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Summary. Motivated by Tsirel'son's equation in continuous time, a similar 
stochastic equation indexed by discrete negative time is discussed in full generality, 
in terms of the law of a discrete time noise. When uniqueness in law holds, the 
unique solution (in law) is not strong; moreover, when there exists a strong 
solution, there are several strong solutions. In general, for any time n, the a-field 
generated by the past of a solution up to time n is shown to be equal, up to 
negligible sets, to the a-field generated by the 3 following components: the infinitely 
remote past of the solution, the past of the noise up to time n, together with an 
adequate independent complement. 
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1 Introduction 

(1.l) Motivated by Tsirel'son's equation in continuous time [2,5, 6], which we 
shall describe in the second part of this introduction, we are interested in the 
following equation in discrete negative time: 

(T) t /k=r  ( k ~ - - N ) ,  

where {x} denotes the fractional part of x ~ IR, and the ~k'S are considered as given, 
whilst the t/k'S are unknown. 

In a more precise way, we assume that the laws of the ~k'S, say #k, are given once 
and for all; we call # = (#k; k ~ --N) the sequence of these laws, and we should like 
to give a precise description of the family ~u(T) of all probabilities P on IR -~ such 
that: if we denote t/k(CO) = co(k), ~k = ~k - -  { /~k-  1 }, ~ k  = O'(/~n, n __< k), and 
gk = a(~n, n < k), then, under P: 

for every k, ~k is independent of Yk -1 ,  and has distribution #k. 



136 M. Yor 

Our paper is organized as follows: 
we first give a characterization of the extremal points of ~u(T), and a description of 
the asymptotic a-field @-~o - ~k ffk; then, we show that, for any given sequence 
/x = (#k; k~ - N ) ,  there exists at least a solution in ~u(T). 

It would then be natural to look for a characterization, in terms of/x, of the 
uniqueness of the solutions in ~u(T). However, at this point, this is being post- 
poned, because such a characterization shall appear in a clearer way, once we have 
obtained, for any given k, a general formula for the distribution of {t/k} given the 
a-field ~-_~ v gk, in terms of kt. 

Once this is done, then not only does a criterion for uniqueness follow nat- 
urally, but the general formula also illuminates the discussion of whether Yk equals 
Y -  ~o v ?k, and, if this is not the case, an independent complement of ~ _  ~ v ?k in 
~k is found. 

One of the questions which we have found to be of great interest in this general 
study of (T) is that it gives a particularly clear example of a situation where 
exchanging the order of taking the supremum and the intersection of a-fields must 
be done with great care (see H. yon Weizsgcker [8] for a general discussion and 
resolution of this problem, and D. Williams [9], Exercise (4.12), p. 48, for a parti- 
cularly simple example, due to M. Barlow and E. Perkins, which, in fact, is quite 
close to Tsirel'son's equation). 
Indeed, note that for any n > 0, and any k, we have: 

Sk = 5k- , ,  V ?k 

and therefore: ~k = ~U~0)(~'k-, V gk), but the a-field: 

~ k - ,  v ?k 
n 0 

is, in most cases in our study, strictly contained in o~ k. 
This is, in particular, the case when uniqueness holds, i.e.: 

~u(T) consists of only one solution, in which case: 

~-k = gk V a({t/k}), f _ ~  is trivial (so: gk =-- . 7 _ ~  V o~k) 

and {t/k} is uniformly distributed on [0, 1[, and independent of gk. 
In the above discussion, the equalities between a-fields should be understood 

up to P-negligible sets, for P ~ Nu(T). 
(1.2) We now discuss Tsirel'son's equation in continuous time [6], and its close 
relationship with (T). 

We first recall a striking result of Zvonkin [12]: let (Bt, t >. 0) be a real-valued 
Brownian motion, and b : lit -~ IRa Borel bounded function. Zvonkin [12] showed 
that pathwise uniqueness holds for the stochastic differential equation: 

dXt =- dBt + b (Xt )d t  . (1.a) 

As a consequence (of a general theorem of Yamada-Watanabe [10]; but here the 
following property may be proved directly), the unique solution of (1.a) is strong, 
i.e.: it is adapted to the natural filtration of B. 

Note that this uniqueness result is remarkable, since, in order that the determin- 
istic equation: 

d x  t = b ( x t ) d t  
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has a unique solution, some fairly strong continuity assumption on b, such as 
Lipschitz continuity, needs to be made. 

An even more striking, and certainly much harder to prove, result in this vein is 
that of Veretennikov [-7] who showed that, in the multidimensional case, the 
equation: 

dXt = dBt + b(t, Xt)dt ,  (1.a') 

where b: IR+ x 1R d ~ IR is a Borel bounded function, has a unique strong solution. 
We now proceed with the discussion of some more general one-dimensional 

stochastic differential equations than (1.a). Once Zvonkin's result was established, 
it seemed plausible that the same strong measurability property would hold for 
a much larger class of bounded, Borel drifts b: 1R+ x ~ ~ IR, where ~/K denotes the 
space C(IR+, IR) of continuous functions from IR+ to IR and b is, more precisely, 
assumed to be predictable with respect to the filtration N, = a(xs; s <= t), where 
Xs(co) = co(s), for co e ~K. 

To any such drift b, we associate the stochastic differential equation 

dXt -= dBt + b(t, X . )d t ,  (1.b) 

which, at least, thanks to Girsanov's theorem, enjoys the uniqueness in law 
property. However, Tsirel'son [6] produced the following example of a drift b* for 
which the unique solution (in law) of (1.b)-which we now denote as (1.b*)-is not 
strong: 
if(tk, k ~ -- N) is an increasing sequence of reals such that: limk~ _ 0o tk = 0, then b* is 
defined as: 

b*(t, co) = ke2-N (( co(tk) tkco(tk-1) } 1 

The original proof by Tsirel'son [6] was complemented by Stroock and Yor ([5], 
Proposition (6.13)) in the following form: 

Theorem 0 I f  (Xt, t > O) is a solution of(1.b*), then: 

(i) for any k ~ - N ,  and any pair (s, t) such that: tk-1 < S < t <= tk, the random 
variable {(Xt - Xs)/(t - s)} is uniformly distributed, and independent of  B; 

(ii) the germ a-field ~o+ - ~ > o  a(Xs, s <= e) is P-trivial. 

The proof of the first assertion of Theorem 0 is obtained essentially by considering 
the two sequences of r.v.'s: 

Xtk -- Xtk i B~k -- Btk 1 
t/k - and ~k-- - ,  

tk -- tk- 1 tk -- tk- i 

which satisfy (T), hence the idea of considering (T) with more general assumptions 
about the laws of the ~k'S. In particular, one of the original motivations of this 
paper was to understand the r61e played by the Gaussian distributions of the ~k'S, in 
connection with the uniform distribution of the fractional parts {t/k}. It simply 
turns out that Tsirel'son's (Brownian) example, when considered in the present 
general study of (T) falls into the uniqueness in law subcase (see Sect. 5 below) 
which, in general, ensures that the fractional parts {t/k} are uniformly distributed. 
(1.3) A substantial part of the results contained in this paper has been announced 
without proof in the Comptes Rendus Note [1 iI. Here, full proofs are given, and 
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the discussion in terms of the sequence # = (#k; k~  - - N )  is completed, as far as 
questions of uniqueness in law, and existence of strong solutions, for example, are 
concerned (we use here the same terms as for continuous time stochastic differential 
equations). 

In conclusion of this Introduction, we should like to point out that the most 
interesting features of the results obtained in this work are their seemingly para- 
doxical character: 

in particular, if ~ , (T)  enjoys the uniqueness in law property, then the unique 
solution (in law) P* is not strong (see Sect. 5); moreover, in the case where there 
exists a strong solution, then there are several strong solutions (see Sect. 6). 

We hope that the detailed and elementary study made in this paper shall help 
the reader with such "paradoxes"; in fact, the author is much indebted to Rogers 
and Williams [4], p. 156, for their amazed comments following their Theorem 
(18.3) - Theorem 0 above, concerning the independence of any fractional part and 
the Brownian motion. 

2 On the extremal points of ~ ( T )  

We keep the notation introduced in (1.1). The following lemma is a first easy step in 
our study. 

Lemma 1. A probability P on (IR -~, f o) belongs to ~,(T),  if, and only if, under P, 
the sequence (t/k; k E - N )  enjoys the following (inhomogeneous) Markov property: 
for any Borel, bounded function f :  IR --, IR, we have: 

E [ f ( t l k ) [ f  k-1] = ~ d#k(y)f(y + {~/k-1}) �9 

It is now clear that N,(T) is a convex set of probabilities on (IR ~, fro); the next 
theorem describes its extremal points, as well as the asymptotic a-field f _  ~, up to 
negligible sets, for any PsNv(T). 

Theorem 1. Let P s N,(T). Then, 

1) f _ ~  cdincides, up to P negligible sets, with the a-field generated by the 
sequence (Ok, p; ke  - N ,  peg*) ,  defined by: 

k 

Ok, v = lim exp(2iTrptlk_n) ~I qoj(p) 
n ~ e o  j = k - n + l  

(this limit exists P almost surely), where ~oj(p) = 5d#3(x)exp(2i~rpx). 
2) P is an extremal point of g~,(T) if, and only if, f _~ is P-trivial. 

Proof of  Theorem 1. 
1) f - o o  coincides (up to P-negligible sets) with the a-field generated by 

lim E(YI f - n ) ,  

as Y varies among the family 

f = (fk(r/k, ~ /k+ l , . . . ,  ~/0); ke  - N ,  fkeb(N(IR-k+~)), 

since this family is total in Lz(P). 
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Thanks to the Markov property satisfied by P (see Lemma 1 above), ~ ' _~  
coi'ncides in fact with the a-field generated by: 

lira E [~o (exp 2in t /k) l~k- ,  J , 
n--* oo 

as k varies in - N ,  and (p is a generic continuous function on the unit circle. 
Next, approximating ~0 uniformly by a trigonometric polynomial, we obtain 

that f f _ ~  coincides with the a-field generated by: 

lira E [exp (2i~p t/k) I f f k - , ]  
n ~ o o  

as k~ - N ,  and p~2g*. 
Finally, we deduce from (T) that: 

E[exp(2ircp t/k) I ffk ,3 = exp(2inp t/k-,) 
k 

I ]  ~oj(p) 
j = k - n +  J. 

and the first assertion is proved. 
2) We now assume that P is an extremal point of N,(T), and we show that 

f r _ ~  is P-trivial. If not, there would exist A ~ Y_  ~ such that: 

0 < P(A) < 1, and we would have: 

where: PB = 
P(" ~ B) 

P(B) 
P = P(A)PA + P(A~)P.4~, 

But, it follows from Lemma 1 that, for any B e f r _ ~  such that: P(B)>  0, the 
probability PB belongs to ~ ( T ) .  Hence, there exists no non-trivial set A e f f _ ~ .  

3) Conversely, we assume that ~-_~ is P-trivial, and we show that P is an 
extremal point of ~u(T). It suffices to show that the only probabilities Q e~u(T)  
which are equivalent to ( - mutually absolutely continuous with respect to) P on 
fro are in fact equal to P. This follows immediately from the general statement of 
Lemma 2 below. [] 

Lemma 2. Let P e ~ , ( T ) ,  and let D be a strictly positive, fro-measurable r.v. such 
that: Ep(D) = 1. Define Q = D" P on fro. 
Then, Q e ~ u ( T )  if, and only if, D is f r _ ~  measurable. 

Proof. 1) If D is f r_  ~o-measurable, it follows from Lemma 1 that (2 belongs to 
~u(T). 

2) We now assume that Q e ~ u ( T  ). 
Using again Lemma 1, we know that, for any bounded r.v. Gk, which is ~k 
measurable, where: fYk =-- a(t/k, t/k+1 . . . .  , t/O), we have: 

EQ(Gk I f rk-  ~) = Ep(ak [ f fk-  1), 

hence, using the fact that: ~-o = ~k-1  V ~k, we deduce from the monotone class 
theorem that: 

Eo(x I g~_ ~) = E~(x I f r~- , )  

for any IR+-valued, Yo-measurable r .v.X. 
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In terms of P and D, this equality is equivalent to: 

Ep (XD ] Yk-~  ) = Ep(X I ~ k -  ~) Ep (D I ~ k -  ~), 

from which we easily deduce that, for any k, D 6 L 1 (ffk- 1, P), hence D belongs to 
L~(~-~, P). [] 

The identification of i f_  oo, under P ~ N~(T), which is stated in Theorem 1, shall 
allow us now to write P as an integral of extremal points of N,(T). We begin by 
defining ~-_~ as the a-field generated by the sequence 

(Ok, p; k ~ - N, pe  7Z*) defined by: 

0k p = lim sup (Re vk,a(")p1~ + i lim sup (Im A(,) , Uk ,  pJ  , 
n ~ o o  n ~ o o  

k 

where o~n) = exp(2ircp tlk-n) [I  ~oj(p) V k ,  p 

j = k - n +  l 

We have, obviously, ~ _ ~  c f f _ ~ ,  and we have seen, in Theorem 1, that if 
P ~ u ( T ) ,  then ff-o~ coincides with ~-_~ up to P-negligible sets. 

If P is a probability measure on (lR-~,ff0),  then there exists a regular 
conditional distribution Po~(do)') of P, given ~-_ ~, since ~ _ ~  is separable. We 
have: 

P = ~ fi(dco)Po, (2.a) 

where/~(do)) is the restriction of P to ~ _  0o. We may now prove 

Theorem 1'. I f  P ~ ~ , (  T), the identity (2.a) also gives the integral representation of 
P as an integral of extremal points of~u(T) ,  that is: 

/S(dco) a.s., P~Eext(~u(T)).  

Proof 1) It suffices to show: 

P(dco) a.s., P ~ s ~ u ( T ) ,  (2.b) 

since, by construction, we know that ~-o~ is trivial under P,o, and, on the other 
hand, if (2.b) holds, we know, from both assertions in Theorem 1, that fi(dco) a.s., 
~-_~ is trivial under P,o, hence P,o ~ext(@u(T)). 

2) We now prove (2.b). From Lemma 1, it suffices to show that, for a fixed 
k~ - N ,  and any given Borel function f :  IR ~ IR+, we have: 

/3(dco) a.s., Epo[f(rlk) l .~k-1] = ~d#k(y)f(y + {t/k-l}) (2.C) 

(indeed, the monotone class theorem allows to restrict ourselves to a countable set 
of such functions f which generate the Borel a-field). Now, (2.c) follows immedi- 
ately from the identity: 

Ep[IA 1B~_~f(t/k)] = Ep[1A 1B,_,~d#k(y)f(y + {t/k-~})J , 

for any A ~ S-_~,  and Bk-~ ~ ~k -~ ,  and the proof is ended. [] 

Remark. It should be mentioned here that the work of Dynkin [1] is very relevant 
for this paragraph, but we prefered to derive the results from scratch, in order to 
keep with the simplicity of the present paper. 
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3 The set ~u(T) contains at least one element 

We now prove that, no matter what the sequence # = (~k; kc - N )  may be, the set 
~ , (T)  is never empty. More precisely, we have the following 

Theorem 2. There exists a unique probability P* in Nu(T) such that: 
(3.a) under P*,for any k s  - N ,  {t/k} is uniformly distributed on [0, 1[. 
Moreover, under P*, for any k s - - N ,  the variable {t/k } is independent of 
o-{~j;js - N } ,  where ~j = t/j - {t/j_ 1 }. 

Finally, if the variables {~j} are all uniformly distributed, then the variables ({t/j}, 
j s - N) are independent. 

We shall see, in the sequel, that P* plays a fundamental r61e in the study of N,(T). 
To begin the proof of Theorem 2, we first remark that the condition (3.a) and 

the equation (T) specify uniquely the distribution on IR -k, which we denote by rCk, 
of (t/k+1, t/k+2 . . . . .  t / 0 )  under P*, for any k s - N .  

The first part of the next Proposition, which may in fact be considered as a key 
throughout all our study, shows obviously that the different probabilities 7c k are 
compatible between themselves, and the first assertion of Theorem 2 now follows 
from the extension theorem of Kolmogorov (see, for example, Neveu [3], p. 78). 

Proposition 1. Let U be a random variable which takes its values in [0, 1 [, and X be 
a real-valued random variable, which is independent of U. 

1) I f U  is uniformly distributed on [0, 1[, then {U + X }  and X are independent, 
and {U + X }  is uniformly distributed on [0, 1[; 

2) Conversely, if the law of X is diffuse, and if {U + X }  and X are independent, 
then U is uniformly distributed on [0, 1[. 

Proof of  the Proposition. 1) In order to prove, at the same time, that {U + X} and 
X are independent, and that {U + X } is uniformly distributed, it suffices to show 
that: 

for any p s Z * ,  and any )~slR, 

E[exp(2ip~{U + X }  + i2X)] = 0 .  (3.b) 

However, the left-hand side of (3.b) is equal to: 

E [exp 2i~p (U + X )  exp i2X ] = E [exp (2i~p U) ] E [exp i (2~p + 2) X ] 

= 0, since U is uniformly distributed. 

This proves (3.b). 
2) Conversely, from our hypothesis, we have, on one hand: 

E[exp(2ircp(U + X )  + i2X)] = E[exp2iTrp(U + X) ]E[exp i2X]  . 

Hence, since U and X are independent, this equality may also be written: 

E [exp (2ircp U ) ] E [exp (2#cp + i2 ) X ] = E [exp (2i~p U) ] E [exp 2i~pX ] E [exp i2X ]. 

We denote (p(p) = E[exp(2ircpU)], and we take 2 = -27cp. 
We obtain: 

qo(p)(1 -IE(e2i~px)[ 2) = O . 
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However ,  the hypothesis  made  on X implies: IE(exp2i~zpX)l < 1, for p ~ 0, f rom 
which we deduce: 

(p(p) = 0, for any p e Z *  ; 

in other  terms, U is uniformly distr ibuted on [0, 1[. [] 

End of the proof of Theorem 2 
a) T o  prove  the second assert ion of the Theorem,  it suffices to show that,  for any 
p ~ 7/*, and for any (2k, '~k- 1, - - �9 2k- , )  E ]R "+ z, with n ~ N,  the following quantity: 

(p(p;)~j(k - n -<j =< k)) = E[exp(2iTzpt/k)expi(2k~ k + ~k- -Z  ~ k - Z  .3~ �9 . �9 .~- / ~ k - n ~ k - n )  ] 

equals 0. 
However ,  f rom the identity (T): t/k = ~k + {t/k-Z}, we deduce: 

~0(p; 2~(k - n < j  < k)) = E[expi((2k + 2~p)~k + (2k-1 + 2~p)~k-1 

+ ' "  + (2k- ,  + 27cp)~k_,)]E[exp2i~pt/k_,_~] 

= 0, since {t/k-,-Z } is uniformly distributed. 

b) To  prove  the last assert ion of the Theorem,  it suffices to show that  for any 
n ~ N ,  and (Po, P - z  . . . . .  p - , + z ) s Z " ,  the equality: 

I (  ~ )1 E exp 2ire ~ pjt/j = 0 (3.c) 
j =  - n + l  

holds as soon as one of the pj's is not 0. 
We denote q~j(p) = E[exp(2i~p~j)]; then, we have: 

[ ( o  )1 E exp 2i~ ~ pjt/j 
j =  - n + Z  

[ ( )] = ~Oo(Po)E exp2i~ (Po + P - z ) t / - z  + ~ Pjt/j 
j = - n + l  

= ~oo(po)q)-z(po + p-~)~o-2(po + p - z  + P-2 )  �9 �9 ~0 ,+~(po + ' + p ,+~) 

I ( ~  x E exp 2i~ ~ pj ~_,, . 
j =  - n + l  

Consequently,  ifpo ~a 0, we have: qoo(po) = 0; then, ifpo = 0, but  P - z  r 0, we have: 
~o-z(p-1)  = 0, and so on; by iteration, we have shown (3.c). [] 

Remark. In  the last par t  of the p roof  of T h e o r e m  2, we did not  use the hypothesis  
tha t  {t/k} is uniformly distributed. This shows therefore that, if for any k ~ - N ,  {~k } 
is uniformly distributed, then N , ( T )  contains only one element, which is P*.  A full 
character izat ion of the uniqueness case for N , ( T )  is given in Sect. 5. 

4 A general formula for a conditional distribution, and some consequences 

(4.1) A key r61e shall be played in the sequel by the following 

Proposition 2. For any p6~,  and k~ - N ,  we have, for any P ~ , ( T ) :  

E[exp(2iT~prlk) l@- 0o v go]  = (Spexp(2iT~pt/k) (4.a) 
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where: 
k' 

O, i f  f o r  any  k', lira I~ (PJ(P)= 0 
n~oo j = k ' - n  

1, i f  not.  
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P r o o f  
(4.a) is equal to: 

E [ e x p ( 2 i ~ z P t l k ) ] ~ - ~  v gk] �9 

1) We first assume that  6p = O. 
(i) We first prove 

E[exp(2iTcprlk) l ~ -  ~o ] = 0 . 

Remark  that, since for any j, ~j is independent  of ~ j _  i, the left-hand side of 

Indeed, we have: 

E [ e x p ( 2 i ~ p t l k ) [ ~ ' _  ~-I = 

(4.b) 

exp(2#Cpqk)  = exp (2 inp t l k , ) exp (2 inp (~k ,  + 1 + " " " + r , 

and it remains to show that  exp(2 i zp t l k , )  is measurable with respect to o~-oo v go. 
However,  we have: exp(2inpt lk , )  = ~,  7J,, where: 

exp2 inp(~k ,  + " . "  + r  
~)n ~ k' 

[l  o/p) 
j = k ' - n  

and 7'.= e x p ( 2 r c i p r l k , _ n _ l ) ( j = ~ k , _ n ( p j ( p ) ) .  

(With the nota t ion int roduced in the proof  of Lemma 2, we have: 7', a(n+ 1)~ Vk , ,p  ). 

k' 

I~ Iq~ > 0 .  

We may  assume k' < k. 
We then write exp(2i~zPtlk ) as: 

k 

1-[ E [exp(2i~p~j)] E [ e x p ( 2 i z c p t l k _ n _  1 )l ~ ' -  co ] 
j = k - n  

k 

and, since 6p = 0, the product  F[ converges to 0, as n ~ oe. This proves (4.b). 
j = k - n  

(ii) Then, we remark  that, for every n e N,  we have: 

E [ e x p ( 2 i r c p t l k ) l ~ _  ~ V a ( ~ k - , ,  �9 �9 . ,  ~k)'] 

= e x p 2 i r c p ( r  + " ' "  + ~ k ) E [ e x p ( 2 i ~ p t l k _ , _ l ) l ~ _ ~ ]  

= 0, from (4.b). 

Finally, letting n ~ o% we then obtain: 

E [ e x p ( 2 i r c p q k ) l J _ ~ o  v gk] = O ,  

which is (4.a) in the case 6p = O. 
2) We now consider the case where 6p = 1, that  is when there exists k' sufficiently 
small such that: 
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Now,  f rom the convergence result for bounded  martingales,  4), converges a lmost  
surely to a variable which is gk,-measurable; hence, 7~, also converges a lmost  
surely, to a variable which is ~ _  ~-measurable .  [] 

Remark .  We note here that  the variables (b~ -lim~_.oo q}~ and ~o~ = lim._+~o 7' .  
which appeared  at the end of the p roof  of the Propos i t ion  are closely related 
respectively to: 

E[exp(2 inp t lk ) lgo]  and E[exp(2 inp t lk ) lJ~_~o] .  

To simplify the discussion, we shall assume that  for every j < k, (pj(p) r 0, so that  
we have, with the above nota t ion  for q~. and 7'. ,  for which we take k' = k: 

E [exp(2i~zPrlk) l Y k - .  - 1 ] = tI'tn 

and therefore: 

E [exp (2inptlk)l ~ _  ~o ] = 7Joo, (4.c) 

whilst: 

E [exp(2ircptlk)l ~k-, ,  �9 �9 - ,  ~k ] = exp 2inp(~k- ,  + " " " + ~k) E [exp (2inprlk_, - 1)] �9 
(4.d) 

Tak ing  expectat ions on bo th  sides of (4.d), we obtain: 

E [- exp (2inptlk) ] = E [exp (2in p t/k - ,, - 1 ) 3 
J 

SO that, put t ing this back  in (4.d), we obtain: 

E [exp(2i~zPtlk)l~k_,, .  �9 �9 ~k] = 4), E [exp(2inptlk)] 

and, in case 6~ = 1: 

E [exp(2inp~k) lgk]  = q ~  E [exp(2 inpt lk )] ,  (4.e) 

so that: 

(i) In  the case 6 v = 1, since exp(2iTcptlk) = 45o0 7Q,  we have: 

E [exp(2i~p~k) lgo]  
exp(2inpt/k ) = E [exp(2i~ptlk)l ~-~_ ~ ] E [exp(2inprlk)] (4.f) 

f rom which we can then recover (4.a). 
(ii) On the other  hand,  in the case 6v = 0, since we have, by (4.a): 

E [ e x p ( 2 i n p r l k ) l Y - ~  v go]  = 0 ,  

this implies: E [exp (2inptlk) I ~ -  co ] = E [exp (2inptlk) ] go ] = 0 .  

(4.2) Once formula  (4.a) has been established, it is na tura l  to look for an explicit 
description of the law of {tlk} given ~ - ~ o  v go- In order  to do this, we need to 
know more  abou t  the structure of  the set 

def 
Z+(#)  = { p ~ :  6p = 1}. In fact, we have the 

def 
Proposition 3. 2g+(#) = { p ~ :  6p = 1} is a subgroup o f  7Z. 
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Hence, there exists Pu ~ N such that: ~+ (#) = puZ. 
Proof. To simplify notation, we shall assume here that the set of the indexes k of the 
variables ~k is N, instead of - N. 
1) Since ~0i(-p) = (pj(p), it is obvious that p e Z + ( # )  if and only if ( - p )  does; 
moreover, it is obvious that 0~ Z+ (#). 
2) It remains to verify that ifp and q belong to 7z+(#), so does p + q. By definition 
of Z+(#), there exists k sufficiently large such that: 

I~I iq~j(p)[ > 0 and I~I koj(q)[ > O. 
j = k  j = k  

To simplify our notation again, we may assume, without loss of generality, that 
k - - 0 .  
We already remarked, while proving (4.a), that the two (.~,, n ~ 0)-martingales: 

exp2i~p(~o § - - '  + ~-n) 
4 5 n ( p )  = 

(I  oj(p) 
j = o  

and ~n(q), defined similarly, converge a.s. towards two complex variables, which 
are a.s. different from 0. 
Hence, so does the sequence: 

expZiTz(p + q)((o + " ' "  + ~n) 

Hn= (j=fioCpj(p))(j~=oCpj(q)) 

H, 
Consequently, we have: lira - - =  1, a.s. and, since the sequence (Hn/Hm; 

m<n H m  
m, n ~  oo 

/ r r  \ 

0 < m < n < oo) is uniformly bounded, we deduce: lira E{ rln ~ = 1, 
rn, n--* co 

that is: 

f i  q)j(P + q) 
j = m + l  lim -- 1 . ) . . . . .  ( D j ( P )  @ j ( q )  

j = m + l  j = m + l  

On the left-hand side, we may replace the function (pj by [(Pjl, and since, by 
definition of 7z+ (#), we have: 

lim f i  
m < n  j = m + l  

m, n---" oo 

we obtain: 

[(Pj(P)I = 1, and the same for q, 

lim 
m < n  

ra, n--* ~ 

~I [qoj(p § q)l : 1.  
j = m + l  
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Consequently, for m sufficiently large, we have: 

I~I Iqoj(p + q)[ > O, 
j = m - 1  

which means that: p + qs2g+(#). 

Although it would now be natural to give some examples of sequences 
# = (#k; k s  - N )  for which p, = 0, 1, or any positive integer, we prefer to postpone 
this to the next paragraphs 5, 6, 7 which are respectively devoted to the cases 
p~=O, p u = l ,  a n d p ~ > l ,  

We end up this subparagraph (4.2) with the following remark: the previous 
arguments can also be applied, in fact more simply, to the study of the set 77+, c(#) 
which we define as follows: psZ+,c(g)  if there exists k large enough such that 
k + n  

I1 qb(P) converges, as n --, + o% towards a complex number different from O. 
j=k 

We then have the 

Lemma 3. peZ+,c(#)  if, and only /f: exp2ircp(~o + ~1 + " "  + ~.,,) converges al- 
most surely. 
Consequently, 7/ +,~(#) is a subgroup of 2~ (in fact, it is a subgroup of T l+ (#)) and, 
therefore, there exists an integer p~ which is a multiple of p,, such that: 
~+,~(#) = p ~ .  

Proof. 1) If p~Z+,c(#),  then, for some k large enough, and every j > k, we have: 
qoj(p) # O, and 

exp2ircp(~k + "" �9 + ~k+,) 
k + n  

j = k  

converges almost surely, as n --, o% by the martingale convergence theorem. Conse- 
quently, exp2ircp(~o + ' - '  + 4,) converges almost surely. 
2) Conversely, if exp2i~p(r + �9 �9 �9 + 3,) converges almost surely as n --* ~ ,  then: 

lira exp2iTzp(~,,, + . - -  + ~,) 
m < n  

• ,  n--* co 

exists a.s. and is equal to 1. 
Hence, by the dominated convergence theorem, we have: 

lira I~I (pj(p)= 1 
m < n  j = ~ l  

ra, n ~  co 

which easily implies that psTZ+,c(g). [~ 

Example. A study of the case where the variables ~, are Gaussian, with mean m,, 
2 quickly provides examples where ;g +, cOO is strictly contained in and variances a , ,  

+ (~). 
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In fact, in this case, we have: 

;g, if ~ o- n < 
:~+ (#)  = ,., 

{0 } ,  i f Y . d =  oo 
n 

while, in case: ~ a  2 < 0% we have: 2~+,c(#) = {p~2~ :exp(2ipzM~) converges, as 
n --* oo } with M,  = ~ k = 0 mk. 
(4.3) It is now possible to discuss, in terms of the values o fp , ,  the law of {t/k}, given 
.-~-oo v ,~o. 

Proposition 4. 1) I f  p~ = O, then {r/k} is uniformly distributed on [0, 1[ and indepen- 
dent of Y-o~ v 0%. 

2) I f  p, = 1, then {r/k} is measurable with respect to ~-o~ v ~o. 
3) I f  p~ =~ O, 1, then { putlk } =-- {Pu{r/k} } is measurable with respect to ~ _  ~ v ?o, 

while the integer part: [pu{t/k}] is uniformly distributed on (0, 1 . . . .  , (pu - 1)), and 
independent of ~ _  ~ v No. 

Proof a) The two first points follow immediately from (4.a), since, in the first case, 
we have: 

for any p ~= 0, E[exp(2inpr/k)l~_~ v No] = 0, and, in the second case, we have: 
for any p~2g, E[exp(2inpr/k)l~ ~o v No] ---- exp(2iTcpr/k). 

b) In the last case, we first remark that, for any p ~ 2g, 

E[exp(2ircpP~r/k)JY- ~o v No] = exp(2inpp,tlk) 

so that {P~r/k} - {P~{r/k}} is measurable with respect to ~--~o v ~o. 
Moreover ,  for any p~(1,  2 . . . . .  (pu - 1)), we have 

E[exp(2izcpr/k)[~_~ v No] = 0 .  

To simplify notat ion,  we write Ok for {~k}- Since PSlk is ~ -~o  v No measurable,  we 
obtain: 

E[exp(2irrP[P~Ok]~L k Pu /l'~-~176 v No] = 0 ,  

for any p ~ (i, 2 . . . . .  p .  -- I), and, from the injectivity of the Fourier  transform, we 
deduce that  [P.Ok] is uniformly distributed on (0,1 . . . .  , (p.  - 1)). E3 

In agreement  with the first part  of the Introduct ion,  we now remark that the 
last Proposi t ion  4 shows that, in any case, the o--field ( ~ _ ~  v g~) admits an 
independent  complement  in "~k" 

Proposition 5. 1) I f  p u -~ O, then ~ , ( T )  consists of only one element, i.e.: P*; ~-oo is 
trivial, ~-k -- ~ v a({r/k}), and {r/k} is independent from Nk. 

2) I f  p u = 1, then {r/e} is measurable with respect to o~_o~ v OCk, and: 

�9 ~ k  = . ~ _  ~ v 41,,:. 

3) I f  p~ > 1, fhen [pu{t/k}] is uniformly distributed on (0, 1 , . . . ,  (pu - 1)); it is 
independent of ~ - ~  v gk, and: 

~,~ = ~ - ~ o  v 8,~ v o- ( [p ,~{nk} ] ) .  
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Remark. In the statement of either of the 3 points, we may replace {~/k} by {t/j }, for 
any j < k. In particular, in cases: pu -- 0, and p, > 1, this shows that there exist 
infinitely many independent complements of (Y_ ~ v #k) in @k. 

Proof of  Proposition 5. a) The statements concerning the complementation of 
( ~ _ ~  v #k) in Yk follow immediately from the previous Proposition 4, once one 
has remarked that, in any case: 

~ k  = ~ k/ ( 7 ( { t / k } )  = OXVk V 0" ({ t / j } ) ,  for a n y j  < k 

as a consequence of the equation (T). 
b) It remains to finish the proof of the first assertion. 
If p, = 0, then from Proposition 4, {t/k} is uniformly distributed on [0, 1[. 

Hence, by Theorem 2, P = P*, so that ~ , (T)  consists only of NA*, and ~-_~ is 
P*-trivial, by Theorem 1. [] 

5 The condition Pu = 0 characterizes uniqueness in law 

(5.1) The last Proposition 5 states that, if p, = 0, then ~ , (T)  consists of only one 
element, i.e.: P*. The next Theorem shows that the converse is true. 

Theorem 3. The following assertions are equivalent: 
1) Pu = 0. 
2) ~u(T) consists of only one element, i.e.: P*. 
3) P* is an extremal point of  Nu(T ). 
4) Under P*, for  any k s  - N ,  {t/k } is independent of ~ _ ~ .  

Proof The implication 1 ) ~  2) has been proved in the last Proposition 5. 
2) ~ 3) is obvious; so is 3) ~ 4) since, if P* is an extremal point, then, by Theorem 1, 
~ _ ~  is trivial under P*. 

It remains to prove: 4 ) ~  1). 
Remark that, for p s 7/: 

k 

E* [exp(2i~zpt/k)l~k ,]  = exp(Zi~pt/k-~) I ]  q0j(p) . (5.a) 
j = k - n +  l 

If p + 0, then, from the independence hypothesis made in 4), we obtain: 

E* [exp ( 2izcpt/k ) L ~ k - ,  J 
a.s, 

, E* [exp(2iTzpt/k)J = 0 .  
n---r co 

This implies that the right-hand side of (5.a) converges to 0 as n ~ o% which shows 
t h a t p ~ = 0 .  [] 

(5.2) We now give some important examples of sequences p = (Pk; k s  - N )  for 
which the condition: p, = 0 is satisfied. It may be helpful to denote this condition 
by (Co), and to recall that, from the definition of p~ given in Proposition 3 in (4.2), 
we have: 

k 

(Co) for any pe7Z*, and ks  - N ,  lim I-I ~oj(p) = o .  
n-~o~ j = k - n  
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It will be easier in this paragraph to take the set of indexes to be N instead of - N ;  
hence, from now on in this paragraph, if n e N, we shall write Cn for 4 - ,  and (p, 
for (p_,. 

The analytical condition (Co) may be written in a more probabilistic, but 
equivalent way, as recorded in the following easy statements, the equivalence of 
which is left to the reader. 

Lemma 4. The following conditions are equivalent: 

(i) for  any k e N ,  the sequence {4k + ~k+ l + " " " + 4,} converges in law, as n ~ o% 
towards a uniformly distributed random variable on [0, 1[-; 

(ii) for  any k ~ N ,  the sequence of  (k + 1) dimensional random vectors: 

( 4 0 ,  ~1 . . . . .  ~.k, { ~ 0  -~ ~1 + " " ' -}- 4 n } )  

converges in law, as n --* oe, towards: 

(40, 41 .... , ~, u), 
where U is a random variable which is uniformly distributed on [0, 1[, and is 
independent o f  the vector (4o, ~1, �9 �9 �9 , ~k). 

(iii) the condition (Co) is satisfied. 

Remark.  This concerns condition (ii) in the Lemma; in the statement of this 
condition (ii), it would not be sufficient to assume only that {40 + " "  + 4,} 
converges in law, as n ~ o% towards a uniform random variable, since this condi- 
tion is satisfied as soon as one of the {r is uniformly distributed; in such a 
case, obviously, the independence statement which is a part of (ii) may not be 
satisfied. [] 

We now give several sufficient conditions on the sequence # = (#k; k e N )  
which imply (Co); it may be remarked that these conditions are quite varied and 
numerous. 

Proposition 6. We assume that there exists a subsequence (n j) o f  N ,  and a random 
variable ~ such that: 

(law) . 
4nj = ej~, for some z j s l R .  (5.b) 

Then, either one of  the followin 9 conditions implies that (Co) is satisfied: 

(i) the law o f  4 is absolutely continuous, and I~jl , oo; 
j ~  oo 

(ii) the law of  4 is diffuse, and there exist ~ and A such that: 0 < ~ < A < oe and: 
for  all j 's,  ~ <__ ]sj[ __< A; 

(iii) 4 has a moment o f  order 2, and 

~j ,0; 2 ~ = ~  

Consequently, i f  the law of  4 is absolutely continuous, and has a moment of  order 2, 
then (Co) is satisfied if  and only if'. 

2 
E ~j = 0 ( 3 .  

i 
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Proof We first remark that, for all kl < k2, we have: 

~oj(p) < I ]  [~o(2~pe~)l , (5.c) 
I j  = n~, l = k l  

where (p denotes the characteristic function of ~. 
In the case (i), we may majorize the r ight-hand side of (5.c) by Icp(2~pekz)l which 

converges to 0, as k2 -~ ~ ,  as a consequence of the Riemann-Lebesgue theorem; 
- In the case (ii), if we define: M = sup=__<lxl__< A )p(2~px)l, 
we have: M < 1, since the law of ~ is diffuse, and the r ight-hand side of (5.c) is then 
majorized by: M k~-k', which converges to 0, as k2 ~ o% with k~ fixed. 
- In the case (iii), we have: 

1 -Icp(27~pe~-)l 2 ~ cpZe 2 ; (5.d) 
j~oo 

therefore, thanks to (5.c), the condit ion (Co) is satisfied. 
- Finally, to prove the last assertion of the Proposi t ion,  we remark that, either 
~ j e 2  < o% and then, from (5.d), we deduce that  we are in the case p,  = 1 which is 
being studied in the next Sect. 6, or ~ e 2 = o% in which case there exists a subse- 
quence of the eSs which satisfies one of the hypotheses (i), (ii), or (iii) so that  then 
(Co) is satisfied. [] 

Remark. Under  the hypothesis (5.b), and if the law of ~ is absolutely continuous,  
then the criterion: ~ j e  2 = o% which ensures that  (Co) is satisfied, has a lot to do 
with the hypothesis: ~ admits a moment  of order  2. Indeed, if, on the contrary,  we 
take for ~ a symmetric stable variable of order  c~, 0 < ~ < 2, then, obviously, (Co) is 
satisfied if, and only if: 

F ,  I~ j l  ~ = o o  . 
J 

6 The condition pu = 1 characterizes existence of strong solutions 

Following the usual terminology in stochastic differential equations, we say that 
P ( ~ , ( T ) )  is a strong solution (in law) of (T) if, under P, the equality: 

~k  = Ek, for every k, is satisfied. 

We then have 

Theorem 4. The following assertions are equivalent: 
1) Pu--  1 
2) ~u(T)  admits at least one strong solution. 
2') ~u(T)  admits several distinct strong solutions. 
3) for every P ~ u ( T ) ,  and for every k ~ - N ,  the "exchange identity" 

~k  = Y - ~  V o~k is satisfied. 
4) At least one of extremal points of ~ , (T )  is a strong solution. 
4') Any extremal point o f f , ( T )  is a strong solution. 
5) The set of strong solutions of ~u(T) cofncides with ext(~u(T)). 
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Proof These equivalences are immediate ,  by inspection of the different possible 
cases enumera ted  in Propos i t ion  5, and also thanks  to the fact that  every point  in 
~ , ( T )  is an integral of  extremal  points, as stated in Theorem 1'. [] 

7 The condition p .  > 1; more case studies 

(7.1) The  following theorem is the c o m p a n i o n  of Theorem 3 and Theorem 4; again, 
its p roof  is immedia te  by inspection of the different possible cases enumera ted  in 
Propos i t ion  5. 

Theorem 5. The followin9 assertions are equivalent: 
1) p ,  > 1; 
2) .~u(T) admits no stron9 solution, and does not enjoy the uniqueness in law 

property. 

(7.2) As an il lustration of the different cases: Pu = O, Pu = 1, Pu > 1, we now 
consider the case where all the ~j's are identically distributed. In  this case, we 
denote  by (p the c o m m o n  characterist ic function: 

(p(p) = E[exp(2i~rp~l) ] (p~2g). 

Since, in this case ,  we have: I~k_,+lcpj(p)=(~o(p))" ,  it follows 
~g+(#) = {qe2g: I~0(q)l-- 1}. 

Consequent ly,  in the i.i.d, case, we have the following e lementary  

that  

Lemma 5. I f  the ~j's are i.i.d., then: 
a) p ,  = 0/f ,  and only if, for any peN*,  and any x~lR, P ( ~ e x  + (1//))7/) < 1; 
b) p ,  = 1 /f, and only if, there exists x e l R  such that: P ( ~ s x  + g)  = 1; 
c) Pu = P > 1 if, and only if, there exists x e l R  such that: P ( ~ e x  + (1/p)Z) = 1, 

and, for any integer q such that: 0 < q < p, and any yelR,  P(~ey  + (1/q)~) < 1. 

We continue our  s tudy in the i.i.d, case by giving some par t icular  examples  of 
distr ibutions l~1(dx) ==- P({a adx) for which pu = p > 1. 

In the sequel, we shall write Zp for the set 0, p . . . ,  . 

Proposition 7. Let p ~ ~ *, p > 1. 
1) I f  ~ (or rather: {d}) is uniformly distributed on 7lp, then: pu = p. 
2) I f  ~ takes its values in ~p, and if'. m k -  P(~ = k /p)> O, for any k with 

0 <_ k <- p -  1, then: p, = p. 

Proof 1) If  ~ is uniformly distr ibuted on 2gp, we have, for any integer r such that: 
O_<r___p: 

E[exp(2i~r~)]=l-~ 'exp(2iTcrk-]= 
Pk=O \ P /  

exp(2i~r) -- 1 
=0 ,  

e x p ( 2 i 7 @ )  -- 1 

whereas: E[exp(2ircp~)] = 1, hence: p ,  = p. 
2) If mk > 0 for any k with 0 _< k < p - 1, then there exists c~ < 1 such that: 

mk> e/p > 0 (we m a y  take: c~ = ill2, where: fl = infmk). 
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Hence ,  if we def ine rn~ by: mk = e/p  + (1 --  e)m~,, the  sequence  (m~; 0 < k < p - 1) is 
a p r o b a b i l i t y  m e a s u r e  on  2gp, a n d  we m a y  write:  

E [ e x p ( 2 i n r ~ ) ]  = c~E[exp(2inrv)]  + (1 - cOE[exp(2inr~ ' )]  (7.a) 

where  v is u n i f o r m l y  d i s t r i b u t e d  on  2gp, a n d  4' is d i s t r i b u t e d  on  2g v wi th  (m~; 
0 < k < p - 1 ) .  

As we saw in 1) above ,  we have:  E[exp(2iTrrv)] = 0, for  0 < r < p, hence,  we 
have  f rom (7.a) tha t ,  for  0 < r < p: 

IE[exp (2 in r r  < (1 - ~) < 1 . (7.b) 

C o n s e q u e n t l y ,  we have:  p ,  = p, in  this  case, []  

(7.3) F ina l ly ,  l eav ing  as ide  the  i.i.d, case,  we r e m a r k  t ha t  the  e s t ima te  (7.b) m a d e  in 
the s e c o n d  p a r t  of  the  p r o o f  of  P r o p o s i t i o n  7 a l lows  us to  o b t a i n  the  fo l lowing  class 
of  e x a m p l e s  of  sequences  # = (#j ;  j e - N )  of  p r o b a b i l i t i e s  on  Tip for  wh ich  p ,  = p. 

Proposition 8. L e t  fij = inf{/~j(k); 0 =< k < p - 1}. 
Then, i f  y,o= ~ fij = o% we have: p ,  = p. 

0 Proof.  Since ~ j =  _ ~ ]?j = o% there  exists  a t  leas t  a s u b s e q u e n c e  ( n j , j  --* - oo) such 
that :  fl,j > 0, for  a n y j .  W e  m a y  o b v i o u s l y  a s s u m e  this  s u b s e q u e n c e  to  be the  who le  
set - N .  N o w ,  we d e d u c e  f rom the  e s t ima te  (7.b), tha t ,  for  0 < r < p, we have:  

--< I~ 1 -  , 
1 j = k - n + l  

a n d  the d ive rgence  of  the  series ~ j =  _ 0o flJ = + oo impl ies  t h a t  the  a b o v e  inf ini te  
p r o d u c t  conve rges  to  0, as n ~ oo. Th is  impl ies :  pu = p. []  
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