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Summary. Sufficient conditions are given for a family of local times {L,"} of 
d-dimensional Brownian motion to be jointly continuous as a function of t and #. 
Then invariance principles are given for the weak convergence of local times of 
lattice valued random walks to the local times of Brownian motion, uniformly over 
a large family of measures. Applications include some new results for intersection 
local times for Brownian motions on IR 2 and IR 3. 
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1 Introduction 

For local times of one-dimensional Brownian motion, there is a huge body of 
literature for the modulus of joint continuity and for invariance principles (see, e.g., 
[Bo2]). However, when one turns to d-dimensional Brownian motion, much less is 
known. Local times at points do not exist, and the appropriate analogue to study is 
additive functionals Lt u corresponding to certain measures kt. For  continuity, there 
are a few results concerning joint continuity in t and/~, such as [-B] and [Y]. There 
are some results on the convergence of functionals of random walks to a single 
additive functional (see [Dy]),  but nothing, as far as we know, on uniform 
convergence to a family of additive functionals. 

The purpose of this paper is to study continuity properties and invariance 
principles which are uniform over large families 9)l of measures/~. We use the term 
"local times on curves" instead of "additive functionals" because (1) most of the 
examples we look at have #'s supported on curves and (2) the term "additive 
functional" is strongly associated with probabilistic potential theory; we make no 
use of this deep subject, but instead rely on stochastic calculus methods. 

Our first set of results concerns the continuity of L~ as a function of t and #. If 
gJl is a family of measures/~, each of which satisfies a very mild regularity condition, 
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we show that L~ is jointly continuous in t and #, even when gJl is a very large family. 
Largeness, here, is measured by the metric entropy of ~ with respect to a certain 
metric for the space of measures on IR a with the topology of weak convergence. 

The majority of the paper is concerned with invariance principles. We suppose 
that X i ,  X2,  �9 �9 is a sequence of mean 0, lattice valued i.i.d, random variables with 
finite variance, and possibly satisfying additional moment conditions. We let S, 
denote the partial sums. We suppose that for each/~ ~ ~YJt, there is a sequence of 
measures/~n converging weakly to #. Since the Xi are lattice valued, we suppose the 
#n are supported on n-1 /2Z  a. Then, if the #n satisfy the same mild regularity 
condition as we imposed on the # and the metric entropy of the #,, is suitably 
bounded, then the local time for SJx/-ncorresponding to #, converges weakly to 
L~ u, uniformly over # e ~0~. The size of the family 9J~ that is allowed is determined by 
the number of moments of the X~. 

Although our theorems are quite general, they also seem to be quite powerful, 
as a number of examples show. For  example, in the case of classical additive 
functionals, where the #'s have densities with respect to Lebesgue measure, we get 
continuity results and invariance principles over a large class of functions, with 
minimal smoothness assumptions. If # is a measure supported, on a curve and we 
approximate # by curves containing the support of Sj /x~, ,  we get an invariance 
principle that is uniform over a large family of curves. 

One of the most interesting examples is that of intersection local times. If 
c~(x, s, t) is the intersection local time of two independent Brownian motions, then 
c~ measures the amount of time that the two Brownian motions differ by x, x s IRE. 
LeGall [LG]  and Rosen [Ro] have shown that the number of intersections of two 
independent random walks converges to the intersection local time of two indepen- 
dent Brownian motions at a single level x when the random walk has two 
moments. This result can also be obtained as a corollary of our methods. In 
addition, if the random walk has 2 + p moments for some p > 0, we get the new 
result that weak convergence holds uniformly at all levels x. LeGall and Rosen also 
have results for invariance principles for k-multiple points. Again, with 2 + p 
moments, we can get the corresponding uniform invariance principle. 

To get some idea of the relative sharpness of our theorems, we look at the case 
of local times of one-dimensional Brownian motion. A problem that has been 
studied by a number of people is the question of an invariance principle that is 
uniform over all the levels x; see [Bo2] and the references therein. As an immediate 
corollary of our theorems, we get an invariance principle, uniform over all levels x, 
provided the Xi  have 2 + p moments for some p > 0. The reader should compare 
this with the results of [Bol l ;  there, using techniques highly specific to one- 
dimensional Brownian motion, the uniform invariance principle is obtained under 
the assumption of finite variance. See also [BK2] for further extensions. 

Our results on the joint continuity of local times of curves with respect to t and 
the measure # are given in Sect. 2. We also remark there that many of the results 
have analogues for symmetric stable processes. 

In Sect. 3 we prove a local central limit theorem. The theorem is that of Spitzer 
IS]; we derive an estimate of the error term that may be of independent interest. 

In Sects. 4 and 5, we derive exponential estimates for the tails of the difference of 
two local times for the random walk. Some of these ideas seem likely to have 
applications elsewhere: the theme is that if one wants weak convergence or 
exponential estimates for additive functionals, one only has to compute first 
moments. 
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In Sect. 6, we give our invariance principles, with different versions depending 
on how well-behaved the tails of the X~ are. The fewer moments, the smaller the 
family 9)l that is allowed. If one has only finite variance, one can still get conver- 
gence of the finite dimensional distributions if d __< 3, but not (by our techniques) 
uniform results. 

Finally, we give our examples, already discussed above, in Sect. 7. For  the 
reader primarily interested in the applications, we suggest reading Sects. 6 and 
7 first. 

2 Construction and joint continuity 

Let Zt be Brownian motion on d-dimensional Euclidean space IR e. Let g be the 
Green function of Z~ if d > 3. If d = 1 or 2, g shall denote the l-potential density of 
Z,. So 

f ~ps(x ,y)ds  y )  = o 

! e-~p~(x, y)ds 

if d > 3  

if d = 1 or 2 

where ps(x, y) is the transition function of Z. We define the potential of a measure 
# by 

g#(x) = ~g(x, y)p(dy) . 

Then it is well-known [BG] that if the map x ~ g#(x) is bounded and continuous, 
then there is a continuous additive functional {L~} so that 

Mu~ = g#(Zt) - g#(Zo) + L~ (2.1) 

is a mean zero martingale. L~ is called a local time of Z on the support of g. 
If g)l is a family of positive measures on 1R d, define 

dE(#, v) = sup Ig#(x) -- gv(x)], #, v~9~ .  
x e N  a 

Define HG(e) = He  (5) to be the metric entropy of ~ with respect to the norm de. 
In other words, Ha (e) = log No(e), where No (e) is the minimum number of de-balls 
of radius e required to cover ~ .  If 

He(x) < c2.1x -r, x < 1 , (2.2) 

for some r, we say that the exponent of metric entropy of H G is < r. 
We then have 

Proposition 2.1 I f  g# is bounded and continuous for each #~gJ~ and if de(p, v) < 1, 
then 

IW s u p I L ~ - L ~ I _ > 2  <=c2.2exp(--;t/c2. 3 , #, vegJl, y~iR d ' 
\ t__<l  

where c2.3 depends only on s u p ~  ]] g# ]l ~o . 
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Proof Let U~ = g # ( Z t ) - g # ( Z o )  and similarly for U;. Note l U g - U ~  < 
2do(#, v). Write Nt for M~ - M~. Applying It6's formula, 

t t 

. . . .  U~)d(L~ -- L~) (U~ U:) 2 2~(U~ u U~)dN~ 2~(V~ - ~ 
0 0 

+ [ U " -  U ~, U " -  U~]~. 

Since [ U  ~ - U ~, U ~ - U~]t is IN,  N ] , ,  we take expectations to get 

IE'N~ - lE' [N, N]~ =< 4(dG(#, 0) 2 + 2do(p, v)]E'(Lf + r : )  

< 4(do(#,  0 )  2 + 4sup  Ilg# IIoo do(p, v) 

< c2.4dG(#, v) (2.3) 

for bounded stopping times z. 
Consider arbitrary bounded stopping times T > S. Then denoting the shift 

operator by 0,, 

1EY{INr - Ns[ IJ~s} < I-IEY {INr - Nsl2 l~s}]  m 

=[ ]E '  { [N, N ] r  - EN, N ] s l ~ s } ]  lie 

< [lg,{[N,N]o~oOslYs}-I m < suplg~[N,N]~o 
x 

__< c~{](d~(#, v)) ~/2 (by (2.3).) 

Using (2.1), we get 

IE' {I(L~ - L}.) - (L~ - L})I lYs} < (4 + c~(~)(da(#, 0 )  1/2 �9 

Since L~ and L~ are continuous, they are predictable, and therefore an application 
of [DM] p. 193, completes the proof. [] 

Theorem 2.2 Let ~ be a family of positive measures on 1R d. Suppose 
(i) SUpx~,supu~o~g#(x) < 0% and for all #sgJl, x ~ g#(x) is continuous; 

(ii) HG has exponent of metric entropy < r < 1/2. 
Then there exist versions of L~ such that (t, # ) ~  Lu~ is almost surely jointly 
continuous. Moreover, 

IL~ - L~I 
l imsup sup sup 6~/2_ ~ < 0% a.s. 

~ - ~ 0  0 _ < t < l  p, veTk 

Remark 2.3 One could give an integral condition that Ha needs to satisfy and also 
a more precise modulus of continuity, but even in the case of one-dimensional local 
times our result here is not sharp. This reflects the fact that Proposition 2.1 yields 
exponential tails for Lt u -- L[ and not Gaussian ones. 

Proof of Theorem 2.2 By the estimates of Proposition 2.1 and a standard metric 
entropy argument (cf. [Du]), we get the desired modulus of continuity for (t, #) 
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restricted to [0, 1] x D, where D is a countable  dense subset of 93t. Define 

s = lim L~ ~ . 

#nsD 

In view of Propos i t ion  2.1, s = Lt", t s  [0, 1], a.s. In particular,  the potential  
of s is the same as that  of L~, hence L~ also corresponds to the measure #. 

The /2 u then, are versions of L~ satisfying the desired modulus  of t ~  
continuity.  [] 

Define another  metric on our  family of measures 99l by 

dL(#, v) = sup ~ d #  - ~ d v  , /~, v ~ l l ,  

where ~ is the collection of all functions 0:IRa w_~ IR~+ such that  
[I ~ []oo v []VO I] oo =< 1. It is not  hard to show that  the dE metric metrizes weak 
convergence of probabil i ty  measures. (This metric is equal to what  is sometimes 
known as the bounded Lipschitz metric.) 

Example 2.4 Suppose d = 1. Consider  point  masses, cSx and 6~, on x and y, 
respectively. Then  dL(6x, fir) = s u p ~ o  IO(x) -- ~(Y)I < Ix -- Yl /~ 2. It is easy to see 
that  we actually have equali ty here. 

Example 2.5 Fix two maps F~: [0, 1]--* IR a, i =  1, 2. Define for all Borel sets 
A __G IRa, the measures 

#i(A) = [{0 N t <_ l :Fi( t )~A}[ , 

where ].[ denotes Lebesgue measure. 
Choose ~ ~ ~. Then  

i = 1 , 2 ,  

1 i (t)) dt ~ d # 1 - j ~ d # 2 t =  ! ~ ( F l ( t ) ) d t -  ~(F2 , 
0 

1 

and so dL(#l ,  #a) =< ~([Fl( t)  -- F2(t)[ A 2 ) d t ,  
0 

much as in Example  2.4. The right hand side is equivalent to the Lo-metric 
corresponding to convergence in measure. 

Definition 2.6 Let  93l be a family of positive finite measures on IRa such that  for 
some 7~IR 1 and constant  c2.s = c 2 . 5 ( ] ) ) ,  

s u p s u p # ( B ( x , r ) ) < c 2 . s r  a-z+v, r <= 1. 
#~ffR xE~Z a 

We call the largest such 7 the index of ~ .  If 9)l = {#o }, then we say that  y is the 
index of #o. 

Proposition 2.7 I f  index (9)l) > 0 and sup~#(iR d) < 0% then IIg#H~ < ov and g#(') 
is HOlder continuous for each # ~ 9"J~. 
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Proof Consider the d > 3 case first. Then g(x, y) = edlx - y[2-,~ for some ca. So 

g#(x) = Ig(x, y),u(dy) = j" g(x, y)#(dy) + 
B(x, 1) 

<= celt( IRe ) + I g(x, y)#(dy) , 
B(x, 1) 

where B(x, r) is the ball of radius r centered about x. 
But if 0 < ? < index(gJl), 

I g(x ,y)#(dy)= ~ I 
B(x, 1) 

g(x, y)#(dy) 
B(x, 1 )c 

g(x, y) #(dy) 
j = 0  2 -c/+1) < I x -  Yl < 2 - j  

< c,1 ~ 12-(J+I)I2-d#(B(x, 2-/)), 
j = 0  

=_ C2. 6 ~ ,  2 - j ~ '  < oo  . 
j = 0  

The d = 2 case is similar, since g(x, y) < -c2.7 log L x -  y{ for ] x -  Yl < 1. The 
d -- 1 case is also easy and is done in a similar fashion. 
To show H61der continuity, consider the d > 3 case again. Then for e > 2]x - yl, 

]g#(x) - g/~(Y)l < .(!,~)g(x, y),u(dy) - .(~.o J" g(y' z),u(dz)[ 

+ B(~)c (g(x, z) -- g(y, z))#(dz) = 12.4 + 112.,,. (2.4) 

The second term is estimated as follows. 

112.4 5 ~ Ig(x , z ) -g(Y ,Z)[  
B(x,e) c 

< c 2 . s l x - y l  ~ ( I x - z l  v l y - z l y - d # ( d z ) < c z . 9 ~ l - a l x - y l  �9 (2.5) 
B(x,z) ~ 

For the first term of (2.4), 

12.r < ~ (g(x,y) + g(y,z))#(dz) 
B (x, 0 

= ~ I (g(x, z) + g(y, z))#(dz) 
j=O 2-(J+1)8 <2 Ix - el < 2-J8 

__< 2sup ~ ~ g(e,z)#(dz) 
a j =  - 1 2-c~+1)e < 1cr z I < 2-J~ 

< c2.1osup ~ (2-(J+l)e)2-a#(B(~, 2-J~)) 
a j = - I  

< c2.11 ~ 2 -jee~ < c2.aze ~ �9 (2.6) 
j__> - 1  
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Put t ing (2.4), (2.5), and (2.6) together  gives the existence of a constant  c2.13 such that  

sup [ 9 # ( x ) -  9#(Y)[ < ca.13f & l - a  + ~t ,  ~ > 2~ . 
Ix-rl_<a 

Therefore  letting e = c2. t 4 6 t/(r + d- ~), we get, 

sup lOg(X) - -  g#(Y) l ~ C2.15  6 y / ( e + 7 - 1 }  

Ix-yl <a 

--+O a s 6 ~ 0 .  

This proves the proposi t ion for d > 3. The cases when d < 2 are quite similar. [] 

The following relates the two metrics, dL and d~: 

Proposition 2.8 I f  # and v are two positive finite measures on IR e so that 
index({#,  v}) > " />  0, then for  some constant c2.16 depending only on 7, 

dG( ,U,  •) ~ C2.16 [dL(#, V ) ]  l 

where l = 7/(d + 7 - 1). 

Proof. Take  d >= 3: 

de(#, v) = sup I9#(x) - gv(x)l 
x ~ P. a 

_-< sup ~ 9 ( x , y ) ( # - v ) ( d y )  + sup ~ 9 ( x , y ) ( # -  v)(dy) 
x ~ ' ~  a B(x,e) x ~ , .  d B(x ,e)  ~ 

= I2.7 q- I 1 2 . 7  �9 (2.7) 

We proceed to estimate each term on the right hand  side of (2.7) separately. 
Consider  the second term first. 

112.7 = sup Ca ~ IX - -  y [ Z - d ( f l  __ v)(dy) 
x E N .  a B(x ,  e)~ 

But Co(Y) - I x  - yl 2 -a /x  e 2-a satisfies IIr _-< ~2-d and V~'o I1~ < c2.17~ l - d  
for a constant  c2.1~. So 

sup 4 I ~ t d ( # - v ) "  11@1t~ ~ ~ 2-e, ,l V O Jim ~_ C2.17/3 i - d ~  I I 2 . 7  <=C2 .18  
x E ~ .  a L ) 

<= C2A9el-adL(#, V), e ~ 1 . (2.8) 

We estimate the first term that  appears in (2.7) exactly as in (2.6) to get 

I2,7 =< C2.20 gy �9 (2.9) 

Put t ing (2.9), (2.8), and (2.7) together,  and letting e = d r ( # ,  v) ~/(a+7- ~), 

do(N, v) =< r E '~y "-}- dL(#, v)e l - d ]  

= C2.22 [-dL(#, v)] t . 

The  cases when d < 2 are much the same. [] 
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Now let HL(e) be the metric entropy with respect to metric dL. Then Proposi- 
tion 2.8 and Theorem 2.2 together yield the following 

Theorem 2.9 Let ~ be a family of positive finite measures on IR a. Assume that index 
(93l) > 7, and let l =  7/(7 + d - 1 ) .  I f  the exponent of metric entropy of HL is 
< r < I/2, then there exist versions of L~ such that almost surely, 

[L~ - L~'I 
l imsup sup sup ~t/2-~ 

~ 0  0 ~ t < l  # ,v  ~ ~0~ 
dz(,~, v) <-_ 

< 0 0  . 

Remark 2.10 Theorem 2.2 holds for many other Markov processes as well as for 
Brownian motion. For  example, if Zt is a symmetric stable process of order c~ the 
statements and proofs of Proposition 2.1 and Theorem 2.2 go through with only 
minor changes. 

In the stable case, g(x) = cz.23 Ixl ~-d. Just as above, gkt will be continuous and 
bounded if/~(B(x, r)) < c2.z~r a-~+~ uniformly for x ~ IR a, r < 1. Proposition 2.8 still 
holds provided we here define l by l = 7/(7 + d -  c~ + 1). Similarly, with this 
change in the definition of l, Theorem 2.9 holds as well. 

3 A local central limit theorem 

In this section, we derive a local central limit theorem, which is that of Spitzer IS] 
pp. 76-78, but we use the additional moments to get better estimates of the error 
terms. We apply this to the problem of estimating the potential kernel of a random 
walk (cf. INS] and [BR, Sect. 22]). 

Let X1, X2, �9 �9 �9 be i.i.d. IRa-valued random vectors. Here Xj = (X) . . . . .  X~). 
We consider the case d > 3 for a random walk, S, = ~ =  1 Xj. Assume the X[s take 
values in 2U, are mean 0, have the identity for covariance matrix, are strongly 
aperiodic, and have finite third moments. Let qS(u) = IE exp(iu-X1), where a. b is 
the usual inner product. Also let p,(x, y) = IPx{S, = y}. Then we have the following 
local central limit theorem: 

Proposit ion 3.1 There is a constant c3.1 such that for all n, 

sup Ip.(x, 0) - (2rcn) -a/2 e-lXlZ/2nl <- c3.1 (1 + IE IX113)n -(a+ 1)/2(10g+ n) (a+ 3)/2 . 
x 

(Here log+(n) = log(n) v 1.). 

Proof We follow the proof of P9 given in IS] pp. 76-78 closely. Let 

E (n, x) = [ p, (0, x) - (2nn)- a/2 e - I x 12/2, I �9 

Then 4 

sup(2nn)a/2E(n, x) < (2n) -a/2 ~ [(.~) 
x j = l  
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where 

I~  ) -~- sup ~ (~b"(c~n -1/2) - e-I~t;/Z)e-iX'~/x/~dc~ , 
x I~[<A. 

I(2 ") = sup I ~ e -1~?/'2 - ix.~-l/2 d~ , 
x I I~I->_A. 

I(3 ") -- sup [, ~"(c~n-1/2)e-iX~A/~dc~ , and 
A,_-< = _-<rx/~ 

1(4 ") = sup [. 4)"(en-1/Z)e-iX~/',/~dc~ I . 

Here cg=  {xelRd:max~=<elxil <re} is the unit cube of side re. Fur thermore ,  

A, = ~ for some large/7 and r > 0 is a constant  that  is small. We proceed 
to estimate each term separately. Take n > 1. 

I(~)<=n [. ]O(om-1/2)-e-1"?/znldc~ 

since for all a, b ~ IR ~, 

[ l a l " - [b [ " ]  __< n t a -  b]([a] v [b[) "-1 . 

By definition, A, /x  ~ ~ O. So a Taylor  expansion implies 

qS(~n -1/2) = 1 - [ c~12+  El(c~, n) 
g/ 

e -l~12/2n = 1 - 1~[2 + E 2 ( ~  , r/) 
T/ 

and for all [c~[ < A,, E/(c~, n) < c3.2(1 + IEIX113)(1c~13/n3/2), i = 1, 2. 
Therefore  there exists a constant  c3.3, independent  of c~ ~ {x ~ lRd: ix] < A,}, so 

that  

sup [qS(~n -1/2) - e -1~1~/2" ] < c3.3(1 + IEIXI[3)A3n -3/z 
I~1 __<a~ 

C3.3~fl3/2(1 + ]glx1]3)n- 3/Z(togn) 3/z . 

Therefore,  

Next,  

1(1") <_-- c3.4(1 + IEIX1 t3)nAdnn-3/2(logn)3/Z]B(O, 1)l 

= c3.s(1 + IE[Xa [3)n-1/Z(logn)(a+3)/2 . ( 3 . 1 )  

1(2 ") _-< ~ e-1"12/2dc~ < c3.6 n-# (3.2) 
I~I_->A. 

The upper  bound  for I~ ") and I(4 ") is done exactly as in I-S]: for r small enough 

1(3 ") < 2n -# . (3.3) 
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Also, for r small enough, there exists 6 e (0, 1) so that 

I~4 ") =< (1 - a)"[{e: Ic~] > rx/n; c~,r  

<= ca.vn -~ , (3.4) 

where I B[ is the Lebesgue measure of the Borel set B. Putting (3.1)-(3.4) together, 
the proposition is proved. [] 

Recall that X1 is subgaussian if there exists r > 0 such that for all t > 0, 

Ee~lX~ I < 2et~r. (3.5) 

Define the potential kernel for the random walk: 

G(x, y) = ~p.(x, y).  
n 

Recall d > 3 and hence G is well-defined and finite. Also recall that for some 
constant cd, g(x, y) = ed[X -- y[2-e. Then the above proposition implies: 

Proposition 3.2 Assume the X ' s  are subgaussian. Then there is a constant %.8 so that 
for every x, y e Z ~, 

rG(x, y) - g(x, y)] < C3.s Ix - yll-d(1og + IX -- yj ) l+d.  

Proof  By translation, it is enough to do this for y = 0. Clearly we shall only need 
to consider the case I xL >= 1. By Chebyshev's inequality and (3.5), for all x e IR a, 

IP{IS,] _-> Ixl} < 2exp( - Ix[Z /4nr )  �9 (3.6) 

Letf(x)  -- I_kl~gFxl J k large. Then 

f (x) f (x) f (x) 
E(n, x) < ~ p.(O, x) + ~ (2rcn)-a/2e -Ix12/2n �9 

n=l- n = l  n = l  

We bound each term on the right hand side of (3.7) separately: 

f (x) f (x) 

Z p.(O,x)< Y~ n'{Is.I > Ixl) 
n=l n=l 

f (x) 

< ~ 2e -Ixl2/4"r (by (3.6)) 
r t= l  

< 2f (x)exp(  !x12 ~ < Ix[2 
= 4 r f ( x ) / =  %.9 kloglxl 

<__ Ixl 1-d i fk  is large enough.  

Similarly, 
f (x) 

_ _ . l x l - ~ / 4 r  

(3.7) 

(3.8) 

(3.9) Z (2nn) -e/ze-lxl2/2" < Ix l l -d  i fk  is large enough, Ix[ > 1 . 
t~=l 
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Then (3.7), (3.8), and (3.9) imply that if k is large enough, 

f (x) 
2 E(n, x) ~ 2 tx [  1 - a .  (3.10) 

n = l  

N o w  we estimate Y',,%~x)E(n, x) as follows: 

E(n,x)  < c3.,o Y, n-{a+*)/E(log+ n) ~+3~/2 (Proposi t ion 3.1) 
n> f ( x )  n>=f(x) 

< c3.11 ]x l l -a ( log  + [xt) a+l (3.11) 

Put t ing (3.11) and (3.10) together implies 

~, E(n,x)  <_ c3.121x[1-a(log + Ixl) d+l 
n>__l 

This in turn implies 

a ( 0 , -  < + txl) d+~. X) E (27zn)-d/e e-  lX12/2n 1 c3.~21xll-a(log + 
n>l 

However ,  it is easy to show that 

, ~  (2rcn)-a/2e -1~12/2" - #(x, O) < C3.131X] 1 ~d(1og ~ ixl) a+l 
1 

This proves the proposition. [] 

Corollary 3.3 Suppose d > 3 and the Xi's are subgaussian. Then 
(a) G(0, x) < Ca.14(1 A Ixl2-a); 
(b) For each fie(O, 1), there exists c3.1s = c3.1s(fl) such that for all x, ye2~ a - {0}, 

{ x -  yl t x -  yl ~--~ 
IG(0, x) - G(0, y)[ < c3.~S(ixl A lyl) a-* + e3 lS( Ix  I /x lyl) a - l - e  " (3.12) 

Proof. 

G(O, O) = po(O, O) + p,(O, O) < 1 + 2c3.16 n-a~2 <= c 3 . 1 7  , 

n = l  1 

by Proposi t ion  3.1. So part  (a) follows by this equat ion i fx  = 0 and by Proposi t ion 
3.2 if Ix[ > 1. 

No te  that par t  (b) is trivial if x = y. So let us exclude this case. By Proposi t ion 
3.2, if f ie(0,  1), 

Ia(0, x) - g(0, x)] < c3.18 Ixl -~d-l-p~ , 

and similarly for ] G(0, y) - 9(0, y)[. But 

19(0, X) - -  g(0,  y)[ ~ C3.19]Y - -  Xl/(lx[ A ly[)  1 -d  

Since [x - y[ > 1, part  (b) follows by the triangle inequality. [] 

Remark 3.4 Note  that  if C o v ( X t )  = Q for Q any positive definite matrix, Corol lary 
3.3 still holds. To see this, one merely needs to replace the proofs of Proposi t ions  
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3.1 and 3.2 with ones where the identity matrix I is replaced by Q and the density of 
a 9l(0, hi) r.v. is replaced by that of a !R(0, nQ) r.v. (cf. IS]). 

Remark 3.5 The assumption that the random walk be strongly aperiodic may be 
removed by the method of Spitzer. 

4 Moment bounds 

In this section we consider the analogues of some of the results of Sect. 2 with 
random walk in place of Brownian motion. Assume that d > 3 and that the X's are 
such that conclusions (a) and (b) of Corollary 3.3 hold, Fix n. Let #, be a finite 
measure supported on n- 1/2Za. Let 9iR, be a family of such measures. 
Let us define index,(92il,) to be the largest 7 such that there exists c4.1 with 

s d-2+', s~ [1/2x/n, 13, #, s!lJl,. (4.1) #~ s)) < c4.1 x~lR", 

Note, taking xffn-1/2~ d and s = l/2xfn, then in particular 

#,({x}) <~ cs.a n 1 -(a+~)/z < c4.1 n ~ -d/2 . (4,2) 
Define 

k-1 
L~'"" = n a/z-' E # , ({SJx /n})  �9 (4.3) 

j=O 

Proposition 4.1 I f  index,( {ix, } )>  7, then supxlE~L~ "" < c4.2, where c4.z depends 
only on #,(lRd), 7, and the constant c4.1 of(4.1), 

Proof By translation invariance, it suffices to suppose x = 0. 

IE~ u"=-na/2-1 ~ Z N,({Y/x/n})pj(O, yl 
j=O yeZ" 

= n~/2-~ E o(o,y)~.({y/~/;}) 
y e ~  ~ 

<=c4 s E 
k=O 2k<lyl<2k+1 

+ n~/~-i ~(0, 0),,, ({0}) 

__< r Z Z"~-%,(B(0, 2~+'/,/;)) + n'/~-~(0, 0>.({0}) 
k=O 

= I4.s + II4.5 (4.5) 

II4.5 is bounded using (4.2) and Corollary 3.3(a). For 14.5, note 

k=O 

2 k <=,/. 

q- C4-.5 E 2ktZ-d) ~ c 4 . 6 n l - d / 2  " (4.6) 
2k>.~ 
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Corollary 4.2 Let y e n - ~ / 2 ~  ~. I f  g~ is #. restricted to B ( y , r ) - { y } ,  then 
]EY l-n,u,~ < r ~. ~ o  ~ C 4 . 7  

Proof The proof  is very similar to that  of Propos i t ion  4.1, except that  we may omit 
114.5 and in estimating I4.s in (4.6), we need only look at ~2~ ~ ,.j~. [] 

Recalling the definition of dL from Sect. 2, notice that  

dL(#,, v~)= s u p {  ~ ~(y/ ,~-n)(#~--  v , ) ( { y / x f n } ) : ~ 9 ,  } . 
Y 

Taking ~b = c4.s/,~fn at x s n - 1 / 2 ~  a and 0 on B(x, 1 /2~-n / ,  we see 

[#,({x}) - v,({x})t < c4.9,,flndL(#,, v , ) ,  (4.7) 

Lemma  4.3 Suppose IIg'll~ =< 1, /~(lRa),v(lRd)<c4.1o, and ]~p(x)-~b(y)l _< 
ix - yl ~. Then I~. ~P(y)(l~ - v)(dy)] < c4.11(dL(#, v)) ~. 

Proof  Let ~o be a smooth,  nonnegative,  radially symmetric function with compact  
suppor t  and ~a,~o(x)dx = 1. Let  q~(x) = e-dq~(x/e), ~ = ~p* q~ for e > 0. 
First, 

10~(x) - ~P(x)] = j [ ip (x  - y) - tp(x)]cp~(y)dy 

< ~]y[~o~(y)dy = e~ty[~q~(y)dy ~ c~.~2g ~ . 

Next,  let u be a unit vector, V , f =  Vf.u.  Since [,q~(x - y )dy  is constant,  then 

Vuqo~(y)dy = O . 

So 

I v.~=(x)l = I S O ( x  - y)V.cp~(y)dyl = [j'[tp(x - y) - r V.qo~(y)dy[ 

< ~ly[%-(e+l)cp(y/e)dy < c4.13~ ~-1 . 

Hence, 
I ~ O d ( k t -  v)l < ~1~ - O~]d(/2 + v) + IS led(#  - v)l 

< e4.12~(/~(IR ~) + v(IRd)) + c4.13g~-ldL(#, v). 

Now take e = dE(#, v). [] 

Let 9Jr, be a family of measures supported on n -  1/22~d with index,(~t ,)  > 7. We 
now obtain: 

Proposition 4.4 For each fl > O, 

sup sup [IEX(L~ u" -- L~V~)[ <= C 4 . 1 4 ( d L ( ~ n  , Vn))l~ , 

where 
l~ = 7 ( 1  - fl)/(d + 7 - 1  - f l )  ( 4 . 8 )  

and e4.14 depends on c~.1, y, fl, and sup~./~,(IRe). 
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Proof.  By translation invariance we may suppose x = 0. Write 6 for dL(/~,, v,), 1 for 
lo. Let  GK(y)  = G(O, y ) / x  K .  As in (4.5), 

~ ~  ~ - ~~ = nd/2-1 Z [G(0 ,  y ) -  G , , ( y ) ] ( . .  - v . ) ( { y / . f n } )  
y~0  

+ n~/2-1Z 6K(y ) ( , .  - v.)(y/ . . f~) 
y 

-4,- t~ d/2-1 [G(0, 0) -- GK(0)](/~, -- v,)({0}) 

= 14.9 q- 114.9 + 1114.9 �9 (4.9) 

No te  G(O, y)  - GK(y)  = 0 if [Yl > c4.15 K1 / (2 -d ) .  So, writing ( = K 1/(2-a), 

14.9 < n d/2-1 Z G(0, y)(#,  + v , ) ( { y / , ~ } )  
0 < ]y] < c4.1s( 

= 2(IE~ + IE~ v-~) __< 4c4.16r ~ , 

w h e r e  r = c4.15~/,,/n. 
F r o m  Corol lary  3.3(a), (b) it follows that  if x ~ n - 1 / 2 2 U ,  then 

G(O, x % ~ )  ~_~ C3.14FlX--d/Zlxl2--d , 

and hence 
lGK( XXfn)l ~ C4.1snl-a/2 ~ 2-~l . 

Similarly, if x,  y ~ n -  1/27Id, then 

[GK(X~)- GK(y~)[ ~ r ~d-1-fl + ~----L--: [ " 

Define O(x) = n a/2 - 1 G K ( x x f n )  for x ~ n -  1/2~d and define O(x) by some suitable 
interpolat ion procedure  if x C n  -1/zTzd. Looking  at the cases ( > Ix - y[ and ~ < 
Ix - y] separately, we see 

IO(x) - ~'(Y)I ~ (74.19 ~ - ' - i " Z ~  A �9 

- 1  ' , ' d  - 1 Applying Lemma 4.3 to c4.~9~ -P~,  we get 

114.9 < c4.2o ~ d - l - :  " 

Finally, by (4.7) and (4.2) 

1114.9 <= C4.21 (n  a/2-  1/26 A l"1-7/2) . (4.10) 

Looking  at the cases when n <a- ~)/2 is greater  than and less than n -~'/2 separately, 

1114.9 <= C4.22 (~l. 

Choose  K so that  ~ = (61 -Pn#2)  1/(~+a-l-p) .  So 

14.9 -+- II4.9 + 1114.9 <= c4.23n (y/2)[y/(a- 1 +~-~) -  11fi7(1 -p)/(a- 1 +~-~) + C4.22~l 

C4.2,1.(~ l~ 

s i n c e n > l a n d T / ( d - l + 7 - f l ) - l < 0 .  [] 
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5 Martingale calculus estimates 

As in Sects. 2-4, we restrict attention to the case d > 3. Assume again that the 
conclusions (a) and (b) of Corollary 3.3 hold. Let 99l, be as in Sect. 4. Fix #,, v, e 99l, 
and let 

A~ = L~ "u" - L~, '~", U"(x) = IEXA~ . 

There exists a mean 0 martingale M~ so that 

u ~  =- u " ( s ~ )  - u " ( S o )  = M ~  - A ~ .  

Define B~ = maxa__<,, I A~ ]. We proceed to estimate IEY]B~ t z. 

Proposition 5.1 There is a constant  cs.~ = c5.~ (9X,) so that 

sup sup ] E Y [ B n  l 2 ~ C5.10/t~ 
n >-_ 1 #. , v n ~ SJJ?tn 

dL(#., v.) < 6 

where I a is defined in (4.8). 

Proof.  Fix n. We shall temporarily drop the n superscripts. Notice that 

]Ak] 2 ~ 2lUkl 2 + 2lMkl 2 

<: 2c2A4~ 21~ + 21Mkl 2 (Proposition 4.4), 

where 3 = dL(#, v). Hence 

IE y [ B~o [ 2 < 2c].14 321~ + 2IE r sup ] Mk 12 
k 

< 2c~.14c52/~ + 81EY[M. t 2 (Doob's inequality). (5.1) 
But 

IMp{ 2 ~ 2 l U l l  z + 21A~I 2 

<= 2c2.14621~ + 2kA~f 2 

Therefore (5.1) yields 

(Proposition 4.4). 

]EYlBov [2~ 18C2.14~2t~ + 161EY[A~I2. 

Letting A A  k =-- Ak + ~ -- Ak,  note that 

2 
= (Ak+l -- AZk) = ~ A A k ( A k + I  + Ak) 

k=0 k 

= ~ A A k ( 2 A k + t  -- AAk)  
k 

= 2~ ,  Ak+~ AAk - Z ( A A k )  2 . 
k k 

(5.2) 
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So 
A~ = 2 ~ ( A ~  - Ak+~)AAk + ~,(ZlAk) 2 . (5.3) 

k k 

= I s . 3  + I I s . 3  �9 

IEYI(5.a)= ZIEY{IE(A~o-- Ak+~I~-~k+~)AAk} ( ~ = a { X ~ , .  . . , X i } )  
k 

= ZIEY{IESk+~[AoD]AAk} 
k 

_-< 2c4.1,~St:~IEYlAAk] (Proposit ion 4.4) 
k 

__< 2c4.~46tdE~(L~; u + L~; ~) 

< 4c~.1~c4.~6~#. (Proposit ion 4.1). (5.4) 

Next, using (4.2) and (4.7), 

supt(# ,  - v,)({x})l < c , .2(x/n6 A n~-(d+')/2). 
x 

So 
] E Y l / 5 . 3  ~-- Hd-2]EY 2 [(#n -- Vn)({Sj+l/Nff-n})l 2 

J 

< n dj2-1 sup l(~. - v . ) ( { x } ) I m ' n ~ / = -  i E ( ~ .  + v o ) ( { s j + , / , f n } )  
x j 

< Cs.z [n (~- i)12~ A n -s/2] [EYL% "~ + ]EYL% TM ] .  

By the argument  following (4.10) and Proposit ion 4.1, 

lWIIs.a <= c5.3g/ . (5.5) 

Adding (5.4) to (5.5), we get Proposit ion 5.1. [] 

Using this, we prove the following exponential estimate: 

Proposition 5.2 For all xe(O, or), all fie(O, 1), and all ~ <= 1, 

{u } { sup sup IW s p[L[ '  "~ - L~' TM [ > x _-< 2 exp 
n>__l #~, v~ E ~)l~ 

dL(~,, v.) < 

Proof. Define A"(t) = A'~,j and B7 = sup~ <t IA"(t)]. Then t ~-~ B~' is predictable and 
increasing. Since t ~ B~' is also a sub-additive functional, Proposit ion 5.1 and the 
Cauchy-Schwarz inequality show that  

m,{~"~  - ~ I : ~ }  -<_ , f ~ . ,  a z~ �9 

Therefore, by [ D M ]  p. 193, for every 6 __< I, all x > 0, and 2~(0,(c5.1(~I~)-~/2/8), 

sup sup ~Ye ~ w 4 I < ( l - 2 ~ 5 , ~ a 1 ~ )  - I .  
n> 1 #.,v.E~lg~. 

dt.(,u., v.) ~ r 
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Hence 
sup sup IP'{IB~I > x} < e-)~(1 - ; ~ ) - ~  
n__>l #~,v. egJl~ 

d~(#,, v,) < 6 

Letting ,~ = 1 / 1 6 ~ ,  we get the result. D 

6 Invariance principles 

Throughout this section assume that X1, X2,. �9 �9 are mean zero random vectors 
taking values in 7Z e and that Coy(X1) = I, the identity matrix. Further moment 
conditions will be imposed later. Let S, = ~ . =  1 Xj. Let 93l be a family of positive 
measures on IR d. Suppose for each / ~  there exists a sequence of positive 
measures, #, =/~(n) converging weakly to /~, and for each n, #, is supported on 
n -  1/27~d. Let 

~.  = {~(n): ~ e ~ } .  

Hypothesis 6.1 
(a) There exists c6.1, independent of n, such that #,(IR d) < c6.i, #, effJl,; 
(b) for some 7 > O, there exists c6.2 ~(0, o0), independent of n and #, such that 

sup p,(B(x, s) ) < C6.zS ~- 2 +'~ if l /2 , , /n  < s <_ 1, n > 1,#,egJ~,; 
x 

(c~) there exists e6.3 and e > 0, independent of n, such that if H[ is the metric entropy 
of gJl, with respect to dL, then 

HT~(x) <= e6.3 X - ( l r  HL(X ) < 06.3 X - ( l r  X ~ ( 0 ,  1) 

In what follows we will formulate a number of invariance principles. See [Bi] for 
the appropriate definitions concerning weak convergence on metric spaces. But 
perhaps the simplest way to describe what converging weakly uniformly over 
a family means is to say: one can find a probability space supporting a Brownian 
motion Zt and a random walk with the same distribution as the S,'s such that 
St,t~/x/n converges uniformly to Z~, t ~ [0, 1], a.s., and L ~ "  converges uniformly to 
L~, t~[0,  1],/~ ~g)l, a.s. 

A. Subgaussian case. In this subsection, assume d > 3 and assume that the X~'s 
are subgaussian. The following proposition follows from Proposition 5.2 just 
as Theorem 2.2 followed from Proposition 2.1, by standard metric entropy 
arguments. 

Proposition 6.2 I f  Hypothesis 6.1 holds for some fie(0, 1), then for each tl > 0 

lim sup sup IP I su p sup ,L~'~" - L~,'~'I > tl} = 0 .  
6--0 n_-->l k k>=l ,un,v,E~~ 

dL(~., v.) < 

Proposition 6.3 I f  Hypothesis 6.1 holds for some fl 6 (0, 1), then the process 

{ ( n - 1 / Z s [ m ] ,  t n , u n l .  __ __ ~t,o I O < t < l, # ~ 92~ } 

converges weakly to the process {(Xt, L~):0 _< t _< 1, gsg~A} . 
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Proof In order  to keep things as simple as possible, we will prove that  L~,]" ~ L~. 
A s tandard  modificat ion to our  a rgument  will show the joint  convergence of the 
Iocal t ime together  with the r andom walk. 

We start by showing the convergence of the finite dimensional distributions. 
We give the proof  for the one dimensional  marginals, the general case being 
entirely analogous.  

Define ~0 and q~, as in the p roof  of Lemma  4.3. Recall ~0~.#,(x)= 
cp, (x - y )# ,  (dy). Define #~ to be the measure on n-1/2 ~d that  puts mass n-d/2 @e * 

# ,  ({Z/x//-s }) on the point  z/x/~, z ~ 2U. 
First, we show alL(#, # .  rp,) ~ 0 as e ~ 0. We write 

dL(#, p*q)~ )  = s u p  j ' O ( y ) # ( d y )  - ~O(y)lJ*qo.(y)dy I 

= sup l~0(y)#(dy)  - ~O.qS~(y)#(dy) . (6.1) 
Oe~e 

Since ~ e ~ ,  ~, * q)~ converges uniformly to ~, as e ~ 0. Hence the right hand side of 
(6.1) tends to 0. A similar argument ,  using Hypothesis  6.1 (b), shows that  alL(#,, # ,  * 
qh) ~ 0 as e ~ 0, uniformly in n. 
Secondly, we calculate, using Hypothesis  6.1(b), 

Iz - xl < s,,fi y 

y 

< c6.4n-a/2e-a II q)II~ sd-a+r # {Y:Y/ex//n~supp~ 

< (6.2) ~_ C6.5 Sd-2+~' 

if 1 /2xfn  < s -< 1. A similar calculation shows that  sup,#~,(lR d) < C6.6, indepen- 
dently of n and a. 

Thirdly,  we show that  for each e > 0, #~, converges to ~t. ~0~ uniformly on 
compacts,  as n ~ o v .  Since i~ , (x)=S~o,(x-y)#, (dy) ,  the p,  are uniformly 
bounded,  and q)~ is smooth,  then {#~ :n > 1} is an equicont inuous family of 

functions o fx .  For  each fixed x, #~(x) ~ Scp~(x - y)#(dy)  = #*  (o~(x), since #,  2~ kt" 
In view of (6.2), Proposi t ion  5.2, and the fact that  dz(l~,, #, * (P~) ~ 0 as a --, 0, 

for each t / >  0, 

sup P sup ILia;t]" - LEntil > q 
n \ t--_l  

as e -~ 0. By (6.1) and Proposi t ions  2.1 and 2.8, for each t / >  0, 

P ( s u p l L U t  - L ~ * ~ l  > ,1)--+0 
\ t<_l 
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as e~O.  So to show {L~t~":0 _< t_< 1} converges weakly to {Lt":0 < t <  1}, it 
suffices to show that r. n'u"~ ~ Lt u*e~ for each e. But 

~ [ n t ]  

[ n t ]  

Ln,r ~, 1 1/2 ~,,1 = n -  ~ ~o~ * # , ( n -  Sj) . (6.3) 
j = O  

Since ~0~. #, converges to ~o~. # uniformly on compacts, the desired convergence 
follows immediately by Donsker's theorem. 

To complete the proof, it remains to establish tightness of ~r, "u"' 0 < t < 1, 
( ~ [ n t ]  " - -  - -  

/~,, e gJl, }. But this follows from Proposition 6.2. [] 

B. 3 + p moments. We still assume d > 3, but now only require that 

IgtX113+p < oo, 

for some p > 0. 

Theorem 6.4 I f  Hypothesis  6.1 holds for some fis(O, 1), then the conclusion of  
Theorem 6.3 is still valid. 

Proof  Let e . . . .  1/8, a, n 1/z-~. I f X j  ( X ) ,  . . . , X~.), define X j  (Xj,.,.,-1 ~ )  
by 

3~}=X}l(ix} I<a.), i =  1 , . . . , d .  

Let ei IEJ~ and define X) by (X  i ~' ~i ' = j ,  = X j  - Y) ,  where Y} is a random variable 
independent of the X's that takes the value [a. ] sgn(ei) with probability [eil/[a, ], 
and the value 0 with probability 1 - leil/[a, ]. 
Since IEX] = 0, 

]e~l= j" x lP(X i  < 2 J lP( lX i l  > x ) d x  
[ - a . , a . ] '  a,~ 

= < 2a, --~2+p) ~ xz+PlP(tX]  = > x ) d x  
an 

< c6.TaY(Z+~ 13+p (6.4) 

If n is large enough, ]ei[ < 1. 
Note that the X) are mean 0, have finite 3 + p moments (with a bound 

independent of n), have covariance close to the identity matrix, are bounded by 2a, 
for n large, and still take values in ;ge (which is why we did not simply define X' by 
J~ - IEJ~). We have by Chebyshev's inequality 

d 

IP(X) 4= X j )  < IP(~j  4= X j )  + ~. le j l / [a , ]  < c6.8an(3+p)]gjxj] 3+p 
j = l  

= o(1/n).  (6.5) 

Let S~ = ~ =  t X j .  By Bernstein's inequality, 

-Ixl  2 ) 
~'(IS'~l >= Ixl) -< 2exp 2n + 4 a ~ 1 / 3 / '  Ixl > 1. 
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The expression on the right hand side is largest when n is the largest, and so if 
f (x)  -= [Ix[Z/klog Ixl], 

s(~> ( _ lx l  2 ) 
}-', ~'(I S; I > Ix I) < 2/(x) exp 2f(x) + 4af(x) lxl/3 

j = l  

--< C6. 9 Ixl 1-~ (6.6) 

if k is large enough. 
We now use (6.6) in place of (3.8), and proceeding exactly as in the proofs of 

Proposition 3.2 and Corollary 3.3, we conclude that 

Ia'(0, x)l < C6A0(1 A I x l  2 - d )  (6.7) 

and that for each fl~(0, 1), there exists a %11 = C6al(fl) such that 

( ix- yl ) 
Ia'(0, x ) - G ' ( 0 ,  y)[ < c6.xl \ ( Ix[  A lyl) a - t - a  + ([xl ^ ly]) a-1 ' (6.8) 

where G' is defined in terms of X' just as G was defined in terms of X. 
d / 2  - 1 k -  1 I Write (L~'~") ' = n ~j=o/4,({Sj/w/n}).  Then for all rl > 0, 

( ) IP sup sup I Lt",;t~. - Lt< f ~ r/ 
\ t <  l ~ n , v .  EgJi~. 

& ( ~ . , v . )  < 

( ) <IP  sup sup I tL'~"Y-(Lt, ,1)  J >~7 ---~ x [nt] J = 

dL(~,,v.) < a 

+ P(Xj  4= X) for some j < n). (6.9) 

Recall that the results of Sects. 4 and 5 (and hence Proposition 6.2) were valid 
provided the conclusions (a) and (b) of Corollary 3.3 held. Therefore, using (6.7) and 
(6.8), the first term on the right hand side of (6.9) can be made small, uniformly in n, 
by taking 6 small and using Proposition 6.2 (applied to L'). To bound the second 
term, we write 

IP(Xj 4= X~ for some j < n) < nP(Xa + X'a ) ~ 0 

as n --, oo by (6.5). Tightness follows readily. 
The proof of the convergence of the f.d.d.'s given in Proposition 6.3 goes 

through without change. [] 

C. 2 + p moments. Still assuming d > 3, we now assume only that IEIX, 12+p < 0% 
for some p > 0. 

Theorem 6.5 Suppose Hypothesis 6.1 holds with ~ = 1 - p .  Then the conclusion of 
Proposition 6.3 ho~ds. 

Proof Let 0~ = p/8, a, = n~/Z-L Define )~, X'  as in subsection B. As in the proof of 
Theorem 6.4, 

leil < ca2(i+")lElX112+0 , 
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and in place of (6.5) we get 

d 

lejl/[a,] <= ea2(Z+~ = o(1/n) . 
j = l  

Using Bernsteins's inequality, we get (6.6) as before. However, 

(6.10) 

an 

1E1~513 ~ 3 ~ x21p(lXt ~ x)dx 
o 

and 

So 

a;a 

=< 3a]-P j xl+PlP(IXI => x)dx  =< cv.._a,~,, 1-p 
o 

1 - p  lEI Y}I 3 = [a,]31eil/[a, "] < c6.13a, �9 

IEI X,.I3 < 1-o .I ~ C6.14-an 

Hence in Proposition 3.1 we can only conclude 

s u p  I]px(s' .  --- O) - (2gn)-a /2e- lXlZ/zn]  <= c6.15n - (d+~ 
xe2g e 

for some small e > 0. Using this estimate in (3.11), 

E(n,x)  ~ c6.161x1 -a-a+2 (6.11) 
n>=f (x) 

Following the proofs of Proposition 3.2 and Corollary 3.3, but using (6.6) in place 
of (3.8) and (6.11) in place of (3.11), we get (6.7) and (6.8) with/~ = 1 - p .  

As in the 3 + p moment case, using (6.10), we get tightness. No changes are 
needed to the proofs of the convergence of the f.d.d.'s. [] 

D. Second moments. When the X/s  have only finite second moments, our methods 
do not give uniform invariance principles. But we still can prove the convergence of 
the f.d.d.'s when d = 3. 

Theorem 6.6 Suppose d = 3, IEIXjlZ < ~ ,  and Hypothesis 6.1(a), (b) hold. For 
measures # 1 , . . . ,  #:v~?Oi ' 

(L~e,' :0 < t < 1, i = 1, N) ] . . . . .  , 

converges weakly to (L~ :0 ___ t --_ 1, i -- 1 . . . . .  N). 

Proof We give the argument for N = 1, the general case being analogous. Examin- 
ing the proof of Proposition 6.3, we see that we need only show that for each r / > 0 

]P(sup ]L: '~" - L~ '~"~ [>  tl)--+0 (6.12) 
\ k<=n 

as e -~ 0, uniformly for n > no(tl). 
Let 0 > 0 ,  ~, = On z/z, and K, ,=  ~z-d =(Onl/2)z-d AS in the proof of 

Proposition 4.4, define 
@n(X ) = net~2-1 GK~ (XnU2) 
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for x e n -  ~/z77 a and by a suitable interpolation procedure for x r n -  1/27],d. Write v, 
for kt~. By Spitzer IS], [G(0, z)l < C6.17(1 A ]Zl z -a)  and G(0, z) = g(0, z)(1 + o(1)), 
as [z]--. oo. So given a, there exists M1 such that  IG(0, x ) -  g(0, x)l < alxl 2-a if 
x e Z  a, Ixl ~ M i .  Hence if ]wi, Iz[ > m i ,  w, z e7 l  a, 

c~.~81w- z[ 
IG(0, w) - G(0, z)l ~ (~-~ ~-~-z~a~-~ + 

2a 

(lwl/ ,  Izl) ~-~" 
(6.13) 

Now 10.(y)-  0dz)l will be largest if lyl, lzl =-~ r Y, z e n  -1/2Za for s o m e  
constant  c6.19 independent of n. So suppose [Yl, [zl > c6.190. Then for n large 
enough, lyl,v/-n, Izl,~/~ > Ma.  So by (6.13), for n large enough, 

10,(y) - 0,(z)l < n a/2-1 [ :  c6"la-lY 2 zlx//~ 
= L(Iyl A [zl)a-ln (a-1)/2 + 

2a ] 
(lYl A Izl)a-2n (a-z)/2 

c6.2oly - zl 2a 
< Oa_l + Oa_~. (6.14) 

Let b > 0. Choose 0 small enough so that  0 r < b. Since the sequence {#, } is tight, 
we choose M2 large so that  #,(B(0, M2) c) < b. By the estimate (6.14), 

l 0,, (Y) - r * (P.(Y) [ < j' I ~P,, (Y) - ~,, (Y - ~x) l q'(x) dx 

c6.2oelXl 2a 
< od_ ~ + -~gzg<b 

if we take a and e small, and n sufficiently large. Therefore, 

[ Sr -- v,)(dy)[ = IS[O,(y) - ~ , .  (p,(y)]#,(dy)l < c6.2ib.  

As in the proof of Proposi t ion 4.4 (see (4.9)), 

]IEXL~; ~" - IEXL"~; v" ] < 0~ + ISO,(Y)(#, - v,)(dy)l + e6.22(dL(#,, v,)) z . (6.15) 

So taking e smaller if necessary, we can make the right hand side of (6.15) less than 
(2 + c6.2i)b. Plugging the estimate (6.15) into the proof  of Proposit ion 5.2 and 
using Chebyshev's inequality, we get finally 

c6.23t/-2b 

if n is sufficiently large, which is precisely what we wanted. [] 

E. d = 1.2. The results for d = 1.2 follow by the usual projection argument. 

Theorem 6.7 Theorems 6.4, 6.5, and 6.6 hold for d = 1 and 2. 

Proof Fix M > 0. Given # defined on IRa, d = 1 or 2, define/)  on IR 3 by 

~ ( A •  A ~ IR a , B  ~ iR3-a,  

B(0, M) the ball in IR3-a. Similarly, given #n defined on n-1/2Z d, define /~, on 
n-  i/2 7Z3. 
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Define J(j = (X~., Yj), where Yj is simple random walk on 77 3 -d, independent of 
the Xjs.  Define 

k - 1  

j=O 

Then by Theorem 6.4 or 6.6, s converges weakly to s  where s is the additive 
functional associated to/2. 

But it is clear that for all ~,, /~,h, = L~ '~. up until the first time ,~'- 1/2 IK'kl/,i=lYj[ 
exceeds M, and for all #, L~ = L~ up until the first time (3-d)-dimensional  
Brownian motion exceeds M in absolute value. Since M is arbitrary, the weak 
convergence of Lr'~,~. to L~ follows easily. [] 

7 Examples 

A Classical additive functionals - LPfunctionals 

Suppose p > d/2, and p-1 + q--1 = 1. Let ~ be a subset of {feLP(B(O, 1) ) : f>  0}. 
Let Hp denote the metric entropy of ~ with respect to dp(fl , f2 ) = II f l  - f 2  II p- Note 
in what follows we do not assume our f ' s  are continuous. 

Theorem 7.1 I f  s u p f ~  Ilfllp < co and the exponent of metric entropy of lip is less 
than 1/2, then Sof(Z~) ds is jointly continuous in t e [0, 1] and f e ~ (wizh respect to the 
d v metric.) 

Proof Here ~ = {#:# has a densityf(x) with respect to Lebesgue measure, f e  ~}, 
and Lf = Sof(Zs)ds. By H61der's inequality, 

#(]R a) = S f ( x ) d x  < e7.1 I[fllp, 
B(O, 1) 

and #(B(x, s)) = SB(o, 1)lmx,~)(Y)f(Y)dy < 1] lmx, s ) ][q H f Ilp =< C7.2 sd/q, for s < 1 and 
fe ?. 

So the total mass of the #'s is uniformly bounded and the index of 9J{ is 
d/q - d + 2 = 2 - d / p  > 0. If #(dx) - - f (x)dx and v(dx) = h(x)dx, then 

dG(#, v) = sup~ ~g(0, x ) [ f ( x ) -  h(x)Jdx < I I f -  hllpHg(0,')llq < cT.3dp(f, h) ,  

since gELq(B(O, 1)) when p > d/2. 
Our result now follows by Theorem 2.2. [] 

Since changing f on a set of measure 0 does not affect L, u (here #(dx) = f (x)dx) ,  
but can have a drastic effect on n-a~jf(n-~/2Sj) ,  for an invariance principle one 
must have some additional regularity for f (cf. the next example). 

B Classical additive functionals indicators 

Let 92 be a subset of {A:A ~_ B(O, 1)}. Suppose that for almost every y~IR ~, 
re(0, 1], and Ae92, as n ~  oe, 

" n -d/2 ~ {n -1 /2  7]d (~ A ( ' 1 B ( y ,  r)} -+ IA ~ B(y, r)l. (7.1) 

Define ds(A, B) = IAABI. 
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Theorem 7.2 Suppose the X~ satisfy the assumptions of sect. 6 and have 2 + p 
moments. Let fi = 1 - p ,  take 7 = 2, and let l~ be defined by (4.8). Suppose 9J satisfies 
(7.1) and the exponent of metric entropy ofg, l with respect to ds is less than I~/2. Then 

t -1VE"t~ l a ( S J x / n  ) converges weakly to ~o 1A(Zs)ds, uniformly over te  [0, 1] and n Z... i = 0 

A e 9.I. 

Proof For Ae~I,  define #A by #A(dx) = la(dx). Define #A,, by #A,,({n-1/2x})= 
n -e/a 1A(n-1/2X). That ~tA,, converges to #A follows by (7.1) and [Bi]. That Hypo- 
thesis 6.1 (a) and (b) hold is easy. Hypothesis 6.1 (c) follows from the crude estimate 

I~P(x)[1A(X)-- lu(x)-Idx[ < [AABI , ~ e ~ ,  

and a similar formula for dL(#A,~, #B,,). NOW apply Theorem 6.5. [] 

C Local times on curves 

This example works for hypersurfaces in IRe for any dimension d, but for simplicity 
we restrict ourselves to d = 2 and the curves of form 

C = {(t , f( t)):te[O, lJ, Ilfr[~ < cv.4} �9 (7.2) 

We will use C to denote the graph of C. Let il be a collection of such curves. Let 
#c(A) = I{t:(t, fc( t))eA}[.  

For such Cei l ,  we letfc,, be a function from [0, 1] to [-2c7.4,  2c7.4 ], such that 
fC, n takes values in n-1/2~, has jumps only at t's in n-1/22g, and f ,  + f i n  Ll-norm. 
Denote the curve and graph of {(t, fc,,  (t)): t e [0, 1-] } by C,. If C 1 and C 2 denote 
two curves of the form (7.2) (corresponding to f l ,  and f2, resp.), let 
d c ( f l , f z )  = Ilfc*-fc~l[1. 

Theorem 7.3 Suppose the X~ satisfy the assumptions of sect. 6 and have 2 + p 
moments. Suppose that for some c7.4 and e independent of n 

H}(x)  < c7.4 X-(I~/2-8) ,  Hc(x) ~ C7.4X -(lp/2-e'), X~(0, 1), 

where H~(x) (resp. Hc(x)) is the metric entropy of il (resp. il, = {C, :Ceil;}) with 
respect to dc. Then n-1/2~I~]o lc,(n-Z/2Sj) converges weakly to L~ c, uniformly over 
tEE0, 1], Cei l .  

Proof Define #c,,(A) = n- 1/2 # {k <= ~ : ( n -  1/Zk,fc,,(n- i/2k))e A}. Since fc,, + f  
in L 1, #c,, -~ #c. Note that #c,,(lR e) __< 1, while 

#c , , (B(x ,  r)) <= c7.5r , 

so the index of g ,  is 1. The result follows from Theorem 6.5. [] 

D Local times in ]R 1 

Even for local times in IR 1, our results are fairly strong. For xe lR *, let #x be the 
point mass at x. Then L~ x (usually written as L2) is just local time at x. Clearly the 
#x are uniformly bounded with index 1. By Example 2.4, Hz(c~) =< c7.6 Ilog(cS)l. 
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Define F(n ,x )  to be n -a/z times the unique integer lying in the interval 

+ 13. 

Theorem 7.4 I f  the X~ have finite 2 + p moments for some p > O, and are as in Sect. 6, 
then n-1/2V[,,lLad = 1 l[,f~x,,/g x + 1)(S j) converge weakly to L~, uniformly over all levels x. 

Proof  It suffices to prove the result uniformly over x e [ - M ,  M ]  for each M. 
W 

Define ~,,~ to be point mass at F(n, x). Clearly #n,~ ~ #~ as n -~ m, the #,,~ are 

uniformly bounded, have index 1, and entropy is of order Ilog(x)]. The result 

follows by Theorem 6.5 and the observation that Sje [,,/~x, ~ x  + 1] if and only 
if l~,,,~({n-~/2Sj}) = 1. [] 

The question of invariance principles for local time has a long history, dating 
back to [CH]. Using techniques highly specific to one-dimensional Brownian 
motion, Borodin [Bol l  has proved Theorem 7.4 when the Xi's have finite second 
moments. For  a slightly different notion oflocal time, [P]  has a uniform invariance 

principle if the Xi have 1 + ~ ~ 2.732 moments. See [BK2] for results and 
references to the corresponding strong invariance principles. 

E Fractals 

For simplicity, we confine ourselves to d = 2 and fractals of the following form: let 
Fo = [0, 1] 2, let F1 be the union of R closed squares with sides of size a, such that 
the interiors are pairwise disjoint. To form F2, replace each of the squares making 
up F1 by replicas of F~, and continue. 

To be more precise, if S is any square, let ~gs be the orientation preserving affine 
map that takes S to F0. Let 

F2 = ~) { 7Js l (F1) :S  is one of the R squares with sides of size a making up F1 }, 

F~+ 1 = ~){ 7is 1 (F1):S is one of the R k squares with sides of size a k 
making up Fk }, 

Let F = (~~ 
For  example, if F 1 = [0, 1] 2 - (1/3, 2/3) 2, F will be the Sierpinski carpet. If 

F1 = ([0, 1/3] w [2/3, 1]) 2, we get the 2-dimensional Cantor set. 
Let # be the Hausdorff-Besicovitch measure on F, normalized to have total 

mass 1. 

Theorem 7.5 I f  the Hausdo;ff  dimension of  F > O, 

1 
~ . ..lv.(Zs)ds , L ~ .  

Remark 7.6 The convergence in probability is a consequence of results in [B]. 

Proof  It is not hard to see that sup~#(B(x, s)) < c7.7s y, where ~/is the Hausdorff 
dimension of F. 
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Suppose ~ ,  and let $1,. �9 �9 SR be the squares making up F~. Let # , (dx)=  
IF, I -~ 1F,(x)dx. Let xi be the lower left corner of Si. 
Since #2, #1 both have total mass 1, 

~b(x)[#2(dx) - #1 (dx)] = IFz 1-2 j" [~,(x) - ~,(xi)3 [ I f~  t-~ D2(x) - D~(x)] dx 
Si Si 

= IF1 I - l a  2 5 tPi(x)[#1(dx) - #2(dx)J , (7.2) 
Fo 

where Oi(x) = ~o ~ l ( x )  - ~ o ku~l(xi). Since I VOi(x)[ < a, and Oi(0) = 0, then 

]lOilloo < , ~ a .  So the right hand side of (7.2) is bounded above by IF1] -x 
~a3dL(#O, #~). Summing over i, and taking the supremum over ~ e ~ ,  

dL (#2, #1) <= ~/2aa R I F11- l dL (#2, #1) ---- x/2adL (#1, #o). 

By an induction argument, 

dE (#k + X, #k) <= ( ,~a)k dE (#i, #0).  (7.3) 

I fR  = 1, so that Fx is a single square, then F is a single point. This case is ruled out 
by the assumption that the dimension of F is strictly bigger than 0. So R > 1, and 
hence a < 1/2. 

Let 9J~ = {#,}~=a w {#}. To cover 9J1 with dE-balls of radius 6, first put a ball 

B of radius 6 around #. Since #k Z, #, (7.3) shows that dE(#k, #) < C7.8 ( ~ a )  k. So 

B covers all but Ilog(a/cT.s)/log(x/2a)l q- 1 of the #,'s. So at most cv.9]log(6)l balls 
are needed, hence HE(f) ~ [logllog(cS)[I. 

By Theorem 2.2, L~ is continuous with respect to dE, for v e 9211. This implies our 
result. [] 

F Intersection local time-double points 

Let S, ~ and S 2 be two independent identically distributed random walks converging 
in law to two independent Brownian motions, Z) ,  and Z 2. By redefining these 
processes on a suitable probability space, we may assume that the convergence is 
almost sure. 

Define #,.~(A)=l{t~[O, uJ 'ZZ+x~A}] .  In [BKI] ,  it is shown that 
~(x, s, u ) =  Lff ~ is the intersection local time for (Z x, Z2). Let us consider the 
corresponding invariance principle. We discuss the case d = 3 first. (If d > 4, the 
paths of Z ~ and Z 2 do not intersect.) 

If x = (x l, x2), let Fa(n, x) = (F(n, xX), F(n, x2)), where F is defined in subsec- 
tion D. Define 

[nu] 
# . . . . .  ( A )  .= n - 1  

k = l  

1A(SZ/x/n + Fz(n, x)). 

Lemma 7.7 There exists 7 > 0 such that for each M, with probability one, 

# ... . .  (B(y,s)-{y})=<cT.lo sl+~, x , y~B(O,M) , s<  1, 

where c7.~o depends on M and co. 
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Proof. For  simplicity, we prove this when x = 0, the general case being similar. 

IZZ o .o,.(B(y, s) - {y}) __< n -1 G(z, w)lB ,,An-'2w) 
w * y  

< n-1 ~ 2 2-kn-1/2 
k = 0  2 k < t w - - z I < 2 k + l  

{ B ( y , f d ,  s , f d )  z" n [B(z, 2 - B(z, 2k)l}  

= ~ C7,11S 1 + ?  

for y = 1/2. 
This estimate is uniform in z, hence the potential of #~o,o,,,(B(y, s) - {y}) /a is 

bounded above by 1, where a = supflE~#o~,o,,(B(y, s) - {y}). By [DM],  p. 193, 

IW{p~,o, , (B(y,  s) - {y}) > c7 .11S9 / s  } N cv.12exp(--cv.13s-1/s). 

For  each k, we can choose Nk = c7.,423k balls, each of radius 2-k+ 2, SO that for 
every y e B(0, M) and every s < 2 -k+ 1, B(y, s) is covered by one of these Nk balls. 
Hence, 

IW{#~,o, ,(B(y,  s ) -  {y}) > c7.11s 9Is for some yEB(O, M)  

and some s e [ 2  -k, 2-~+1]} 

< Nkcv.laexp(--c,z.132 k/s) 

Summing over k and using the Borel-Cantelli lemma, we conclude 

sup #~o,o,,(B(y, s) - {y}) < c7.14s 9/8 , a.s. [] 
y~B(O, M) 

0 < s < l  

Theorem 7.8 Let X~, X~ be two independent sequences of i.i.d.r.v?s, idemicaIly 
distributed, and satisfying the assumptions of sect. 6 with 2 + p moments. I f  d = 3, 

~,,au . x LE,s~, �9 converges weakly to e(x, s, u), uniformly over x ~ 1R 3, s, u E [0, 1]. 

Proof. We apply Theorem 6.5. Since supy , , IPY(sup j~ , lS~ /x~ t>M}- - ,O  as 
M ~ o% it suffices to look at the # . . . . .  restricted to B(0, M). 

For  each u, the metric entropy of {# . . . . .  :x~B(0,  M)} is bounded above by 
c7.~55 -3. For  each x, the total variation of #,~ . . . .  - #,~ . . . .  is bounded above by 
u2 - Ux. So HypotheSis 6.1 (c~) holds for every fl > 0. Hypothesis 6.1(a) is clear and 
6.1(b) is Lemma 7.7. 

Since S2/,~/n converges uniformly to Z~, p . . . . .  w # . . . .  The result follows. [] 

To handle the case d = 2, we use the projection technique of sect. 6E, and get 
Theorem 7.8 for the case d -- 2 as well. 

For  both the d = 2 and d = 3 cases, weak convergence at a single level x follows 
by Theorem 6.6 or 6.7 under the assumption of finite variance only. 

G Intersection local time-multiple points 

In [BK1],  we gave a method for constructing intersection local time for the 
intersection of k + 1 independent Brownian motions in IR 2 from the intersection 
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local time of k independent planar Brownian motions. A completely analogous 
construction can be made for the number of intersections of k random walks. We 
then can get the analogue of Theorem 7.8: for d = 2 only, the number of intersec- 
tions converges weakly to the k-tuple intersection local time, uniformly over all the 
variables, provided the X's have 2 + p moments. As in the proof of Theorem 7.8, 
the only work is in finding the index of the family of measures, and as in [BK1], the 
estimates needed for k + 1-intersection local time follow from those obtained for 
k-intersection local time. 

For multiple points, we cannot use a projection argument, and must work with 
2-dimensional random walks killed off at a geometric rate. So it is necessary to 
rework the results of sect. 3 for d = 2 with G replaced by the 2-resolvent of S,. We 
leave the (numerous) details to the interested reader. 
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