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Limiting Behaviour of the Occupation of Wedges 
by Complex Brownian Motion 

T.S. Mountford 
Department of Mathematics, University of California, Los Angeles, CA 90024, USA 

Summary. We prove a theorem which gives the liminf behaviour as 
t tends to 0 for the amount  of time a complex Brownian motion spends in 
a wedge with apex at the origin. The result is then shown to hold uniformly 
for all wedges a.s.. 

Introduction 

It is well known that a planar Brownian motion {B(t): t > 0} spins infinitely about 
its starting point in any time interval containing zero (see, e.g., It6 and McKean 
(1965), Sect. 7.11). It is also known that there do exist random times r at which this 
regularity breaks down so that for some h and some non-trivial wedge W with apex 
at the origin, 

B ( t + z ) - B ( z ) 6 W  Vt~[0,  h) 

(see Burdzy (1984); Evans (1986); Le Gall (1987)). At the fixed time point 0, however, 
the Brownian motion must enter and leave each wedge infinitely often. 

The occupation at time t for a wedge W is the amount  of time spent inside it by 
the Brownian motion up to time t: 

To~ (t) = i I(B(u)~w~du . 
0 

In this paper we attempt to describe how extreme the occupation of wedges of the 
plane can be. 

A routine application of Blumenthal's 0-1 Law shows that for a fixed wedge W, 
To~c(t) Tocc(t) 

lira sup - -  - 1 a.s. and lim inf - 0 a.s.. We shall investigate further the 
t~o t ~-~o t 

lim inf properties of the occupation of wedges and prove: 

Theorem 1. Let W, be the wedge {re/~ > 0, 0~(  - c~/2, c~/2)} and let { B(t):t  > 0} be 
t 

a planar Brownian motion started at O. Define Tgcc(t) = S I(B(,)~w~ du. Then 
0 
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l iminf  T ~ ( t )  • logPl/t  = { 0  if P >2- (2n-cOn 

t~o t if P<2(2n-c 0. 
7r 

By the isotropy of planar Brownian motion, this Theorem holds for any wedge 
with apex at the origin and angle c~. We then show in the last section that the result 
of Theorem 1 holds a.s. for all wedges of angle c~ simultaneously. 

The author  wishes to thank Professor Jim Pi tman for suggesting the problem. 

1. In this section we reformulate the result in terms of the occupat ion behaviour  as 
time tends to infinity and then reduce the problem of the proof  to looking at 
a countable sequence of random variables. 

It is well known that  if {B(u): t > 0} is a Brownian mot ion  then so is 

Y ( u ) = u B ( 1 / u )  for u > 0  

= 0  for u = 0 .  

Using this fact, we can see that Theorem 1 is equivalent to 

Proposition 1.1. Let  {B(t): t _>_ O} be a planar Brownian motion and define 

V V~(u) = - j  I~Bl~)~wo~ dv . 
u 

2 
For  p > - (2n - c O, lira inf tlogP(t) V~(t) = oo, 

'K t ~  ~ 

2 
while for  p < - (2n - c0, lim inf tlogP(t) V~(t) = O. 

~rC t ~ o o  

We now observe that (since V~(t) is decreasing) for 2" < t _< 2 "+1, 

tlogP(t) V'( t )  > t logP(t) V~(2 "+1) 

> 2" logP(2 ") V'(2"+1).  

For  n large enough, the last term is greater than or equal to 

_12,+ 1 logP(2, + 1) V,(2, + 1). 
3 

Similarly, t logP(t )V ' ( t )  < 3.2"1ogP(2 ") for n sufficiently large. Given this obser- 
vation, it is easy to see that Proposi t ion 1.1 is equivalent to 

Proposition 1.2. Let  V ~ be defined as above and let t n = 2". Then 

(i) l iminf  t, logP(t , )V~(t , )  = oo / fp  > 2 (2n  - ~) 
n ~  ~ T~ 

2 
(ii) lim inf t, logP(t ,)V~(t ,)  = 0 / f p  < - (2n - e ) .  

n ~  7"~ 
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We prove  Propos i t ion  1.2 in sections two and three, thereby establishing 
The o rem 1. 

2. In this section we wish to prove  the par t  of Propos i t ion  1.2 which refers to the 
2 

case p > - (2~ - e). This is equivalent  to proving 
7~ 

Proposition 2.1. I f p  > 2(2n - ~), then lim inf t.logP(t.)V~(t.) > 1/2. 
/-g 

n ~ o o  

To see this equivalence, note that  if Propos i t ion  2.1 holds and p is greater  than 

-r~ 2(2rc - ~)' then f~ any Pl in the interval f 2  (2re - e ) ' P ) '  

l iminf  t . log  v~ (t.) V~(t.) > 1/2.  
?I ---~ oo  

Since logP-V~(t.)--+ ~ as n--* o0, lim inf t . logP( t . )V~( t . )=  oo. 

Rather  than looking at V ~ directly, we prove  this proposi t ion  by finding 
a suitable stochastic interval (T., So) with T. > t,, and such that  the Brownian 
mot ion  B is within W~ for the entire interval. Then 

s .  1 
lim inf t. logP(t.) V ~ (t,,) > lira inf t. logP(t.) S ~7 du 

Below we define the s topping times T. and S. which will make  this p roof  work. 

T h r o u g h o u t  this section we consider p and e p > - -  to be fixed. We first 

choose cq, Pl and e( > 0) such that  

2(2z~ - cq) 2(2~z - c 0 
p > p - 3e > Pl > Pl --  3e > - -  > and c~ 1 > c~ - 3e.  (,) 

7r 

We also choose Pz to be in the interval (Pl - 3~, Pl - 2~). We now define the 
s topping times in terms of these constants: 

U. = inf{t > t.: IB(t)l > tJ/2 } 
T. = inf{t > U.: B(t)e W~, } (recall the definition of W~ given in the s ta tement  of 

Theorem 1) 
S. = inf{t > T.: B(t)e W~}, where W~ is the complement  of W..  

s~ S . - T .  
We now wish to obtain  some bounds  on the expression S dt . A key 

~~ T. xS .  
result in this venture is the following l emma which first requires some notat ion.  

Notation. r(t) = [B(t)[ and R. = r(T.) . 
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Lemma 2.1. Let P. be the probability that after hitting W~, at time Tn, the Brownian 

motion B(t) will leave W~ before additional time [loglogt,]2. Then P, < oo. 
n = l  

Proof There exists a constant K (depending on ~ and el) such that every non-zero 
point z in W~, is the centre of a square of side Klzl entirely contained in W~. Now it 
is well known (see, e.g., It6 and McKean (1965) p. 25) that the log of the probability 
that 1-dimensional Brownian motion leaves [ - 1, 1] before time t is of the order 
- 1/t for small t. We obtain the lemma using scaling and the fact that for standard 

planar Brownian motion to leave [ - 1 ,  1] 2 by time t, at least one of the 
component Brownian motions must have left [ - 1, 1]. [] 

So (by the first Borel-Cantelli Lemma and Lemma 2.1), a.s. for all n large 
enough 

~ dt 

1 

T. R~ 
T.+ 

(log log t~) 2 

R 2 

(log log t.) 2 

-- / R; 
(T~)_ T. + (log logt.)2 j 

1 (log log t~) 2 
> min 2T~' 2(T,) 2 " 

R. ~ 
T. + (loglogt.)z s. 1 

T~ T. 

1 

So we have reduced the problem of proving Proposition 2.1 to showing the 
following: 

P r o p o s i t i o n  2.2. The events 

1 1 \(log log t . )  2 T n 
- - < - -  and (D,) < - -  

(C,) (T,) = t, log v t, (T.) = t. log p t, 

satisfy P I l i ? s u p  C.w  D . I  = 0. 

In proving that C. w D. cannot happen infinitely often, we have to be aware of 
what could go wrong. If ]B(t.)l is large, then naturally T n may be correspondingly 
large, so we treat large values of [B(tn) ] separately from tamer values of IB(t.)[. Also, 
if R. is too small then D. may occur, so we have to treat smaller values of [B(t.)] 
separately. 
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Proof o f  Proposition 2.2. In this proof our choices of pl , cq, and e will still obey the 
inequalities (,) and P2 will still be in the interval (Pl - 3e, Pl - 2e). The plan of 
proof is to split the events C, and D, into three separate cases, depending on the 
magnitude of r ,(  = r(t,,)), and then to use the first Borel-Cantelli Lemma. 

Case 1. r, ~(tln/2, 3(t, log log t,) 1/2) 
Case 2. r, < tln/2 
Case 3. r, >= 3(t, loglogt , )  a/2. 

Recall that T, is the first hitting time of wedge W,, after time U,, so that in 
cases 1 and 3 it is the first hitting time of W~, after time t,. 

We further subdivide case 1 into 3 cases: 
(A) T, > t, log p2 t, 
(B) T n <= t.  log ~ t,, 
(C) Neither (A) nor (B) occurs. 

We intend to show separately that for i = 1, 2, 3, case i c~ (C, u D,) cannot occur 
infinitely often. It turns out that case 1 is the real problem and that part C of this 
case is the most difficult to prove. We now treat each of the above cases in turn. 

Case I (A) .  We wish to evaluate PIT,  > t, logP2tn]. We will need the following 
facts and Lemma 2.2 (below): 
1. Let {X(t): t > 0} be a 1-dimensional Brownian motion with X(0)~( - c~/2, c~/2). 

Then E~/2 = inf{t: IX(t)l = c~/2} satisfies 

P[E~/2 > t] <= Ke -(~/~)zt/2 

(see It5 and McKean (1965), p. 31). 
2. Recall that r(t) is the magnitude of B(t). Then 

- o r , , , =  

where we write l~(" ) for the modified Bessel function of order ~ (see Pitman and 
Yor (1982)). 

Let TXitR denote the first leaving time of a region R by a planar Brownian motion 
{X(t): t > 0}. (We suppress the superscript when dealing with the process B.) 

Lemma 2.2. For planar Brownian motion X (t) startin9 within W~, with IX(0)I = 1, 
there exist constants K (not dependin 9 on X(0)) and K'( dependin9 on X(0)) such that 
for t 9reater than one, 

Ki t  2(2~-~t) < p[-Texil w ~ ~ t ]  < K t  - 2 ( 2 ; - a )  . 

Proof. The skew product decomposition of planar Brownian motion (see It6 and 
McKean (1965), Sect. 7.15) tells us that planar Brownian motion can be written as 

r(t)e i~ where O(t) is a Brownian motion run with clock i ~ d u  but otherwise 
o r(u) 
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independent of the process {r(t): t __> 0}. Now the Brownian motion X exiting Wg is 
equivalent to 0 exiting an interval of length 2n - e. Consequently (by fact 1 above), 
given {r(u): 0 _< u _< t}, 

1( n \z ,  1 

P(TexitW: >= t) <= K e-2[2TZ~-~) !r(~ du " 

If we then use fact 2 above (a = ]X(0)] = 1 here), we obtain 

P(TexitW~ >= t) ~ J P[r(t)eb, b + db] . 

Now substituting the transition density of the two-dimensional Bessel process (see 
It6 and McKean (1965)), we see that the right-hand side equals 

= S -~ e ~ e Zt i ~  ) : d 

=< C S re-r2/2127_ ~ r 

o 
g 

N k t -  2(2n-~) 

for some C, K. This calculation uses the estimates for Bessel functions found on 
p. 77 of Watson (1966). The left-hand inequality of the lemma follows from similar 
arguments. [] 

This is by no means an original calculation; see Le Gall (1987) for similar 
calculations. 

We can now resume the examination of case I(A): 

P IT .  >= t. log m t. lB(t.)] = 
(by scaling) 

[ Gl~ IX(O)[ 1 n Te• w~, > ~ n ~ -  = 1, arg(X(0))= arg(U(t.)) 

(by Lemma 2.2 and the assumption that r(t.) <= 3(t n log logt.) 1/2) 

..[- log v~ t. q2(2=-al) 
J 

(from the definition of Pl and ~1) 
< K~ 

///1 + 6  

for some K~ and 6 > 0 independent of n. The first Borel-Cantelli Lemma shows 
that case 1 (A) cannot happen infinitely often. 
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Case 1 (B). We wish to show that neither case 1 (B) and C, nor case 1 (B) and D, 
can occur infinitely often. We see from the definitions of the events that case I(B) 
and C. are incompatible, so we have only to prove that 

R2/(log log t,) 2 __< t,(log p t,) J 

cannot happen infinitely often when T, < t,(log~t,) and r(t.)s(t~/2, 
3(t.log log t,)1/2). We now need another lemma: 

Lemma 2.3. Uniformly for Brownian motion started within wedge W~ 1 at r(O) = 1, 

Proof The image of Brownian motion by an analytic map is a time-changed 
Brownian motion which consequently has the same hitting distributions as 

Brownian motion. Consider the analytic function z ~ z2rc-cq which maps the wedge 
W~I into the left-half plane. This mapping takes Brownian motion starting at IX(0)l 
equal to 1 to a time-change of Brownian motion starting with initial point 
possessing magnitude 1. The event {r(Texit w~,) < e} is mapped into the event that 
the time-changed Brownian motion leaves the left half-plane in the interval 

Im(z)e( - e2~-% + e2~=~1). The result follows smoothly. [] 

The argument above is reproduced from Burdzy (1984), pp. 60-64. 
We are now ready to complete case 1 (B). The event 

{ R2/(l~176 t,2(T")210g pt, and T,<t,(log~t,)}= 

is contained in the event 

x / ~ , l o g  log(t,).( R.<= j .  

x / ~ , l o g  log (t,). 
By scaling and Lemma 2.3, the event R, < ~ t ,  j c~ {r(t,) > t~,/2} has 

probability 

KV-loglogt~ ] 2,-~ 
< [log (p/2-~)t.j 

Pl  g 

__< K ( l o g t , ) - ~  

K < - -  
= n 1 + 5  

for some K and 6 > 0. The first Borel-Cantelli Lemma disposes of case 1 (B). 
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Case 1 (C). If i. T.e( t . log t . , t . log"+t)'t .] (for i =  1, 2 , . . . , [ p ~ / e ] - 2 ) ,  then 
automatically C. cannot occur and D. can only hold if 

R 2 < (l~176 2 

t.logPt. 

for n large enough; i.e., if 

< t. log- ~p- (2i+ 3)e)(tn) 

R. < tl/2[logt.] ~p' 2ie)/2 

So if we can show that for each i in (1, 2 . . . . .  [Pl/~] - 2}, 

K 
t 71,~ P[T. > t .[log .J and R n <= tl/2[loggn] -(p~-2i~)/2] <= nl+~ 

for some K and 6 > 0, then we will be done. Let Pb, o{tJ/2 [1ogt.]-~P1-2/~)/2 } be the 
probability that Brownian motion starting at r(B(0)) = b and arg(B(0)) = 0 hits the 
wedge W~, with radial magnitude < tin/2 [-logt.]-~P'-2i~)/2. Conditional upon B(t.) 
(of magnitude greater than t.~/z), the left hand side of the above inequality is exactly 
equal to: 

~ P  { r (t. logi~ t.) ~ db, arg B (t. log/e t.) ~ dO, 
0 

T. > (t.logi~t.)lB(t.) } " Pb, o {t~/2 [logt.]-(P~ - 2/~)/2 } . 

Putting together Lemma 2.3 and the facts used to prove Lemma 2.2 and letting 
t~ = t.(log(t.)) i~, we majorize this integral by 

0 2t. \ t. / b 

Changing variables to u = b/(t~.) u2 reformulates the above integral as 

K ~, ue-TI~k~)~2 [r(tn)u'  ( 1 A  [l~ ) 2~1  du , 
o ( , , )  u 

Using the assumption r(t .)< 3(t.loglogt.) t/z and the fact that for x~[0 ,  1], 
g 

[I2~_~_~(x)]/[xZW~-~ ] is bounded (see Watson (1966), p. 79), we see that this last 

expression is less than or equal to 

[logt.] ' . . . .  '/~ ~ [(log log tn)l/2 72~,, 
K ~. u 2~- ~1 + 1 du. 

o L logi~12tn J 

+ ~ ue-~ 12~z~.~\(ti),/2) u2~-"~ {[logt.]-("-i"/2} z'-'' 
[ l o g t . ] - ; "  m/2 

Using again the fact that for xe [0 ,  1], [12~z_~(x)]/[xa~=~-~] is bounded and also 

the fact that the Bessel function is bounded by a multiple of the exponential (see 
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Watson (1966), p. 195), we find that the above sum is 
7r 

< K[logt , ] -P22(2~-~)  <= K ' /n  1+~ , 

thereby completing case 1 (C). 

Case 2. In this case, we need the following: 

Lemma 2.4. Let T e be the time for Brownian motion startin9 at x (Ix_l < 1) to hit the 
unit circle. T e satisfies 

K 
P[T~ > (loglogt,) 2] < 

_ = = 1 o g 2  t n 

for some K > O. 

The proof of this lemma is much the same as that of Lemma 2.1. 
We know from Lemma 2.4 and the first Borel-Cantelli Lemma that a.s. apart 

from a finite number of times, the stopping time 

U, = inf{t > t,: [U(t)l > tln/2 } 

of the Brownian motion B(u) will be less than t,(log log t,) 2. Reviewing the proofs of 
case 1, we see that even if T, is augmented by tn(1Og log (t,)) 2, we can still prove that 
P[C,  w D,] is O(1/n 1 +~). Hence, case 2 is completed. 

Case 3. The Law of the Iterated Logarithm tells us that r(t) will be less than 

3x/t log log (t) for all sufficiently large t, so we need not consider this case further. 
Collecting the results of the 3 cases, we see that C, wD,  cannot happen 

infinitely often; that is, Proposition 2.2 is proven. [] 

Recalling the discussion at the beginning of this section (up to the statement of 
Proposition 2.2), we see that we have established part (i) of Proposition 1.2. In the 
next section we prove part (ii), and therefore complete the proof of Theorem 1. 

3. In this section we complete the proof of Proposition 1.2 (and hence that of 
Theorem 1). We require the following lemma: 

Lemma 3.1. Consider planar Brownian motion {B(t): t > 0}. Let 6 > 0 be such that 
2 

(1 + 6)p < - (2~ - fl) and let s, = 2 ["l+q. Define the events 
TC 

U. p = {IB(s.)l E(Sln/2, 2S~/2)} C5 {rwp 0~ > s.logP(sn)} 

c~ {]B(s, logP(s,))l < ~ a/z log,/2 + 2(s,) } 

Then with probability one the events BP, occur infinitely often. 

Proof  By Lemma 2.2 of Sect. 2 and simple calculations, 

P~ K 
(i) P[B~,] > Clog(s,) z(z~-p) _ p[IB(s,(log(s,))p)l > sl/ZlogP/Z+Z(s,) ] > _ .  

n 

Now for n < m, the events B~ and B~ are conditionally independent given the 
values IB(s,(log(s,))~)l and IB(s,,)l. Now the conditional density of B(sm) given B(s,) 
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at point x is 

1 
sn.exp() - (Ix - B(s.)]2/2(s,~ - s.))) 

2rc(s~ 

and so the ratio of this quantity with the unconditional density at x is 

But for every 

follows. [] 

Sm exp( -- (IX l2Sn)/(2Sm(Sm -- s,)))exp(x. B(s.)/(sm -- s,,)) 
(sin - so )  

x exp( - (IB(s.)lz/2(s,~ - an))) 

Now for all Ix21=<2s~/2 and IB(Sn) I <=s~/21ogP/2+2(s.), this quantity will be 
arbitrarily close to 1 as n and m become large. This shows that 

P[B~]P[B~3  
(ii) lira P[B~ c~ B~] - 1. 

n ,  m ~ o9 

Putting (i) and (ii) together, we conclude from Chung (1974) p. 77, that 
B~ occurs infinitely often a.s.. [] 

We can now complete the proof of Proposition 1.2. Lemma 3.1 tells us that if 
2 

p < - ( 2 r r - c ~ )  then lim inftmlogP(tm)V~(t,,)<= 1. Reasoning similar to that 
TC m - ~ o o  

employed after the statement of Proposition 2.1 completes the proof. 

4. We now extend the result of Theorem 1 by proving: 

Theorem 2. Theorem 1 holds for all wedges simultaneously. 

Proof. We give only the proof that part (ii) of Proposition 1.2 holds uniformly for 
all wedges, as the proof that part (i) also holds uniformly is very similar. We need 
only consider rational a and rational p, since given p and ct as in part (ii), we can find 

rational Pl and cq such that 2(2n - cq) 2(2~ - a) < . Thus, if the theorem holds for 
7Z 7~ 

all rational a and p, it holds for all c~ and p. Let us now prove that for given rationals 
cq and Pl, part (ii) holds uniformly for all wedges of angle a I a.s.. 

2(2n - ax) 
Given Pl < , we choose finitely many wedges W 1~2, W~2~, . . . ,  W~'2 of 

7r 

angle c~ 2, where 
2 ( 2 ~ -  ~2) 2 ( 2 ~ -  ~1) 

P l  < < 
7c 

and such that every wedge of angle ~1 is strictly contained in one of the wedges. 

Then for TJo~(t) = i I{B(~)s W~} du, we have by Theorem 1 that with probability one, 
0 

lim inf l~ (l/t) YLdt )  = o .  

t ~ O  t 

wedge of angle a~, Tor max Tioga(t), and so the result 
I__<j< n 
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