect. 3c and 3d. In Sect. 3e we 
shall do the standard large deviation analysis on Mg'" and then prove that 
the resulting variational formula converges to the r.h.s, of (3.18) for e---,0 and 
R -+oo.  

3 c Truncation 

Our aim here is to show that for our purposes X can be restricted to a finite 
state space. For R positive integer let 

VR(K, L)= V (K, L) c~ fa ([1, R] 2) 
S R (K, L) = E (exp {K [/~ (vK) + i3 (vK)] } Z { VK C 9 "R (K, L)}). 

The main result of this section is the following lemma. 
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Lemma 6 For every Oe(O, 1) 

(3.20) lira limsup--1 [log S([On], n)--log SR([On], n)[ = O. 
R~. ~ n___r o ~ n 

Proof. The proof is in the spirit of that of Lemma 1 in Sect. 2a. The idea is 
to associate with each configuration X that somewhere exceeds the value R 
another configuration X' that everywhere stays below R and contributes about 
as much to the exponential. A configuration will be viewed as a collection 
of [On] piles of objects of sizes 1, X 1 . . . .  , Xto,l_ 2, 1 and X' will be built out 
of X by moving objects around in small piles of a given size. Since all X have 
the same probability all objects may be moved around freely. The problem 
will be to control the effect on the exponential. In particular, it turns out that 
we have to be careful with those X where large piles occur next to each other. 
This will be handled by creating in X' many small piles in a row. The reason 
behind this is that the kernel P0 in (3.17) belongs to branching with immigration, 
as described in Lemma 4, and therefore it has the property of favouring "flat"  
configurations. 

Let V(K, L) be the set of X's given by (3.9), and let 

VR(K, L)=  V(K, L ) n  [1, R] ~:. 

It suffices to show that there exists C(R) with C(R)~O as R ~ o o  such that 
for all n 

(3.21) E(exp[F(X)+P(X)]  z{X~V([On],  n)\VR([On], n)}) 

=< exp (n C (R)) E (exp IF (X) + n (X)] X {X c V R ([0 n], n)}). 

Here F and P are given by (3.10) and (3.11). To get the lemma rewrite (3.21) 
in terms of the empirical pair distribution, as was done before to get (3.14) 
from (3.13). 

Fix n and R. To prove (3.21) we need a map 

T: V \  V g --+ V R 

which is defined as follows. Let s, t and u be positive integers such that 

S, t, t2 ---+0(3 

U/S ~ 0 

bl t / s --'+ 0(3 

and put R = st. Introduce the following subsets of [-0, [ O n ] -  1]. Let 

A l = { k : X k > S t }  

and let A 2 be the smallest set containing A 1 such that 

Xk>=u(t--1) for k~A 2 

Xk <=U(t--1) for k ~ A  2 
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where 0A 2 denotes the exterior boundary of A 2 . Next, let 

B 1 = {k: X k <= s(t--  1), k r 3A 2} 

and let B 2 be the subset of B ~ obtained by deleting all intervals in B ~ of length 
< t. Now T acts as follows: 

T removes from each k e A  2 as many piles of size s until at most 
s objeccts remain. All the piles removed from A 2 a r e  placed back 
o n  B 2, one pile on one site and filling B 2 in a row. 

Note that the sets A 2 and B z need not necessarily be disjoint. Clearly, the 
image configuration is everywhere below s t. Of course, for T to be well defined 
the set B 2 must be large enough to accomodate the piles coming from A 2. 
But this is so by the following observations. Since ~ Xk = �89 (n + [0 n-] - 1) < n, 

k 

IA2[ __< n / u ( t -  1) 

[(B1)C[ __< n / s ( t -  1)+ [0A2I. 

Since at most (t-1)l(B1)Cl sites can lie inside the intervals in B 1 of length <t ,  
and since IOA2[ <21A21, 

IBZl > [On-] - n / s -  2n/u. 

The total number of piles moved is at most n/s. So it suffices to have ]B2I >n/s, 
which holds by the above estimate as soon as 2/s + 2/u < [0 n]/n ~ O. 

We shall need four properties of T: 

(3.22) X and T X  have the same probability. 

(3.23) F(X)--F(TX)<=no(1)  uniformlyfor X ~ V \ V  s~. 

(3.24) P ( X ) - P ( T X ) < n o ( 1 )  uniformlyfor X e V \ V  st. 

(3.25) I { X e V \ V S t :  TX=X'}]<exp(no(1) )  uniformlyfor X ' e V  St. 

Here o(1) refers to s, t, u ~ o c .  In the proof  of these properties below we shall 
need the following observations. Let B 3 be the subset of B 2 where the piles 
are moved to. Then 

(TX)k = Xk for k(!A 2 ~ B 3 

(TX)k <=s<X k for k s A  z 

( T X ) k = X k + s  for k~B 3, 

A z and B 3 a r e  separated everywhere by at least one site, and [B 31 <n/s. 

Proof of (3.23). First use (2.1) to write 

[0 n] 

F (X) -- F (TX) = ~, [g ((TXlk_~ + (TX)k -- 1)-- g (X k_ 1 + Xk -- 1)3. 
k = i  
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If A 2§ and B 3+ denote the right closure of A 2 and B 3, then the above sum 
has two contributions namely ~ and ~ . Since g is increasing the first 

k ~ A  2 + k E B  3 + 

sum is negative and can be trivially bounded above by zero. The second sum 
equals 

Y', [g(Xk- 1 + Xk + 6~ s -  1 ) -  g(Xk- ~ + X k -  1)] 
k e B 3  + 

with 6k = 1 or 2 depending on whether k is in the interior of B 3 + or not. Now 
use the concavity of g (2.1) to obtain 

F(X)-F(TX)< ~, g(6ks)<lB3+lg(2s)<2ng(2s)/s. 
k ~ B  3 + 

Finish the proof with (2.1). [] 

Proof of (3.24). First substitute the special form (3.3) of the kernel to write 

[On] (Xk_ 1 +Xk_2t((rx)k_l +(TX)k__21 1 P(X)-- P(TX) = log [I 
k:~ \ Xk-1 -1  / \  (TX)k-l--1 / " 

Again there are two contributions namely l-I and ~[ . Now define 
k ~ A  2 + k E B  3 + 

Ak=Xk--(TX)k. 

The first product can be bounded above by dropping the second binomial coeffi- 
cient, by using the inequality 

(3.26) 

and by estimating 

Z 
k ~ A 2 +  

[Xk_~+Xk--2]<2 ~ (Ak+S)+ ~ ut 
k ~ A  2 k ~ A  2 

<=2 ~ Ak+2ns/u(t--1)+2nu/s. 
k ~ A  2 

Here we use that [0A2I __< 2IA 1 I and I A1 ] ___< n/s t. Hence the first product contrib- 
utes to P(X)-P(TX) at most 

(21og2) ~ Ak+no(1). 
k ~ A  2 

Turning to the second product, by using the inequality 

(3.27) b =\b+d] 
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we get the upper bound 

I~ ( - -Ak- I - -Ak)  1 
k~B3+ \ - - A k  1 / 

But Ak= --s for k~B 3 and Ak=O for k~OB 3, and so this equals 

(2;)  -c ,  with C =  ]{k: k - 1 ,  keB3}[. 

Now note that B 3 consists of intervals of length at least t because the sites 
of  B 2 are filled in a row (except possibly one interval where the filling of B 2 

stops). Hence 

IB3 l -C  < [t- a lB3[] + l , 

and hence the second product  contributes to P ( X ) - P ( T X )  at most 

- -{[-(1-- t -1) lB3l]- - l} log s " 

Finally, note that 

A k = s l B 3 l  = total number of objects moved 
k~A 2 

and add the two contributions to arrive at 

P(X) - -P(TX)<s lB31{21og2- - (1 - - t -1 ) s  -a log (2 ; )}  + no(l). 

The proof  is now finished because the term between braces tends to zero and 
becauses[Bal<n.  [] 

Proof of (3.25) The total number of piles moved is at most n/s. It follows 
that for every X' the number of X that are mapped onto X' cannot be more 
than 

{ [o n]"/s/(n/s) !} 2 

because there are at most [On] sites where a pile can be removed and where 
it can be placed back. Now use Stirling's formula. []  

To complecte the proof  of (3.21), first use (3.23) and (3.24) to get that the 
1.h.s. of (3.21) is bounded above by 

exp (n o (1)) E (exp IF  (TX) + P (TX)] Z {X s V([0 n3, n)\ V R ([0 n3, n)}). 

Then use (3.22) and (3.25) to bound this further by exp(no(1)) times the r.h.s. 
of (3.21). []  
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3d Perturbation: going to the slab 

In this section we replace VR([On], n) by the slab M~o 'e. That is, instead of 
[On] - 1 

fixing ~ Xk at exactly the value �89 + [On] - l) we want to allow it to vary 
k = 0  

over a small slab of width e n. In order to achieve this we have to investigate 
how sg([On], n) behaves under small perturbations of its second argument. The 
main result of this section is the following lemma. This will be used later to 
prove Lemma 8 below, which is the result that we are really after. 

Lemma 7 For every 0~(0, 1) there exists C(O) such that for every e(-): N - ~ Z  
satisfying/~(n)l < ~ n for ~ sufficiently small 

(3.28) 1 [log S R([O n], n +5 (n))-  log S R ([0 n], n)[ _-< - C(0) ~ log ~ ( ~ .  
n / , 1  

Proof. Whether or not our random variables X k are truncated plays no role 
at this point. We shall give the proof  for the non-truncated X k and explain 
later how to incorporate the truncation. 

Return to (3.12) and (3.13). Define 

(3.29) U(K, L) = E(exp [F(X) + P(X)] ]X~ V(K, L)) 

= S ( K ,  L )  [ V ( K ,  L )  I - 1 (1 - c ) -  K + 2 - ( L -  K -  t)/2 

We start with the observation that U(K, L) is expectation with respect to the 
uniform distribution on V(K, L) (recall that V(K, L) fixes both length and sum 
of X and that the X k are i.i.d, geometric). Therefore we introduce the Markov 
chain on N K with transition kernel 

Q(x,y)=x(i) x(j) for y=x+~i  with l<_i<_K-2, zerootherwise, 
J 

and we observe that if this chain is started in the state 1=(1, ..., 1), then its 
n-step distribution is the uniform distribution on V(K, K + 2 n +  1). Hence we 
can write 

�89  1) 
U ( K , L ) = L Q  (1, X) exp[F(X)+P(X)]. 

X 

This representation really is a trick to handle the combinatorics. Using that 

� 89  
IV(K,L)I=( K--3  ) 

and substituting the two cases 

(K, L) = ([-0 n], n + e (n)) 

(K, L)=([On],  n) 
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we see from (3.29) that in order to prove the lemma we must show that U(K, L) 
satisfies the estimate in (3.28). The other terms are exponential in n and contrib- 
ute only e(n)/n to the estimate in (3.28), which is of lower order. 

Now assume e(n) positive (the negative case is analogous) and write 

(3.30) ~Q-~("-t~ X) exp[F(X)+P(X)J 
x 

= ~ Q~(,-to,l- 1)(1 , X') exp[F (X') + P(X')] 
X '  

x {~, Q~ (~ (")) (X', X) exp [F (X) - F (X') + P (X) - P (X')] }. 
x 

We shall show that for all X and X' on which the chain lives 

(3.31) 2e(n) f(1) < F ( X ) -  F(X') < 2e(n) log M 

(3.32) 0 < P(X)-- P(X') 

<e(n) log[(1-OZ)]+log(n-[On~;~)+ 2e(n)). 

This gives uniform lower and upper bounds for the term between braces in 
(3.30), which then immediately become bounds on the ratio U([On], n+e(n))/ 
U([On], n) after applying Stirling's formula to the binomial. This proves the 
lemma. 

The key point is that by construction the chain only lives on X and X' for 
which 

(3.33) Y'.X'k = l (n + [On] -- 1), 
k 

ZEXk-X' 3 = 

k 

Xk > X'k for all k. 

First use (2.1), by which f is convex, implying f ( i + l ) - f ( i ) > f ( 1 ) ,  to get from 
(3.10) 

F (X) -- F (X') >= f (1) ~, [Xk- ,  + Xk-- X'k - - 1  - -  X t k ]  = 2 f (1) e (n), 
k 

explaining the lower bound in (3.31). The upper bound follows as above from 
f ( i +  1) - f ( i )  < log M. To see (3.32) first use (3.3) and (3.11) to write 

P(X)--P(X') = ~(n) log [�88 -- 02)] 

, ~ [Xk-1 + Xk -- 2\ [X'k- t + X'k -- 2\ - 1  

'~ Xk- l - -1  )1 X 'k -1-1  ) 

The quotient of binomials is easily seen to be bounded above by the product 

AXk- I + AXk] \ AXk- 
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with A X k = X k - - X ~ k  . The product over k of the first factor can be bounded 
above by iterating (3.27) and using (3.33). This gives the binomial in the r.h.s. 
of (3.32). The product over k of the second factor can be bounded above by 
applying (3.26) termwise. This gives a term 2 2e(n). After collecting the various 
contributions we get the upper bound in (3.32). The lower bound is trivial, 
because of (3.27). This completes the proof. 

It remains to see how the proof  can be modified when we deal with truncated 
X k. But this is easy: simply restrict the sum over X and X' to [-1, R] K in the 
definition of U(K, L) and in (3.30). The rest is the same. Incidentally, observe 
that the truncating map T that was used there preserves the sum of the Xk. 
So if we increase this sum by e(n) then nothing changes in the argument, and 
for the estimates in Sect. 3.c all that was needed is that the sum is of order 
n anyway. In other words, we are free to interchange the order of truncation 
and perturbation. [] 

We can now formulate the lemma that is the equivalent of Lemma 6. Let 

(3.34) M~ 'R = {vEgo ([1, R]2) : ~v( i , j )  
J 

= ~ v ( j ,  i), ~ ( i + j - - 1 )  v(i,j)~[O ~(1 --e), 0 - ' ( 1  +e)]} 
j i,j 

S t, R (K)= E (exp {K [ff (vK) + P(vK)] } Z {VK ~ M~o" R}). 

Lemma 8 For every 0~(0, 1) 

(3.35) 
1 

lira limsup • Ilog SR([On], n ) - l o g  S~'R(EOn])I = O. 

Proof. Simply note that for e > 0 small and all n sufficiently large 

Hence 

{vt0,j~ ~R([0n], n)} = {VEo,~M~o '"} = 0 {~t0.je P"(E0n], n+  i)}. 
l i l<2en 

SR(EOn3, n)<S~'R([On3) < ~ SR([On],n+i). 
]i[<2en 

Now apply Lemma 7. [] 

3 e Large deviation analysis 

The purpose of this section is to prove (3.18) and thereby finish the proof of 
Proposition 3. Having prepared for this in Sect. 3.c and 3.d, we start by giving 
the related result for the truncated random variables on the slab. 

Lemma 9 For every 0~(0, 1), and with fc(v) as defined in (3.19), 

(3.36) lim 1 l o g  s~'R(EOn])=O sup [F(V)+P(V)--fc(V)]. 
n ~ oo rl vEM~o,R 
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Proof. I.i.d. geometric random variables satisfy the level-2 large deviation princi- 
ple for pairs with rate function [c(V) on the set go (N2). Now, I~(v) is continuous 
on go ([1, R] 2) and M~ 'R is a closed subset of fa ([1, R] 2) equipped with the weak 
topology of measures. The latter facts imply via a standard argument that we 
also have a large deviation principle on M~o 'R with the same rate function. Since 
both P and P are bounded and continuous on M~o 'R, (3.36) immediately follows 
by applying Varadhan's Theorem to (3.34), ([20], Theorem 3.4.). Recall that 
the factor 0 is picked up because K = [0 n]. [] 

The last piece of the puzzle is Lemma 10 below. Lemmas 6 and 8-10 imply 
(3.18) and therefore complete the proof of Proposition 3. [] 

Lemma 10 For every OE(O, 1) 

(3.37) sup inf sup [f(v)+P(v)--[c(v)] 
R < o o  e > 0  veM~ "R 

= sup Eft(v) + P(v)-- f~(v)]. 
v~Mo 

Proof. In this proof we abbreviate 

K (v) = ff (v) + P (v) -- [c (v). 

The first step is to show that for all R 

(3.38) inf sup K(v)= sup K(v), 
~ > 0  veM~ 'R veMo R 

where of course M R = Mo c~ go ([1, R] 2). This is a standard compactness argument. 
Indeed, for every ~ > 0 pick a measure v~sM~o 's with 

K(v~)>--e+ sup K(v). 
vEM'~ 'R 

Let (vJ  be any subsequence of (v~) along which K(v~) converges to its limsup 
as 8 ~ 0, and let v be any weak limit point of (v~k). Then, since K(-) is continuous 
on Mg 'R and vsMR, it follows that 

limsupK(v~) = K(v) < sup K(v). 
k ~ 0o vEM~ 

This implies (3.38) because M R cM~o 'g for all E. 

The second step is to show that 

(3.39) sup sup K(v)= sup K(v). 
R < oo v ~ M ~  v~Mo 
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Now, for every v e M  o there exists a sequence (VR) with v R e M  ~ and v R --, v weakly 
as R o o o .  Below we prove that K( . )  is continuous on Mo and so it follows 
that 

lira K (VR) = K (v). 
R --* oo 

This implies (3.39) because Mo ~ MR for all R. 

To get the continuity of K( ' )  on Mo, pick v, VkSM o such that Vk~V weakly 
(as k ~ or). Note that the restriction 

~ ( i + j - - 1 )  vk(i,j)=O -1 for all k 
i , j  

implies that Vk sums (i,j) --* i + j - -  1 uniformly. Since b o t h f ( i + j -  1) and log Po(i,j) 
in (3.16) and (3.17) are bounded by a constant times i+j ,  as is easily seen by 
using (2.1), (3.3) and (3.26), it follows that F and P are continuous. We finish 
the proof by showing that also fc is continuous. 

Recall (3.19). Consider first the entropy of v k 

(3.40) -- ~ Vk(i,j) log Vk(i,j). 
i , j  

Pick a 7 > 0  and split the sum into two parts, running over the index sets Jk 
and J~ with 

Jk = {(i,j): Vk(i,j)<_(i+j)-'}. 

Pick a ~e(0, 1). On Jk 

0 < -- Vk (i, j) log V k (i, j) <_ C~ [-v k (i, j)] 1 - o 

<= C~(i+j) -(1-~)~ for some C~>0. 

The second inequality holds because - x ~ log x ~ 0 as x ~ 0. On J~ 

0 < - Vk(i,j) log Vk(i,j) <--_ 7 Vk(i,J) log(/+j). 

It follows that Vk(i,j)lOgVk(i,j) is uniformly summable as soon as 7 ( 1 - ~ ) > 2  
and hence (3.40) converges to the entropy of v. Of course, the same applies 
for the entropy of ~k and g. []  

Having completed the proof of Proposition 3 we are now in a position 
to settle two old debts, namely (1.11) and (2.12). That  is, we have to check 
that for every 0el-0, 1] 

~0~(E0. hi, n) (0 .  -~ 0) 
Eo([On]+ 2cS(n),n+ 26(n)) (8(n)=-o(n)) 

have the same growth rate as Eo([On], n). But this is now straightforward. Indeed, 
from the analysis in Sect. 3 e it is clear that the perturbations in K and L (in 
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the notation of (3.7)), are negligible because they are o(n). So all that is left 
to do is to remove the perturbation in the index 0. From (3.3) we get that 

{1+04i (1-04'-1 
Po.(i'J)/Po(i'J)=~O- ] \ ~ - }  

Via (3.8-11) one easily checks that 

Eo.([On hi, n)/Eo([On ], n)= exp(o (n)) 

ifO.--+O. []  

4 P r o o f  of  Proposi t ion 4 

(4.1) 

where 

This section is devoted to the proof of (1.15) and parallels Sect. 2. As there, 
the aim is to show that on an exponential scale the expectations in (1.15) are 
determined by those paths that stay between 0 and [On] until time n, cross 
[On] at time n, and then stay to the right of [On] forever. Again, the main 
idea will be to construct a map between the class of such paths and its comple- 
ment in order to compare the respective contributions. 

We retain the notation of Sect. 2. The only difference is that - G,(S) defined 
in (2.5) is replaced by 

F,(co, S)= ~ l,(x, S) log(bx) 
X = - - c O  

b o9 o9 co=( x}x=_ 

and that the function 6: N ~ N in (2.2) is chosen such that 

(4.2) 6 (n) ~ o9 

6 (n) = o (log n). 

Our starting point is the equivalent of (2.4) 

(4.3) 1.h.s.(1.15) =E0(exp [F,(co, S)] Z {SEA,:}). 

We emphasize that throughout  this section co is a fixed realization of the random 
environment and therefore F,(co, S) is a random variable only in S. 

For  simplicity we assume throughout  Sects. 4 and 5 that supp fl consists 
of finitely many points. At the end of Sect. 5 we shall argue that it is easy 
to eliminate this restriction. 

Lemma 11 E0(ex p [F.(co, S)] Z {SGA:.})~Eo(exp [F.(co, S)] z{S~A2}) co-a.s. 

Proof. It suffices to show that 

E0(exp [F, (co, S)] Z {SeA~, \A2}) ~ Eo (exp [F,(co, S)] Z {SeA2}) co-a.s. 

As in the proof  of Lemma 1 we shall achieve this by comparing contributions 
of paths ' 1 2 2 in A, \ A ,  and A, via a map. Define 
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(i) a small left crossing over I x - 5 ( n ) ,  xJ is a path from x to x-5(n)  staying 
inside (x - 5 (n), x + 6 (n)); 
(ii) a small right crossing over Ix, x + 6 (n)] is a path  from x to x + 5(n) staying 
inside (x - 5 (n), x + 6 (n)). 

The idea in Sect. 2 was the following. A path in 1 2 A . \ A ,  has excursions to the 
left of 0 and to the right of [On] that take it onto or beyond the boundaries 
of J,. These we called large excursions and we used a map  to bring the large 
excursions inside J, by reflection around 0 and [On], thus getting an image 
path in A, 2 . Now, however, co appears in F,(co, S) and since co is spatially varying 
we shall have to be more subtle in bringing the large excursion inside J,. Here 
is how we proceed. 

Any large excursion can be decomposed into small crossings over the intervals 

K.(k) = Ek ~ (n), (k + 1) ~ (n)3 (k < 0) 

K.(k)=[[OnJ+kS(n), [OnJ+(k+l)6(n)] (k>O) 

by cutting the path  at the stopping times 

~o=0  

~i+1 =inf{j>ri:lSj-S~,] = 5(n)} (i > 0). 

Number  the small crossings in order of appearance. For  each k group together 
consecutive small crossings over K,(k). These will be called strings over K,(k). 
Each string over K,(k) is a piece of the path  separate in time staying inside 
the interval of length 3 5 (n) - 1 around K ,  (k) defined by 

K,(k) = {x: Ix-K,(k)l < b(n)}. 

Note  that by continuity of the path  the numbers of small left and right crossings 
over K,(k) are equal so that the strings over K,(k) can be combined to form 
a loop. 

Call an element of (supp fi)3o(,) 1 a type. Each interval (x, x + 36(@ carries 
a type for the given co. Denote the type of /(,(k) by t,(k)={bx}x~K,(k). The 
following fact will be important :  

co-a.s, there exists no = no (co) such that for every n > no there is a collection 
of intervals/J,  = Ix t, x t + ~5 (n)] indexed by t ~ (supp/3) ~ ~ (") 1 
silch that •, = {x: Ix - /2 , [  < c5 (n)} carries type t and [2, are disjoint and are 
contained in int (J,). 

In other words, all types are represented in int(Jn) over disjoint intervals of 
length 3 6(n)-1. It is straightforward to deduce this fact from the i.i.d, property 
of co using the assumption 5 (n) = o (log n) and supp fl finite. 

Now we are ready to define for n > no a map  

A . \ A ,  ~ A, r n  : 1 2 2 
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acting on the path S between time 0 and n: 

For each k all strings over K,(k) are cut out of the path and made 
into a loop in order of appearance. This loop is moved to/2~ (k) and 
fitted into the path immediately after the last hitting time of the 
right (left) boundary of/j~(k) if k < 0 (k_-> 0). This procedure is done 
successively for k running from - oe to oe. 

We shall show that T~ has the following three properties: 

(4.4) T, preserves probability: any n-step path and its image under T, have 
the same probability; 

S ~ A , \ A , ,  (4.5) F,(oJ, T,(S)) = F, (~o, S) for all 1 2 

I {SeA , \A ,  " T,(S)=S'}l=exp(o(n)) uniformly for S' eA 2. (4.6) 1 2 

Both (4.4) and (4.5) are obvious from the construction. In particular, note that 
F,(co, S) only depends on the total local times in the level sets of co and that 
these are not changed by the map T, because strings are moved only between 
intervals of length 3 ~ (n) -  1 carrying the same type. We now come to the nontri- 
vial part (4.6). 

Proof of (4.6). We shall argue that 

1 2 T,(S)=S,}[<(n/25(n))22,/~(,). [{S~A, \A,  : 

Pick an S'EA 2. We are going to count in how many ways we can construct 
an S~A~\A  2 having S' as its image. Decompose S' into small crossings and 
single out the ones over the collection (/2,). The latter are the only candidates 
for being images of small crossing in S moved by T,. By continuity of the 
path, S cannot reach intervals K,(k) with [k]>n/2~(n) between time 0 and n. 
Therefore there are no more than (n/26(n)) 2 ways to choose the left most K,(k-)  
and the right most K,(k +) over which S has small crossings (and by continuity 
S must have small crossings over every K,(k) in between). Now let k run through 
[k-,  k +] and for each k take away from S' an equal (positive) number S of 
small left and right crossings over/J~ (k). Group them together into a number 
of strings over /J~ (~) in order of appearance and move them back to K,(k). 
The number of ways in which this can be done is at most the number of ways 
in which the small crossings over (/2,) in S' can be divided into (nonempty) 
groups. Since there are no more than n/c~(n) crossings altogether this gives the 
upper bound 2 "/~('). Once the strings are moved back there are two possibilities: 
either they can be fitted together to get a continuous path S or they cannot. 
In the first case S is uniquely determined because strings are ordered and are 
separate in time over each K,(k): at the end of each string it is uniquely deter- 
mined what string the path S must follow next. In the second case we have 
overestimated. This completes the proof of (4.6). [] 

We can now finish the proof of Lemma 11. Applying first (4.5) and then (4.4) 
and (4.6), we obtain 

E0 (exp VV,(co, S)] )/{S~AI\A2}) = E0(ex p [-F, (co, T,(S))] Z {S~A~\A2}) 
E0(exp [V,(o), S')] Z {S' cA,Z}), 

which is what we set out for. [] 
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The rest of this section is a copy of Sect. 2. The following two lemmas 
are the analogues of Lemmas 2 and 3. Define, to replace G* (S) in (2.9), 

(4.7) F*(co, S)= ~ l(x, S) log(b~). 
x c J  n 

Lemma 12 E0(exp[F,(co, S)] Z {SsAZ})"-Eo(exp[F,( co, S)] z{S~A3}) co-a.s. 

Lemma 13 E0(exp[F,(co, S)] z{S~A~})~-Eo(exp[F*(co, S)] z{S~A3}) co-a.s. 

Proof. The proof is literally the same as in Sect. 2. []  

With these preparations we are ready to prove (1.15). Lemmas 11-13 combine 
with (4.3) to give the upper bound along the same lines as in (2.10-12). The 
lower bound as in (2.13) is again trivial. []  

5 Proof of Proposition 5 

This section is devoted to the proof of (1.16) and is in structure similar to 
Sect. 3, where we proved (1.14). We assume the reader is familiar with the basic 
ideas there. Like (1.14), the expectation in (1.16) involves an exponential function- 
al of the total local time process {/(x)} in the presence of an indicator on the 
sum. The difference is that f(I(x)) in (1.14) is replaced by fx(l(x))=l(x)log(b:,) 
in (1.16), which now also depends on the random environment co through the 
mean offspring bx at site x. This will bring about several modifications in the 
proof, some of which are technical but some of which require new ideas. In 
particular, we shall now have to deal with the empirical pair distribution of 
the Markov process and the random environment combined, i.e. {re(x), bx} (see 
(3.1-4)), and we shall have to do a large deviation analysis on l e v e l - 3  since 
co is fixed. For  this new situation we derive the large deviation principle and 
compute the entropy function and obtain finally the variational formula for 
the exponential growth rate of the exponential functional in (1.16). 

Section 5.a replaces the preparatory work in Sect. 3 b -d  while Sect. 5.b con- 
tains the large deviation analysis analogous to Sect. 3 e. Many of the tools of 
Sect. 3 will reappear and this will allow for fairly short proofs. 

5 a Preparations 

In order to analyze the expectation in the 1.h.s. of (1.16) we retain the definitions 
(3.7-13) with the understanding that f(l(x)) is everywhere replaced by l(x) log(bx). 
This means that throughout  this section we use the same symbols as in Sect. 3 
even though some of them will now acquire a different meaning, as we shall 
point out along the way. Since the structure of the arguments is very similar 
to Sect. 3, we choose this misuse of notation rather than the option of inventing 
many new symbols. The basic rule of translation is to replace the number Xk 
by the vector (X~, bk). The key equations are (3.7-13) and we assume the reader 
understands how to read these equations in the new context. 
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To be able to now rewrite (3.13) in level-2 form we introduce 

K 

vr= K -  t ~ 6((Xk_ ,,bk_ ,),(X~,b~)). 
k = t  

This is the empirical pair distribution of the vector-valued process {(Xk, bk)}, 
where Xk are the i.i.d, geometric random variables introduced in Sect. 3.b and 
b k are the fixed mean offsprings, both indexed by site k. Recall that we are 
using periodic boundary conditions (XK, bK)= (X0, bo) and that Xo =XK-~ = 1. 
Also recall that fi is assumed to have finite support. 

Our starting point is the following analogue of Lemma 5. Let So~(K, L) denote 
the new version of (3.13). We add the index co to remind the reader that the 
medium is fixed and that the symbol should be read in the new context. E~ 
denotes expectation over {Xk} for fixed co. We abbreviate i=  (it, i2) a n d j  = (Jr ,J2) 
with i t , j r  ~ N  and i 2,J2 ~supp ft. Recall also that K = [On] and L = n. 

Lemma 14 For every 0e(0, 1) 

So)(K, L) = Eo~(exp {K [ i  (vr) + P (v~:)] } X {vr e V(K, L)}) (5.1) 
where 

(5.2) 

(5.3) 

(5.4) 

~'(K, L) = { v E fo ((N | supp fl) 2): 

~y(i , j )=~v(j , i )  forall ieN,  
J J 

~( i t  +Jl  - 1) v(i,j) = L -  1)/K} 
i,j 

if(v) =~v(i,j)(i t +Jt - 1) logj2 
i , j  

fi(v) =~v(i, j)  log P0(q ,J0. 
i , j  

Proof. By introducing the vectors i and j the proof becomes literally the same 
as that of Lemma 5. [] 

The rest of this section consists of four steps: (1) truncation, (2) perturbation 
and passing to the slab, (3) showing that the growth rate of S~([On, n]) is a.s. 
independent of (2), (4) integration over co that are typical for the medium. The 
last two steps are where we do something new compared to Sect. 3. The last 
step is very important because it gives us an expectation over the double process 
{re(x), bx}, for which we can deduce the level-3 large deviation principle by 
standard arguments. 

Step 1. First we truncate, i.e. the state space N of Xk is replaced by the finite 
set [1, R]. The necessity of this approach was explained in the last two para- 
graphs of Sect. 3 b. 

Lemma 15 Lemma 6 continues to hold when [1, R] is replaced by [1, R] |  fl 
and V(K, L), if(v), P(v) by (5.2-4) and S(K, L), SR(K, L) by S~(K, L), SR(K, L). 

Proof. What we must do is prove (3.21) in the new context for all n>no 
=no(R, co). The idea in the proof of Lemma6  was to view X =  
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(1, Xl , ,  .... XEon3_2, 1) as a collection of [On] piles, to truncate large piles by 
splitting them into small piles and then moving the small piles to a string of 
consecutive sites. We shall do the same here, except that now there is the addi- 
tional complication that we shall want to move small piles only within the level 
sets o f  co in order to control the effect on the exponential. This means that 
we shall want to change the definition of the map  T introduced below (3.21). 

Here is how the proof  of Lemma 6 will be modified. Retain the definition 
of the sets A 1, A 2, B ~ and B 2. Let 

C~ = { k ~ B  2 :b k = b} (b~supp fi) 

be the level sets of co in B 2 and let Cg be the subset of C~ obtained by deleting 
all intervals in C~ of length < tc log t. The constant tc will be chosen later. Now 
define the map T as follows: 

T removes from each k E A  2 as many  piles of size s until (TX)k < s. 
For  each besupp/3  all the piles removed from { k f f A  2 : bk = b} 
are placed back on C 2, one pile on one site and filling C 2 in a row. 

If 

(5.5) ]Cgl>n/s for all b e s u pp  fl, 

then T is well defined because no more than n/s piles are moved. Therefore 
we have to see that for all n large and co-a.s, this condition is satisfied. 

The set B 2 consists of intervals of length __> t and therefore contains at least 
]BZ]/2t disjoint intervals of length t. Let 

c~(~, t )= probabil i ty that a given interval of length t contains 
intervals of length > K log t in each of the level sets of co. 

Because of the i.i.d, property of co the strong law implies that co-a.s, there exists 
n0=n0(co, s, t, u) such that for n > n  o the number  of intervals of length >to log t 
in each of the level sets of co in B 2 exceeds e(K, t)[B2l/4t. Since [B2[ >[On] - -n / s  
-- 2 n/u, as shown in the proof  of Lemma 6, it follows that 

iC2[ > ct(~c, t) ~: log t 
= 4 t  ( [ O n ] - n / s - 2 n / u )  for all b~supp ft. 

Now, the i.i.d, property of co implies that 

lim c@c, t) = 1 for ~c small enough. 

Therefore to get (5.5) we must require n > no and 

(5.6) s, t, u ~ oo 

(s log t)/t ~ or. 
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F o r  the rest of the p roo f  of  L e m m a  6 to car ry  over  we want  tha t  proper t ies  
(3.22-25) cont inue  to hold. This requires tha t  

(5.7) u/s ~ 0 
(u log t)/s ~ co. 

In  fact, (3.23) is now trivial because piles are only m o v e d  within level sets of  
co, so tha t  F(X)=F(TX),  while (3.24) is the same as before because P(X) does 
not  depend  on co, except that  now t is replaced by ~ log t be low (3.26). This 
comple tes  the p roo f  of  the ana logue  of L e m m a  6: to ma tch  (5.6) and (5.7) choose 
for example  s = t, u = t / loglog t. [ ]  

Step 2. Next  we pe r tu rb  and go to the slab 

M~o "R = {v ~ go (([ 1, R] | supp fi)2): 

~v( i , j )=~v( j , i )  for all i e N ,  
J J 

~ ( i l  + J l  -- 1) v (i,j) e [ 0 -  2(1 -- e), 0 -  1(1 + ~)3}, 
i , j  

i.e. ~'([0n], n) is replaced by  M~o 'R in (5.1) (recall (3.34)). 
All of  Sect. 3.d carries over  except  for (3.31), where now only the lower  

b o u n d  changes and becomes  2e (n ) log  m with m the min imal  value in supp ft. 
Hence  we have  

L e m m a  16 Lemmas 7 and 8 continue to hold when [-1, R]  is replaced by 
[1, R ] |  and ~'(K,L), P(v), P(v) by (5 .~4)  and SR(K,L), S~'a(K) by 

R So,(K, L), S~,R(K). 

Step 3. The third step is a very crucial one:  we show tha t  the l imiting g rowth  
rate of  s~R([On]) is a.s. independent  of  co. 

L e m m a  17 For every 0e(0, 1) and for almost all co, co' 

(5.8) 
1 

l imsup • [log S~; R ([0 n]) - log S~;, R ([0 n])[ = 0. 
n-~o~ n 

Proof. Our  task is to c o m p a r e  the effect of  condi t ioning on co or co'. Both  
are typical  real izat ions of  the r a n d o m  env i ronmen t  and  therefore have  the same 
statistics. Since X =  {Xk} is i.i.d, the idea will be to pe rmute  the Xk in (X, co) 
so as to imitate  (X, co') asymptot ical ly .  Here  is how we proceed.  

Fix a posi t ive integer N and divide co and  co' into blocks of length N. The  
possible values of N (bmN+k)k= 1 and (b'mN+k)U=l define the type of the N-b lock  
with n u m b e r  m = 0, 1, 2, .. . .  N o w  define a m a p  T which acts on X as follows: 

L o o k  at  b lock 0 in co and read offi ts  type. L o o k  for the first b lock 
in co' of the same type. Say this is b lock  m o . Then  replace (Xk)~= 1 

X N by ( ,~oN+k)k= 1" N o w  app ly  the same procedure  to b lock 1 in co by 
looking  for the first b lock  ml + m o  in co' of  the same type and  
replacing (XN + k)~= 1 by N (XmlN+k)k= 1, etc. 
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(T is well defined co-a.s.) Thus TX is obtained by shuffling N-blocks of X, 
where block i is replaced by block m~ with {mi} a permutation (depending on 
co, co', N). The following properties are obvious from the construction: 

(5.9) Tis one-to-one and preserves probability for almost all co, co'. 

(5.10) Let vK and v) be the empirical pair distributions of(TX, co) and (X, co') 
over the interval [1, K]. For  K a multiple of N let 

]k] K I N -  1 

be the empirical distribution of N-blocks in co over [-1, K]. For  6 > 0 let 

Bo'N= {/~ ~ ((supp fl)N): II~_~NII ~}  

(IF" II denotes total variation). Then for all CO, co' such that/2~r(co),/~(co')~B ~'N 

Ir VK-- V~ EI ~ l +  2a 

I~(i~ +J~ -- 1)(vr(i,J)--v'K(i,j))[ ~4(~R. 
i , j  

Observe that by the strong law for every N and 6 there exists n o = no(CO, co', N, 6) 
such that/~(CO), ~f:(co')~B o'u for n > no (recall that K = [On]). 

Now argue as follows. Observe that s~;R([On]) is an expectation over X 
which by (5.9) is invariant under replacing X by TX. Then use (5.10) in combina- 
tion with Lemma 16 (noting that the latter is a statement about perturbations 
on the restriction ~ ( i l  +Jl  - 1) vK(i,j)= (L-- 1)/K) to conclude that for n > no 

i , j  

1 Ilog S~o;R(EOn])--log S~;,R(EOn])[ 
n 

< [ O n ] ( l + 2 6 )  

(C(O) is the constant in Lemma 7). Now take n ---, o% 6 ~ 0 and N ~ oe. []  

Step 4. Finally we integrate co over the event {/~(co)~B o'N} and we display 
s~R(K) as a function of 

I V  K / N  - I 

~ f ' -  K ~ (XmN+~,b~,,+ ~ ~, m = 0  

the empirical distribution of N-blocks over [1, K] of the double process 
{(Xk, bk)}. Let 0 be the cyclic shift on vector-valued coordinates and rc 2 the 
projection on the first two of the N vector-valued coordinates. Let ~ denote 
projection on the co-coordinates (e.g. #~ ~/~g(co)). 
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Lemma 18 For every 0e(0, 1) and for almost all co 

(5.11) lim limsup -1 ]log s~R([On])--log S~'N'~'R(EOn])I = 0 
N~oo n--+~ n 
~ 0  
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where 

(5.12) 

and 

(5.13) 

(5.14) 

S f i N e R  K S ~ R  K ' ' '  ( )=~ ~; ()Z(f i~(o)sBO'N)P(dco) 

S~ R (K) = Eo,(exp {K [ff (VK) + P (VK)] } Z {VK~M~o'R}) 

N 
N - 1  ~2  vK= Z 

•=1 

Proof. Equation (5.11) follows from the uniform estimates in the proof of Lem- 
ma 17; (5.13) and (5.14) are obvious from the definitions (recall (3.34)). []  

5 b Large deviation analysis 

After the preparations in Sect. 5.a we are now ready to do the large deviation 
analysis: 

Lemma 19 For every 0~(0, 1) 

(5.15) 

with 

(5.16) 

(5.17) 

lira lim lim 1 log S~ 
N ~  6 ~ 0  n~oo n 

= 0  sup [ff(v)+P(v)-L,p.(v)] 
~,R 

v~Mo,I~| 

e,R __ e,R . ~ Mo,~| {v~Mo . v= fl| 

Ic,~(v) = - ~ v ( i , j )  log((1 - c) c J1-1 fl(J2))-- sup h(Q) 
i , j  QeAv,r  

where Av,p~ and h(Q) are defined prior to Theorem 2. 

Proof. According to Lemma 18, s~ is the expectation of an exponention- 
al functional of # r  u over the double process {(Xk, bk)} restricted to a particular 
set enforced by the two indicators. Now, since this process is i.i.d, with finite 
state space [1, R] |  fl, the family (#~) with K running through the multiples 
of N, satisfies the large deviation principle on go(([-1, R l |  fl)N) with rate 
function ~'N Ic,~(#) equal to the relative entropy of # with respect to rcNQc r where 
Qc.r is the i.i.d, process with one dimensional marginal ( 1 - c ) & - l ) ) ( j 2 )  and 
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rc N denotes the N-dimensional marginal (Ellis [9], Theorem VIII.2.1). As in the 
proof of Lemma 9 we can apply Varadhan's Theorem to (5.12) and obtain 

(5.18) lira 1_ log Sa'U'"R([On]) 
n~oo n 

=Olte.:u&Pe.R[F(X-l~Tg2~ 

. ~ _ , ( N - 1 1 ~ l T ~ 2 o O l ( # ) ) _ n  1 ]'Nfl (#)]  

where 

Aa,N,~,R= #sgo(([1, R]| -1 ~ ~2~ . 
/=1 

This is a somewhat baroque expression, but relief is at hand. Observe that 
all objects on the r.h.s, of (5.18) are invariant under 0 and therefore 

(5.19) r.h.s,(5.18)=0 sup [ff(Tzz#)+P(rczp)-N-~f~a(g)] 
I.t~A 6'N'e'R 

where 

A~'u'~'R = {#e ga (([1, R] |  fl)u): 0#=#, rcZgEMa 'R, fieBa'U}. 

Let first ~5 --+0 to obtain, using the continuity o fF( ' ) , /3 ( . )  and/'~B(') on A~ 'u'e'R, 
that 

lira r.h.s.(5.19)=0 sup [ff(Trzp)+/3(zz#)-N-Z[~e(#)], 
~0 #~A N'c'R 

(5.20) 

where 

6>0 
= {#~ ga (([-1, R] |  fl)~v): 0#=#, ~2],.l~Meo "R, ~l=flN}. 

Next let N ~ oo to obtain 

(5.21) lim r.h.s.(5.20) = r.h.s.(5.15) 

with 
/c,~z(V)= inf [(Q]Qc.~) 

Q~Av, J z 
[(QIQc,~) = lira N -  1 [~(rcNQ) 

N --+ ct~ 

= --~v(i,j) log((1 --c) c j1-1 fi(J2))-- h(Q) 
i,j 

(Ellis [9], Theorem IX.2.3 and p. 24). Combine (5.18-21). [] 
Finally it remains to show that 

Lemma 20 For every 0~(0, 1) 

(5.22) sup inf sup [F(v)+P(v)-fc,~=(v)] 
R < ~  e>O v~Mo,fl| fl 

= s u p  

v~Mo,.a| 
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Proof. This is a straightforward modification of the estimate in the proof  of 
Lemma 10. Use that [c,~(v) is lower semi continuous. [] 

The proof of Proposition 5 is now complete: combine Lemmas 15-20, recall 
the terms containing c in (3.18) which cancel against ~ v(i,j)log((1-c)d "1-1) 

i , j  

in (5.17), absorb P(v) into the remaining term ~v(i,j)log fi(J2) in (5.17), to get 
i , j  

the final result that JX=r.h.s. (1.16), [] 

In Sects. 4 and 5 we have assumed that fl has finite support. The proof  
for general distributions fl (satisfying (0.15)) is very easy: approximate fl by 
a discrete distribution fi0 with finite support such that I[ f l - r io  [1 _-< ~. In the expo- 
nents of (1.15) and (1.16) this introduces an error of at most ne log(M/m) with 
M and m the maximal resp. minimal value in supp ft. Let n - ,oo  followed by 
e ~ 0 .  Therefore (1.15) and (1.16) carry over immediately. []  

As at the end of Sect. 3 e one easily checks (1.11) and the analogue of (2.12). 

6 Proof of Corollaries 1, 2 and 3 

In this section we investigate the two variational formulas for p(h) and 2(h) 
given in Theorems 1 and 2. Section 6.a deals with p(h), Sect. 6b with 2(h). 
Both sections contain a proposition in which, besides proving Corollary 1 resp. 
2, we condense several important  facts about the variational formula, in order 
to convey a broader picture of the underlying structure. For  instance, we obtain 
information about O*=O*(h) and v*=v*(h), the values where the suprema over 
0 and v are attained. As explained in Sect. 0c, O*(h) plays the role of effective 
drift of the typical path of descent. In particular, we shall see that 0*(h)=0 
for h below a critical value, a property which we have called localization because 
it says that a typical particle at time n is within o(n) of its ancestor. We also 
formulate and prove two assertions showing that certain interesting qualitative 
features of the phase diagram are direct consequences of some deeper but rather 
technical properties of the variational formulas. These properties will be 
addressed in Baillon et al. [1]. In Sect. 6.c we compare p(h) and 2(h), prove 
Corollary 3, and explain why p(h) and 2(h) can be equal for certain values 
of h and different for others. 

6a p(h) 

In Sect. 1.c we found that 

(6.1) 

where for OE(O, 1) 

(6.2) 

and for 0 = 0 and 0 = 1 

(6.3) 

p(h)= sup (JP(O)--Ih(O)) 
O~[O, 1] 

JP(O) = 0 sup [ ( f  oa, v)--Io(v)] 
v~Mo 

JP (0) = log M 

J Q 1 ) = f ( I ) .  
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It will be expedient to rewrite (6.1) and (6.2) in a form that is more suitable 
for marfipulation. Define 

(6.4) 

so that 

(6.5) 

J~(O)=J~ 

p (h) = sup Jfl(0). 
Oe[O,1] 

The following relation will turn out to be very useful 

(6.6) 
1. [ l + h \  

0-1 [jho (0) - Jfl (0)] = - ~ log ~TZ~_h ) + ~Moinf [-(go a, v) + Io (v)]. 

This relation is obtained by recalling f( i)  = i log M - g  (i) in (2.1) and by substitut- 
ing into (6.2) the identity 

Io (v) - I o (v) = ~ v (i, j) log (Po (i, J)/Po (i, j)) 
i , j  

_ 1+0  l o g ( l + 0 ) + ~ 0 0 1 o g ( 1  8) 
28 

/ l + h \  =_12 log [T2-h ) - -O-  l [Ih(Ol-- lh(O)]" 

The second equality uses (3.3) plus the observation that w M o  implies ~iv( i , j )  

=(1 + 8)/28 and ~ ( j -  i) v(i,j)=(1 -8)/28.  
i , j  

Proposition 6 Assume that ~ has positive variance. 
(1) Jfl(-) is continuous and concave on [0, 1] for every h. 
(2) The critical value for localization is 

with 

G 2 - 1  
hi - G2_ . }_  1 

i,j 

G = exp(inf [(g o a, v) + I o (v)]) 
re37/ 

OMo 
0 > 0  

= {vegd(N2): Zv( i , j )=~ 'y ( j ,  i) for all i e N , ( a ,  v)< oo}. 
J J 

Simple bounds on G are 

so that hi e(O, 1). 

1 < M / A < G < _ 2 M / A <  
A=~bfl(db), 
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(3) The effective drift satisfies 

0*(h)=0 for h<h~ 
0*(h)>0 for h>h l .  

(4) p( ' )  is continuous on [0, 1] and 

p(h)=J~(O)=log[M(1-h2)  ~/2] for h<h~ 
p(h)> Jd(O) for h>h~. 

(5) I f  log M > 0 >f(1) ,  then there exists h2 e(0, 1) where p (') changes sign. 

Assertion A I f  the supremum in (6.2) is attained in Mo c~ {v > 0} for every 0e(0, 1), 
then 

(a) JhP(.) is strictly concave on [0, 1] for every h; 
(b) O* (h) and v* (h) are unique for all h. 

I f  dO(.) is strictly decreasing on [0, 1], then 
(c) O<O*(h)<h for alt hl < h < l ;  
(d) 0"(.) is continuous and strictly increasing on (hi, 1]; 
(e) p(') is strictly decreasing on [0, 1] and the critical value h2 is unique. 

To verify the assumptions in Assertion A requires functional analytic techniques 
of some depth. We defer this question to a forthcoming paper: Baillon et al. 
[-1]. For  a simpler model where these properties are confirmed see Baillon et al. 
[0]. 
Remark. In Ell it is shown that the situation is slightly more complicated. The 
supposition only holds for 0e(0 c, 1) with some 0cE(0, 1). This in consequence 
means that instead of (a) and (b) we have 

(a') Jh~ is linear on (0, 0~), strictly concave on [0~, 1] 
(b') O*(h) exists and is unique for h+hl ,  v*(h) exists and is unique for h>h  1. 

We shall not elaborate on this fact in this paper. 

Proof of Proposition 6. (1) Since Ih(" ) is continuous on [-0, 1] we need to show 
that JP(-) is continuous on [0, 1]. The continuity on (0, 1) follows immediately 
from the observation in the last paragraph of Sect. 3.e. To prove continuity 
at 0 and 1, substitute f( i)  = i log M -g( i )  into (6.2) and use (6.3) to obtain, similar- 
ly as in (6.6), 

(6.7) 0-1 [jp (0) - -  jo (0)] = inf [(g o a, v) + I o (v)]. 
v ~ M o  

Because g is increasing and concave (see (2.1)) 

g (1) <__ O- 1 [jo (0) - JP (0)] __< g (0-1), 

where the second inequality follows from (g o a, v) < g((a, v)) = g(0-1)(v ~ Mo), 
together with the fact that Io(v ) attains its minimal value zero at v(i,j) 
=no(i)Po(i,j) (see (3.3) and (3.4)), which is an element of mo. Now use that 
g is sublinear (see (2.1)) to get continuity of JP(.) at 0=0.  Since g is continuous 
we also get continuity at 0 = 1 via (6.3). 
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To prove concavity of Jfl(') we make the change of variable z = 0  -~ and 
introduce 

1, [ l+h \  
g ('17) = q2 [ Jh  p (0 )  - -  Jh p ("c - 1)]  _~_ -2  mg [ 7 - ~ ,  |-  \ l - n /  

(6.8) 

From (6.6) we have 

(6.9) K(z)= inf [(goa, v)+Io(v)]. 
v e M ~ -  1 

Below we shall show that K(~) is convex in z. This implies that z - l K ( z )  is 
convex in r - t. Hence the claim follows from (6.8). 

Fix e > 0  and z~ and "c 2. Pick two measures v~ and v2 that are e-optimal 

K ( z 0 -  > - e +  [<goa, Vl> +/O(Vl)] 
K(z2) => - e +  [(goa,  v2>+Io(v2)] 

Since for every 0 _< e -< 1 

we have 

(v 1 ~ M~f ,) 

(a, 0~vl +(1 -:~) v2) = c~ (a, v~) +(1 -- ~) (a, v2) = 0 ~ 7 7  1 +(1 --c 0 ~c2, 

and therefore from (6.9) 

c~vl +(1 - c 0  v2~Mt~,~l+(1 -~)~2J 1 

K(0~r, +(1 - c  0 z2)__< [(go a, 0~V 1 ~ - ( l  --0~) /)2)-1- [0 (0~Vl +(1 --C~) V2) ]. 

Next use that Io(V ) is convex in v (see Ellis [9] p. 19) 

Io(o:vl +(1--OOVe)<=Cdo(vl)+(1 ~)Io(v2) 

to obtain 

K(c~ 1 +(1 --~) z2)__< e + c~K(z~) + (1 --c 0 K(~2). 

Since e can be made arbitrarily small we have finished the proof  of (1). 

(2) The continuity and concavity of Jfl(-) implies that two situations are possible: 

Case 1. 0 " = 0  

Case 2. 0 ">0 .  

The first case occurs when Jfl (-) has a strictly negative slope at 0 = 0. The concavi- 
ty then implies that it is strictly decreasing on [0, 1] and therefore attains its 
maximum in (6.5) at the boundary 0=0.  The second case occurs when the 
slope at 0 = 0  is strictly positive and the maximum is attained either in the 
interior 0 < 0 < 1 or at the boundary 0 = 1. We shall show using (6.6) that 

1, [ l+h \  
lim 0-1 [-jh p (0) - -  J h  p ( 0 ) ]  = - -  ~ !og ~ )  + inf [(go a, v) + I0 (v)]. 
0 ~ 0  ve~/  

From this the critical value h 1 will follow as claimed. 
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Let us abbreviate 

L(v) = (g o a, v) + I o (v). 

Since Mo C ~  for every 0>0 ,  we see from (6.6) that it suffices to show that 
for every v ~ M  we can find a sequence (Vo)o>owith vo~M o such that 

(6.10) limsup L(vo) <_ L(v). 
0 ~ 0  

Before we construct such a (v0), let us first observe that we may consider v 
with v(i,j)=v(j, i). Indeed, g ( i + j - 1 )  and Po(i,j) are both symmetric in i and 
j (see (3.3)) and hence the convexity of I o (v) implies 

L ( v ~ ) < L ( v ) - - L ( ~ )  where ~(i,j)=v(j,i), 

so that the infimum in (6.6) may be restricted to the symmetric measures. 
Therefore let v be a symmetric measure in 2~. Pick any pair (i,j) such that 

v(i,j)=v(j, i )>0  and pick a sequence (%)0-0 of positive reals tending to zero. 
For  0 sufficiently small define vo by 

Vo = v -  8o(~5(~,s) + ~,~)) + tO(6(i +ko,S+ko) + C~(j+ko, i+ko)) 

where ko is determined by 

(6.11) 0-1 = (a, Vo> = (a, v) +4t0  ko 

in order to ensure that vo~M o (choose e 0 such that ko is integer). Now observe 
that 

L(vo)- L(v) = 2 e o [g (i + j  + 2 k o -  1) - g (i + j -  1)] 

--  2 ~0 log  [Po (i + ko, j + ko)/Po (i, j)]  + H (e0) 

where H(to) is a sum of entropy terms tending to zero as % tends to zero. 
Use the concavity of g and the binomial inequality (3.27) to get 

L(vo)- L(v) < 2eo g(2ko)- 2eo log[(2~~ 2-  2k~ H (eo). 

Next use Stirling's formula and (6.11) to see that the r.h.s, tends to zero when 

t0 g ~ 0  

t0 log (0~0) 0. 

But both g and log are sublinear and so this can be achieved by letting t0 
tend to zero sufficiently fast with 0. This completes the proof of (6.10). 

The lower bound on G is exp(g(1))= M/A (use (0.17)), because g is increasing 
and Io(v)>O for all v. The upper bound is obtained by substituting v=6(1,1) 
and noting that Po(1, 1)= 1/2. This finishes the proof of (2). 
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(3) The claim follows from (6.5) and the remarks at the beginning of the 
proof of (2). 

(4) Use (3), (6.3-5) and Ih(0) =log[(1 --h2) - 1/2]. The continuity of p( ' )  follows 
from (6.5) because Ih(O ) is continuous in both h and 0 and J~ is continuous 
in 0. 

(5) Use the continuity of p(.)  in conjunction with (0.18). []  

Proof of Assertion A. Starting from the first assumption we can repeat the 
proof that K(T) is convex in z starting from optimality instead of e-optimality 
(for the measures v 1 and v2 in the proof of (1) of Proposition 6.) Accordingly, 
using that Io(v ) is strictly convex on the subset of v ~ ( N  2) with v>0,  we 
get that K(z) is strictly convex in z and hence that v 1K(z) is strictly convex 
in z-1. This proves (a) via (6.8). Of course, (b) follows from (a), the first assumption 
and the strict convexity of Io(v) in (6.2). 

The second assumption implies (c) via (6.4) and (6.5), because the slope of 
Ih(') changes sign at h. Next note that 

h - O  
Oh Ih (0) = 1 -- h 2" 

With (c) this gives (d) because (O/t?h)Ih(O) is decreasing in 0, and (e), because 
(C~/c3h)Ih(O)>O for h>O. [] 

6b 2(h) 

Most of this section follows the same type of reasoning as in Sect. 6.a. In Sect. 1.c 
we found that 

(6.12) 

where for 0~(0, 1) 

(6.13) 

and for 0 = 0 and 0 = 1 

(6.14) 

Now, just as in (6.4-6) define 

(6.15) 

so that 

(6.16) 

2(h)= sup (JZ(O)--Ih(O)) 
0~[0, 1] 

JZ(O)=O sup [ ( f & v ) - I o , ~ ( v ) ]  
v~Mo, a| 

JZ(O)=logM 

JX(1) = ~log bfl(db). 

J2~(O)=J~(O)-Ih(O) 

2(h)= sup J~(O) 
0e[O, 11 
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and 

(6.17) 

with 

(6.18) 

1 (l+h] 
0 -1 [Jh~ (0) -  Jh~(0)] = --~- log i~'~h~ ] 

+ inf [(~,&v)+Io,~(v)] 
v~Mo,3| 

~(i,j) = log(M/j2) = log M - -  f (i,j). 

Proposition 7 Assume that fl has positive variance. 
(1) JhZ(") is continuous and concave on [0, 1] for every h. 
(2) The critical value for  localization is 

with 

h 3 -  ~2 ._b i 

G=exp(  inf [(~a,v}+Io,a,(v)])  
v~M3| 

M~| U Mo,p| 
0 > 0  

= {re go ((N| fl)2): ~ v ( i , j ) = ~  v(j,j), ( a , v )  < co, g= fl| 
J J 

Simple bounds on G are 

1 < M / B <  ( , < 2 M / B <  oo 

B = exp (~log b fl (d b)), 

so that h36(0, 1). 
(3) The effective drift satisfies 

0*(h)=0 for h < h  3 
0* (h) > 0 for h > h  3 . 

(4) 2(') is continuous on [0, 17 and 

2(h)=Jh~(O)=log[M(1-h2) 1/2] for h < h  a 

2(h)> J~(0) for h > h  3. 

(5) I f  log M > 0 > ~ log b fl (d b), then there exists h4 ~ (0, 1) where 2(') changes sign. 

Assertion B I f  for every 0E(0, 1) the supremum in (6.13) is attained in Mo.p| 
and Io,t~=(') is strictly convex, then 

(a) Jh~(") is strictly concave on [0, 13 for every h; 
(b) O*(h) and v*(h) are unique for  all h. 

I f  JZ(') is strictly decreasing on [0, 13, then 
(c) O<O*(h)<h for  all h 3 < h <  1; 
(d) O* (') is continuous and strictly increasing on (h3, 13; 
(e) 2( ')  is strictly decreasing on [0, 13 and the critical value h, is unique. 
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Proof of  Proposition 7. Most of the proof is a copy of the proof of Proposition 
6 and therefore is left to the reader. The only somewhat tricky point is the 
continuity of J)'(.) at 0=0,  which we shall now prove. In analogy with (6.7) 

(6.19) O- 1 [ J ) ' ( O ) - -  J)'(O)] = inf [<~a, v> + Io,e=(v)]. 
v~Mo,fl| 

Therefore it suffices to find a sequence (Vo)o>o with vo~Mo,p| ~ such that 

(6.20) lira 0 [(~a, Vo> + lo,~(Vo)] = O. 
0--*0 

To that end, for every 0 > 0 pick 40" (supp fl)2 ~ (0, 1] satisfying 

1 i �9 0 - 1  (6.21) ~ fl(i2) fi(]e) 4o (2,J2) = 
i2,J2 

~o(i2,J2) = ~0 (]2, ia) 
and choose 

( 6 . 2 2 )  vo( i ,J)  = 7z~o(iz,j2)(il) Pco(iz,j2)(il , J l )  f l ( i 2 ) /~ ( J2 ) .  

Using (3.3) and (3.4) one easily checks that vo~Mo,~| ~, where (6.21) is needed 
to take care of the requirements (el, Vo>=O -1 and ~vo( i , j )=~vo( j ,  i). Use the 
trivial inequality j a" 

Io,~(v ) <= -- ~. v(i,j) log(P0 (il ,Jl) 13(]2)) 
i ,j  

and substitute (6.22) into (6.20) to get the upper bound for the r.h.s, of (6.19): 

(6.23) 

with 

0 ~ fi (i2) fi (]2) [~o 1 (J2) log (M/j2) + H (0, ~o (i2,j2))] 
i2,J2 

- OEfl(j2) log/~(J2) 
J2 

(6.24) H (O, 4) = -- ~ 7z~(il) Pr ,j ,)  log P0(i 1 ,Jl)- 
i~ ,j~ 

One should think of (6.22) as a local drift strategy. That is, v o corresponds 
to a path of descent that behaves like the random walk but adapts its drift 
locally to the value of the medium: drift ~(i2,j2 ) on the pair (iz,j2). (This is 
not the optimal strategy). By clever choices for 40 one can now get lower bounds 
for J~(O), i.e. upper bounds in (6.19) and (6.20). We shall be happy with the 
crude choice 

~o(i2,J2)= 1 unless i 2 = j 2 = m  
0 - 1 _ 1  

~;I(M, M) = 1 + p2(m~. 

One easily checks that the r.h.s, of (6.23) tends to zero ((3.3 4) and supp/~ 
bounded away from 0) and hence we have proved (6.20) and thus the continuity 
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of J;'(O) at 0=0.  If suppfi is not finite then possibly fi(M)=0. In that case 
adapt the choice of ~0 in a straightforward way. 

The lower bound on G is trivial because ( ~ ,  v ) >  (~, v)>~f l (J2) log(M/j2)  
J2 

and Io,~=(v)>0 for all v. The upper bound follows by substituting V=(c51| 2 
for which Q =(61| ~ maximises h(Q). 

Proof of Assertion B. By complete analogy with Assertion A. [] 

6c Comparison of p(h) and 2(h) 

In this section we show that the global growth rate is the supremum of local 
growth rates over media that are shift invariant processes. Let 

A = {~ ~ go ((supp fi)~): e shift invariant} 

A~,~ = {Q ~ go ((N | supp fl)~): Q shift invariant, ~2 Q = v, (~ = ~} 

Io,~(v ) = -~v( i , j )  log(Po(il,jl) fi(J2))- sup h(Q) (v cA) 
i , j  Q~Av,~ 

and define 

(6.25) J~(O)=O sup [<fa, v>-Io.,(v)] 
v6Mo,~2~ 

where Mo,~2 ~ is the set Mo,a| B with fl| replaced by g2~.  

Proposition 8 For every 0~(0, 1) 

(6.26) JX(O)=Jr 

(6.27) jo (0) = sup J~ (0). 

Observe that these relations imply Corollary 3 via (6.4-5) and (6.15-16). 

Proof. (6.26) is just (6.13). To see that (6.27) produces (6.2) we argue as follows. 
Measures in Mo .... have the property that their projection on the non-medium 
coordinates is in Mo, the set over which runs the supremum in (6.2) for JP(O). 
Therefore define for # s M o 

N~= {v~go ((N| fi)2): ~ v(i,j)= ~ v(j, i), ~ v(i,j)= l~(il,jl)}. 
j j i2,J2 

Now, by the contraction principle (Ellis [9] Theorem IX.3.3) 

sup h(Q)= - Z v(i,j) log {v(i,j)] 
e~Av ,,j \ ~(i) ] 

(6.28) 

with 

(6.29) Av= ~) Av,~ 

= { Q ~ go ((N| supp fl)z): Q shift invariant, ~2 Q = v}. 
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Since 

it follows from (6.25) and (6.28-29) that we can write 

(6.30) 

with 

(6.31) 

supJ~(O)=O sup {sup [(fa, v>-[o,~(v)]}, 
cL~Jaf # ~ M o  v ~ N  u 

( "[o,a(v) =~v( i , j )  log -~(i) P0(il,j2)/~(J2)]" 
i , j  

Thus (6.27) amounts to proving that for every #sMo 

sup [{ fa ,  v } -  [o,a (v)] = { foa ,  #7 --Io(#) 
Y e N  u 

(recall (6.2)), or written out 

(6.32) 
F log{V(i,J)]] s u p | ~  v(i,j) log y(il , j)--  Z v(i,j) 

= ~ # ( ia , j l ) log{~7( ix , j )} -  ~ #(ia,jO log (#(ix ' jO] 

with the abbreviation 

?(il , j)= fl(jz) j~ 1+ j~-1 

(the kernel P0(il,Jl) drops out). The reader can easily check (6.32) informally 
by using the technique of Lagrange multipliers. The supremum is attained at 

with transition kernel 

v(i,j) = g(i) R(i,j) 
g(j) = ~V(i) R(i,j) 

i 

#(q,JO ~(i~,j) R(i,j) = - -  
]~(il) {2~) ( i l , j )}  " 

J2 

Substitution into (6.32) shows that the supremum does not depend on g(i), so 
that we need not solve for g(i). This is an informal proof because there is of 
course the technical problem that N |  fi is infinite. However, we saw in 
Lemmas 10 and 20 that our variational formulas are limits of variational formu- 
las on finite state space and therefore the argument can be made rigorous. [] 

Assertion C I f  for every 0~(0, 1) the supremum in (6.27) is attained at ~* 
= ~* (0) E d with ~* ~= flz, then p (h) > 2(h) for all h > hi. 

Proof. Obvious from Proposition 8. Use (6.4-5) and (6.15-16) plus the fact that 
for h>h3 both locally and globally 0">0 .  We know from Corollaries 1 and 
2 that p(h)>2(h) for h l<h<h3 .  [] 
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