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Summary. Let (~k)2=-~ be a stationary sequence of random variables, and, 
for A clR,  let Mn(A).'= V 7,(~k) where 7, is an affine transformation of IR 

k/n~A 

(has the form an" +b , ,  an>0, bn~R). Then M,  is a random sup measure, that 
is, M,(~)G~)-:VM,(G~) for arbitrary collections of open sets G~. We show 

~t Gt 

that the possible limiting random sup measures for such sequences (M,) are 
those which are stationary (M(. + b ) = ~ M  for be]R) and self-similar (M(a.) 
=d(~l~ for a>0, where 6 is an affine transformation of IR). By applying 
simple transformations, we need only study stationary M such that M ( a ' )=a  a M 
for a > 0. We show that these processes retain some but not all of the properties 
of the classical case. In particular, we display a nontrivial example such that 
tw-~M(0, t] is continuous wpl.  The classical planar point process representation 
of extremal processes is a special case of the present approach, but is not ade- 
quate for describing all possible limits. 

1 Introduction 

Let (~k)~= 1 be a sequence of random variables, and let 

M,.-= + ~k 
k = l  

denote the partial maxima. Research on the asymptotics of Mn, or rather anM, 
+ b, for suitably chosen constants an > 0, bn, has a long tradition in probability 
theory. The resulting theory has developed along the same lines as its counterpart  

for the partial sums ~ ~k" AS in the latter case, most is known with the ~k 
k = l  
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independent and identically distributed. All possible limit laws for a~M, + b~ 
were already known by Fisher and Tippett (1928). The domains of attraction 
(= the  collection of distributions of ~k producing a specified limit law for a, Mn 
+bn) were characterized by Gnedenko (1943) and de Haan (1970). Functional 
limit theorems for 

anMkntj -t- b~ 

as random functions of t were obtained first by Dwass (1964) and Lamperti 
(1964). The limit processes were called ' the '  extremal processes and became 
a separate topic of research. Pickands (1971) was the first who regarded them 
as functionals of planar Poisson processes. This approach was then adopted 
by many authors and has been codified in Resnick's survey (1986) and mono- 
graph (1987). As a result, convergence considerations shifted from random func- 
tions to planar point processes. 

As could be expected, a second line of research has developed in the last 
decades on asymptotics for Mn with the assumption of independent identically 
distributed ~k relaxed to specific forms of dependence, mostly including stationar- 
ity. Research has been very productive. Without hope of being complete we 
mention work by Berman (1964), Loynes (1965), Newell (1964), Adler (1978), 
O'Brien (1987), the monograph by Leadbetter, Lindgren and Rootz6n (1983) 
and the survey by Leadbetter and Rootz6n (1988). 

However, if one looks at the results with special interest in finding new 
limiting extremal processes, one gets a bit disappointed. With few exceptions 
all limit processes are the same as in the iid case and the dependence influences 
only the scaling, or marginal limit results are obtained for Mn, whose functional 
analogues for MLnt ~ have random constant functions as limit (so there is too 
strong dependence in the limit), or the limits are random mixtures of all these 
processes. Without stationarity it is not so hard to find other limiting extremal 
processes, cf. Weissman (1975) for the case of independent ~k, and Htisler (1986). 

There is more variety in the literature if nth largest values (n > 2) are being 
considered. In many cases of dependence these tend to cluster below the largest 
values (cf. Mori (1977) for an early case, and Hsing (1987, 1988)). 

In the present paper we restrict our attention to largest values. We character- 
ize, in a certain interpretation, all limiting processes of an MLn.j + bn for stationary 
(~k)- To this end we must be able to identify a stochastic process as being 
extremal by intrinsic characterization. The need for this has triggered an exten- 
sive study of random semicontinuous functions and random closed sets by Ver- 
vaat (1988), and the needed results are quoted from that paper in Sects. 2 4 .  
For a similar approach to extremal processes with different applications, see 
Norberg (1987). 

The consequences of stationarity of (~k) for the limiting extremal processes 
are treated in Sect. 5. An important ingredient is Lamperti's (1962) fundamental 
theorem on self-similarity which applies to all stochastic processes, not just 
the extremal ones (Sect. 6). 

The main result of this paper (Sect. 8) is that all nondegenerate limiting 
processes of a n Mkn. j + b~ for stationary (~k) correspond to stationary self-similar 
random upper semicontinuous functions (the combination of 's tat ionary'  and 
'self-similar' is referred to as 'self-affine'). We discuss examples and explore 
general properties (Sects. 9-11). Many of the examples are produced by the 
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technique of subordination (Sect. 10). One of them has continuous sample paths 
wpl  (Sect. 11). 

A broad class of such extremal processes arise from planar point processes 
(Poisson in the classical iid case). However, not all processes arise this way. 
Consequently, the point process approach, which was so successful and elucidat- 
ing in the last decade, is not general enough for handling all limiting processes 
arising from stationary sequences. 

The completion of this paper has taken a long time, with many of the results 
obtained already in 1980. This is partly due to the need to develop the topological 
background in Vervaat (1988). A preview of the present results without proofs 
appeared in Vervaat (1986), 

2 Sup measures 

Formerly, extremal processes were stochastic processes (M(t))t~o, where M(t) 
was to be interpreted as the supremum of a random phenomenon observed 
in (0, t]. In the last decade it has become more common to regard extremal 
processes as random functions on families sJ of subsets of the time domain: 
(M(A))Ae d. Often d was a collection of intervals in [0, or), and M(A) was 
to be interpreted as the supremum of a random phenomenon observed during 
A. A smooth theory can be developed if we take for d the collection N of 
open subsets of N and require 

(2.1) M ( U  G~)=V M(G~) 
ct ~t 

for arbitrary collections of open sets (G~) in JR. We want to define an extremal 
process as a random variable taking values in a space of functions on ~ satisfying 
(2.1). So it is useful to study such function spaces. 

Definition 2.1. Let II be a compact interval in IR..=[--o% oo]. An (H-valued) 
sup measure is a mapping m: ~q ~ ~ such that m(0) =m in  lI and 

(2.2) m({,) G~) = V m(G,) 

for all collections (G~) in fq. 

A way of producing a sup measure is to start with a function f:  N ~ I I  
and set f v  ( G ) . . = V f (  0 for GeN (here and in the sequel, V. .=min  11). Then 

t~G t~O 

f , /  is a sup measure. We call f v the sup integral of f, and occasionally write 
f v  = i v f  Obviously, different f may produce the same sup measure, e.g., 1~ 
= 1~. The question comes up whether all sup measures are sup integrals, and 
to what extent sup integrands are unique. In the remainder of this section we 
present material from Vervaat 0988, Sects. 1, 2), where the results are proved 
in the larger generality of ~ being the open sets of an arbitrary topological 
space (not necessarily Hausdorff). 

Definition 2.2. If m: N ~ lI is increasing (m(G1) <= m(G2) if G 1 c G2), then the sup 
derivative d ~ m is the function N~ --+ lI defined by 

d v re(t).'= A re(G) for t e N ,  
G~t 
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or  equivalentIy,  

d , /m := /~  {re(G) 1G v (max 11) l m a  }. 
G 

There  is a close re la t ionship between sup measures  and  upper  semicont innous  
(usc) functions. We first recall the definit ion and  some proper t ies  of  upper  semi- 
continuity.  

Definition 2.3. A funct ion f :  IR ~ lI is upper semicontinuous (usc )  if {t: f ( t ) < x }  
is open for x elI, 

Properties 2,4. (a) If  f is two-valued,  then f is usc iff f assumes its larger value 
on a closed set. In part icular ,  1A is usc iff A is closed. 

(b) Pointwise infima of a rb i t ra ry  collections of  usc funct ions are usc. 

(c) Fo r  f :  IR --+ lI the funct ion d v i ' / f  is the smallest  usc funct ion larger than  
or equal  to f In  part icular ,  f is usc i f f f  = d v i v f  

By (a) and  (b) we see tha t  d V m in Defini t ion 2.2 is usc. C o m p a r e  Proper -  
ty 2.4 (c) with (b) in the next theorem.  

Theorem 2,5, Let  m be as in Definition 2.2. Then 

(a) d'l m is usc; 

(b) i" d'l m is the largest sup measure smaller than or equal to m. In particular, 
m is a sup measure iff m = i'I d "1 m. 

Let SM denote  the collection of  all sup  measures  N ~ 1I and  US the collection 
of all usc functions IR --+ II. Then  Proper ty  2.4 (c), T h e o r e m  2.5 and the fact tha t  
f v is a sup measure  imply  tha t  d v : SM ~ US is a bijection with inverse i v 

F o r  sup measures  m:  N-+I I  there is a canonical  extension to all subsets 
of Ill because 

(2.3) V d V m ( t ) =  /~  m(G) for AcN, A+O. 
t e A  G ~  A 

The c o m m o n  value of bo th  sides is denoted  by m(A). F o r  singletons A =  {t}, 
fo rmula  (2.3) reduces to Defini t ion 2,2, 

W e  now establish topologies  on SM and US. The  following results and  
those in the next  sect ion up to L e m m a  3.3 are quoted  f rom Vervaa t  (1988) 
(cf, also N o r b e r g  (1986) and  Salinetti  and Wets  (1986)). 

Definition 2.6, A sequence of sup measures  (m,) converges  sup vaguely" to a sup 
measure  m if 

(2.4a) lim sup m n ( K ) < m ( K )  for compac t  K c l R ,  
n 

(2.4b) l i m i n f m , ( G ) > m ( G )  for open G c l R .  
n 

A sequence of usc functions (f,) converges  sup vaguely to an usc funct ion f 
i f f , "  - - , f  v in SM. 
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These convergence concepts determine the sup vague topologies on SM and 
US, and make d v and i"  homeomorphisms.  We continue our discussion only 
for SM; the translation to US is straightforward. 

In the first instance, (2.4) should be required for nets, or rather one should 
define the sup vague topology as the coarsest topology making the evaluations 
m~-+m(K) usc and m~--~m(G) lower semicontinuous, but the resulting topology 
turns out to be compact and metrizable, so is determined by sequential conver- 
gence. We can relax the requirements in (2.4) to compact  intervals K and 
bounded open intervals G, or more generally, to K from a base of compact  
sets and to G from a base of open sets. Moreover,  sup vague convergence 
can be characterized by convergence on continuity sets. We say that A cN~ 
is a continuity set of m if m(int A)=  m(clos A). Now (2.4) holds iff 

(2.6) m,(A) ---, re(A) for all bounded continuity sets A of m, 

iff (2.6) holds with A restricted further to be a bounded continuity interval. 

3 Extremal  processes as random sup measures 

We now make SM a measurable space. The Borel field on SM (Bor SM) generated 
by the sup vague topology turns out to be the smallest that makes the evaluations 
m~--~m(A) measurable for all open A, or all compact  A, or all compact  intervals 
A, or all bounded open intervals A, or all intervals as in previous cases with 
rational endpoints. In particular, a mapping  M: f2 ~ SM with (f2, ~ IP) a proba-  
bility space is a random sup measure, i.e., a random variable in SM, iff M(A) 
is a r andom variable in M for all A in one of the previous collections. 

Definit ion 3.1. An extremaI process is a random sup measure. 

The probabil i ty distribution over Bor SM of an extremal process M is deter- 
mined by the finite-dimensional distributions of (M(A))A~,, where ~r may  be 
any of the collections indicated above. 

We are now ready for convergence in distribution. Because SM is compact,  
characterizations are relatively easy. We denote the collection of nonempty  
bounded open intervals by J .  For  an extremal process M, let J ( M )  be the 
collection of continuity intervals of M, defined by 

(3.1) J ( M )  : = { I e J : M ( I )  = M(clos I) wpl}.  

The class J ( M )  is rather large, see Corollary 4.3. The next result is the last 
one quoted from Vervaat  (1988). 

Theorem 3.2. Let M, (n> 1) and M be extremal processes. Then M, --+aM (conver- 
gence in distribution in SM) iff the finite-dimensional distributions of (M,(I)I~j(M) 
converge weakly to those of (M (I))I~j(M). 

Occasionally we will consider M,(I,), where I ,  varies also with n. So the 
following is useful. 
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Lemma 3.3. I f  r% ~ m in SM and In, I are bounded intervals in IR such that 
inf I ,  ~ infI  and sup I ,  ~ sup I, then 

lim sup m n (In) < m(clos  I), 
n 

lim inf m n (I.) => m (int I). 
n 

Proof Let (K,) be a sequence of compact  intervals such that Kk+a c i n t K k  for 
k = 1, 2, ... and (~ Kk = clos I. Let (Gk) be an increasing sequence of open intervals 

k 

such that  c l o s G k c G k + l  and U Gk =intI" Then m(Kk)~m(closI) by (2.3), and 
k 

m(Gk)~m(intl) because m is a sup measure. For  fixed k we have GkCIncKk 
for all large n, so 

lim sup mn (I.) =< lim sup mn (Kk) < m (Kk), 
n n 

lira inf mn (In) > lim inf mn (Gk) > m (Gk). 
n n 

Letting k ~ oe we obtain the lemma. []  

4 Random upper semicontinuous functions 

Whenever convenient we will study extremal processes M via their sup deriva- 
tives 

X(t) :=d v M(t)=/~M(G) = M({t}), 
G~t 

where G must  vary in the first instance through the open sets. It  is obvious 
that X does not change if G varies through the open intervals, or through 
the compact  intervals with t as interior point. The process X is a random 
usc function, i.e., a mapping  X from the underlying probabili ty space into the 
usc functions such that  X v (A) is a r andom variable in lI for all A in one 
of the collections at the beginning of Sect. 3. 

Some caution is needed when thinking about  the classical procedures of 
selecting smooth versions of stochastic processes with the same finite-dimension- 
al distributions. They apply to M rather than X. To see this, let ~ have a 
uniform distribution over [0, 1], and set X,=I~r Then X has the same finite- 
dimensional distributions as Y=O, but X v and y v do not have the same 
distribution over Bor SM since X v [0, 1] = 1 wpl  and Y" [0, 1] = 0  wpl .  

R a n d o m  usc functions X are measurable processes, i.e., the mapping  (t, co)~-~ 
X(t, co) is jointly measurable. To see this, note that X ( t ) = l i m X V ( t - n  - t ,  

n 

t + n-1) and that  the mapping  ((s, t), co)~--~X v ((s, t), co) is jointly measurable, be- 
cause X v depends monotonically on s and t (s < t). 
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With (random) functions f: IR- .  lI we will also consider their graphs and 
hypographs. It is convenient to regard them as subsets of ~ x3I rather than 
IR x ~, where J : = ] I \ m i n  ]I. So we define the graph o f f  to be 

F(f). '= {(t, x ) e R  • J :  f ( t )=x}.  

Note that F ( f ) = 0  in case f = m i n l I .  For  points ( t , x )~ lRx3 l  we define the 
umbra 

$(t, x).'= {t} x (mini ,  x], 

and we extend this notion to subsets F of 1R x J by 

+F=U+z. 
zEF 

For  functions f:  N ~ I I  we call IF(f)  the hypograph of f .  It is well-known that 
functions f:  R ~ lI are usc iff their hypographs ~ F(f) are closed in R x J .  

An important  particular case occurs if F is a locally finite subset of IR x J ,  
i.e., Fc~(K • [-x, maxll]) is finite for compact intervals K in IR and x s J .  Then 
both F and I F  are closed in IR x J ,  and I F  is the hypograph of an usc function 
f with countable graph. We have F =  F(f) in case F has at most one point 
on verticals. If F is a random closed subset of IR x J which is locally finite 
wpl,  then it can be regarded as the support of a simple point process H, a 
random integer-valued Radon measure on Bor(~x. . l l )  such that VFI{z}  

z 

< 1 wpl. In this case we can define a random usc function X by I F ( X ) =  ~(sup- 
port  of / / ) .  In particular, we reobtain the well-known representation of classical 
extremal processes as functionals of planar Poisson processes by considering 
X "  starting from Poisson H. 

Hypographs are a more natural characteristic of usc functions than graphs. 
From a theoretical point of view this is made clear in Salinetti and Wets (1986), 
Norberg (1986) and Vervaat (1988). F rom a technical point of view they turn 
out indispensable with subordination (Sect. 10). Finally, random hypographs 
take values in the well-defined measurable space of closed subsets of R x.]I 
(cf. Matheron (1975) and the three previous references). For  random graphs 
there is no obvious measurable codomain, unless via their closures. The opera- 
tion of recovering the graph of an usc function from its closure is the same 
as recovering it from its full umbra, the hypograph. 

In the sequel we need more detailed knowledge about how and in how 
many places (random) usc functions can have peak values that are substantially 
larger than any other values in (one-sided) neighborhoods. 

Definition 4.1. A function f: I R ~  is said to be left sup continuous at t~lR if 
f(t) = lira sup f(s), right sup continuous at t if f ( t ) =  lira sup f(s), and sup continu- 

s~t sSt  

ous at t if f is both left and right sup continuous at t. We say that f is sup 
continuous (left, right sup continuous) if f is sup continuous (left, right sup 
continuous) at each teN~. 

A sup continuous function is usc, but an usc function need not be sup 
continuous. 
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Lemma 4.2. (a) I f  f: IR--, ~ is usc, then the set on which f is not sup continuous 
(left, right sup continuous) is countable. 

(b) I f  X is a random usc function ~ ~ II, then the set of t for which there 
is positive probability that X is not sup continuous (left, right sup continuous) 
is countable. 

Proof If is sufficient to prove the cases of left sup continuity. 

(a) If f is not left sup continuous at t, then we can select an open rectangle 
R t :=(t-- 5t, t) x ( f ( t ) -  et, f(t)) such that R t ~ ~F(f) = 0. Then all selected rectan- 
gles R, are disjoint. Since ]R x ]I is separable, there can be only countably many 
such rectangles. 

(b) Adapt the e-J arguments in the second paragraph of p. 124 of Biltingsley 
(1968). []  

It is obvious that I is a continuity interval of an extremal process M (cf. 
(3.1)) if I ~ J  and d v M is sup continuous wpl  at infI  and sup I. So Lemma 4.2 (b) 
implies 

Corollary 4.3. Let M be an extremal process. Then there is a minimal countable 
subset D of ]R such that 

J ( M ) ~  { l e J :  infI, supI~D}. 

5 Stationary extremal processes 

We now formulate the main subject of this paper in terms of notions introduced 
in the previous sections. Let (~k)k~Z be a stationary sequence of random variables 
in IR. For  A c N, set 

(5.1 a) MI(A) '=  ~/~k, 
k~A 

(5.1b) M,(A) '=a,  M I ( n A ) + b , =  V (a,~g+b,) for n = 2 , 3 , . . . ,  
k:k/neA 

where (a,) is a sequence in (0, oo) and (b,) in IR. We want to characterize those 
extremal processes M that are limits in distribution of M, as n--, oo for some 
stationary sequence (~k) and some choice of normalizing sequences (a,) and 
(b.). 

Although an essential ingredient (Lamperti's theorem in the next section) 
is still missing, we can draw some conclusions about M at this stage. For  the 
remainder of this section we take lI = IR. Recall that J is the collection of non- 
empty bounded open intervals. 

Theorem 5.1. I f  M,  ~ d M  in SM with M~ as in (5.1), then 

(a) M is stationary: M = d M  (" +b) for be]R; 
(b) J ( M ) = J ,  that is, M(I )=M(c los I )  wpl for I ~ J  ; 
(c) the finite-dimensional distributions of (Mn(I))i~ J converge weakly to those 

of (M (I))~s as n ~oo .  

For  the proof of Theorem 5.1 we need the following lemma of independent 
interest. 

Lemma 5.2. The mappings SM xlR~(m, b)~-~m(" +b )~S M and SM x(0, oo) 
~(m, a)~-+m(a')~SM are sup vaguely continuous. 
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Proof Let m, ~ m in SM and b, ~ b in IR. For  compact intervals K, Lemma 3.3 
with I .  = K + b,, I = K + b gives l imsup m,(K + b,) < m(K + b). For  bounded open 

intervals G, Lemma3.3  with I,=G+b,, I=G+b gives liminfm,(G+b,) 

>m(G+b). So m,(. +b,)~m(. +b) by (2.4) restricted to compact and to 
bounded open intervals. The proof  for the second mapping is similar. []  

Proof of Theorem 5.1. (a) Obviously, M,(" + b ) = e M ,  in SM for ben-1;g. For  
each ke7Z+ and bek-aZ we have 

M~dM,k=eM,k(" +b)~dM(" +b) as n-~oe 

(the latter convergence by Lemma 5.2). Hence 

(5.2) M=dM (" +b) 

for such b. This result holds for k = 1, 2 . . . . .  so (5.2) holds for bell). Again by 
Lemma 5.2, the mapping b~-*lawM(" +b)  is weakly continuous, so (5.2) holds 
for all belR. 

(b) Let D be as in Corollary 4.3. Then D is invariant under translations 
since M is stationary, and countable by Lemma 4.2(b), hence empty. So 
J - - J ( M )  by Corollary 4.3. 

(c) Follows from (b) and Theorem 3.2. [] 

6 Self-similarity and self-affineness 

Consider M,  as in (5.1) and let II=IR. In the previous section we have explored 
the consequences for the limiting process M of the underlying sequence (~k) 
being stationary. In the present section we consider the consequences of M 
being a limit in distribution of processes of the form a, M1 (n')+ b,. 

At this point it is convenient to introduce a condensed notation for the 
affine transformations a, .  + b, with a, > 0. We denote by Aft the set of all trans- 
formations 3): x~--~ax+b of lR with ae(0, oo) and beN.  We also write 3)=a- +b.  
The set Aft is a noncommutative group with composition as binary map: 

3)1 3)2 :=3)1 o ~2 = a l  a2"  + a l  b2 q- bl, 

unit element 1. + 0  and inverse 7-1 = a - 1 ( . - b ) .  We make Aft a topological 
group by declaring a" + b ~--~(log a, b)e~.  2 a homeomorphism, so a," + b, ~ a" + b 
in Aft iff a, --+ a in (0, oe) and b, ~ b in IR. We define real powers 3)t of 3) = a- + b 
by 

t a t (  - c ) + c  if a=~ 1, where c:=b/(1-a), 
3)t= ~.-+tb if a = 1 

(note that this is a continuous extension to t e n  of what one has to define 
first for t e ~  and then for t e~ ) .  
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We now reformulate the starting point around (5.1). For a stationary 
sequence (~k)k~e of random variables in IR and a sequence (7,),=2 in Aft we 
set: 

(6.1a) M~(A):= V ~k, AclR,  
kEA 

(6.1b) M.(A):=7. (MI(nA))= V 7.(~k) for n = 2 , 3 , . . .  
k:k/n~A 

Recall that sup measures and extremal processes can take values in IR. 

Theorem 6.1. (a) Let M n be as in (6.1). I f  Mn ~ eM in SM, then M is stationary. 

(b) I f  in addition M(O, 1] is nondegenerate and finite-valued wpl, then there 
is a 6~Af f  such that 

(bl) M(a')=d61~ in S M f o r  a>0 ,  and 

(b2) 7nTLntj'+(~ l~ in Aff  as n--+oo for t>0 .  

(c) Conversely, if an extremal process M is stationary and satisfies (b 1)for 
some 6~Aff, then there exists a stationary sequence (~k) of random variables in 

and a sequence (7.) in Aft such that M .  as defined in (6.1) converges in distribu- 
tion to M. I f  M(O, 1] is in addition finite wpl, then the ~k are finite wpl. 

Proof. (a) This is Theorem 5.1 (a). 

(b) By Skorohod's representation theorem there are random variables M'. 
and M' in SM such that M' .=dM. ,  M ' = d M  and M ' . ~ M '  wpl. By Lemma 3.3 
and Theorem 5.1 (b) it follows that M'.(0, [_nt]/n] ~ M'(O, t] wpl. Consequently, 
M.(O, [ntJ/n] ~ d m  (o, t] in ]R. Substituting 

m.(o, Ln tJ/n] = 7. (ml (0, In tJ3 ) 

and noting that M(0, 1] is finite wpl and nondegenerate, we are ready to apply 
the sequential version of Lamperti's theorem: Theorem 8.5.3 in Bingham, Goldie 
and Teugels (1987). By this theorem there is a 6~Aff such that (b2) holds. 
For a > 0 we have M.  ( a - ) ~  M (a') in S M as n ~ oo. On the other hand, 

M.(a ' )=7 . (M1(na ' ) )  

=7,Tt,,jTL,aj M1 [nal Lna]" ---'d6J~ 

by (b2), Lemma 5.2 and the continuity of the mapping Affx N~(7, x)~-~7(x)cIR. 
Comparing the limits, we find (b 1). 

(c) Set ( k ' .=M(k -1 ,  k] for kETZ and 7 , . '=U ~~ Then (~k) is a stationary 
sequence in ]R (in IR if M(0, 1] is finite wpl), and M,,(I)=M(1,),  where I e J  
and I,. '= U ( k - l , k ] / n .  So M,(I )=M(I , ) - - - ,M(I )  wpl by Lemma3.3 and 

k:k/nel 

Theorem 5.1(b). [] 
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Extremal processes M satisfying (b 1) are called 6 self-similar. Extremal pro- 
cesses that are both 6 self-similar and stationary, are called 6 self-affine, because 
the group of transformations of SM 

(6.2) m~--~b-l~ �9 +b)), as(O, oo), beN,  

that leave the distribution of M invariant is isomorphic to Aft. 
If M is 6 self-affine and M(0, 1] is finite wpl  and nondegenerate, then so 

is M (b, b + a] for all a s (0, oo) and b EIR. So M (I) is finite wp 1 and n ondegenerate 
for all bounded intervals. From Theorem 6.1 we conclude that all nondegenerate 
limits in distribution of M,  as in (6.1) with M(0, 1] finite are given by the 
nondegenerate self-affine extremal processes with finite values on J .  

If ~ is a pure multiplication, say ~ (x)= enx (HEIR), then (b 1) reads: 

M(a ' )=aanM for a>0 .  

In this particular case we say that M is self-similar with exponent H or /-/ 
self-similar. Likewise, H self-similar stationary extremal processes are called/-/  
self-affine. This special case of self-similarity is the self-similarity encountered 
in the literature. 

7 Fixed points and invariant set o f  affine transformations 

Although Theorem 6.1 gives lots of information about the limiting extremal 
processes arising from (6.1), the results only become complete after an investiga- 
tion into how ~ self-affine extremal processes behave at fixed points and in 
invariant sets of 6. For  this section it is just as easy to consider extremal processes 
with values in IR. The application will be to the finite-valued case, though. 

For  6eAff  we define the invariant a-field ~ by ~ . .={VsBor lR:  6V= V}. 
Then % is a a-field with atoms { -  c~}, ( -  oo, c), {c}, (c, oo), {oo} in case 
is not a translation, c being its fixed point, and with atoms { -o o } ,  IR, {oo} 
in case 6 is a translation, except when 6 is the identity map, in which case 

=BorlR.  
In the remainder of this section, - denotes equality of events up to null 

events. 

Theorem 7.1. I f  M is a 6 seIf-affine extremal process and I=(0 ,  1], then 

[M(I)eV] "-- (~ [M(J)sV]--  ~ [M(J)sV] for Ve'~a. 

Remark 7.2. It follows that the events [M(I )e  V] are invariant up to null events 
under all transformations in (6.2) applied to M. Hence M remains ~ self-affine 
under the conditional distribution given [M (I)e V], in case P [M (1)e V] > 0. 

Proof of Theorem 7.1. Consider first Ve ~ of the form [ -  o% v) or [ -  ~ ,  v]. 
Let J1, J 2 s ~  Then J2 =a(J1 -b )  for some reals a and b, a > 0 ,  so 

[M (J2) e V] -- ]P [ M  (J~) e 6L~ V] = P [M (S~) e V]. 
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If J1 c J 2 ,  then [M(J2)e V] c [M(J1)e V], so EM(J2)e V] -'- [M(Ja)e V]. We get 
the same result for all J1, J 2 e J  by comparing Jr ,  J2 with the convex hull of 
Jx u J2. Consequently, with Jo  denoting the intervals from J with rational end- 
points, 

0 [M(J)eV]= n [M(J)eV]'-- U [M(J)eV]= U [M(J)eV]. 
J ~  J~or Y e J o  J e ~  

A comparison J1 c I c J2 proves the theorem for V of the above form. The 
result for general Ve ~ follows by set subtraction, or if 6 is the identity map 
by verifying that M is constant wpl  on J.  [] 

The next lemma singles out the atoms of the o--field "~ that are avoided 
wpl by 6 self-affine extremal processes. 

Lemma 7.3. Let M be a 3 self-affine extremal process. 

(a) I f  3 is not a translation, say 3=el l (  �9 --C)+C with H+O, then M has wpl 
no values in ( -  oo, c) in case H > 0 ,  and no values in (c, oo) in case H < 0 .  

(b) I f  6 is a translation: 3=.  +b with b<0 ,  then M has wpl no values in 
IR. 

Proof. (a) First consider the special case c = 0, H < 0. Assume that P [M(I )e  (0, ~ ) ]  
>0.  By Remark 7.2 we may assume after conditioning that IP [-M (I) e (0, oo)] = 1. 
We now have for 0 < a < 1 

M(O,t~=ea-UM(O,a]<=a-HM(O,l~O as aS0, 

so M(0, 1] = 0  wpl,  a contradiction. The remaining cases are transformed into 
the special case by considering M--c in case H < 0  and --1/(M--c)  in case 
H > 0 .  

(b) If M is 3 self-affine with 3 ="  + b, then e M is 3' self-affine, with 3' as 
in (a) for H=b and c=0 .  If b<0 ,  then e M has wpl  no values in (0, oo) by 
(a), so M has wpl no values in ]R. [] 

8 Reduction to the standard case 

If M is an extremal process with values in lI and ~o: l I~  IR is nondecreasing 
and left-continuous, then ~oo M is an extremal process. If in addition M is station- 
ary, then so is ~o o M. Special choices of ~o can be used to transform 6 self-affine 
extremal processes into 1 self-affine extremal processes. This allows us to make 
1 self-affine extremal processes M such that M(0, 1] has values in (0, ~ )  wpl 
the central object of study in the rest of the paper. They satisfy 

(8.1a) M(I)s(O, oo) for I e J  wpl,  

(8.1 b) M(a. +b)=eaM for ae(0, oo), belR 

We reserve the term self-affine extremal process (without further prefix) for 1 
self-affine extremal processes, i.e., extremal processes that satisfy (8.1b). If we 
insist on (8.1 a) holding in addition, then we talk about  proper self-affine extremaI 
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processes. We write M = c if M(I)=  c for all I e J .  Then (8.1 a) excludes positive 
probabilities for [ M -  0] and [M -- oo] in presence of (8.1 b). 

The following theorem combines everything of the two previous sections 
for the finite-valued case. The statement "wpl  either A or B"  means that the 
events AB and A c B c are null events. 

Theorem 8.1. Let M,  be as in (6.1) based on a stationary sequence (~k). I f  M,  ~ dM 
in SM and M (O, 1] is nondegenerate and finite-valued wpl, then M is 6 self-similar 
for a unique 6~Aff and one and only one of the following statements holds. 

(a) 6 = 1 .  + 0  and M=-M(O, 1] wpl ;  

(b) 6=ell(  " - c ) + c  with H > 0 ,  and wpl either M - c  or M = c + N  H for a 
proper self-affine extremal process N; 

(c) 6=eU( " - c ) + c  with H < 0 ,  and wpl either M=-c or M = c - - N  H for a 
proper self-affine extremal process N; 

(d) 6 = .  +b with b>0 ,  and wpl M = b  l ogN for a proper self-affine extremal 
process N. 

Conversely, in each case every M of the indicated form is ~ self-affine. 

In (6.1) we started with a stationary sequence (~k) to construct M1. Instead 
one can start with a stationary extremal process M t (stationary for all real 
shifts, not just the shifts over integers), and consider M,  in (6.1b) based on 
such an Ma. 

Theorem 8.2. Let M 1 be a stationary extremat process, and let Mn be defined 
by the first identity in (6.1 b). Then Theorem 8.1 holds with M,  in its present 
meaning. 

Proof We extend the integer-part function [.3 to sets A of reals by [AJ 
�9 "={[tJ: teA}. Considering ~k . '=Ml(k-1 ,  k] we see that Theorem 8.1 applies to 
m', based on M'I . '=MI([ ' ] ) .  Note that m',=m,([n.J /n) .  From Lemma 3.3 it 
follows that M', converges wpl  in SM iff M,  does. By Skorokhod's representation 
theorem (cf. its application in the proof of Theorem 6.1 (b)) the same equivalence 
follows for convergence in distribution. []  

As indicated in Sect. 4, we will study M also by X , = d V M  and its graph 
F(X) and hypograph J,F(X). It is immediate that M is self-affine iff X is, i.e., 
(8.1b) holds with X instead of M. Furthermore, X is self-affine iff F(X) and 
+F(X) are self-affine, by which we mean that F(X) and ~F(X) as random subsets 
of IR x .ll (.1I= (0, oe]) are invariant in distribution for the transformations 

(8.2) (t, x)~-+(at + b, ax) for ae(0, oo), belR 

of IR x .]l. The exclusion of oe as a value in (8.1 a) corresponds to the requirement 
that X be finite-valued (as an usc function, X attains its supremum in compact 
intervals). The exclusion of 0 as a value in (8.1a) is characterized for X in 
Theorem 9.1. 

If, more particularly, +F(X) is the umbra of the support of a point process 
/7 in N x J ,  then X is self-affine i f / /  is self-affine, by which we mean that 
H is invariant in distribution under the transformations in (8.2). Self-affine point 
processes are called Poincard in O'Brien and Vervaat (1985), to which we refer 
for a large collection of examples of such processes (the historical order of 
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our research was first sup self-affine processes, then additively self-affine pro- 
cesses, and many examples in O'Brien and Vervaat (1985) were constructed 
initially to serve in the present context). We want to draw attention to the 
g-adic lattice process, of which each atom determines the location of all other 
atoms at the same or a lower level. One production rule for new self-affine 
point processes, subordination (cf. also Vervaat 1985), will be discussed again 
in Sect. 10. 

All self-affine processes /7 have a mean measure liE// which is invariant 
under the transformations in (8.2). Consequently (cf. O'Brien and Vervaat 1985), 
there are constants ct and c a in [0, oo] such that 

(8.3a) lEH(dt, dx)=ct dt dx 7~- for 0 < x < o o ,  

(8.3b) 1E/7(dt, {oo}) = c2 dx. 

We say tha t /7  has finite intensity if c1 < 0(2) and c2 =0. 
The most important  example of self-affine point processes with finite mean 

measure is the self-affine Poisson process. The resulting extremal process M 
has independent peaks, i.e., the random variables M(I) are independent for dis- 
joint I. It is a classical result of extreme value theory that all limiting processes 
arising from a stationary sequence (~k) of independent random variables can 
be brought into this form by the transformations in Theorem 8.1. 

So far all examples in the literature of limiting extremal processes arising 
from stationary sequences (~k) with dependent terms turned out to be generated 
by point processes, so that F(X) is countable wpi.  So the question whether 
all self-affine extremal processes are generated by point processes becomes 
important. We obtain a negative answer in Example 10.10, where a proper self- 
affine extremal process with uncountable F(X) is constructed. 

9 General properties of proper self-affine extremal processes 

As a basis for comparison, we consider the case that M is generated by a 
self-affine Poisson process /7, and is therefore a classical extremal process (cf. 
Resnick 1986; 1987). Then 

X(t) = sup {x:/7 {(t, x)} > 1}, where sup 0:=0, 

[M(I) =< x] = [/7(I x (x, oo)] = 0]. 

Also, wpl, X ( t ) = 0  for all t except for a countable dense set. As a function 
of t, M(0, t] is nondecreasing, M(0, t] ~ 0  as t$0 and M(0, t]--+oo as t-+oo. 

7; ao Furthermore, there is a random doubly-infinite increasing sequence ( k)k=-oo 
with Vk--+0 as k--+--o�9 and ~k--+oO as k--+oo such that M(0, t] jumps at each 
~k but M(0, t] is constant on each interval [~k-1, Vk)" Finally, M(0, t] has a 
density of the form 

f, t xa -Cte  -ct/x x > 0  
~, * - -  X 2  

for some c > 0. 



Stationary self-similar extremal processes 111 

Not  all these properties hold in the general case, as some later examples 
will show. Some weaker properties do hold in general, however, as we now 
demonstrate. Recall that in the remainder of this paper proper self-affine extre- 
real processes M satisfy (8.1), and self-affine random subsets of and self-affine 
point processes on N x 3I satisfy (8.2). We write 

X:=dV M 

Theorem 9.1. I f  M is a proper self-affine extremal process, then {t: X( t )>0  is 
wpl a dense F~ Lebesgue null set in JR. 

Proof The event that {t: X(t)>0} is dense is the same as that of M(I)  being 
positive for all I 6 J  with rational endpoints. Let I be a bounded open interval 
around 0. Then M(aI )$d  v M(0)=X(0) as a+0, and we find for 0 < x <  oe 

F [X (0) > x] = lim F [M (a I) > x] 
aS0 

= lim IP [M (I) > x/a] = P [M (I) = o~ ] = 0. 
aS0 

So 

(9.1) P [X (0) > 03 = 0. 

Since X is measurable (Sect. 3) and stationary, we have by Fubini 

o=~'Ex(o)>o] =~'[x(t)>o3 

= ~ ~EX(t )>0]  d t=IELeb{ t e lR :  X(t)>0}, 

so Leb{t~lR: X ( t ) > 0 } = 0  wpl. Finally, {t: X ( t ) > 0 } =  U {t: X ( t ) > n  -1} is an 

F~ set, because X is usc. [] "= 1 

Corollary 9.2. I f  M is a proper self-affine extremal process, then 

(a) lim M(--e,  e)=lim M(0, ~)=0 wpl, and 
~;$0 ,~$0 

(b) Leb{ t>0 :  M(0, t--z] aM(0 ,  t+e] for all 8 > 0 } = 0  wpl. 

Proof (a) This follows from (9.1) and the fact that X is usc. 

(b) Fix a sample point for which {t: X(t)>0} is a Lebesgue null set. Recall 
that M(0, t] > 0  wpl. Let t > 0  be such that O=X(t )<M(O,  t]. Since X is usc, 
X(s) < M(0, t] for all s in some open neighborhood of t. Then M(0, s] is constant 
for such s. [] 

Theorem 9.3. I f  M is a proper self-affine extremal process, then the following 
hold true. 
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(a) For each t>O, M(O, t] has a density f~ such that x2ft(x) is nondecreasing 
in x. Equivalently, 1/M(O, t] has a density gt such that gt(x) is nonincreasing 
in x. Furthermore, 

(b) Let F be the hypograph of X and let Fl:={telR:  (t, 1)eF} be its level 
set at height 1. Then 

(9.3) lim x2fl (x) = lim gl (x) = ]E =~ ( F  1 c3 (0, 1)]. 
x~co x ; 0  

Proof. (a) We first show that l /M(0, 1] has a nonincreasing density on (0, Go). 
We have 

IP[1/M(0, 1] < x] = lP [xM(0,  1] > 1] = P [M(0 ,  x] > 1] 

= IP [(0, x ]  n FI=I= 0]. 

The random closed subset F1 of ]R is stationary, i.e., F~+b=aF1 for belR, 
so we have for O<=y<y+h<x: 

IP [ l /M(0,  1]e[x,x+h)]=lP[(O,x]c~Fl=O, (x ,x+h]c~Fl+O ] 

= ~ [ ( y - x , y ] ~ f l = O ,  (y,y+h]c~F~+O] 

<IP[(0, y] c~ F I = 0 ,  (y,y+h]c~F~+O]=P[1/M(O, 1]e[y,y+h)]. 

The second statement of (a) now follows by standard real analysis, the first 
by an obvious transformation, and self-similarity yields (9.2). 

(b) The first identity in (9.3) is a standard transformation. For  the second, 
set I :=(0, 1]. Then, by stationarity of F1 and Fubini, 

(9.4) lim g l (x) = lim x -  1 IP [1/M(I) < x] 
x.L0 x$O 

= lim 
x ,O 

= lira 
x,LO 

= lim 
x,LO 

We have 

x -1 I P [ x I ~ F  1 =t=0] = l im x -~ lP[(t+xI) c~F 1 4=0] 
x.LO 

x-1 S IP[(t + xI) c~FI=~O] dt 
I 

x -  1 lELeb ((F 1 - x I) ~ I). 

(9.5) x - 1 L e b ( ( F l - x I ) c ~ I ) T # ( F  1 c~I) as x$0, 

even if 4t= (F 1 c~ I) = oo. To see this, note that for almost all sample points Leb F1 
--0 and min(F1 c~I)>0 by (9.1). The contribution to the left-hand side of (9.5) 
from each open connected component  of the complement of F 1 in 
(0, max(F1 c~I)] is increasing in x. Now (9.3) follows by (9.4), (9.5) and the mono- 
tone convergence theorem. [] 

Remarks 9.4. There is no extension of Theorem 9.3 to joint distributions of M(I) 
for two intervals I. The example of the g-adic lattice process (O'Brien and Ver- 
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vaat 1985, Ex. 3.2) makes it obvious that they need not be absolutely continuous. 
The same example shows that ft need not be positive on all of (0, oo), but 
may vanish near 0. So in the case of H self-affine extremal processes with H < 0, 
the distribution of M(0, t] may have compact support. 

Corresponding results for additively self-aNne processes (=  self-similar pro- 
cesses with stationary increments) are only a conjecture. O'Brien and Vervaat 
(1983) and Maejima (1986) obtain only very partial results in this direction. 
These have not been improved so far. 

10 Subordination 

In this section we restrict our attention to proper self-affine random usc functions 
X, i.e., self-affine random usc functions that are in addition finite and not identi- 
cally zero wpl. Let U be the hypograph of another finite, nonnegative, not 
identically zero usc function, this time nonrandom. Then 

(10.1) F.'=clos ~) ((t, 0) + x U) 
(t, x) ~ F(X) 

is a closed subset of IR x (0, oo], which is equal to its umbra, and therefore 
it is the hypograph SHY) of a random usc function Y We shall see shortly 
that Y is also self-affine, but not necessarily proper, a major topic in this section. 
We say Y (and the extremal process Y")  is subordinated to X (X' / )  by U. It 
is instructive to consider the particular case that F(X) is the support of a point 
process H, for instance Poisson, and that U is the umbra of some finite cloud 
C of points around (0, 1), so that U =  +C. Then F is the umbra of the union 
of clouds around the atoms of the point process, where the clouds are not 
only shifted to these atoms but also expanded proportionally to their heights. 

For  a further analysis it is convenient to regard IR x (0, oo) as a noncommuta-  
tive group isomorphic to Aft via (t, x)w-~x. + t, so 

(/71, Xl)(/72, X2) = (tl +Xl/72, Xl X2) 

with unit element (0, 1) and inverse (t, x)-  1 = ( _  tx - 1, x - 1 ) .  We extend the opera- 
tions of multiplication and inversion to subsets of 1R x (0, ~ ) :  

FG:={ZlZ2:zl~F, z2~G}; F-1..={z-l:z~F}. 

Note that F~--,F-1 is not an inverse for this multiplication of sets. Nevertheless 
we have HF c~ G = 0 iff H c~ GF - 1 = 0 (multiplication of sets has priority above 
set operations in this section). In this setting, random subsets F of N x (0, oo) 
are self-aNne iff F=azF for z~ lRx  (0, oo) (cf. lines around (8.2)), so a random 
usc function X is self-aNne iff F(X)=azF(X ) or SF(X)=az.+F(X ) for zelR 
x (0, oo). Formula  (10.1) now reads 

(10.2) F = clos (F(X) U). 

It is now obvious that F is self-aNne if F(X) is. 
Subordination is a convenient way of producing new examples, but there 

is some risk that the result is unintentionally trivial. Specifically, if F(X)U is 
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dense in IR x (0, oo], then F =IR x (0, oo], so for Ywith S F ( Y ) = F  we have Y ~  oo. 
We therefore look for conditions that guarantee Y to be proper  wpl .  

The following lemma gives the central criterion, which will be developed 
further in the most  important  special case. It  involves the open rectangles 

Note  that for open G 

Gy=(0 ,  1) • (y, co), y > 0 .  

G v - 1  n / ' ( x )  = 0 iff o n r (Y)  = 0. 

Lemma 10.1. Let X be a self-affine random usc function which is proper wpl,  
and let U be the hypograph of a finite usc function. Then the random usc function 
Y subordinated to X by U is proper wpl  iff U ~: 0 and 

(10.3) lim ]P [F(X) n Gy U -  ~ = 0] = 1. 
y-+cO 

Proof. Let F,=~F(Y),  so that (10.2) holds. By Theorem 7.1, Y is finite wpl  iff 
IP[Y v (0, 1)< ~ ]  = 1. We have 

[ Yv (0, 1 ) < ~ ] =  U [ F n G y = 0 ] ,  
y > 0  

where the union applies to events that increase with y, so 

IP[Y v (0, 1 ) < ~ ]  = lira ~ ' [F  n G~--0]. 
yI~CO 

In general we have for open sets G in ]R x (0, ~ )  

]P [F c~ G = 03 = ~ [F(X) U n G = 0] = ~ [F(X) c~ G U-1  03. 

Combining the last two formulae we obtain 

~? [ y  v (0, 1) < ~ 3  = lim IP [F(X) n Gy U -  t = 03, 
y--+ oo 

and (10.3) follows. Finally, Yis wpl  not identically zero iff U@0. [] 

We now turn to the most  common  case. We write 

7z(dt, dx):=dt  x -2 dx, 

so that self-affine point processes with finite positive intensity have intensity 
CTC for some ce(0, oo) (cf. (8.3)). 

Assumption 10.2. F(X) is the support  of a self-affine point process F/ (so  H(A) 
= # ( F ( X ) h A ) )  with finite positive intensity cTr. 

Assumption t0.3. In addition to Assumption I0.2, we have / - / ( A ) = ~  wpt  if 
7z(A) = ~ for Borel sets A in ]R x (0, aD). 

We are able to recognize ~ as the left Haar  measure of ]R • (0, ~ )  regarded 
as a group isomorphic to Aft, so ~z (zA)= 7z (A) for z~lR x (0, ~ )  and A c ]R x (0, ~) .  
Assumption 10.3 is satisfied in case /7 is Poisson, but not for all self-affine 
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point processes, as we shall see shortly (examples for which Assumption 10.3 
fails are the g-adic lattice process and Ex. 3.5 (1) in O'Brien and Vervaat 1985). 
Criterion (10.3) is simplified considerably in the following theorem. 

Theorem 10.4. (a) I f  

(10.4) n(Gy U- 1) < oo 

for some y > 0 ,  then (10.4) holds for all y > 0 .  

(b) Under Assumption 10.2 the equivalent statements in Lemma 10.1 are 
implied by (10.4). 

(c) Under Assumption 10.3 the equivalent statements in Lemma 10.1 are equiv- 
alent to (10.4). 

Remark 10.5. If (10.4) holds, then there are wpl finitely many atoms of H that 
give rise to shifts of U that intersect Gr. So the operation of taking closure 
can be omitted in (10.1) and (10.2). 

Proof of Theorem 10.4. (a) It is obvious that (10.4) for some y > 0  implies (10.4) 
for all larger y. Therefore it suffices to prove that (10.4) for some y > 0  implies 
(10.4) with y replaced by y/2. This follows from 

oo > n(Gy U -  1) = n((O, �89 Gy U -  1) = n {((0, 1) x (�89 y, oo)) U - 1} 

=�89 {((o, �89 x (�89 oo)) u -  1} + ~ {((�89 1) x (�89 oo)) u -  1}) 

>= �89 rc(ay/z U-  1). 

(b) In Lemma 10.7 we will prove that GyU-lJ.O as y--+~.  If (10.4) holds, 
this implies that n(Gy U-  1) ~ 0, i.e., that H(Gy U-  1) ~ 0 as y ~ ~ in expectation, 
and hence also in probability, which is (10.3). 

(c) In presence of (b) it remains to prove that (10.3) implies (10.4). By (10.3), 
IF' [H(Gy U- 1) < ~ ]  > 0 for some y. This implies (10.4) for the same y by Assump- 
tion 10.3. [] 

Before discussing examples and filling the gap left in the proof of Theo- 
rem 10.4, let us calculate a set that will be needed a few times. Let U be a 
'rectangle' in ]R x (0, ~) ,  U :=C x D. Then, with 1.'=(0, 1), 

(10.5) U- l=  U(( -Y- IC)  x{Y-t}) = U ((-zC)x{z}); 
y e D  z e D  - 1 

GyU-'= U U ((~-u~C)x{.z}) 
u e ( y ,  oo) z e D -  1 

= U ( ( z - ~ c )  x {~}). 
z > y / s u p  D 

Example 10.6 (to show that (10.4) is not necessary under Assumption 10.2 only). 
Let H be the g-adic lattice process of Example 3.2 in O'Brien and Vervaat 
(1985) scaled such that the support at level x conditioned on having atoms 
at level x consists of a uniformly distributed translation of x2L Let U .-=Z x (0, 1]. 
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Then subordination by U leaves the g-adic lattice process unchanged. So the 
equivalent statements of Lemma 10.1 hold. For n~N, set 

L.(y):={(t, x): nx < t < n x  + 1, x >  y}. 

Then G, U -L = U Ln(y) by (10.5), and ~(U L,(y)) = co (zffL,(y)) = 1/y, though). 
n n 

We now fill the gap in the proof of Theorem 10.4. 

Lemma 10.7. I f  U is the hypograph of a finite usc function, then Gy U-1J, O 
a s  y --+ oO . 

Proof Let J . ' = ( -  co, - 1] u [1, oo) and I:=(0, 1). Let (t, x)elR x (0, oo). By (10.5) 
we have 

G(sS• - ' =  kJ ((i+zsS)x{z}), 
ze (O ,  co) 

which does not contain (t, x) if s is large enough that ( x s - 1 )  + >[ t  I. For such 
an s, choose v such that 

(10.6) U = ( s J  x (0, oo)) ~ ( ~  x (0, v]). 

Since Gy(lRx(0, v ] ) - l = l R x ( y v  -1, c~)does not contain (t,x) for y>tv ,  the 
result follows from (10.6). [] 

We now investigate criterion (10.4) for rectangular U. 

Theorem 10.8. Let Assumption 10.2 hold, and let U = C x ( O , x ] ,  where C is a 
closed subset of]P,. Then (10.4) holds iff 

1 

L e b ( C - y I )  dY < 0o, 
o Y 

(lO.7) 

where I :=(0, 1),/ff 

(10.8) C is bounded, Leb C = 0, and ~ l,[logl, l< oo, 
n = l  

where (l,~) is an enumeration of the lengths of the disjoint open intervals whose 
union is [rain C, max C ] \  C. 

Proof By (10.5) and I - x C =  - x ( C - x - l t )  we have 

d x  1 dy 
~z(GxU-1)= ~ x L e b ( C - - x - l  l) x 2  = ~ L e b ( C - y t ) - -  

1 o Y 

We find that (10.4) is equivalent to (10.7). The same criterion occurs in Vervaat 
(1985, Lemma 4.3). By direct calculation or the lemma on p. 326 of Carleson 
(1952) it follows that (10.7) is equivalent to (10.8). [] 

The following corollary is based on the observation that for fixed X and 
varying U, Y depends in an increasing way on U. 

Corollary 10.9. (a) Under Assumption 10.2, let 0 :~ U ~ C x (0, x], C closed in ]R, 
and let C satisfy (10.7) or (10.8). Then (10.4) holds and Y subordinated to X 
by U is proper wpl. 

(b) Under Assumption 10.3, let C x (0, x] c U, C closed in ~ ,  and let C violate 
(10.7) or (10.8). Then, wpl, Y subordinated to X by U is not finite. 
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Example 10.10. The ternary Cantor set C satisfies (10.8), so subordination by 
C x (0, 1] to an X as in Assumption 10.2 produces examples of proper random 
self-aNne usc functions u with uncountable graphs (cf. Sect. 4). 

Remarks 10.11. (a) Obviously, (10.8) is satisfied in case ~ C < m .  For  infinite 
C it does not matter whether C is countable or not. In both cases (10.8) may 
or may not hold. It is even possible to violate (10.8) for C consisting of a 
convergent sequence with its limit (aim at I, = n-  1 (log n) - 2). 

(b) We have assumed U to be the hypograph of a finite usc function. We 
are unable to prove or disprove our conjecture that U must be the hypograph 
of a bounded usc function for Y to be finite wpl. 

(c) In case F(X) is countable, it is possible to generalize subordination by 
one fixed nonrandom U to subordination by random U,'s, for instance indepen- 
dent and identically distributed. See Vervaat (1985) for details in an analogous 
situation. 

11 Sup continuous self-affine extremal processes 

In this section we show the existence of proper self-affine extremal processes 
M such that the function (t, u)~-+M(t, u) on {(t, u)~lR2: t<u} is continuous wpl. 
Recall the definition of sup continuity (Def. 4.1). The following hold. 

Properties I1.1. (a) For  f :  I R ~  we have that f is sup continuous i f f f  is usc 
and (t, u)~-+f v (t, u) is continuous on {(t, u)~N~2: t <u}. 

(b) The supremum or infimum of finitely many sup continuous functions 
is again sup continuous. 

(c) If f :  IR ~ II is sup continuous, then the set L..= {f(t): a < t < b} is connected 
for any a < b. 

Proof. (a) and (b) are obvious. We prove (c). Let x and yE{f(t): a<t<b} and 
let z satisfy x<z<y.  Suppose x=f(u) and y=f(v) where u<v, the other case 
being similar. Since f is sup continuous, f (inf{ t > u: f (t) > z}) = z. []  

Let f :  ~ 1 I . . = [ 0 ,  c~] be sup continuous, and suppose that U==+F(f) sat- 
isfies the condition of Corollary 10.9(a). Let /7 be a self-affine point process 
satisfying Assumption 10.2. Then the random usc function subordinated t o / 7  
by U is a proper self-aNne random usc function that is sup continuous wpl,  
by Properties 11.1 and Remark 10.5. In particular, the random functions t~-* 
M(0, t] and >-~M(-t,  0] are continuous wpl. 

So in order to show the existence of extremal processes as claimed in the 
beginning of this section, if suffices to exhibit a nonzero sup continuous function 
f such that SF(f)=C x (0, 1], where C is a closed set such that (10.8) holds. 
Since we want f to be sup continuous, we see from Property 11.i (c) that the 
support o f f  must be uncountable. Thus we are led to consider sets C of Cantor  
type. 

Example 11.2. The support of f is contained in the Cantor-like set C of all 

x i n  [0 ,1]  of the form ~ c, 5-"  with c ,=0 ,  2 or 4. For  each such x let Kx 
n = l  
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denote  the set Kx . -={neN:  n__>2, cn=~2}. Let f , ( x ) , :  1~ [ 1 - ~ }  for x in 
kcKx:k<--n\  

kEKx 

so cont inuous  on C. Hence f ,  and f = i n f f ~  are usc on IR if we define f , ( x ) = 0  
off C. 

In  order  to prove sup continuity,  it suffices to show that  for any x and 
any e > 0  there exist x 1 < x < x 2  with Xe-Xl < e  and f ( x i )> f ( x ) - e  for j =  1, 2. 
We need to consider only the case that  f is strictly positive at x. This implies 
that  ~ 1/k converges, and hence that  the expansion of  x contains infinitely 

k~Kx 

m a n y  2's. Suppose cm=2, and define x t  and x2 by replacing this digit by 0 
/ t \  

and 4 respectively. T h e n x 2 - x l = 4 . 5 - m a n d f  decreases by a factor ( 1 - ~ ) .  

Since f is bounded  by 1, the condi t ion above is satisfied if we choose m sufficiently 
large. 

Remarks 11.3. (a) If  the subordinated  f is only right sup cont inuous,  then t~--* 
M ( - t ,  0] is cont inuous  wpl ,  but  not  necessarily so t~-*M(O, t]. 
(b) The subordinated  f suggested at the end of  Sect. 9 in Vervaat  (1986) is 
too  simple. It  produces  a sup cont inuous  improper  self-affine r a n d o m  usc func- 
t ion:  the funct ion X = oe wpl .  

(c) Let H be a self-affine Poisson process and let f ( t ) :=l+t  for t = 0  and 
t =  _+ n -1  (n > 2), .'=0 else. We can prove for the subordinated  extremal process 
M that  t~-~M(O, t] has a positive derivative at some t wpl .  No te  tha t  
d 

d t  M(O, t] = 0  wp l  for each fixed t, by Corol lary  9.2 (b). 
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