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1 Introduction 

In this paper we are concerned with transition semigroups describing evolution 
of  unbounded spin systems on the lattice ~ and on IR a. In particular, we 
study their asymptotic behaviour. 

Systems on 2U are determined, see e.g. [9, 14, 15, 23] by an infinite matrix 
(aT,j)7,jE~d and a real function f " Ill --+ lR, called respectively a global inter- 
action matrix and a local interaction function. Let J~,,~, n C N,  -)F~, be spaces 
of  sequences {x,/}~,~j, vanishing for 171 > n, 7 = {?'1 . . . . .  y~} E 2U, and t7] = 

d ~ = 1  [Tkl or growing no faster than polynomials. Let Cb(g4f~), n E N, Cb(~r 
be the space of  all bounded continuous functions on ~ ,  n C N, and -)f~o~. 

Starting from properly defined semigroups P~, t > 0 on C b ( ~ )  describing 
the dynamics of  finite configurations on Xn, one can construct, see e.g. [14, 26], 
under proper conditions on {aij} and f ,  the so called thermodynamic limit 
Pt, t > 0, acting on ~ .  Limit properties o f P t ,  t > 0 as t - -+oo  are of  
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great concern in applications. In particular, in his recent paper, [26], Zegarlinski 
proved that, in some cases, there exists a unique invariant probability measure 
# for Pt, t > 0 on igloo, the so called, Gibbs measure, and that there exist 
co > 0 and a finite function c(x) > O, x ~ .H,~o such that 

IPt~o(x)- (q0,#)[ ~ c(x)e-a'td(qo), t >= O, x E o;r (1.1) 

In (1.1) q0 is any bounded function on Jd, oo depending on finite number of  
coordinates, of  class C 1 and such that 

d(~p) = ~ sup 8~~ 
), x UXy 

I, -~ (r -- (~,k/))2/l(dx) < +c<), (1.2) 

where 
(~0,~)= f ~o(y)~,(dy). 

This paper presents a direct way of  constructing Pt, t >= 0, and proving (1.1) 
using the theory of  stochastic equations and properties of  dissipative mappings. 
Under weaker conditions than in [26], the semigroup Pt, t => 0, will be de- 
fined by a Markov process X = {X~,}7~ a satisfying an infinite system of  Ito's 
equations 

d X y ( t ) = ( ~ j a e j X ' ( t ) + f ( X ' ( t ) ) )  d t+dWT( t ) '  (1.3) 

X~,(0) = x-y, ~ E 7ld, t ~ O, 

in which W> 7 E 2U, are real Brownian motions. 

A typical equation to which our theory is applicable is of  the form 

dX~l(t) = ((Ad - ~)X.p(t)) + f(X,,(t)))dt + dWT(t), 
(1.4) 

X,~,(0)=x> ~ E ~ d ,  t > 0 ,  

where Ad is the discrete Laplacian and c~ is a constant. 
Under additional assumptions the estimate (1.1) will be derived with an 

explicit formula for the function c and with the formula for d slightly different 
from that of  [26]. The estimate will be a special case of  a general exponen- 
tial inequality obtained by considering solutions X on growing time intervals 
[2,+o0[,  2 E IR, and letting 2 --~ - o c .  For the special case of  solutions to (1.4) 
the estimate will be valid without requiring that (0 is smooth or depends on a 
finite number of  coordinates, compare [26]. Our conditions on local interaction 
functions are neither weaker nor stronger than those in [26], see Sect. 3. More- 
over the Wiener processes W,~,, 7 ~ ~d, can be correlated and in the extreme 
situation can be identically zero. This latter case is outside of  the scope of  the 
logarithmic Sobolev inequality approach and of  the Bakry-Emery criterion [2], 
as the generators of  Pt, t > 0 and P~', t > 0, n r N are degenerate. 
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In a similar manner as Eq. (1.3) we will treat spin systems on IR a restricting 
our considerations to continuous versions of  (1.3) of  the form 

dX( t ,~ )  = ((A - ~ ) X ( t , ~ ) + f ( X ( t , ~ ) ) ) d t + d W ( t , ~ ) ,  (1.5) 

where W ( . , ~ ) ,  ~ C I R  d are Wiener processes and W(t, �9 ), t >= O, are sta- 
tionary Gaussian fields describing random environments, see [8]. 

The third class of  systems discussed in the paper are quantum lattice sys- 
tems introduced in the recent paper [ 1 ]. They are a mixture of  systems defined 
on 7/d and IR a. 

In all the three cases our basic state space is a weighted Hilbert space. 
Choosing the weight properly we obtain as a byproduct additional information 
on the support of  the invariant measure /x. 

Our main results are existence theorems and theorems on exponential 
estimates formulated and proved for the three types of  systems discussed 
above. They will be consequences of  two general theorems on stochastic equa- 
tions 

d X  = (AX  + F ( Y ) ) d t  + B d W  , 
(1.6) 

x ( 0 )  = x .  

presented in Sect. 2. Theorem 2.1 gives sufficient conditions for existence and 
uniqueness of  solutions to (1.6), with A and F having appropriate dissipa- 
tivity properties in a Hilbert space H, W being a cylindrical Wiener pro- 
cess on a Hilbert space U and B a linear operator from U into H. Esti- 
mates o f  (1.1) type, for general equations (1.6), are the content of  Theorem 
2.3. 

The idea to model spin systems by stochastic equations is rather old and 
goes back to the papers [9,11, 12,16, 17,21,22]. However, our general ap- 
proach allows to obtain new results on existence and on asymptotic behaviour 
of  solutions. We treat in a unified way spin systems on 2U and IR </ as well as 
quantum spin systems. This paper is an enlarged and rewritten version of  the 
paper [7]. 

2 Stochastic dissipative systems 

Let H and U be separable Hilbert spaces, with norms H " ]l, 1] " I]u and scalar 
products ( . ,  �9 ) and ( . ,  �9 )u. The spaces of  all linear bounded operators from 
U into H and from U into U will be denoted by L ( U , H )  and L(U) .  

Moreover let (f2,• , IP) be a probability space with a filtration ~ and 
W(t) ,  t > O, an 7 t  adapted Wiener process defined on f2 with values in U 
and with the covariance operator Q E L(U) .  Thus for arbitrary a, b c U and 
t, s > 0 :  

lE( ( W ( t ) , a ) v ( W ( t ) , b ) u  ) = t V s(Qa, b)u . 

We will be concerned here with Eq. (1.6) where B C L ( U , H )  and A and F 
are respectively linear and nonlinear mappings from D ( A ) C  H, D ( F ) C  H 
into H satisfying appropriate dissipativity conditions which will be introduced 
below. 
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Let (E, [ ] .  lie) be a Banach space and E* its dual. For arbitrary x 5 E the 
subdifferential OIIXllE of  the norm ]] �9 at x is given by the formula 

011XlIE = {x* ~ E*: IIx + YlIE -- IlxllE >_-- x*(y) Vy ~ E l .  

A mapping G from D(G)  C E into E is said to be dissipative in E if for 
arbitrary x, y C D(G)  there exists z* C ~llx - ylle such that 

z * ( G ( x ) -  G ( y ) )  < O. 

If in addition, for some ~ > 0 the mapping I -  ~G is surjective then G is 
called m-dissipative. 

If  K C E is a Banach space embedded into E then the part GK of G in K 
is defined as follows: 

D ( G K ) =  { x ~ D ( G ) F ) K :  G ( x ) ~  K } ,  

Gx(x)  = G(x) for x C D(GK) .  

It is convenient to introduce the following hypotheses on the operators A, F, B, 
the process W(t) ,  t >_ 0 and on a Banach space (K, 11 �9 ]Ix) continuously and 
densely embedded into H.  

Hypothesis 1 
(i) There exists fl E 1R such that operators A + q and F + q are m-dissipative 
on H. 
(ii) The parts in K o f  A + ~ and F + ~ are m-dissipative on K. 
(iii) D ( F )  D K and F maps bounded sets in K into bounded sets in H. 
(iv) K is a reflexive space. 
(v) B E L(U,H) .  

Let WA(t), t > 0 be the solution to the linear equation 

dZ( t )  = A Z ( t ) d t  + B d W ( t ) ,  

z(o)  o,  

given by 
t 

z( t )  = v/A(t)= f s ( t -  s)BdV/(s), t > 0 
0 

where S(t),  t >= O, is the semigroup generated by A on H.  

Hypothesis  2 The process WA(t), t > O, is continuous in 17, takes values in 
the domain D ( F x )  o f  the part o f f  in K andJbr  any T > 0 we have 

sup (IIWA(t)IIx + I IFK(WA(t))IIX) < + o ~ ,  D' a . s .  
~E[0,r] 

An H-continuous, E - a d a p t e d  process X( t ) ,  t > O, is said to be a strong so- 
lution to (1.6) if  it satisfies IP-a.s. the equation 

! 

X ( t ) = x +  f ( A X ( s ) + F ( X ( s ) ) ) d s + B W ( t ) ,  t > 0 ,  
0 
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and it is a mild solution if it satisfies the following integral equation: 

t 

x ( t )  = s ( t ) x  + f s ( t  - s ) F ( X ( s ) ) d s  + WA(t), t > O. 
0 

If  for a H-valued process X, there exists a sequence X,, of  mild solutions to 
(1.6) such that lP-a.s., X, ~ X uniformly on (any) interval [0, T], then X is 
said to be a generalized solution to (1.6). Note that each strong solution is 
mild and each mild solution is a generalized solution. 

Theorem 2.1 Assume that Hypotheses 1 and 2 are J~tlfilled. Then Jbr arbitrary 
x ~ K there exists a unique mild solution o f  (1.6) and for  arbitrary x C H 
there exists" a unique generalized solution X( t , x ) ,  t > 0 o f  (1.6). I f  operator 
A and its part  in K are bounded then solutions for  x E K are strong. 

Remark. 2.2 Theorem 2.1 is a slight modification of  Theorem 4.1 in [6] 
and therefore its proof  is omitted. It follows from the proof  that processes 
X( t , x ) ,  t > 0, are Markov with a Feller transition semigroup Pt, t > 0, 
given by 

Ptqo(x) = IE(~o(X(t,x))), t > O, x e H, qo E Cb(H) ,  

where Cb(H) denotes the space of  all uniformly continuous and bounded func- 
tions on H.  

The next theorem is our main result concerned with invariant measures for 
(1.6) and with asymptotic properties of  the semigroup Pt, t > 0. 

Theorem 2.3 I f  in addition to Hypotheses 1 and 2 
(i) there exist tll, ~12 E IR such that co = ~1~ + t72 > 0 and operators A + 
qi, F + ~2 are dissipative in H, 
(ii) one has 

sup ~(tIwA(t)ll + llF(~/A(t))lt) < +oo. (2.1) 
t > 0  

Then there exists a unique invariant measure ~l for  the semigroup Pt, t > 
O. Moreover, f o r  all bounded and Lipschitz continuous functions (p on H 
one has' 

Pt~o(x) - f qo(y)lJ(dy) < (c + 21]xH)e-~tll(pilLip , (2.2) 
H 

where 

/IWA( 1 ))11) c = suplE t)ll + --IIF(WA(t �9 
t > 0  60 

Proo f  Although some ingredients of  the proof  are contained in [4,6], the 
estimate (2.2) was not derived there. For the completeness of  the presentation 
we sketch the proof. 
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To prove existence of  an invariant measure for Pt, t > O, define a Wiener 
process W(t),  t C IR, on the whole real line by setting 

- -  I W ( t )  i f t  > 0 ,  
W ( t ) :  ~.V(-t)  if t =< 0 ,  

= ~ ( w ( s ) ,  s <= t ) ,  t ~ I N ,  

where V(t), t > O, is an independent copy of  W(t),  t > O. Denote by 
X( t ,Z ,x ) ,  t > Z, x E H,  the generalized solution of  

d x ( t )  = ( A X ( t )  + F ( X ( t ) ) ) d t  + t~d;V( t ) ,  t >= ,~, 

Y ( , l )  = x . 

Assume for a moment that x E K. Then, by Theorem 2.1 

l 

X(t ,  2 ,x)  = S(t  - )Ox + f s ( t  - r )F(X(r ,  2 ,x))  ds + WA,;~(t), 

where 
t 

wA,~.(t) = f s ( t  - r)  d W ( r ) ,  t > ;~. 
2 

We show now that 

m l l X ( t , ; ~ , x ) l l  <= ltxll+c, t >= ~, x ~ m , 

where c is the constant from the theorem. Remark first that 

Z),(t) = X(t ,  2 , x ) -  WA,)(t), t ~ )~, 

is the mild solution of  the problem 

d 
~ Z ( t )  = AZ( t )  + F(Z( t )  + WA,;.(t)) , 

z(;4 : x .  

Denote: 

Then, 

zAt) if z;,(t) + 0  
* = ll~(l)ll 

xzc 0 if z;~(t) = 0 .  

by the chain rule (see [5, Proposition D.4]), and by (i), 

d -  

< (AZ~(t) + F(Z~(t)  + W<~.(t)),x2(t)) 

<= ((A + qt )Z)~(t),x*(t)) - t l l  (Z~(t),x~.(t)) 

+ ((F + rl2)(Z~.(t) + WA,;.(t)) -- (F + tl2)(WA,r 

- rl2(Z;~(t),x~(t)) + (F(WA,;~(t)),x~(t)) 

<__ -o~<z~(t) ,xT(t))  + <F(WA,~.(t)),x;.(t)) 

_-< -o~llz;.(OII + I IF(rv~,Xt)) l l ,  t __> ~.  

(2.3) 
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Consequently 

l 

li/~.(t)ll =< e-'~('-~)llxll + fe-'~162 ds, 
2 

and 

t > = 2 ,  

1 
n ~ l l & ( t ) l l  _-< Ilxl l + -  sup EIlF(WA,~.(t))II, 

(D t>2 
t > 2 .  

This implies (2.3) for x ~ K and, by a limit argument, for all x ~ H.  
In a similar way one shows that for arbitrary x, y E H 

I t x ( t ,  L x ) - X ( t , , L y ) l l  < e - ' ~  Ylt, t > :~. 

Consequently for 7 =< 2 < t 

mllx(t ,  L x )  - x ( t ,  ~,x)ll -- mllX(t,  L x )  - x( t , ,~ ,x( ,~,  v,x))ll  

and, by (2.3) 

535 

n~llx(t, L x )  - x( t ,w,x) t l  ~ e-~176 + c) . (2 .4)  

Therefore there exists a random variable ~, the same for all x E H,  such that 

lim ~ l l X ( 0 , 2 , x )  - ell = 0 .  (2.5) 

w e  claim that the law/~ = 5~ is the unique invariant measure for Pt, t > O. 
To see this it is enough to remark that, by (2.5), for arbitrary x E H,  

Pt(x, �9 ) = 5 ( ' ( X ( t , x ) )  = 5 f ( X ( O , - t , x ) )  ~ # ,  

weakly as t -+ + o o .  

Finally, let (p be a bounded Lipschitz function on H,  then, by (2.5), for s > 
t > 0  

IP,~o(x) - Ps~o(x)l 
= I E ( ~ ( x ( t , O , x ) )  - ~ o ( X ( s , O , x ) ) ) l  

= I E ( ~ o ( y ( 0 , - t , x ) )  - ~o(x(o ,  s , x ) ) ) l  

=< II~011L~p~llx(0,-t,x)) - X ( O , - s , x ) ] l  

_-< II~olkipe ~'(211xll + c) .  
Letting s ---+ oo we obtain the desired inequality. [] 

3 Classical systems on discrete lattices 

We apply here results from the preceding section to Eq. (1.3). 
We assume that W ( t ) =  {WT(t)}. .~a, t > 0, is a Wiener  process on 

( f 2 , 3 , I P )  with values in U = f2 and with the covariance operator Q ~ L ( U ) .  
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In particular if Q is the identity operator then processes W;, 7 E 2U, are inde- 
pendent standard real valued Wiener processes. However Q can be any non- 
negative definite operator on U and for any t > 0 the family { W:,(t)}~,e~,: can 
form a general Gaussian random field including stationary ones if Q is shift 
invariant. 

The operators A and F will be given by the formulae 

A(x~,)= ( ~ a / , : x t )  , x = ( x : , ) ~ H ,  
\ jEyJ  (3.1) 

F(x;,) = (f(x: ,)) ,  x = (x:.) C H . 

and H = :2(7Zd) will be a weighted Hilbert space of sequences (x:) with pos- 

itive summable weight p:;gd__~ IR +. B will denote the embedding operator 
from U into H. Cb(H) and Bb(H) are respectively the space of all bounded 
continuous functions in H and the space of all bounded Borel functions in H. 

The following proposition, which goes back to Schur [13], gives sufficient 
conditions under which matrix (aT j)  defines a bounded operator on :P(2U) for 
arbitrary p E [1, +oc]. 

Proposition 3.1 Assume that 
(i) sup ~ [a~jl=:~< +oc. 

7E]Z d j C ~  d 

(ii) There exists ti > 0 such that 

la~,jlp(7) < tip(j), j d 7Z d . 
? E ~  d 

Then the jormula 

\./c~': 
(3.2) 

defines a linear bounded operator on #p(yd), Jar all p E [ l ,+oc] ,  with the 
norm not greater than 

1 1 
~I/q[jl/p,-- - -  @ - -  = 1 . 

i 

P q 

Proof Assume, for instance, that p ~]1,+oo[  and that x = (xj) has only a 
finite number of coordinates different from 0. By H61der inequality and (i), for 
arbitrary ,/C 2U 

a.,,m ~ la,.sl Ix/I ~ ( la::JlWPlxj l) la~:./ I  1'~ 
j~_~ ) d j d 

J~" la~,jl Ixj7 J~" la~'jl) ~ :/~ J~"~ la~,jl Ixj l ~ . 
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Consequently, by (ii) 

a./ jxj  p P(Y) <= ':tP/q Z la~jIP(y)]xyl p 
?E~ d jC~ d 7,.]EZ d 

<= ~P/qfi ~ P(J)txj] p , 
jC~ d 

and the result follows. [] 

We will impose several conditions on the matrix ~ and on the positive 
weight p, compare [1,26]. We will assume that 

aT, j = O i f l T - j j  > R ,  

la~,jl < M for all 7, J E 2U (3.3) 

and 

P(Y) < M if ] 7 - J l  < R p ( j )  = = , 

pe/)  < + o o ,  
?c~ d 

where R > 0 and M > 0 are positive constants. 
It follows directly from Proposition 3.1 that 

(3.4) 

where: 

Condition (3.4) is satisfied for two specific families of  weights, 

p~-(y)_ e-~b,I, y �9 zd ,  ~ > 0 (3.5) 
and 

1 
P , < ( 7 ) = P ~ r ( T ) -  - -  y r  /~ > 0, r > d .  (3.6) 

For the second family the parameter r > d will be fixed once and for all, 
therefore we will write shortly p,~. 

Remark. 3.3 It is useful to notice that for arbitrary ~ > 0 and r > d: 

2 d 

In addition, for any r > d, sets (p2 (~Td) are identical for all tc > 0. 

As far as the function f �9 ]R -+ IR is concerned we will require that 

f = f0 + f ~  

f l  is Lipschitz continuous,  

f0(~-) + r/~, ~ �9 IR is continuous and decreasing for some 

J7 �9 IR, and for some s > 1 and co > 0 ,  

[f0(~)l < co(1 + ]~lS), ~ �9 IR. 

(3.7) 

(3.8) 

(3.9) 

Proposition 3.2 I f  conditions (3.3) and (3.4) hold then the operators A p  given 
by (3.1) are bounded. 
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For instance if f is Lipschitz continuous and 

21~ 

= -- UkC , 
/,:=0 

~IR,  nENU{0}, 

then (3.8) and (3.9) are satisfied with s = 2n + 1. 
Our first theorem is the following existence result. 

Theorem 3.4 Assume that conditions (3.3), (3.4), and (3 .7 ) - (3 .9 )  are satisfied. 
Let H = 4~(TZd) and let the operators A and F be given by (3.1). Then 
(i) For arbitrary x E #~(71d), there exists a unique strong solution X(t,x), 
t ~ 0, o f ( 1 . 6 )  and (1.3). 
(ii) For arbitrary x E H = #~(2U), there exists a unique generalized solution 
X(t,x), t >= 0, of (1.6) and (1.3), and the transition semigroup 

Ptqo(x) = lE(qo(X(t,x))), t >= O, x C H, ~o ~ C b ( H ) ,  

is Feller. 

Proof We will apply Theorem 2.1 with 

H = #t~(~ d) and K = 12pS(Tzd). 

Note that, by Proposition 3.1, the linear operators A and Aas are bounded on 
H and K respectively and therefore, without any loss of  generality, we can 
assume that A = 0. The operator F + r/i, with the domain 

D ( F ) = {  xC{2"~y~,~ P(7)]f(xT)12<+cxD} 

is m-dissipative in H and its part in K is m-dissipative in K provided r/l is 
small enough. It is also clear that F maps bounded sets in K into bounded sets 
in H.  So Hypothesis 1 is satisfied in our situation. 

We show now that Hypothesis 2 holds as well. Let QI/2= (%j) be the 
nonnegative square root o f  Q. Then 

W~(t) = ~ q,,j~/(t), 7 ~ 2U , 
jETZ a 

where W~, 7 E 7Z d, are independent real valued Wiener processes. By Gaus- 

sianity of  W', for any p > 1, 

lEI WT(t)7 Cp(EI W,(t)12) p/2 

f ~/2 
=e; tP /2  i ~ q~,i l  ' t > - O .  
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Consequently 

)p/2 
mllW(t)llf~(~,)-- Cp tp/2 ~ t9(7) ~ q~j , 

7ET/d j@Tl~ 

Since Q1/2 is a bounded operator on {2(2U), therefore 

t>_O 

2 sup ~ q'li < + o o ,  
7c7ld ,/E~ d 

and W(t),  t >= O, is a F( ;gd)-valued Wiener process. By Kolmogorov 's  theo- 
rem W has a continuous version in any {P(Zd), p > 1, and Hypothesis 2 is 
satisfied. [] 

Remark. 3.5 Similar results, but with different concepts of  solutions are con- 
tained e.g. in [9, 22]. Existence of strong solutions seems to be new. Conditions 
we impose on f are slightly weaker than those in [26] as we do not require 
that J~ and f l  are differentiable. 

The following theorem gives a precise information on the rate of  convergence 
of equilibrium. 

Theorem 3.6 Assume, in addition to conditions o f  Theorem 3.4, that for  an 
r! > O, operator A + t l, restricted to f2(2U) is dissipative, that fo is decreasin9 
and ~7 - N f t  IILip > ~o > O. Then there exists ~co > 0 such that in the spaces 
#2(TZd) = H, with p = pK 9iven by (3.5), or with p = p~ given by (3.6), and 
~c E]0, ~c0[, Eq. (1.6) has unique 9eneralized solutions. The semigrou p Pt, t > 0 
has a unique invariant measure # on H and there exists c > 0 such that, for  
any bounded and Lipschitz function qo on H, all t > 0 and all x C H: 

Pt(,o(x) - f qo(x)kt(dx) <= (c + 2[xl)e-(~ 
H 

To prove the theorem we need the following two elementary lemmas. 

L e m m a  3.7 Assume that conditions (3.3) and (3.4) are satisfied and in addi- 
tion 

~ - 1  -<6  f o r l T - J ]  =<R.  

if 

then 

{Ax'x)4(~J) =< ~ +  2 ( 2 R +  1) d ]]xl]2/,2(~,,), x E {p2(~d). 
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Proof  Take x r #~2(2gd) then 

,, \ .7  / 

p('/) 

h, - j l  <R 

+ 
I'/-Jl <_R 

< - -  (pO)x  + 
= 2 M  h' _ R  

+  llxll=4{  ) 
6 

> 2M:(2R + l)dllxll4(~,, ) + [] 

Lemma 3.8 For weights p'~ and p~- 9iven by (3.5) and by (3.6) we have 

lim [ sup 
~c~o Lb_Jl<_ R V ~ 

- - - 1  = 0 ,  lim sup V ~  1 = 0 .  
,<~0 Lb' JI<R 

Proof follows by direct calculations. 

Proo f  o f  Theorem 3.6. We will consider only the weights p~ as the case of  
p - p,~ can be treated in the same way. 

It is clear that 

(F(x)  - F ( y ) ,  x - y) < Ilfl [[tipll x - yll 2, x, y e D ( F ) ,  

and therefore F - Ill, ]lLip is m-dissipative. By Lemma 3.7 and Lemma 3.8 for 
arbitrary ~ > 0 there exists ~,~ > 0 such that for K ~]0, K,;[ 

(A(x - y )  + F ( x )  + 01 c(x - -  y) ,x  -- y)/2,,(Ed) ~ O, X, y E {2pK(7]d) �9 

Consequently if tc ~]0, ~c~:[ the operator A + q -  e is m-dissipative. Since 
--] l f l  IlLip + 11- e, > co for sufficiently small e > 0 condition (i) of  Theorem 
2.3 is fulfilled. 

We will show now that the process WA has bounded p-moments  in #~(7/d) 
spaces p => 1: 

sup E I P WA(t)I/p(Tz,/)p < + ~ .  ( 3 . 1 0 )  
t>0  
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Denote WA(t) (Z,/(t))~E e and S ( t )  't = (s-~,(t))j~ce. Then 

t 

jE2gd 0 

and 
�9 ltWA(t)nl~g)(~,,)-- ~2 ] E ( I Z , , ( t ) I P )  �9 

)' E ~d  

By Gaussianity and assuming, to simplify notation, that Q = I, 

However 

(f ~[Zy(t)lP = Cp(~lzv(t)12) pI2 ~ ep ~ s~/(u)du 
\ 0  jezld 

and therefore 

j c2g  ~ 

P " " )~E~ d \ 0  

#2 

p/2 

Since 
lls(.)llLv2(~,,>) _< e-"" ,  

the estimate (3.10) follows. From (3.10) 

u > 0  

sup(mrlwA(t)ll + IIF(WA(t))II) < + ~ .  
t>O 

This completes the proof. [] 

Remark .  3.9 A theorem similar to Theorem 3.6 was proved earlier by 
Zegarlinski [26, Theorem 4.2]. His method, based on logarithmic Sobolev 
inequalities does not require that [Ifl IlLip is small. On the other hand we can 
cover less regular local interactions f like f ( ~ ) = - s i g n ~ [ ~ ]  1/2, ~ C IR, and 
our basic estimate holds for a more general class of functions ~0. Since for all 
tc > 0 the spaces d2 (7Zd) are identical as sets, see Remark 3.3, the invariant 
measure g is supported by sequences (xT) such that 

Ix~,l 2 
1 + h/l'~ < + c o  

for arbitrary r > d. This set is smaller than 3(g~. Thus working with weighted 
Hilbert spaces is not only technically convenient but gives additional informa- 
tion about the spin system. More general nonlinearities could be treated with 
the help of appropriate Orlicz spaces (replacing #pP(7/d)). 

We finally remark that the noise process W can be absent in our approach, 
but not in the one based on logarithmic Sobolev inequalities. 
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4 Spin systems on Euclidean spaces 

We pass now to systems on IR d. We will restrict our considerations only to 
equations of  the form: 

dX(t ,  ~) = [CA - ~)X(t,  ~) + f ( X ( t ,  ~))l a t  + dW(t, ~) ,  
(4.1) 

x ( 0 , ~ ) = x ( ~ ) ,  ~ciR~l,  t > 0 ,  

where A is the Laplace operator, ~ a nonnegative constant and W(t,~) ,  { C 
IR a, t > 0, an infinite dimensional Wiener process with covariance operator 
Q, defined on a probability space ( t 2 , ~ ,  IP). We will assume that either 

Q is the identity operator on U = L2(IRd), (4.2) 

or 

where 

Q is a convolution operator on U = L2(IRd) " 

Qu({) = q * u({), ~ e IRd, U C L2(IRd), 
(4.3) 

q(~) - f ei(r b ~ ~ IR d , 
Nd 

with g _>_ 0 and q, g ~ Lt(iRd). 
Thus in the former case the stochastic term in (4.1) represents the space- 

time white noise, in the latter case, see [8], for arbitrary t > 0 the random 
field W(t, ~), ~ E IRd, t > 0, is stationary and Gaussian with the correlation 
function x/tq: 

lE(W(t ,~)W(t ,  rl)) = xfiq(~ - F/), ~, r /E IR , i  

Typical examples are provided by functions 

q(~) e-141 '~, ~ ~ IRd, c~ ~]0 ,2] ,  

see [10, Vol. 11]. Note that two extreme cases are included in our considerations: 
Q = I and Q -  0 (noise absent), compare [21; 26, Sect. 5]. 

Similarly as in the discrete case Eq. (4.1) will be studied in weighted 
Hilbert spaces H - L2(IR a) with two types of  weights: 

p"(~) e -'L~I, ~ E IR 't, t > 0 ,  (4.4) 

and 
1 IRd (4.5) 

P'~(~) P""(~) -- 1 + KI I r '  ~ < ' 

where tr > 0 and r > d (to assure integrability of  p,~.) Parameter r is fixed 
for the whole section. 

Let 
Pt(~) = (&zt) -~t/2e-1r ~ ~ IW l, t > O, 

po(r = 6o(~) �9 
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be the heat kernel and set 

S ( t ) x = e - ~ t p ~ * x ,  t > O. (4.6) 

We start from propositions on the semigroup S(t), t > O, in the space L;(]Rd). 
The first result is a continuous analogue of Proposition 3.1 

P r o p o s i t i o n  4.1 Assume that p is a positive, continuous and integrable function 
on IR d such that for  some co E IR and all t > 0 

Pt * P < e<~ �9 (4.7) 

Then, for arbitrary p C [1, +oc] and ~ E IR the formula (4.6) defines a Co- 
semigroup on LP(IR a) such that 

IlS(t)llL(LT,(n~,~)) ~ e (-~+'~ t >= O. 

Proof We consider only the case p ~]1 + oc[. Setting q = p / (p  - 1), and 

we have 

f p,(~ - ~)x( ( )d(  f p]/2(~ ()x(()p]/2(~ _ ~)d~ 
~d iRd 

p 

f p,(~ - ~)x(~)d~ 

Consequently 

HS(t)xllPfi(Nd) <= e-~Pt f Pt(~ ~.)lx(~)lPP(~_)dCd~ 
IR d X IR d 

<= e(-~P+(=')l f ]x(~)]Pp(Od~ 
~d 

e (-~p+~ x p = L~(~d.;,; - [ ]  

Nonnegative functions p satisfying (4.7) with co > 0 are called oJ-excessive in 
the classical potential theory, see [3]. They are solutions of the inequality 

Ap =< cop, (4.8) 

understood in the sense of distributions, see [24]. 

P r o p o s i t i o n  4.2 Assume that 

p(4) = O(Iq), ~ ~ ~d,  

where ~ is a C 1 function on [0,--oo[ with ~" continuous and integrable on 
bounded, closed, subintervals o f  ]0, +co[. Then (4.7) holds i f  and only i f  
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(i) d = 1 and 

4/(0) < O, 4/'(s) <= e)O(s), s > O, 

(ii) d > 1 and 

d - 1  
~"( s )  + ~/(s)  < ~,)~/4s), s > 0 .  

S 

Proof. I f  d = 1 then 

and i f  d > 1 then 

d 1 ~,( 

see [24], so the result follows. [] 

Generator of  the semigroup S(t),  t > O, in LP(IR J)  will be denoted by Apf,. 
Note that for x ~ C~(IRd), App = Ax - ~x. 

As a corollary from Propositions 4.1 and 4.2, by direct calculations, we 
obtain the following crucial property. 

Proposit ion 4.3 Operators Apt , 4- 111 are m-dissipative in LpP(IR d) / f  
(i) p = p~ and tl < ~ -  tc2/p, or 

(ii) p = PK and t 1 < ~ -  ~cl/~r2/p. 

We are ready now to state and prove our main results. We start from an 
existence theorem. 

Theorem 4.4 Assume  that f satisfies (3 .7)- (3 .9)  and either 
(i) d = 1 and (4.2) or (4.3) holds or 

(ii) d > 1 and (4.3) holds. 
Then Eq. (4.1) has a unique generalized solution in L2p(lR d) where p is" given 

either by (4.4) or by (4.5). I f  x C L~+'(IR d) then the generalized solution is 
mild. 

Proof. We apply Theorem 2.1 with H = L2(IRd), K = L2S(IRd),p = p'~ or p 
p,~. It follows from Proposition 4.3 that operators A2.p + r/ and A2s,; 4-t  1 are 
m-dissipative in H and K respectively for sufficiently small t 1. To see that the 
operator F + q where 

F(x)(~)  = f ( x ( ~ ) ) ,  ~ ~ IR d , 

D ( F )  = {x E L~(IRd): f ( x (  �9 )) C L~(IRd)} 

satisfies Hypothesis 1 note that D(F)  D K and the domain D(FK) of  the part Fx 
o f F  in K contains L2p(IRd). It is also easy to see that F + t /and Fx + tl are m- 
dissipative for small r /and that F maps bounded sets in K into bounded sets in 
H.  Then Hypothesis 1 holds. The following proposition shows that Hypothesis 
2 is satisfied as well and consequently finishes the proof  of  Theorem 4.4. 
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Proposit ion 4.5 Processes WAp~,(t), t >= O, have continuous trajectories in any 

Lff(lRd), p > 1, with p = p" or p = p~ provided that 
(i) d = 1 and (4.4) or (4.5) holds 

or 
(ii) d > 1 and (4.4) holds. 

Proof. We will consider only the more difficult case (ii). Without any loss of  
generality, we can assume that p > 2 and that 

W ( t , ~ ) =  s  t > O, ~ E I R  a , 
j = l  

where {hj} is an orthonormal and complete basis in U = L2(IR d) and {/?j} 
is a sequence of  independent real valued Wiener processes. We will use the 
factorization formula, see [5, p.128], and investigate first the process 

t 

Y6(t )  = f s ( t  s ) ( t -  s) -~ dW(s), t >__ O, 
0 

where 6 E] l /p ,  1/2[. By Gaussianity of  Y6(t, ~_), t >= O, ~ E IR el, for a proper 
constant cl > 0, 

= m fp(d)lr~(t,~)l~d~ 

t o o  P 

= f p ( ~ ) l E  f o ( t - s )  6 2 ( S ( t - s ) Q ' / 2 h j ) ( ~ ) d f i j ( s )  d~ 
~ d  j = l  

t ~c~ 

<= cl f p(~) ]E ( t - s )  -6 (S(t  s )Ql /2h/) (~)df l j (s )  

C1 f p(Q ~-2~]S( s )QI /2h j (~ )12  ds d ~ .  

p/2 

d~ 

But 

where 

Consequently 

S(s)Ql/Zhl(~) e-~'P~ * ql * hj(~), 

Ql/Zu = ql * u, u E U . 

~ ~ IR~ , 

IS(s)Q1/ZhAQI2 = e-2=X(ps * q1(s - �9 ),hi �9 >u 
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j E ~, d 

and by  Parseva l ' s  and P lanchere l ' s  identi t ies 

=e-2~SllP~,q,  llu 

e 2 = r e  2sl'll2y(*7)d(r/). 
Rd 

Therefore,  for a constant  c2, 

IE[Y6(t)IPL~(IRd)<=C2[;ICJ(rl)(e 2s(m+l'llX)s-2C~ds)drl] 

Since m > 0, for another  constant  c3, 

p/'2 

[ 2, I.I2 2., [~ < c3 dr/ lglr~(t)l (~")= (m+ 

for arbi trary t > 0. 

Taking  into account,  see [5, p.128], that 

sin red 
wA. , , ( t ) -  - - G ~ Y ~ ( t ) ,  t > O, g 

where  G6 is the opera tor  g iven by  

< +cxD 

t 

G a p ( t )  = f S ( t  - s)(t - s) a-~O(s)ds, t ~ [0, T], 99 c LP(0, T; LP(IRd)), 
0 

we see that  

[ I w A . ( o l [ ~ > , , ~  <= - -  sq~-,/IIs(s z (L~ 

1 ,'q 

where  q = p / ( p -  1). 
q > 0, is loca l ly  bounded  and q(c5 1 ) > - 1. The function I IS ( s ) I IL (L~ , ,W S = 

Therefore  for arbi t rary T > 0 there exists a constant  c4 such that  

( ) T 
sup IIwA:,.<t)[l[;<~., ~ c4fIEIIY~(s)IIL;oR">ds < + c ~ ,  

\ tc[o,r]  o 
IE 

and the required cont inui ty  fol lows.  

Remark. 4.6 In a s imilar  way  an identical  result  can be proved  also i f  m < 0 
a n d d =  1 or i f d  > 1 and 

y(,7) d f < +oo 
I < -  <1 ]~I] 2 r/ 
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Remark. 4. 7 Similar theorems were proved earlier in [19, 21] in the case d = 1. 
Our conditions on f are more special than the ones in [19,21]. However our 
dissipativity approach allows to cover the case d > 1 and to construct transition 
semigroups on all weighted spaces L,,~(IRd), Lp,~(IR2 d). 

We will finally prove the theorem on exponential convergence. 

Theorem 4.8 In addition to conditions o f  Theorem 4.4 assume that the Junc- 
tion f o is decreasin9 and 

~x-  I [ f l  Ilup > ~o > O. 

Then there exist too > 0 such that the semigroup Pt, t > O, correspondin9 
to the solution o f  (4.1) has a unique &variant measure both in H = L~,~(IR d) 

and H = L 2 (IRd~ for  any tc C]O,~c0[. Moreover there exists c > 0 such that Die \ ]~ 
for  any bounded Lipschitz function (p on H, all t > 0 and all x C H 

Pr - f qo(x)tl(dx) < (c + 2){Ixlr)e-~O'll~ollL~p. 

Proo f  We apply Theorem 2.3. Arguing as in the proof of  Theorem 3.4 one 
easily shows that condition (i) o f  Theorem 2.3 holds. It remains to check that 
(ii) holds as well. As for the discrete lattice we will prove that for arbitrary 
p > l  

sup  , < + o o  
t>o 

Note, compare the proof o f  Theorem 4.4, that for all t > 0 

II was,,( f s(t - s ) Q l / 2 h j ( ~ ) d f l t ( s )  
hR d 

~ Cl (~P(~))  (ij=~llX(t-s)Ql/2hj(~-)]2ds) 

P(~)2(~x + 1,712) d'7 d~. [] 

d~ 

p12 

Remark. 4.9 Existence o f  a stationary solution o f  (4.1), but not o f  invariant 
measure, was obtained by Marcus [21] if d = 1. Our results about the expo- 
nential convergence o f  the transition semigroup are new. 

5 Quantum lattice systems 

Quantum lattice systems are a mixture of  systems described in Sect. 3 and 
Sect. 4. They were introduced in [1] and are described by systems of  equations 
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of  the form 

dXT(t ) (~4~,(t)+ ~ avjXj(t)+,~(X.,(t)) ) 
iczd 

X,,(O)-- x.~, E S ,  7 C 77 d, t > O. 

dt + dw,,(t) 

(5.1)  

In Eq. (5.1), ,M and Y are respectively linear and nonlinear, in general un- 
bounded, operators on a Hilbert space .)'f,(ao,i)).jce~ is a given matrix with 
real elements and (W~,)o~ej is a family of  ~nc[ependent, cylindrical Wiener 
processes on ~ .  Following [1] we will require that the space ~ and the 
operators .~r and -Y are o f  special character although it will be clear that 
our general schema works in the more abstract setting. We will thus assume 
that 

= L2(0, 1),  (5.2) 

d 2 

d~ 2 (5 .3)  

D ( , ~ ) =  { x C H 2 ( 0 , 1 ) ' x ( 0 ) = x ( 1 ) ,  x ' ( 0 ) = x ' ( 1 ) } ,  

s ( x ) ( ~ )  = f(x(~)), ~ ~ [o, 1 ] ,  
(5.4) 

D(S-~) = {x E L2(0, t ) :  f(x) ~ L2(O, 1)},  

and on f and on the matrix (a:j)v,i~e,z we will impose conditions (3 .7)- (3 .9)  
and (3.3). 

To see that (5.1) is o f  the general form studied in Sect. 2 define 

H#2p(L2(O'I ) ){  ( x T ) ~ j t ~ ( ~ ) : ~ 2  } = = p ( ~ ) I I x . , , l L ~  < + ~  , 
3,E2~ d 

K f2pS(L2s(o, 1)) {(xT) ~ (L2S(0, l ))(~J) �9 ~ 2s < @00} , = -- p(w) I1~, II L=,.(o,, ) 7C2~ d 

where p - p" or p = p~, tc > 0, see Sect. 3. 

Let A - Ao + A1 where A1 is a bounded linear operator on H given by 

Al(x~,)= \JC ~ aTjxi) , x ED(A1)=H, 

and 
Ao(xT) = (,~r x - (x~,) C D(Ao) , 

D(Ao) {(xT) EH: ~ P(7)]'~ < +w} 
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Boundedness of  A I follows from an obvious generalization of  Proposition 3.1. 
Let, in addition, 

F(xT) = (~'x),), x = (x~,) E D ( F ) ,  

D ( F )  {(x,/)  C H" ~ p(7)ll.~-x.,]]% < 4-oo} ~: 

It is easy to check that operator A0 4- r/ on H and its restriction Aop 4- t 1 to K 
are m-dissipative for sufficiently small 11 . 

Let S(t) ,  So(t), t >= O, be C0-semigroups on H generated by A and A0 and 
denote 

l 

wA(t) = f s ( t - s ) d W ( s ) ,  t >= O, 
0 

t 

wAo(t) = f S o ( t - s ) d W ( s ) ,  t > O, 
0 

where W(t),  t > O, is the Wiener process (W:,( �9 ))~,~ej embedded into H. 

Proposit ion 5.1 Processes WAo(t), t > O, WA(t), t > O, have continuous ver- 
sions with values in {P(LP(O, 1)), p => 1. 

Proo f  Existence of  a continuous version of  WAo(t), t >= 0, in :P(LP(O, 1 )) can 
be obtained by factorization, as in the proof  of  Proposition 4.5, and using the 
diagonal character of  the semigroup So( �9 ). 

Note that for Z( t )  = WA(t), t > O, 

t 

z ( t )  = WAo(t) + f So(t - s ) A i Z ( s ) d s ,  t > O . (5.5) 
0 

Since the semigroup So( �9 ) has a C0-continuous restriction to {P(LP(O, 1 )), Eq. 
(5.1) has a unique solution in C([0, T]; :P(LP(O, 1)) for arbitrary T > 0 by an 
elementary fixed point argument. This proves the result. [] 

As a corollary from our discussion and Proposition 5.1 

Theorem 5.2 Assume that conditions (3.7)-(3.9)  and conditions (5.2)-(5.4)  
hold. Then fo r  arbitrary x E H Eq. (5.1) has a unique 9eneralized solution 
X (  �9 ,x). I f  x E K the solution is mild. 

As in Sects. 3 and 4 one can derive a result on exponential decay for 
the transition semigroup Pt, t > 0 corresponding to the solution X( �9 ,x) of  
(5.1). 

Theorem 5.3 In addition to conditions o f  Theorem 5.2, assume that f o is 
decreasin9 and that c~ - Hf l ]]Lip > co > 0. Then there exists too > 0 such that 
the semiorou p Pt, t >= 0, correspondin9 to the solution o f (5 .1 )  has a unique 
invariant measure # both on H L2,~ and on H 2 = = Lp,~.,.,for all ~c C]0,~c0[ and 
r > d. Moreover  there exists c > 0 such that f o r  any bounded and 
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Lipschitz .function q) on H, all t > 0 and all x E H" 

Pt~o(x) - f ~o(x)#(dx) < (c + 211xtl)e-(~'tl~011L~p �9 

H 

Proof  As in the proof of  Theorem 4.8 it is enough to check assumptions of  
Theorem 2.3. We will show that 

supn~(l lw~(t) l l . )  < + o ~ .  (5.6) 
t_>0 

suplE(llf(WA(t))][n ) < + o c ,  (5.7) 
t>0  

as the remaining conditions hold in an obvious way. 

To prove (5.6) note that for t > 1, 

t 

= IE f o s ( t -  s ) d W ( s )  n = IE iS(s)dW(s) H 

[ t ] - I  k+l t[ [t]t H 
<= ~ �9 f s(s)dW(s) I + E fs(~)dw(s) 

k=0 k H 

[ t]-  I 1 u 

[r]-  I 1 u 
< ~ e-~klE f X ( s ) d W ( s )  + s u p l E  f X ( s ) d W ( s )  

k = 0 0  H u < 0 H 

u 

2eC~ suplE f S ( s ) d W ( s )  , t > l .  < 
e ~ - -  ' u ~ l  0 n 

To show (5.7) remark first that 

~tIF(WA(t))IIH _--< (IglIf(W4(t))[l~) '/2 < (milWA(t)l]~) '/2 . 

Since the distribution of  WA(t) on K is Gaussian, therefore there exists a 
constant ~ such that 

~EIIWA(t)II~ ~ ~(~EIIwA(t)IIK)" - 

Moreover there exists a contant ~ > 0 such that for the restriction S(t), t > 0, 
of  the semigroup S(t), t > 0 to K, one has 

A 

HS(t)IIK < e -~*, t > 0 .  

It remains now to repeat the proof of  (5.6). [] 

Remark. 5.4 Theorem 5.2, under slightly stronger conditions was proved ear- 
lier in [1] using specific properties of  the one-dimensional heat equation. It is 
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howeve r  clear  that the dissipat ivi ty me thod  al lows to treat spaces :r more  gen-  
eral than L2(0, 1 ). Exis tence  o f  invariant  measure  kt for (5.1)  was also obtained 
in [1] with more  stringent condit ions imposed  on . f ,p  and (a~,j). Exponent ia l  
est imates in Theo rem 5.3 are new. 
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