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Summary. Using standard reflected Brownian motion (SRBM) and martingales
we define (in the spirit of Stroock and Varadhan — see [S-V]) the probabilistic
solution of the boundary value problem

+Au+qu=0, in D;

ail+cu= —f, on D,
on

where D is a bounded domain with C® boundary and n is the inward unit
normal vector on dD. The assumptions for ¢, ¢ and f are quite general.

The corresponding Dirichlet problem was studied by Chung, Rao, Zhao
and others (see [C-R1] and [Z-M]) and the corresponding Neumann by Pei
Hsu in [H2]. Here we show that the probabilistic solution of our problem
exists, is unique (unless we hit an eigenvalue), continuous on D and equivalent
to the weak analytic solution. The method we use is to reduce the problem
to an integral equation in D that involves the associated semigroup and, hence,
to the study of the properties of this semigroup. In this way we do not have
to assume that the spectrum is negative (almost every previous work on these
probabilistic solutions makes this assumption). We construct the kernel of this
semigroup and we prove certain estimates for it which help us to establish
many other results, including the gauge theorem. We also show that, if the
boundary function c is continuous, our semigroup is a uniform limit of Neumann
semigroups and, furthermore, that the Dirichlet semigroup is a uniform limit
of semigroups of our type. Therefore the Dirichlet spectrum is a “monotone™
limit of spectra of mixed problems (see Sect. 5B), a fact which is mentioned
without proof in Vol 1, Ch. IV, Sect. 2 of the Methods of Mathematical Physics
by Courant and Hilbert. This establishes the interrelation of the three boundary
value problems. Finally, we add a drift term to our differential equation, which
becomes

TAu+b-Vu+qu=0

and we solve the third boundary value problem for this equation probabilisti-
cally, with the help of Girsanov’s transformation.
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1 Preliminaries

Let D = R? be a bounded domain (a domain is an open, connected and nonempty
set) with C* boundary éD. A (continuous) path in D is a (continuous) function
defined on [0, ®) and taking values in D. Now let B=B(f) be a continuous
path in R? with B(0) in D. We say that a pair (X, L) is a solution to the problem
of reflection (or Skorohod equation ), if the following conditions are satisfied:

(i) X =X (2)is a continuous path in D;

(i) L=L(t) is a continuous nondecreasing function (with (0)=0) which
increases only when X (¢) is on D, namely

t
(L.1) L#t)=§ 1,p[X ()] dLs;
0
(iii) The following relation (Skorohod equation) holds
t
(1.2) X(@®)=B@®)+ [ n[X(s)]dL,,
0

where n(x) is the inward unit normal vector of ¢D at x. It is known (see [S.Y],
[L-S] or [H1]) that, under the above assumptions for D and B, the problem
of reflection has a unique solution (X, L). Furthermore X has the same modulus
of continuity as B, where the modulus of continuity of B is defined to be

Ay(a; By=sup{|B(a)— B(b)|: a, be[0,s+ 0], |b—a|<c}

(for xeR?, we denote by |x]| its Euclidean norm).

If B=(B,, %, P*) is a (standard) Brownian motion (BM) in R? starting at
xeD and (X, L) is the solution to the problem of reflection for B and D, then
X ={X,,t=0} is a diffusion (i.c. a strong Markov process with continuous paths)
living in D called the standard reflected Brownian motion (SRBM) in D starting
at x and L={L,,t=0} is an increasing process called the boundary local time
of X. The transition densities p(t, x, y) of X satisfy the following initial-boundary
value (parabolic) problem (see [H1] or Theor. 6.1 later in this article)

(13) 2 x =140 %), (% 1)0, 0)x Dx D;
lifg p(t, x, y)=0,(x), (x,y)eD x D;

d _

Wp(tax;y)zoa (t:xsy)e((): w)XaDXD

Here A, is A acting on the x variables, d/0n,=n(x)-V, where V
=(0/0xy, ..., 8/0x,) and §, is the Dirac é-function at y, so that the second
equation above means that, for any fe C(D), yeD, we have

lim [ fX)p(t,x, y)dx=F(y).
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It is shown in [I] that (under our assumptions for D) there exist a unique
solution p(t, x, ¥) of (1.3) defined on (0, c0)x D x D and having the following
properties.

P1. p(t,x,y) is strictly positive and symmetric in x and y, for all >0 and
x, yin D.

P2. As a function of x, p(z, x, y) belongs to C*(D)~ C*(D), for fixed (t, y)e(0, )
x D. In fact, we have joint continuity (and differentiability) in (t, x, y), if >0,
by standard theorems regarding continuous dependence on the parameters (see
[S.L]).

The continuity of p(t, x, y) ond D implies that X has the strong Feller proper-
ty, namely for any bounded Borel measurable function f defined on D and
any fixed ¢ >0, the function x— E*{f(X,)} is continuous on D.

P3. Given any positive constant f,, there are constants K=K (t,)>0 and ¢
=¢(ty) >0 such that, if 0<t<t,, then for all x in D we have

14 p(t,x, y) S Kt~ #2emclxml%

For a proof see [H3].

If we denote by {P,t=>0} the transition semigroup of X, then the above
statements imply that B has the Feller property (i.e. B is a continuous operator
on C(D) and converges strongly to the identity as ¢} 0). Its infinitesimal generator
of is A/2 with domain the closure of

Dy (Z)={feC*(D): 0f /dn=0, 0n oD}

with respect to some natural Sobolev type norm. For more details see [H3]
or [I-W].

P4. There are positive constants C and f such that, if t 2, >0, then

(1.5) sup

x,yeD

plt,x, y)— <Ce ¥,

o

where m(D) is the R*-Lebesgue measure of D (this estimate means that p(z, x, y)
approaches the uniform distribution on D, exponentially fast, as t — o). Also,
the function

(1.6) p()=sup p(t,x,y), >0

x,yeD
in finite and nonincreasing (see [H17).
If D is as above, then it can be shown by elementary differential geometry
that there is a constant d,>0 such that, for 0<§ <3, the map
(1.7a) x—x+6n(x), xedéD

is a one-to-one continuous map from 9D onto the hypersurface

(1.7b) D(8)={x+68n(x): xcdD}
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with a continuous inverse (by compactness). We denote by D;, the domain
bounded by éD and D(J), namely

(1.8) D;={xeD:d(x, dD)<d},

where d( -, -) is the Euclidean distance in R Then, P3 and P4 imply

P5. There are positive constants A, C and J, such that, if 0<6<4,, then for
all (¢, x) in (0, c0) x D we have

1.9 1 K

Do )t
and also
(1.9) §{ plt,x,y)a(dy) <———+C

2 b
eb l/

where o(dy) is the (d—1)-dimensional volume element on 0D. In the case D
=(a, b) (d=1) we agree that

[ fo)ody)=1(a)+f(b)
8D
We now give some properties of the process L. First we set
1 t
{1.10) D(t)==5§ Ip,(Xyds.
26

Obviously, I? is a continuous additive functional (CAF).
P6. Let D, B, X and L be as previously defined. Then
(i) For any fixed t =0,

lim sup E*{|L(t) — I*(£)|2} =0,

3,0 xeD

i.e. I? converges to L in IZ(P¥), uniformly in x.

(ii) There is a set Qg (independent of x) with P*(Q,)=1 such that, if we,,
then

L(t, 0)=lim 2 (t, w).
dl0

In both (i) and (ii) the convergence is uniform in ¢ on compact subsets of
[0, o0).

Remarks. (a) The fact that the I convergence is uniform in x, is not mentioned
explicitely in our reference [H1], but it clearly follows from the proof presented
there (see also the Appendix).

(b) Part (ii) together with the fact that the convergence is uniform in ¢
imply that L is a CAF of X (since I? is).

(c) In fact, the limit in (i) exists in a much stronger sense (see Appendix).
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(d) Finally, let’s discuss the factor 1/2 in (1.6). To understand its meaning
consider the one dimensional Brownian motion B and reflect it at 0, so that
we get the reflected process X =|B|. Then D =(0, ), D;=(0, §) and so

In, (X)) _Ip,(IB) _I(—5.9(B)

26 26 29

Notice that 24 is the length of the interval (—4, §). Another argument, that
we can say (for the general case D<RY), is that the time that the reflected
path spends in D, (for small §) is approximately twice the time that the (locally)
nonreflected path spends in it.

The rest of this section contains propositions that we need in the sequel
but we were not able to find in the existing literature.

Let ¢ be in #(0D), the Borel functions on ¢D. We assume that |c|< oo
and we set

(L.11) 40= ] c(X)dL,,

0

where the integral is in the Lebesgue-Stieltjes sense and, in general, it may
not be defined (4,=A,. — A.- so we may have co — o).

If ¢ is in C(@D), then it can be extended to a function ¢ in C(D), such
that ¢=c on 0D. So, without loss of generality, we may assume ceC(D). We
define (in order to avoid long expressions)

(112) A= e(X)dLO =5 | e(X) 1,,(X)d

o]

Proposition 1.1. Let ce%(0D) be nonnegative (in order to avoid the possibility
o —a0 ). Then

1

(1.13) E*{A.()}= j" [ p(s,x,y)c(y)a(dy)ds.
0 D

0

Proof. Assume first that ¢ is continuous on dD. By P6 we have that I?(t)— L(t)
for P*-ae. w, as 6)0. Now, ¢(X,) is continuous for a.e. @ and so, by “vague
convergence” (a standard 3¢ argument: for se[0, t], we approximate c¢(X,) by
step functions, etc.),

(1.14)  A2()—> A.(r), for ae. w (uniformly on bounded intervals of ¢).

Since I’(f) > L(z) in I? (by P6) and so in L!, by (1.12) and an extended
dominated convergence theorem (see [R], Ch. 4, Theorem 16), we get

E*{4,(0) =lim E*{4%(0)}
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But,

1} 1}
B (A0} =B 55 X0 1o, (XD dsp=3 [ 5 ] p(ox.3)c()dyds.

Ds

Letting 6 | 0 we obtain (1.13).
The general case follows by standard dominated and monotone convergence
arguments (first we take c to be bounded, etc). O

Remark. The above proposition together with P2 imply that if 4A<dD such
that ¢(4)=0, then

E* { g 1,(X,) dLS}= 0.

(In the Appendix we compute the higher moments E*{A.(¢)"}.)

The next proposition can be considered as an attempt to extend André’s
Reflection Principle (which is a property of the one dimensional BM — see
[C1], Sect. 4.2, Exer. 12) to higher dimensions.

Proposition 1.2. Let t >0 be fixed (and D as usual ). We set
(1.15) M(ty= sup d(B,, D),

0=s=t
where B is the BM in R®. Then, given any o >0, there is an ¢>0 such that
(1.16) xiel’;fDPz{M(t)>a}>l—oc.
Proof. Let

E,,={xeRd:d(x, 5)<}11}.

By elementary differential geometry we know that, since D is C>, there is
some n, such that, for n=n,, we have that dE, is smooth (and so E, is regular).
From now on we assume n=n,. The exit times of the E,’s are defined by

1,=Iinf{t>0: B,c E;}.
Now let
fx)=P*{z,<t}.

Each f, is continuous on R? (see [C2]) and equals to 1 on Ej. Also, f,.(x)

2 fu(x).
Furthermore, the continuity of the paths and the regularity of D (and of
Df) imply that for all x in D we have

T, Tp=1p, P*as,
hence
Ju() TP {tp<t}, as n—co.

Now P*{t,<t} is continuous on R’ (as a function of x, of course) and so
the convergence in the above formula is uniform on D (in fact on R, by Dini’s
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Theorem. In particular, we have uniform convergence on dD. But zed D implies
that P*{t,, <t} =1, because D is regular. Therefore, by taking n sufficiently large,
we can make

inf P*{7,<t}>1—a

xedD

From this, our proposition follows immediately (just take e<1/n}. []

Next, using Proposition 1.2 we prove a useful estimate regarding the bound-
ary local time L. This estimate is needed for the analysis done in Sect. 5.

Theorem 1.3. Let t>0 be fixed. Then, given any o>0, there is an ¢>0 such
that

(1.17) inf P*{L;>e}>1—a

zedD

Proof. From (1.2) we get that

N

[n(X,)dL,

0

LszjldLug =|Xs_leZd(BsaD_)
(4]

The rest follows from the monotonicity of L, and the previous proposition. [J

Remark. An immediate corollary of Theorem 1.3 is that inf P*{L,>0}=1.
zedb

Therefore (P*-a.s.)

(1.18)  1p=inf{r>0:B,eD} =inf{t>0: X,edD} = inf{r>0: L,>0l.

2 The classes K,(D) and X,(0 D)

Here we describe two classes of functions which are suitable for our boundary
value problem. The first is a well known class but the second is introduced
here for the first time.

In what follows, all the functions are assumed to be Borel measurable in
their domains of definition. For A< R% we denote by b%(A) the class of the
(real- or complex-valued, depending on the context) bounded Borel functions
on A.

Definition I. Let g be a real-valued (or complex-valued) function, defined on
R®. We say that q is in the class K, (the Kato-Stummel class) if

(2.1) limsup [  Gux, »)lq()|dy=0,

al0xeRd|x—y|<a
where
|x—yl, if d=1;
G (x, y)=4 —In[x—y]|, if d=2;
[x—y)>~% if d=3.
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Modulo a constant factor, G, is the potential kernel for R%(G; is the standard
Newtonian potential and G, is the so called logarithmic potential).

If gI,eK, we say that geK (D) (thus, K,(R)=K,). In this case q neced
not be defined outside the set D.

Remarks. {a) K;(D) is a vector space and if ge K (D), then |q|, g% and ¢~ are
in K4(D) (recall that: g* =q v 0, g =g A0).

(b) bB(D)< K,4(D) for any D<=R’ If D is bounded, d>1 and p>d/2, then
I7(D)= K (D)= I} (D). For the one-dimensional case we have K, (a, b)=1L'(a, b),
if a and b are finite (easy).

(c) There are several equivalent definitions for the class K,;. Some are given
below (also, see [A-S], [C-Z], [H1], [S.B]).

Proposition 2.1. Let D be a bounded domain. We have that qe K (D) if and only
if
(2.2) x> | Gy(x, »)lgdy  iscontinuous (on R).

D

For a proof see [C-Z].

Remarks. (a) Changing g in (2.2), first to g7, then to gq~, and subtracting, we
get that, given ge K (D), the function that we obtain by replacing |g| by ¢ in
(2.2), is still continuous. This remark applies also to Proposition 2.4 below.

(b) If gebZ (D), then the function in (2.2) is in C**(R% for all a<1. On
the other hand, if ge C*(D) for some o> 0, then the function in (2.2) is in C2(RY).
The verifications are easy (see [ G-T1]).

The following theorems relate K, with the Brownian motion (BM) in R?
and with the SRBM in a domain D.

Theorem 2.2. Let B be a BM in R?. Then qeK, if and only if

(2.3) hm sup E* {j [q(Bs)lds}

0 xeRre
For a proof see [C-Z]. Here we see why we need ¢ to be Borel measurable,
namely to guarantee that ¢(B,) is measurable.

Theorem 2.3. Let D=R? be a bounded domain with C* boundary and X the
SRBM in D. Then qe K (D) if and only if

2.4) lim sup E* {j lg(X S)lds}
t10 xeD

For a proof see [C—H]. Notice that the “only if” part follows from P3
of Sect. 1.

Remark. Equation (2.4) together with the additivity imply that

(2.5) supE"{f Iq(Xs)IdS}<oo

xeb

for any £ 20.
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The following proposition seems missing from the existing literature. (We
don’t really claim something new here. The proposition must be an easy conse-
quence of the properties of the semigroup for the Neumann problem, given
in [H3])

Proposition 2.4. Same assumptions as in the previous theorem. Then, qe K (D)
if and only if, for some t>0, the function

2.6) F()=F(t; x)=E"{j (X)) ds}

is continuous on D.

Proof. First assume geK,(D). Then, for any fixed ¢, F(t; x) is bounded on D,
because of the previous remark. Now, for 0<r <t we have

@7) Fyt: %) =Fy(r; x)+Ex{f (x| ds}

=Fq(r;x>+EX{[’(;f a1 as]-0,f

=F,(r; x)+ E*{F (t—r; X,)}
=F(r;x)+[B F(t—r;)](x),

where E is the transition semigroup of X. Since X has the strong Feller property
(see Sect. 1) and Fy(z;-) is bounded on D (by the previous remark), we get that
the second term in the right-hand side of (2.7) is continuous on D. So, if we
let 7 | 0, since Fy(r; x) approaches 0 uniformly on D by (2.4), we get that F,(¢; x)
is continuous on D, for any fixed ¢ >0.

Conversely, assume that, for some fixed ¢>0, F,(t; x) is continuous on D.
Observe that, if 0=r=t, then F,(t—r;x) is bounded by F(t;x) and so (2.7)
implies that F,(r; x) is continuous on D. Next, define

d.=lglnn,  §,=lql—q,.

We will simplify our notation, a little, by writing F(t; x), F,(t; x) and F,(z; x),
instead of F,(t; x), F, (¢; x) and F, (t; x) respectively.

Now, ¢, is bounded and so q,cK (D). Thus, F,(¢;x) is continuous on D,
for any fixed ¢, by the first part of this proof. Moreover,

(2.8) F(r;x)=FE,(r; x)+F,(r; x)

and so F,(r; x) is continuous on D, for any fixed re[0, ].
Finally, since g, K,(D), Theorem 2.3 and (2.8) give

2.9) limsupF(r; x}< suQF;l(r ; X).

r{ 0 xeD xeD
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But, §,/0a.s. on D, so

Fi(r; )= Ex{jq,, ds}

decreases to 0, as n— oo, for each xeD, by dominated convergence (notice that
the occupation time of a set of R%measure zero is zero a.s.). In fact, it decreases
uniformly in x by Dini’s theorem. So, the right-hand side of (2.9) can be made
as small (positive) as we wish, by taking » sufficiently large, and so, we are
done (by Theorem 2.3). [

Definition II. Let X be the SRBM in D<= R¥ where d=2, and ¢ be a Borel
function on dD. We say that c is in the class X,(éD), if

(2.10) lim sup E"{j" le(X IdL} 0,

t|0 xeb

where L is (as usual) the boundary local time of X and the integral inside
the expectation is in the Lebesgue-Stieltjes sense. (Notice that c¢(X,) is Borel
measurable a.s. as a function of s by the continuity of the paths and the fact
that every Borel subset of 0D is also Borel in R%)

Remarks. (a) b#(0D)< % (0D)c=I1(0D) by Proposition 1.1 and P2, P4, P5 of
Sect. 1.
(b) If ce Z,(0D), then

(2.11) sup Ex{§|c(Xs)| dLS}<oo

xeD 0

for any fixed 1 =0.
Proposition 2.5. Let d=2. Then, ce Z,(¢ D) if and only if the function

@.12) Fe)=Fi(s; x>=Ex{f (X dLs},

is continuous on D for some fixed t>0.
Proof. We can just imitate the proof of Proposition 2.4. [J

Remark. As in Proposition 2.4, if there is a ¢ >0 such that E.(t;-) is continuous
on D, then the same is true for any 1 =0.

It would be nice to have an analytic characterization of X;(6D). A sufficient
(analytic) condition for ¢ to be in Z;(@D) is given below. We don’t know if
this condition is also necessary.

Proposition 2.6. Assume that c satisfies

(2.13) limsup [ Gux, el oldy)=0,

a0 xeD 3D~ B(x:a)

where G4(x, y) is the potential kernel for R? (see Def. I ). Then ce Z,(0D).
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Proof. Proposition 1.1 gives
t 1 t
E{ Tl dL =5 ] | pls.x el oldn) s
0 0 oD

We choose some >0 and then we split the above integral over dD into
two integrals I, and I,, the first over DN B(x;a) and the second over
0D N B{x;a). As £|0, I, -0 uniformly in x, because of P3 of Sect. 1 and the
fact that (2.13) implies that ce}(dD). Now, by P3 again there are constants
K, b>0 such that, for all ¢ sufficiently small,

t
LEK] [ se e o(dy) ds.

0 DN B(x;a)

The rest follows by elementary calculus (reverse the order of integration, substi-
tute u=b|x—yi?s~* and use (2.13).

From now on, g is taken in K,;(D) and c in %,(6D).

3 Semigroup and gauge

The main purpose of this work is the study of the third (or mixed or Robin)
boundary value problem for the time-independent Schrédinger equation, using
probabilistic methods. In mathematical terminology, we want to obtain a proba-
bilistic expression for the (weak) solution u of the following boundary value
elliptic problem:

FAu+qu=0Q, in D;

Jou
%—}—cu——f, on ¢D.

If D=(a,b)= R, then du/dn is u'(a) at @ and —u'(b) at b.

In this section we investigate the properties of the semigroup associated
with the above problem. The main result is Theorem 3.4. Then we define the
so-called gauge for (3.1) and we prove the theorem about its finiteness (Theo-
rem 3.6).

In the probabilistic treatment of problems like (3.1), there is a famous func-
tional that plays a dominant role. It is, traditionally, called the Feynman-Kac
Sfunctional and is defined as follows:

(3.1)

(3.2) eq(t)=exp[j q(Xs)ds].
0

For the mixed problem, we need a second functional, in addition to the above,
that will play the role of ¢,(t) on the boundary. So, for ce X,(dD), we define

(3.3) éc(t):exp[ft (X)) dLS], if d=2.

0o

Notice that &,(t) = e,
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In the case d=1, D must be a finite open interval of R*, say D=(a, b).
Then dD={a, b}, so c is defined for two points only. Let’s put c(a)=c, and
c(b)=c,. Also, let L,(a) and L,(b) be the local time of X at a and b respectively.
Then (3.3) becomes

(3.3) ¢.()=exple; Li(a)+c; Ly(b)].

The same applies to A.(¢) of (1.11) of Sect. 1, i.e. A.(t)=c L,(a)+c, L,(b).

Proposition 3.1. Under the previous assumptions we have that, for any fixed t =0,

F(x)=E{e,(t) é.(1)}
is continuous on D.

Proof. For t >0 sufficiently small the finiteness follows from Theorem 2.3, Propo-
sition 2.5 and Khas’minskii’s Lemma (see Appendix). The continuity is a conse-
quence of the strong Feller property of X. The rest follows from the multiplicati-
vity (see the definition below). O

Definition. Let M be a (right continuous) functional of a Markov process Y.
We say that M is a multiplicative functional of Y if My=1as. and for 0=<s=<t
we have

M, =M M, ;°0,), as.

Remarks. (a) If M and N are multiplicative functionals, then so is MN.
(b) If 4 is an additive functional, then e is a multiplicative functional.
(c) If M is a multiplicative functional of Y, then the operators

LH0)=E{M, f(¥)}, (20,

from (at least formally) a semigroup.
So, ¢,(t), é.(t) and e,(t) 2.(t) are multiplicative functionals of X and we can
define a semigroup by

(34 (T/)(x)=E*{e,(1) &.(0) f (X))}

As we will see, the above semigroup is the basis for the study of the boundary
problem (3.1). We could call it the Feynman-Kac semigroup associated to the
third (or mixed) problem. There are similar semigroups for the Dirichlet and
the Neumann problem (see [C-Z] and [H2] respectively). To examine the prop-
erties of this semigroup, we construct its kernels k(z, x, y) by using a standard
method, similar to the one used by P. Hsu in [H2]. (For ce C(8D), the properties
of this semigroup can be derived from the corresponding ones of the Neumann
semigroup. This is demonstrated in Sect. 5).
For n=0 we define

(353) ko(t: X, y)=p(t> x,y)
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and forn=1,2,3, ...

(56)  koon)=] § plsx2) 4@ k(-2 y) dzds

+%§t j p(s,x,z)c(2) k1 (t~s, 2z, V) o(dz) ds.
Also, we set
(3.6 M(t)—supE"{f iq(Xs)}ds}—i—supE"{f{c(Xs)l dLs}.

Observe that, if ge K (D) and ceX,(dD), then M (z) is finite for all ¢, increases
with t and lingM () =0.
1}

Theorem 3.2. Assume that qeK,(D) and ce Z,(0D). Then k,(t, x, y) is continuous
on (0,0)xDx D and symmetric in x and y. Furthermore, there is a constant
A >0 such that

3.7) k(. IS A™ 1L M (2.

Proof. Throughout the proof we assume, without loss of generality that ¢=0
and ¢=0.

The symmetry of k,(t,x,y) in x and y follows by expanding it in terms
of p(t,x,y) using (3.5b) repeatedly and the fact that p(t, x, y) is symmetric in
x and y by P1 of Sect. 1.

To establish (3.7) we need the following inequality (for all =0, y<D):

(3.8) j § a(x) ku(s, x, y)dxals+1 I § e ks, x,y)o(dx)ds<M(ty* 1.

oD OED

For the proof of (3.8) we use induction. If =0, then (3.8) is true by the definition
of M(¢). Also, by (3.5b) and the symmetry of k,, we can write the left-hand
side of (3.8) as

) fq(x)[f {p(r, 9,2 (@ Ky y (s—1, 2, x)dzdr]dxds

+%Itjq(x)[fs I p(r,y,z)c(z)k,,_l(s—r,z,x)a(dz)dr]dxds

0 9D

s

§ c(x)[f fp(r,y,z)q(z)kn_l(s—r,z,x)dzdr]a(dx)ds

0 D

-+

5

N

?

| -

+ Ojt {)c(x)[

| | pr,y,2)c(2)k, - 1(S—r,z,x)o(dz)drjla(dx)ds
D

17 o
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Now we change the order of integration. We have to be careful only when
we interchange the integrals with respect to r and s. After the interchange we
make the substitution u=s—r in the integral with respect to s. Then, the above
expression becomes

_ft jp(r, v,2)q(z) A,_, (t—r, Z)dZdT*F% f f pr,y.2)c(2) 4,—(t—r,z)o(dz)dr,
0D

0 2b

where

t—r t—r

Ap-(t—r,2)= | fq(x)k,,_l(u,z,x)dxduﬁ-% [ ek, (u,z x)o(dx)du.

0o D Qo oD

But A,_,(t—r,z) is less than M (f)" by the inductive hypothesis, the symmetry
of k, and the monotonicity of M (¢). Then (3.8) follows immediately.

Coming back to the proof of (3.7), we first observe that it is true for n=0
{by P3 of Sect. 1) and then we use (3.5b) to express k, in terms of k,_,. Then
we split the integrals with respect to s into two parts: from 0 to t/2 and from
1/2 to t. Using the induction hypothesis we obtain

t
kalt, x, ) S22 A" 7M@)+ | [ p(s,x,2) q(2) kymy (65,2, Y) dzds

tj2 D

e [ ] pex D@k, (5.2 ) o(d ds

t/2 8D
and so, by P3 of Sect. 1 and (3.8)

ko{t, x, ) S 292 A%t 792 M (1) T 1+ Kt ™92 2942 M ()"
§2"/2(A"+K') t—d/ZM(t)n+ 1’

where K and K’ are constants independent of n. Therefore (3.7) is established
by choosing 4 =24*(1+K').

Finally, we show the continuity of k,. For n=0 the statement is true by
P2 of Sect. 1. Assume that k,_, is continuous on (0, o) x D x D and split the
integrals with respect to s in (3.5b) into three parts: from O to g, from ¢ to
t—e¢ and from t—e¢ to t. The integrals from ¢ to t—e¢ are continuous by the
induction hypothesis. The integrals from 0 to & tend to O uniformly as £/0
since they are bounded by M(e)k,_,(t—¢, x,y). Likewise, the integrals from
t—e to t tend to O with & To show that we substitute s for z—s in the integrals
with respect to s and then we use (3.8) and the estimate for p(t, x, y) given
in P3 of Sect. 1. [
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Remark. The above properties of k, allow us to write (3.5b) in the form (see
Proposition 1.1)

(39) kn(za X5 y)=Ex{§ fy{m—l(t_& Xss y)Q(Xs) d,S+ fkn—l(t_sy Xss y)c(Xs) dLs}
0 0

Inequality (3.7) has an interesting consequence:

Corollary 3.3. (Same assumptions and notation as in Theorem 3.2.) There is a
to>0 such that the series

Y ka(t,x, )
n=0

converges absolutely and uniformly on any compact subset of (0, ty] x D x D.
We define

(3.10) Kt x0)= 3 ke, x, 9)

n=0
Thus k is continuous on (0,¢,] x Dx D and k=0(t~%?) as t|0. Of course, we
expect k(t,x,y) to be the kernels of our semigroup and this can be justified
in the following way:
Let ge LM (D). We set

K, (t,x;2)= [ k,(t, x, y) g(») dy.

By the formulas (3.5) we get

Ko(t, x; g)=E*{g(X,)}
and

t t
Kot 600 =E{ T aX) Ky (65, X3 s+ [ (0 K,y 16— X, 50) L.
0 0
Then the Markov property gives
1 T t n
Kiexi= B fatads+ fecyarf g0}
: 0 0
and so, for 0<r=t,

(3.11) fk(t,x, ) g(dy= 2 K, (t, x;g)=(T, )(x),

where

(3.12) (T )(x) = E*{e,(t) &.(t) g (X )}.
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It follows (by Chapman-Kolmogorov) that k(z,x,y) is continuous on (0, c0)
x D x D. Furthermore, k(t, x, y) is nonnegative and k(t, x, y)— d,(x) as t|0. A
probabilistic representation of k(z, x, y) is

k(t, x, y)=E*{e,(1) &.(t)| X, =y} p(t, x, y).

Therefore we have shown the following (main) theorem regarding the semi-
group {T;,t=0}.

Theorem 3.4. For each t>0, T, is a bounded (linear) operator that maps L' (D)
into C(D) (so, T, maps IP(D) into itself, for any p in [1,00]) and there are
positive constants K and f that depend only on D, q and ¢ such that

(3.13) Supl(Tf)(X)!<Kt"””2eﬁ'f Lf ()l dx,

xeD

ie. | Tl 0 <Kt 4%ef. Moreover:

(a) If f, ge}(D) or if, f, g are just positive, then
(3.14) § AT 9)(x)dx= [ (T, f)(x) g(x) dx,

which says that T; is symmetric;
(b) for each pe[l o] and each t>0, T, is a compact operator from I[P(D)
into itself with norm satisfying

(3.15) IS T ,<Ke*' (inthe selfadjoint case: || T, =e™?),

where K and A, are constants. (The exponent f that appears in (3.13) can be
taken equal to Ay, since [ Till1 =Tl o | Ti-1l1. As we will see in Sect. 5,
in the self-adjoint case, 4, is the largest cigenvalue of the mixed problem.) If
c is real and T, is considered acting on I*(D), it is a self-adjoint operator. In
fact, it possesses a symmetric and continuous kernel k,(x, ), namely

(L N)x)= fk () Sy dy

and its eigenfunctions are in C(D). Therefore, T, is a compact operator on C(D)
too. Finally, if fe C(D), then

lilng(ﬂf)(x):f(x), forall xeD,

which is equivalent (by a standard argument that can be found in [C1]) to
the fact that T, is Fellerian (i.e. T; is an bounded operator on C(D) and it
converges strongly to the identity as £ |0).

Remarks. (a) An immediate consequence is that if we replace g by g— A, where
/. is a sufficiently large constant, then the norms |T;|, , and [|T;|,, where
1<p=< o0, go to 0 exponentially fast, as t — 0.

(b) If g<0 and ¢<0 then 7, is (submarkovian and so) the transition semi-
group of a diffusion in D. In this case, —q and —c are the killing rates in
D and on 6D respectively. If g=0 the process is called elastic Brownian motion.
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(c) If g and ¢ were complex-valued functions, then the estimates in (3.13)
and (3.15) would still be true (by applying the theorem to the real parts of
q and c¢). However, T, would not be self-adjoint any more (but it would still
be compact).

We continue with another property of the semigroup which complements
the previous theorem, since it gives a lower bound for (7, f}(x). It plays an
essential role in the proof of the Gauge Theorem (Theorem 3.6).

Proposition 3.5. Let f=0 be Borel measurable on D. Then, for any t>0, there
is a constant C, such that

(3.16) Ifli=1r W dy=C (T ).

Proof. (Fatou’s Lemma cannot help.) Assume first that f is integrable. Observe
that, for each t>0, by PI and P2 there is a constant A4,>0 such that

(3.17) EX{f(X)}=[pt.x, ) f(0) dyZ A f ;.

Now, using a nice trick we found in [C-H], we have

E*{f(X)}* —E"{eq/2 1) ec/z(t)f (XDe_g 20 é_ 0 (X))
SEe, (e f(X )} EX{e_ (1) 8 _.(t) f(Xz)}
=(T N)NT, ))(x)

SB Sl (T f)(x),

where we first applied Schwarz’s inequality, then we denoted by {T;,t=0} the
semigroup that corresponds to —g and —c¢ and, finally, we applied Theorem
3.4 to T, to get the last inequality (where B, > 0).

Therefore, (3.17) implies that

AN SRS B IU(T )

and so

11 S5 (TA)0,  forevery xeD.

If f is not integrable, we apply (3.16) to f A n and then we use monotone conver-
gence, [

For the rest of this section, ¢ and ¢ are real-valued.

In the probabilistic treatment of the Dirichlet or the Neumann problem
for the (time independent) Schrédinger equation in a bounded domain D, there
is a positive function that plays an important role. It is called the gauge for
the corresponding boundary value problem One property of the gauge is that,
if it is finite at one pomt of D, then it is bounded (in fact continuous) on
D. A second property is that the gauge is finite if and only if 1, <0, where
4; is the first eigenvalue of the corresponding boundary value problem The
gauge is not uniquely defined, but, usually, the (probabilistic) solution of the
problem for boundary data =1 can be taken as a gauge.
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We will see that all the above work for the third problem too. We define
the gauge for (3.1) to be

(3.18) G(x)=E"{}Oe‘C(t) e, (1) dL,}.

0

Then we have the following

Theorem 3.6. (The Gauge Theorem.) If there exist an xqeD such that G(x,)
is finite, then the function G(x) is continuous on D (and so bounded on D).

Proof. We can imitate the proof for the Neumann case, given in [C-H]. From
(3.18) we get

(3.19) 6= E{ [ o) e L+ 29,0 dL

where ¢ is taken to be some (fixed) number in (0, o0). Let E,(t) and E,(t) be
the first and the second term, respectively, of the right-hand side of (3.19). Then

0SE (= E{e,(1) ¢ (1) L(1)},

which is bounded on D by Schwarz’s inequality and Proposition 3.1. In fact,
the same statements imply that

(3.20) lim sup E,()=0.
t]0 xeD
Next, set
(3.21) Y=Y(w)= f e, (s) é.(s)d L.
4]
Then

Yob,= [ [e,()°0.][2.(5)6,] d(Ly8)

= }0 exp [ qu(Xu) du] exp [ z}Lsc(Xu) dLu] dL.,,
0 t

T

[vel

=, (710" [ eg(s) éls) dLs,

t

where in the integral with respect to dLg,,, the dummy variable is s. Hence,
(3.19) gives

E,(t)=E*{e,(t) &.()[Y-6,]}
=E*{e,(t) é.(t) E[Y-0,|#]}
=E*{e, (0 ¢.() EX[Y]},



The probabilistic solution of the third boundary value problem 45

where the last equality follows from the Markov property. Using (3.21) and
(3.18) we get

E,(0)=E*{,(t) é.(1) G(X,)} =(T; G)(x)
and so (3.19) becomes
(3.22) G(x)=E, () +(T, G)().
Now we use Proposition 3.5 to get (since G = 0)
0> G(x0)2(T; G)(x0) = C, | G5 .-

Therefore Ge L' (D) and so, by Theorem 3.4 we get that

(T, GYyeC(D).
Hence G is bounded on D, because of (3.20) and (3.22). Furthermore, since
the limit in (3.20) is uniform in x, we get that G is in C(D). [

Remark. Since D is compact, we get that G(x)= G, >0, for all xeD.

Thus, we have shown that the Gauge Theorem follows, in a rather straightfor-
ward way, from Theorem 3.4 and Proposition 3.5. The theorem that follows
shows that the relation between the gauge and the semigroup is really intimate.

Theorem 3.7. The gauge is finite if and only if 1,<0, where | T,|,=¢e*" (in
other words, e*'" is the first eigenvalue of T,).

Proof. First we assume that G#co. We write again the formula (3.22) that
appears in the proof of the Gauge Theorem:

t

G(x)=E~ {j" e,(s)2.(s) dLs} +(T, G)(x).

0
Letting t — oo and using monotone convergence and the definition of the gauge
we get '

lim (7; G)(x)=0.

t—>o0
If G, is the minimum of G(x) in D then

0<Go(T; N(X)=(T; G) ()
and so

(3.23) lim (7; 1)(x)=0.

Now, by Proposition 3.5,

(LDX)=[T(T-, DIx)zC| T-( LIy,
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hence
lim | T; 1], =0.
=0

Finally, by applying (3.13) to T| we get
(LX) =K|T,-, 1},
and so the limit in (3.23) is uniform in x, i.e.

lim || 1], =lim | T[], =0,
= t—> o0

which means that 4, <0, because of (3.15).
Conversely, assume that A, <0. Using the Markov property and the defini-
tion of G, we get

0 1

Gx)=Y E"{eq () é.(n) EX[ [ e, () &.) dL,]}.

n=0 0
But

E*n {j e,(t) (1) dL,}ésuPEx{eM,(l) e () L)} =M< o0,

0 xeD

by Schwarz’s inequality etc. So,

GEEM Y E*fe,(m e} <M Y | Tl <0,
=0

n=0 n

by (3.15), since 4, <0. [

4 The third boundary value problem

We are now ready to give the probabilistic solution of the mixed problem (3.1).
We apply the method introduced by Stroock and Varadhan for a more general
set-up (see [S-V]). The same method was used by P. Hsu in [H2] for the Neu-
mann problem. The case where g and ¢ are smooth and negative was studied,
rather briefly, by Sato and Ueno in [S-U] (also, recently, in [Fr]) with analytic
methods. In our treatment the functions ¢ and ¢ are not necessarily smooth
or real-valued.

In this section:

(a) all martingales we consider are assumed to have mean equal to zero;

(b) when we say that a process is continuous or has continuous paths, we
mean that it has a version with continuous paths.
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4 A Weak solution and its path integral representation

Let ueC*(D)nC!(D) be a (strong) solution of (3.1). We can then apply the
multidimensional It formula (see [C-W]) to u(X,), since X ={X,,t=0} (the
SRBM in D) is a semimartingale, by (1.2), and get

u(Xt)—u(Xo):6‘f V”(Xs)'st+£ Vu(Xy) n(Xy) dLS-I-—;— (‘)[t Au(X,)ds

= [ Vu(X)-dB,~ s (X u(X) AL~ § fXydr, - 5 a(X)u(X) ds
Hence, if we define
@1 MEO=u(X)—u(Xo)+ 5 C(X)u(X)dL,+ f X)L+ j a(X) u(X) ds,

we must also have

M (5)= f Vu(X,) dB,
0

and so M'(f) is a continuous P*martingale. This computation motivates the
following definition.

Definition I. A function ueb% (D) is called a weak solution of the third problem
(3.1) if, for all xeD, M%4(t) of (4.1) is a continuous P*-martingale.

The fact that g is in K,(D) implies that the third integral in the right-hand
side of (4.1) has a continuous version, since for any fixed 1,>0, ¢(X,) is (as
a function of s) in L*(0,t,), P*-a.s. for all xeD, by the remark after Theorem
2.3 and

[La(X) —nAq(X)]ds|< [ la(X)—nrq(X))ds,
0 0

T
which says that [ g(x,)ds is the limit of continuous processes and this limit
o]
is uniform in ¢ on bounded intervals. Similarly, the integrals in (4.1) with respect
to d L, (which are pathwise Lebesgue-Stieltjes) they exist, having in fact continu-
ous versions, since L is a continuous process. Thus, assuming u is bounded
we get that M'%(t) must be a continuous process. It turns out that if u is a
weak solution, then it is automatically continuous (see Theorem 4.3). Further-
more, (see Appendix) it is easy to see that M%(y) is in L*(P%), for all xeD and
the process is I*-bounded if ¢ is restricted in a finite interval (in fact, exp [M (1)1
is in I?(P¥), for any p < oo).
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Remarks. (a) Notice that the above definition does not involve test functions.
(b) It follows that, if a strong solution of (3.1) exists, it is automatically
a weak solution.
It turns out that there is an equivalent way to define the weak solutions,
which, sometimes, is more convenient for this kind of calculations.

Proposition 4.1. Let ucb%(D) and assume that q, ¢ and [ are as specified at
the beginning of this section. If we define

(“4.2) M4 (1) = e4(t) .2) u(X ) —u(X o) + [ e4(s) éc(5) f (X ) d L,

then M" “(¢) is a continuous P*-martingale, for every xeD, if and only if the process
(1) of (4.1) is.

Proof. (In this proof, the integrals with respect to martingales are Itd stochastic
integrals.)

First, let’s assume that M “(t) is a continuous P*-martingale. Then (4.2) implies
that e, () () u(X,) is a contlnuous P*-semimartingale and so

u(X)=e_, (1) é_.(0)[e,(t) &.(t) u(X,)]

is also a continuous P*-semimartingale (since e_,(f) é_ () is a continuous process
which is locally of bounded variation). So, (4.2) gives

AR (s) =e,(5) é.(s) du(X ) +ey(s) &.(s) u(X,) c(X,) d L,
+e,4(8) .(5) (X ) g(X ) ds+e,(s) é.(s) f(X) d L
which implies that
e_g(s)e_.(s) dM(s)=du(X )+ u(X) c(X)dL+u(X) (X, ds+[f(X)dL.
Now, we integrate the above from O to ¢ and then we use (4.1). The result
1s:

fe (s) &_(s) AN (s) = M (2)

which shows that M'(t) is a continuous P*-martingale. The converse follow
in a similar way. []

Remark. Since (by Jensen’s and then Schwarz’s inequality)

| fes 297000 L b1 B (2 ey ) 21400)
0

S F 1% BT} E¥{es 1 (1) €210 (D},

we get (see Appendix) that M* “(t) is in 12(P7), for all p<oo, xeD and, in fact,
“(t) is IF-bounded, if we restnct ¢ in a finite interval. Moreover, if ueC(D),
then M “(t) is a continuous process (to show that, we can use an argument
similar to the one used for the continuity of M¥).
The next lemma consists of two simple (but useful) formulas.
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Lemma 4.2. If 0<sZt¢, then

E{M4$(0|F} = MY (s)+ EX= {M'} (—5)}
and
E{M%(0)| F,} = MH(5) + e, (s) 6.(s) EX= { W14t —s)},

where M'; and M % are the processes defined by (4.1) and (4.2) respectively.

Proof. We will prove only the second formula (the proof of the first formula
is even easier).
By applying the Markov property to (4.2) we obtain

E{M%(6)| .} =e,(s) &.(s) E*s {e,(t —s) é.(t —s) u(X,_ )}

Cu(X o)+ [ ey 8.0 (X)) dL,
0

+ey(6) 8uls) EX { [ o)) £(X)) dL,}.

]

If we add and subtract e,(s) &,(s) u(X) in the right-hand side of the above equa-
tion, we get the desired result. [

The lemma implies that in order to prove that M% or M*% is a martingale,
it is enough to show that EX{M’*%{t)} =0 {or E*{M"(?)} =0 respectively) for all
t20 and all xeD.

We continue with one of our main results.

Theorem 4.3. Suppose that, for any t >0, u satisfies the following integral equation

t

4.3) (I—T)u(x)=E~ {j e,(s) &.(s) f(X,) dLS}, forall xeD,

0

where I is the identity operator. Then, u is continuous on D and it is a weak
solution of the mixed problem (3.1). Conversely, if u is a weak solution of (3.1),
then it satisfies (4.3), for all t>0; therefore it is continuous. If A,+0 for all
n (see part 4C for the definition of A,), then the mixed problem has at most
one weak solution.

Proof. Assume that u satisfies (4.3). Let

F(x)=E* {5 0,(5) 2.(6) £ (X)) dLs}.

0

This function could be called the “truncated gauge” of the mixed problem
(3.1). If we can show that F is continuous on D, then, by Theorem 3.4 and
the Fredholm Alternative, u is continuous on D. Here is the proof of the contin-
uity of F:

Set

Y= feq(S) é.(s) f(X,) dL.
0
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For 0<¢=<t we have
4.4 F(x)=E*{Y}=E*{Yo0,}+E*{Y—Y-6,}.

The first term of the right-hand side of (4.4) is continuous on D because X
has the strong Feller property (see Sect. 1). Also,

t+e

Yol,=e_,(e)é_.(e) [ e,(s)e.(s)f(X,)dL,
and so

€ t

Y—Yob,=Je,(s).(5) f(X) ALy +[1—e_ (&) e_.(e)] | e,(5) &(s) (X ) dL,
[ £

t+sg

—e_g(e)e_(e) | e,(s)e(s) f(Xy)dL,.

Thus,
lim sup E*{Y —Y-6,} =0,
£, 0 xeD
by standard arguments.
Now, for any xeD and any t=0, (4.3) implies

E*{M%(1)} =0

and so {M%()} =0 is a continuous P*-martingale, by Lemma 4.2 (second part).
Hence, the same is true for M*%(t), by Proposition 4.1. If u is a weak solution
then, by Proposition 4.1 it satisfies (4.2). By taking expectations in (4.2), we
arrive at (4.3).

Finally, A,#0 implies that e*'%1 and so, 1 is not an eigenvalue of T,
if t>0. Hence, by the Fredholm alternative, there is at most one u that can
satisfy (4.3) simultaneously, for all t. [

The previous theorem has a very interesting corollary. We remind the reader
that the gauge of (3.1) is defined in (3.18) to be

G(x)= Ex{ }O e,(t) 6.(0) dL,}.

]

Corollary 4.4. (The Path Integral Representation of the Weak Solution.) Let
qeK (D), fe#(0D) and ce C(0D), where D= R® is a bounded domain with C?
boundary. If, for some xq€D, we have that G(x,)< oo, then

4.5) u(x)=EX{}? e,(0)2.(0) £ (X) dL,}

is the unique weak solution of (3.1). Furthermore, u is continuous (and so bounded)
on D.
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Proof. In the same way that we obtained (3.22) we can get that (for any t>0)u
of (4.5) satisfies

u(x)= {j' e (s)8.(9) f(X )dLS}—i—E"{eq(t) e (B u(X,)}.

This is (4.3) and so, u is a weak solution.
Conversely, assume that u is a weak solution. Then, by the previous theorem

u(x)= E*{e (£) 6.(6) u(X )} + E* {j e4(8) 2.(5) £ (X) dLs}.

0

Letting t — o0 and using Theorem 3.7 and dominated convergence, we get that
u satisfies (4.5) and (because of that) is unique. []

In Theorem 4.3, the requirement that (4.3) must hold for all >0, in order
for u to be a weak solution seems too strong, but it is not (at least for the
case where 1 is not an eigenvalue of T)), because if it holds for one t>0 then
it holds for all ¢:

Theorem 4.5. Suppose that none of the A,’s is 0. Then, the mixed problem (3.1)
has always a unique weak solution.

Proof. Our assumption is equivalent to the fact that 1 is not an eigenvalue
of T,, for all t>0. So, for any fixed ¢, there is a unique u that satisfies (4.3).
We have to show that this u is independent of ¢.
We start with a convenient definition.
[u] = {s>0: u satisfies (4.3) for t =s}.

Now, suppose that ae[u] and be[u]. Then, (4.3) for t=a gives
)= 09249 1 ) AL +(T, ),
Next, we apply T, to the above equation. The result is
()= {020 B | 1,209 £(X) dL|}+ (T s 0,

which (by the Markov property) is equivalent to

a+b

Tue=5{ ] e c<s)f(X)dL}+(7;+bu)(x>.

But be[u], ie. u satisfies (4.3) for t=b. Using this in the above equation we
get

a+bel[ul.
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Now let’s fix u to be the solution of (4.3) for t=1; in other words 1e[u]. Then,
the above analysis implies that nel[u] for every positive integer n. Also, if v
is the unique function for which

el

then 1e[v] and so v=u, by uniqueness. Therefore,
relu], for any positive rational r.

Thus, u satisfies (4.3) for a set of ¢’s which is dense in (0, o). Since u is continuous
on D and 7; is Fellerian (see Theorem 3.4), we get, by dominated convergence,
that u satisfies (4.7) for all t. [

For the rest of the section we assume that ce C(0D).

4B Connection with the weak solution in the classical sense

We want to examine the relation between weak solution as was defined in
the previous section and the weak solution in the classical sense. We start with
some notation.

bC*(D)={geC*(D): ghasbounded second derivativesin D}
and

bC%(D)z{gebCz(D)mcl(ﬁ): %%=0 on 6D}.

Next, we want to specify what we mean by a “classical weak solution™:

Definition II. A Borel measurable function, u defined on D, is called a weak
solution of (3.1) in the classical sense (or a classical weak solution) if, for every
(test function) geb Cz (D), we have

Jut [§+q(x)]g(x) dx=—1 [ @/ @+c@u(] o(d2),
D oD

where, as usual, (dz) is the (d — 1)-dimensional volume element on ¢D.

(To justify the above definition, write the second Green’s identity for the
operator 4/2+q on D, applied to u and g, and then use the fact that u “satisfies”
(3.1) and that g is in bC3(D). Notice that a strong solution is automatically
weak in the classical sense.)

Remark. A slightly different but essentially equivalent definition for the classical
weak solution could be used, in which the test functions satisfy dg/0n+cg=0
on dD.

We continue with a couple of technical lemmas.
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Lemma 4.6. Let gebC?* (D) C* (D). Then
s (oW -ew=EJ a5 a)eaas)
{jeq(s é (s)( +c)g(X)dL}
! A4
4.6b =[|1(5+ d
(46b) 1[m(5+a)sfeoas

+ E* {j e,(s) &.(s) (a_an+ c) g2(X,) dLs}.

Proof. Apply the Itd formula to V, g(X ), where V,=e,() é.(t) is a process which
is locally of bounded variation:

€1 6,(0) 8(X)—g(X )= [ e,(5) &.(5) P g(X,)-dB,
+je (s) &. s)( +q)g(Xs)ds
; Ie (5)¢ (s)[ (X)+c(X gg(Xs)]dL

Taking expectations we obtain (4.6a). To get the second formula, we just need
to justify the application of Fubini’s Theorem to the first term of the right-hand
side of (4.6a). Let

sup 2g(X) +suplg(x)|=M and supfc(z)|=c,.
Then
4.7) E"{f e,(s) é.(s) ( +q)g(X) ds}

< MEx{e“”“felq] (0} +ME* {e“’Lt _[t €15(9)q(X )l ds}
0
=ME*{e" e, (1)} + ME*{e% e, ()— 1]},

which is bounded uniformly in x, by the case p=oo of Theorem 3.4, since
the semigroups that appear above are of the same type as the one examined
in this theorem. [
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Remark. Theorem 4.6 implies that A/2 + ¢ is the infinitesimal generator of T,

The next lemma is a little tedious. 1t is harder than its corresponding one
for the Neumann case (see [H2]), because of the presence of é,(t) which, as
t} 0, goes to 1 slower than e,(t).

Lemma 4.7. Let h be in C(D) and k be in b#(0D). Then

(4.8) lilm% [ h(x) E"{jfeq(s) é.(s) k(X)) dLs}dx 1 | b2 k(2) o (d2).
Hotly 0 oD

Proof. First we show that
1 t
4.9 lim—jE’“{j|éc(s)—1|dLs}dx=0.
tlot 0

Let co=]cl|l,, as usual. If ¢, =0 then (4.9) is trivially true, so let’s assume that
¢o>0. To show (4.9), it is enough to show that

t
(4.10) Jim f E"{ [ (eets—1) dLs}dx=0,
tjo Y

0

because |8,(s)— 1| <eots—1.
The left-hand side of (4.10) equals

1
i * ook 1—c, L} dx.
o tlln(}t | E*{e 1—coL}dx

Therefore (expand e in powers of ¢, Ly, to prove (4.10) it is enough to show
that

.1 .2 _
(4.11) ltllrgl?be {L2} dx=0.

Now, (see (1.8) for the definition of D)
1
. [ E*{I%} dx—-? | EX {12} dx+ j E*{I2} dx.

D D\Ds

The second integral of the right-hand side is less than K §, where K is a constant
which depends only on D. Also

1
[ EX{IZ}dx=— | E*{Li;1p=t}dx
D\Dgs tD\Dé

R o )

D\Ds
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which goes to 0 with ¢ (see Appendix). Thus, we have shown that the limit
in (4.11) is (nonnegtive and) less than KJ, where >0 is arbitrary. Therefore,
we have established (4.11) and so (4.9).

Next, we are going to show that

1 t
(4.12) lim— E"{e‘o"t [ Ly (s)—11 dLs} dx=0.
tjot ; o
The expression inside the limit, above, is equal to

% | E* {eCOL‘ § {1a(X ) eq(r) drdLs} dx
D

00

:%g Ex{gcoLtéj' lg(X,)] elql(r)(Lt_L,-)dT} dx
= [ LB g e () E¥ L4 Lt} dcdr,

where we have apply Tonelli (easily justified, since everything is nonnegative)
and then the Markov property. Now, by Schwarz’s inequality, we get that,
as long as t is bounded above (say by 1),

Exr{ecoL(t—r)L(t_r)}gK]/;, O=r=t,

where K is a “universal” constant. Therefore,
1 K
t t

§ E"{ec‘)"‘ fLeq(9—11 dLs} dxs— | |/t—r f E*{elr|q(X,) e, (r)} dxdr
D 0 0

=R Ve [ @i axar,
]

D

where (1, f)(x)=E*{e‘"re, (r) f(X,)} is a semigroup of the form we have studied
in Sect. 3. In particular, Theorem 3.4 gives

ITSI =K Sfl

where | - |/; is the norm of I'(D) and K is independent of r, if r is bounded
(say by 1). Hence, the above formula becomes

1 t
?1‘3‘ E* {eCOLtéf [e|q|(S)— 1] dLs}

t—rdr f lql(x)| dx.

Remember that ge K (D)<= L'(D). Therefore, letting |0 above and observing
that

hm f t—rdr=0,

tlot R

we arrive at (4.12).
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Combining (4.9) and (4.12) we get
1 t
4.13) lim—jE"{j Leq(s) & (s)—1] dLs}dxzo.
tjot b Y

(Because
t t t
j [e|qj(3) é|c|(5)— 1]dL,= j [e|q|(5) é|c|(5')—é|c|(5)] dL;+ j [é|c|(5)_ 1]dL;
0 0 0
t t
<eo [ [e () —11d L+ [ [,(s)—1] dLs),
) 0
We continue with the following computation.
4.14) lilm 1 f h{x) E"{j k(Xy) dLs} dx
t

-hmz j"h(x j { kW p(s, x, y)o(dy)dsdx

10 0 oD
. 1]
=lim | k)5, [(RRO)dsoy)

=1 f k(y) h(y) o (dy),

where Fubini is justified because everything is bounded, the first equality follows
from the remark after Proposition 1.2, the fact that p(s,-,-) is symmetric (see
P1 of Sect. 1) and {B, s 20}, the transition semigroup of the SRBM, is Fellerian
(see Sect. 1).

Finally,

% | h(x) E* {Oj Le,(s) é.(s)— 1] k(X)) dLS} dx

D

Sl Loy § 2 (et 8= 114

and so we are done, by letting ¢ | 0 and using (4.13) and (4.14). [

The next theorem shows that the weak solution (as was defined in part
4 A) is essentially equivalent to the classical weak solution.

Theorem 4.8. The function u is a weak solution of (4.1) in the sense of Definition
L if and only if it is a continuous weak solution in the classical sense.

Proof. Let gebC2(D). Then (4.6b) becomes

t

(T, ) () — g(x=§[ ( +q) }(x)dsw‘{yeq(s)e(s)c(Xs)g(X)dL}

0
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We multiply the above equation by u(x) and then we integrate over D. The
result is:

§UCOTT )29 = § u(s) T | T F-+a) e o) dsax

D D

+ [ u(x) EX {jt e,(5) é.(s) c(X,) g(X) dLs} dx.

D 0

Next, we apply Fubini to the first term of the right-hand side. This is allowed
because, as in (4.7), the integrand is bounded. Then, we use the symmetry of
T;, which was proved in Theorem 3.4 and so, we obtain

415 ] 2T —uE] dx=] (3+a) 20| § (R ds]ax
0

D D

+ fu(x) E* {jt e,(s) 8.(s) (X)) g(X) dLS} dx.
D 0

Now, assume that M'%(t) is a continuous P*-martingale. Then Proposition
4.1 implies

(4.16) (T, () — u(x) = — E* {j ¢(5).(5) /(X)) dLs}.

0

We substitute the above in (4.15) and, after dividing by 1, we get

[ (§+q)g(x) E i (T, (x) ds | ax= - {5 {7 J eyls) .6) £(X) L} dx

D 0 [0}

— fu(x) E¥ {% e (s)e.(s) g(Xy)e(Xy) dLs} dx.

0o

Letting ¢ | 0 and using Lemma 4.7 and the fact that
1 t
lim = {(Tu)(x)ds=u(x), boundedly
tiol g

(by Theorem 3.4 applied to u, which is continuous by Theorem 4.3), we get
that u is a weak solution in the classical sense.

Conversely, assume that u is a continuous classical weak solution. By (4.1)
we know that MY%(f) is a continuous process. To show that M%(s) is a
P*-martingale, because of the first part of Lemma 4.2, it is enough to show
that, for any fixed 1 >0,

4.17) E*{M%(t)}=0, forall xeD.
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We apply a trick found in [H2]:
From Sect. 1 we have that p(t,x,-) is in bC3(D), if t>0. So, we can use
it in (4.5) in the place of g and get

d

T3 B} = ) 3 pls 2 9 dy
={u()i4,p(sx,y)dy
=—fu®q()pls.x,ydy

I Lf W +u@) )] pls, x, y) 6(dy).
D

0

Now, we integrate the above from r to t and we apply Fubini (justified since
qe K, (D) and u is continuous). With the help of Proposition 1.1, we get

E*(u(X)} — B* {u(X,)} = —Ex{f q(Xs)u<Xs)ds}
—E"{ [LF(X)+ (X)) u(X))] dLs}.

The continuity of u and the Dominated Convergence Theorem allow us to
let #[0. Then, what we get, together with (4.1), which is just the definition
of the process M'%(t), imply immediately (4.17). [

Remarks. (a) If none of the A,’s is 0, the above theorem together with Theorem
4.5 imply that there is always a continuous weak solution (in both senses) to
the mixed problem and this solution is, also, unique.

(b) For any ae(0,1) let geC**(D) and ¢, feC>*(@D). Then (given that no
eigenvalue of the problem is zero) there is a unique strong solution u, ie.
ueC*»*(D)n C%*(D). This is a result of the (analytic) theory of second-order
elliptic partial differential equations (see [S.L]). So, our weak solutions (in both
senses) must agree with this u, by uniqueness.

Important observation. The previous results remain true if ¢ and c are taken
to be complex-valued functions such that |g|e K (D) and ceC(éD). The only
exceptions are Theorem 4.5 and the uniqueness part of Theorem 4.3, since the
eigenvalues of 7, may not be real and so the A,’s are not well-defined (see
Theorem 3.4). The gauge, also, becomes meaningless in this case, but we could
consider instead the gauge that corresponds to the mixed problem that one
obtains by replacing ¢ and ¢ by R(q) and R(c) respectively. The finiteness of
this gauge again guarantees the existence of a weak solution in the form of
(4.5).
Finally we would like to mentioned that the kernel

(4.18) m(x, y)= ;Ok(t, x,y)dt
0
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could be called the “Poisson kernel” for the third problem. It is finite for x=+y
if and only if the gauge of (3.1) is finite (equivalently A, <0) and, if this is
the case, then the (weak) solution of (3.1) is given by

(4.19) u(x)= | m(x,y) f(y) o (dy),

oD

which is, of course, the analytic analog (4.5).
If we let w(t, x)=(T; f)(x), then w satisfies the (backward) equation

ow = 1 A, wHgw.
gt 277
Also, (trivially)
w(0, x)= f(x).

The above two equations are satisfied by the Dirichlet and Neumann semigroups
too. It is their boundary behaviours that distinguish them. In our case we have
that, if zedD, then (in a certain sense)

g—:(t, 2)+c(z)w(t,z)=0, forall t>0.

5 Connection with the Neumann, the Dirichlet and the general mixed case

In this section we show that the semigroup of (3.1) is a uniform limit of Neumann
semigroups and, also, that the Dirichlet semigroup is a uniform limit of semi-
groups that correspond to third boundary value problems., As an application
of the second statement, we give the probabilistic solution of the general mixed
problem.

5A The comnnection with the Neumann problem

In what follows ¢ is in C(8D), but, without loss of generality it can be considered
being in C(D) and § is a positive number not bigger than some fixed 6,>0
(this 6, must satisfy P5 of Sect. 1). We set

5. 2= +'5 ¢() I, ()
and
62 (T )= B* (e, (0 /(X))

Notice that g;eK,;(D) and for each 6>0, {T;?,t=0} is a semigroup associated
to a Neumann problem.
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Theorem 5.1. Let fe (D), where p>1, and fix a t>0. Then
(3.3) };ilné(];é NE)=(T, /) x), uniformlyon D.

In particular, for any fixed =0, T; is the uniform limit of T;?, as 60, in C(D)
and in IP(D) for 1 <p= o0,

Proof. Let || f1|, be the norm of f in IF(D). Using Holder’s inequality we get
(r is taken such that 1/p+1/r=1):

Sup (T, /) () — (T )0l =sup E*{[e* — 9] ¢,(1) £ (X,)}

xeD xeD
R 1 1
Ssup E*{Jes® — e O e (¢y}7 sup E*{| f(X,)I7}?
xeD xeD

1
<G|\ f 1, sup E*{|er® —e®O| ¢, (1)},
xeD

1
where C,>0 is a constant that depends only on ¢. To bound sup EX{|f(X,)r}?

xeD

by C, 1 f|,, we have used P5 of Sect. 1. We have also used the trivial inequality:

[x—yI'g|x"—y"1l, if x,y=0 and rzl.
So,
sup|(T; /) () — (T £)(x)]

xeD

1 1
<G, | f1, sup E*{|e*<® —e*0|2}2" sup E*{e,,(1)*}7",
xeD xeD

which goes to 0, (see Appendix). []

Remarks. (a) The condition p>1 in the hypothesis of the theorem enabled us
to use Holder’s inequality. Clearly, the proof fails for p=1 (although the state-
ment may still be correct).

(b) The theorem suggests that the problem (3.1) can be viewed (since T,
—T;,as § | 0) a limiting case of the Neumann problems

$Adu+qsu=0, in D;
du

7=/ on ¢D.

This is, in fact, an alternative way to approach (3.1).

5B The Dirichlet and the general mixed problem
Let B={B,,t=0} be the standard BM in R* with B, =xeD. We set

t=inf{t>0: B,e D}.
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Then, as we have already pointed out in the remark after Theorem 1.3,
(54) t=inf{t>0:X,edD} =inf{¢t>0:L,>0}, P*as.
Cousider the Dirichlet problem

$4u4+qu=0, in D;

(5:5) u=f, on 0D.

The probabilistic solution of (5.5) is well known (see [C-R1] or [C-Z]). The
corresponding semigroup {S,, t=0} is given by (since B;=X,, if s<r)

(5.6) (S:8) () =E* {1, <ne,(t) g(X))},

where e,(t) can be taken to be the one defined in (3.2). Next, let’s consider
the mixed problem

1 .

(5.7) EAu—l—qu:O, in D;
Ju
E—Nuz—ﬂ on 8D,

where N=0 is a constant. Its corresponding semigroup {T,¥,1=0} is defined
by (according to (3.4), where c(x)= — N)

(5.8) (TN ()= E™{e () e Mg (X))}

Theorem 5.2. Let T." and S, be as in formulas (5.8) and (5.6) respectively. Then
for any fixed t we have

(5.9) lim sup |T¥g—S,gl,=0.

Ntow [[glla=1

Proof. If t =0 there is nothing to prove, so let’s assume ¢ >0. Then

(T £)(0)— (S, (I S E*{ey ()] e~ ™ — Lyl g (X}
< E*{le ™ Ly <P} B {en, (08 (X212,

The second factor above is bounded by some constant, say A,, uniformly in
x, by Theorem 3.4 (since || g?[|, = [ gll2=1). Also, L,=0if r <<, so
(T 2)(x) — (S, ) () S A, E*{e™ >N e 1y g} 2 = A, E¥ {72V 1, g} 112

bl

which, by dominated convergence, decreases to 0 as N 10, since L,>0, P*-a.s.
if t>1. So we are done by Dini’s Theorem. [

Remarks. (a) The functions g above are taken in I*(D), but we could take them
in any I7(D) for p>1. The proof is essentially the same in this case, but if
p=1 we don’t know if the result is still valid,

(b) Notice that the above theorem implies that, for each fixed 1, T,Y converges
to S, (considered as an operator on C(D) or I7(D), 1 <p=<o0) in the uniform
operator topology, and since T;¥ is compact and self-adjoint we can conclude
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a b

Fig. 1. a first case, b second case

that the spectrum of S, consists of the limit points, as NToo, of the spectrum
of TN. In fact we get that

Ae(N) | e,

where A,(N)=1,(N)= ... are the eigenvalues of (5.7) and p,; = u,= ... are the
eigenvalues of (5.5). This last statement is stated (without proof) in Vol. 1, Ch.
IV, Sect. 2 of [Co-H], namely the Methods of Mathematical Physics by R. Cour-
ant and D. Hilbert. ‘

Now consider again a bounded domain D in RY, d>1, with C® boundary
oD. Let’s assume that éD=Au B, where A and B are disjoint open portions
of oD (ie. they are open relative to dD) and connected. (Connectivity is not
really necessary but we assume it here in order to avoid wild cases.) We also
require A N B, which, in general, is a (d —2)-dimensional manifold, to be at least
C! (it may be empty or just two points). The possible cases are shown in Fig. 1.

Let febZ(A) and geb%(B). We consider the following general mixed prob-
lem:

(5.10) $Au+qu=0, in D;
a4u+cu=—f, on A;
on

u=g, on B.

(n is, as usual, the inward unit normal vector on 8D.)
This problem can be considered as a limiting case (as N Too) of the family
of problems

(5.11) FAuy+quy=0, in D;
ou
T;-I—cNuN:—fN, on 0D
where
cy=cl;—Nly
and

In=f14+Nglp.
The semigroup that corresponds to (5.11) is given by (3.4):

(512 (=B ey exp| [ e 1, L)

0

-exp[—Ngt 1(Xy) dLs]h(X,)}.
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Letting NToo we obtain (as in the Dirichlet case) that, for each fixed t=0,
T.N converges in the sense of Theorem 5.2 to T;, where

(5.13) (T, ) (x)=E*{e,(t) &.(t) Ly <5 H(X))}-

Notice that this T, has all the properties listed in Theorem 3.4, since T;" has
them and the convergence happens in a very strong sense.
By Theorem 4.3, the weak solution u, of (5.11) must satisfy

t
(5.14) 0= Ty ()= E*{ ] (920, ) /(X L.

0
Assuming that 1 is not an eigenvalue of T, for some ¢>0, we can take limits
as N tco in (5.14) and conclude that uy(x) > u(x) where

(5.15) (I—T,)u(x)zE*{ T ey()6.9) (XD Ly + Lps gy eq(TB)g(XTB)}.
0

(T3 is, of course, the first time X, hits B.)

Imitating the steps of Sect. 4 we can show that the above u is the unique
weak solution (in the martingale sense) of (5.10). Furthermore, if all the eigen-
values of 7, are strictly less than 1, then (5.15) implies (by letting £ {o0)

u(x)=E*{ {"e () 6.0 /(X)) st+eq(TB)g(XTB)}.

Q

6 The drift term

In this section we examine the problem

6.1) $Au+b-Vu+qu=0, in D;
Ju
ﬁ+cu——f, on 0D,

where D= R? is, as usual, a bounded domain with C? boundary, b=(b,, ..., b,)
is a R%valued function of class C** defined on D, g is bounded and Borel
measurable on D and ¢ and f are continuous on JD. (We take g bounded
in order to be sure that the semigroup associated to (6.1) — see (6.8) later in
this section — is Fellerian.)

It 1s well-known (see [L-S] or [S.Y]) that there exists a (normally) reflected
diffusion Y={Y,,t=0} in D (similar to the standard reflected Brownian motion
— SRBM) whose paths satisfy the Skorokhod equation

(6.2) Y,=B,+ [ b(Y)ds+ | n(¥)dL,,
0 0

where n(z) is, as usual, the inward unit normal vector of 8D at zedD, (B,, %, Fy)
is a Brownian motion in R? with B, in D and L={L,,t=0}, L,=0, is the
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boundary local time of Y. The process L has similar properties to those of
the corresponding process for the SRBM as given in Sect. 1; for example, it
is nondecreasing and it increases only when Y, is on dD (for more details look
at the references mentioned above). Furthermore, we notice that (6.2) can be
written as a stochastic differential equation

(6.2) dY,=dB,+b(Y)dt+n(Y)dL,.
Now let A be the operator

(6.3) A=§+b-|7.

(The part b-V is the drift term.) We consider the initial-boundary value (parabol-
ic) problem (compare with (1.3))

64) %m, X)) =Axr(6 %), (6%, )e(0,00)x Dx D;

lifg r(t,x,)=6,(x), (x,y)eD xD;
t

,1)=0, (t, x,)e(0,0) x D x D,

0
on,
where A, is the operator A of (6.3) acting on the x variables and ¢/0n,=n(x)-V,
It is known (see [1]) that the above problem has a unique (fundamental) solution
r(t, x, y) which is strictly positive. It belongs to C*(D x D), as a function of (x, y)
it is continuous in (t, x, y) on (0, oo} x D x D, its integral with respect to y on
D (and on D, of course) is equal to 1 and it satisfies the Chapman-Kolmogorov
equation

r(s+6,x, )= r(s, x, u) r(t,u, y) du.
D

(Compare with the properties of p(t, x,y) which are given in Sect. 1.) From
the same reference we also get that r(t, x, ) is not necessarily symmetric in
x and y, but as a function of (¢, y) it solves an initial-boundary value parabolic
problem which is the adjoint of (6.4), namely

(6 2% =AY, (6% 2)e0, @)X DX D;

lim r(t, x, y)=6,(x), (x,y)eD x D;
t,0

% r(t, %, )= 2(b-m) rt, x, y)=0,  (tx,y)e(0, 00)x Dx D,
y

where A¥ is the (formal) adjoint operator A* of 4 acting on the y variables.
Integration by parts gives

4.
2

4 G
Hoggee gy — -
A V=50 V-(wb)= :E 3%, vb



The probabilistic solution of the third boundary value problem 65

The above properties imply that there is a Markov process ¥=1{Y,,%,t=0}
with transition densities r(t, x, ) and, in fact, that ¥ has the strong Feller proper-
ty. In fact, ¥ is also a Feller process (see [S-UJ). It is reasonable to expect
that, as in the case of the SRBM, the processes Y and Y of (6.2) are essentially
the same. Such a result is not mentioned in our references, so we give it below
as a theorem.

Theorem 6.1. The processes Y and Y have the same law.

Proof. (Following the method of the proof of Theorem 3.2 of [H1].) If we
apply the 1td formula to g(¥,), where ge C*(D) we get

8(0)—&(Yo)= [ Pg(X)-dB.+ [ ~-g(¥)dL,+ [ (Ag) (¥ ds,
[¢] 0 0

thus, if we set
t

F(g; Y)=g(¥)—g(Yo)— [ (48)(Y) ds,
0

we have that F(g; Y;) is a submartingale whenever dg/dn=0 on dD. But then
Y must be unique in law (see [S-V]), so we just have to show _that F(g; Y)
is a %-submartingale whenever dg/6n=0 on 8D. Now, since F(g; Y) is an addi-
tive func’uonal (not of bounded variation, of course), the Markov property gives

E{F(g; D)%} =E"{F(g; - )} + F(g: Vo).
Therefore, to finish the proof we need to show that
E*{F(g; %)} 20
for any (¢,x) in (0, c0) x D. But the properties of r(t, x, y) — especially (6.5) —

give

E*{F(g: T)) =EX{g(2)}—g<x>—Ex{f (Ag)(i)ds}

0

=[{rit.xye(dy—gx— I fr(s x, V(AgW) dyds

D

o;..,_,

§ (A} (s, x, y)dyds—f Jrs,x, y)(Ag)(y)dyds

0D

I
B

[ ] rls.0) 5 0)o@)ds

0

which is nonnegative. To obtain the last equation we made use of the boundary
condition of (6.5) and the standard multi-dimensional formula for integration
by parts. [

We can now define the weak (probabilistic) solution of (6.1) in the same
way as we did in Sect. 4 for the problem (3.1), namely
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Definition. A function ucb# (D) is called a weak solution of the problem (6.1),
if, for all xeD, M*%(t) is a continuous F-martingale, where

t

(66) Mu(0)=u(Y)—u(Yy)+ | c(Y)u(Y)dLy+ | (Y dLot f g(¥)u(¥) ds.
0 ¢} [0

This definition is justified by the fact that if u is a strong solution of (6.1)
and we apply the Itd formula to u(Y,), we will find that the right hand side
of (6.5) is equal to a stochastic integral with respect to B.

As in the case without the drift term we set

e,(t)=exp [5 q(Y) ds] and &.(f)=exp [gt c(Y) dLs].

Then we have the following propositions

Lemma 6.2. The process M'(t) of (6.5) is a continuous Fy-martingale if and only
if Nf(t) is where

(6.7) N} (6)=¢4(0) & () u(Y) —u(Yo) + [ ey(s) &.(s) f (Y dLs.
0

Proof. The proof is identical to that of Proposition 4.1 []
Theorem 6.3. For geI?(D) let’s define the semigroup

(6.8) (T ) (x)=Ex{e, (1) &.(t) g(X)}-

Then u is a weak solution of (6.1) if and only if there is a t > 0 such that

(69) (I~ T)u(x)=E {j ¢,(5) &.(5) £ (X) dLs}.

0

Proof. Again we can repeat (essentially without any change) the proofs of the
corresponding statements for the case with b=0 (see the proofs of Lemma 4.2,
Theorem 4.3 and Theorem 4.5). []

Remark. If the norm of T, is strictly less than 1, then we can let t— o0 in (6.9)
and get the representation

u<x>=E;;{f e, 6.(0) /(%) dL,}.

0

The above statements reduce problem (6.1) to the study of the semigroup
T,, defined in (6.9). One way to do this analysis is by using estimates for r(z, x, y)
that can be found in [I] and [S-U]. This way is the analog of what we did
in the previous chapters for the case without drift. Here we prefer to follow
a different approach, based on the Cameron-Martin-Girsanov (C-M-G) transfor-
mation.
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In (6.2) we set
12
(6.10) W,=B,+ | b(Y)ds.
0

This can be also written as
(6.10") dB,= —b(Y)dt+dW,.
By the C-M-G transformation (see [@] or [I-W]), if we assume that (W,, %, By)

is a Brownian motion in R, then (B,, &, By) is also a Brownian motion, provided
that for any Ze %, we define

6.11) E}{Z}=E{M,Z},

where

(6.19) Mtzexp{—% jt |b(Y)2ds+ fb(Ys)-dWs}.
4] ]

(If b=V ¢, we can use the It6 formula to get rid of the stochastic integral
that appears in the above formula.) Thus, (going backwards) since we have
already taken B to be a Brownian motion, we can, in addition, take W also
to be a Brownian motion and still be consistent if we assume that (6.11) is
always valid. Now, by using (6.10) in (6.2) we get

t
Y, =W+ [ n(Y)dL,.
0

In other words (Y;, B7) becomes a SRBM! Then, because of (6.11), (6.8) becomes

(6.13) (T ) (x) = Ejy { M, e,(t) €.(t) g (X )}

Theorem 6.4. For each t>0 the operator T, is compact on I7(D), for pe(l, ]
and on C(D). If geI?(D), then T,geC(D) and there is a constant C, (depending
only on t) such that

(6.14) 1T glo=Cligll,.

Also, if g=0 is Borel measurable and p>1, then there is another constant
C; such that

(6.15) g1, <C; inf (T, )

Proof. Let p’ be such that 1/p+1/p'=1. We apply Holder’s inequality to (6.13)
and get

(6.16) (T; )N < Efy {MI'} 177 iy {e, (1) &,(8) g(X )P} 7.
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Since M?" has the same form as M,, by the stochastic process version of the
John-Nirenberg inequality (see [D-M]) there is a constant K, such that

Ey {MPIUP <K,
Hence, if we define
(T° g)(x) = E3y {e,4(t) €,c(1) g (1)},
then (6.16) becomes
(T Q) S KT gD ()M
or

(6.17) 1T glo<KT°g"[[2F.

But T;° is a semigroup of the type we studied in Sect. 3 (remember that (Y,, F})
is a SRBM). Thus, by Theorem 3.4, (6.17) becomes

ITgl.<C.llg"li",

which is (6.14). The continuity of 7; g follows from the Feller and the strong
Feller property of Y (see [C2]). Since the inclusion operator from L*(D) to
I?(D), pe(l, o0), is compact (6.14) implies that T; is compact on IP(D) for pe(1, o).
Also, for O<r<s<t, we have that T,=T,_, T, , T, and we can suppose that
T. maps L*(D) or C(D) into I?(D), where pe(l, o), that T,_, maps [F(D) into
itself and that T,_, maps I?(D) into (D) or C(D) respectively, by (6.14). Since
T.., is compact on IF(D) we can conclude (since the product of a compact
and a bounded operator is compact) that 7, is compact on L*(D) and on C(D).
To prove (6.15), we follow the method of Proposition 3.5. First we assume

that g is bounded. The positivity and continuity of r(t, x, y) imply

e = rt,x, » g dyzAlgl,.

Therefore, for each p>1 there is a constant A, (independent of g and x) for
which

(6.18) A lgl, < E5{g(Y)}.

Now
E*{g(Y)}*=E3 {eg2 (1) &5 (t) g¥(Y)e —g2()é_cpn(0) g (R}
SEzle,(t) e(t) g(Y)} Ex{e— () - .(0) g(Y)}
=(T; 9)()(T; )(x)
=Cligll,(T; g)(x),
where we first applied Schwarz’s inequality, then we denoted by {T.,t=0} the
semigroup that corresponds to —q and —c and, finally, we applied (6.14) to

T, to get the last inequality (where C,>0).
Hence, (6.18) implies

A7 gz =C.ligl, (T g)(x)
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and so

C _
Igl, <5 (TN, forevery xeD.
T

This is (6.15) for bounded g. If g is not bounded, we apply (6.15) to gAn and
then we use monotone convergence. [

Remark. We don’t know whether Theorem 6.4 remains valid for p=1.

Corollary 6.5. If 1 is not an eigenvalue of T,, then problem (6.1) has a unique
weak (probabilistic ) solution which is continuous on D.

Proof. The result follows from (6.9), Theorem 6.4 and the Fredholm Alternative,
provided that the function

F(x)=E§{§ 04()2.5) /() dLS},
1}

of the right-hand side of (6.9), is in C(D). This can be shown in exactly the
same way as in the case without drift (see the proof of Theorem 4.3). We need
the strong Feller property of ¥, (6.14) and an estimate for r(t, x, y) that can
be found in [S-U], namely

EE{L,}=%§ } r(s,x,y)a(dy)dsgcw. O

0 éD

Corollary 6.6. If u is a strong (analytic) solution of (6.1) and 1 is not an eigenvalue
of T;, then u is also the weak (probabilistic) solution of (6.1).

Proof. This follows immediately by applying the 1t6 formula to u and the unique-
ness of the weak solution (Corollary 6.5). []

Finally, we define the gauge of (6.1) to be

(6.19) G(x) =E§{ feq(t) é.(¢) dL,}.

0

Notice that monotone convergence gives
t t
(6.19) G(x)=1lim E;{j e,(s) é.(s) dLs}z lim Ej, {M, | eg(s)é.(s) dLs}.
> w 0 t— o0 0

We have to write the expressions for finite ¢ first and then take limits because,
if we just put t=o00, we get the factor M, which usually doesn’t make sense.
Then we have the following theorem which is similar to Theorem 3.6.

Theorem 6.7. (The Gauge Theorem.) If there is an xo€D for which G(x,) is
finite, then G is continuous on D.
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Proof. (The proof is a slight modification of the proof of Theorem 3.6.)
From (6.19) we get

(6.20) G(x)=E3 {f é.(s) e,(s) dLs} +E3 { 50 é.(s) e,(s) dLs},

where ¢ is taken to be some (fixed) number in (0, o0). Let E,(f) and E,(t) be
the first and the second term, respectively, of the right-hand side of (6.20). Then

0SE () S E5{eq(0) &, (1) L1},

which is bounded on D by Schwarz’s inequality and the estimate for E}{L,}
mentioned in the proof of Corollary 6.5. In fact, the same estimate implies
that

(6.21) lim sup E, (1)=0.
t{0 xeD
Next we set
(6.22) Z=Z7Z(w)= f e,(s) é.(s) d L.
0
Then

Zo0,= | [ey(s)o B, [2.()> 0] d(L,o6)

- [ e T atman] o T ewarfa,.,

t t

o

=¢, ()7 807" [ eg(s)écls) dLs,

t

where in the integral with respect to dLg,,, the dummy variable is 5. Hence,
(6.20) gives
E, ()= E3 {e,(1) 6.()[Z20.])
=E3{e,(t) é.(t) Ex[Z-6,| 7]}
=Ep{e () &(t) E¥[Z]},

where the last equality follows from the Markov property. Using (6.22) and
(6.19) we get
E,()=Eg{e (1) &.(t) G(X)} =(T; G)(x)

and so (6.20) becomes
(6.23) G(x)=E, () +(T; G)(x).
Now we use (6.15) of Theorem 6.4 to get (since G=0)
0 >G(x)Z(T, G)(x0)= C1[Gll,, forany p>1.
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Therefore GeI?(D) and so, by Theorem 6.4 we get that
(T, GeC(D).

Hence G is bounded on D, because of (6.21) and (6.23). Furthermore, since
the limit in (6.21) is uniform in x, we get that G is in C(D). [

Appendix

First we mention a (slightly generalized version of a) result (known as Khas’mins-
kir’s Lemmaj that plays a dominant role in the probabilistic study of the Schro-
dinger equation, when the potential function is not negative. The original state-
ment can be found in [Kh].

Proposition A1. Let AY,j=1, ..., n, be (nonnegative) additive functionals of the
Markov process Y with state space E. If for a fixed t>0 there are u;’s such
that

sup B2 {AP} <o,  j=1,...,n,

yeE
then
sup Ey{]—] A}f’}gn! 1] ;-
=1

yeE j=1

Remark. Instead of the deterministic time ¢t we could have a terminal time T.

An optional time T is terminal if T=Ilim(s+ T>6,) and T=s5+ T-8,, on the
s|O

set {w: s< T(w)}; for example, every hitting time is terminal).
Corollary A 2. If

sup E”{4,} Sa<1,
yeE

then
sup E7 {efl < .
yeE {e*} l—«a

Remark. If there is a t>0 such that supE¥{e*} <oo, then the same is true
yeE

for all teR™. This is because

E>{e*2} = B {e*(e*0,)} = E” {e*E":[e*]} S E” {e*} sup E* {e*}  etc.

yeE

(In fact, this argument works for any multiplicative functional. For the definition
of a multiplicative functional see Sect. 3.)

Proposition A 3. Let A and B be additive functionals of Y such that

sup E*{A,}<«, and sup E*{B,}=«,

yeE yeE
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where lim o, = 0. Then,
tl0

lim sup E? {|e?: — B[P} =0,
t, 0 yeE

for any p=1.

Sketch of proof. Let k be a positive integer. Using the binomial expansion of
(e*—1)* and the previous corollary we get

lim sup E” {(e*:—1)¥} =0.
t10 yeE
But,
E¥ {|eAt _ eB:’p}l/p <EY {(eAz _ 1)p} Ury EY {(eBt _ 1)17} ijp, |
From now on we assume that ce C(D). The additive functionals 4.(z) and
A2(t) are as in (1.11) and (1.12) respectively.

Proposition A4. Let n be a positive integer. If 0<d=<0J, (see P5 of Sect. 1),
then

n! -8y, t=8p,— ... — 82

(A1) E"{Af(t)"}=(25)nf [ | [ f plsy,x,p9) o

0 Ds Ds

P(Sn—1Yn-2> Y1) PSus Va1 V) €(1) .- c(W)dyy ... dy,dsy ... ds, (ds,.
Also,

t—s, =Sy — ... —S2

(A2) EX{AC(t)"}=f2%j [ f [ I TCE ) I
0 0

0 oD oD
P(Su=15Yn—2>Yue 1) PG> Yue 15 ) (V1) - c(n) 6(@y1) ... 6dy,) dsy ... ds,—, ds,
and, in fact, (A2) is true for any ce X,;(éD).
Proof. The proof is a direct extension of the proof of Proposition 1.1. [
Corollary AS. There is a 6,>0 and a K=K(d0)>0 such that, for all te[0, 00),
all 5&(0, 6,] and all integers n>0 we have

sup EX{| 20"} SK"(t+]/ and sup E¥{|A.(0)"} <K"(t+]/2)"

xeD xeD

Notice that the above formulas imply immediately that

sup E* {eA‘Z(t)} éeK(tﬂ/f) éK/ eKt and sup E* {eAc(t)} é eK(t+1/i) éK' eKt’
xeD xeD

where K’ =1 is some constant.

Proof. Just use P5 of Sect. 1 and the previous proposition. []

Lemma A6. Let 0, and D, be as in P5 of Sect. 1. Also, assume that ce C*(D)
i.e. ¢ is twice continuously differentiable in D and its derivatives extend continuous-
ly on D. Then there is a family of functions {gs;, 0= <.} satisfying the following
conditions:
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(a) g;eC*(D), g;=0(6%) and supp(g;)<=D;;

(b) Vgs=0(8) I, and V g5(z)= —dc(z) n(z)+ 0(6?), for zedD;

(¢) 4g;=[c(x)+0()]Ip,-

The notation f=0(5) means, as usual, that there is a positive constant K
such that | f(x)| £ K, for all xeD, 6€[0, 6,].

(Remember that D is a bounded domain with C*® boundary and n(z) is the
inward unit normal at zedD.)

Proof. If €0, 8,], every xe D; can be written (uniquely) as
x=z+an(z),
where z is the (unique) point on 0D which is closest to x and a=d{(x, D).
Now, let
0= (5 @), if x=z+an(z)eDd;
)=, if xeD\D,.

It is easy to prove (see [H1] for the details) that the family {f;,0<6<6,}
satisfies the following:

@) f36C*(D), f=0(5%) and supp(f;)<=D;;
(b) Vf3=0(8) I, and V f5(z)= —n(z) for zedD;
©) 4f,=[1+0()]1 1y,
So, if we take g;=c f;, we are done since:
Vgs=cV f3+f;Ve=c0(8)I5,+0(6%) I, Vec=0(5)I,,.
Similarly,
Ags=cA f+2Ve-V f5+f; dc=[c+0(0)]1p,

and, in exactly the same way, we can evaluate V g;(z) for zin 6D. [J
Proposition A7. Let ce C(D) and T>0. Then
sup E*{ sup [Al(t)—A.(0)]*}—0, as 6]0.

xeD O0<t=T

(i.e. A} converges to A, in the I*(P*) sense and the convergence is uniform in
X and in t on compact sets.)

Proof. First take ce C*(D). Let’s write 1t6 formula for g, (of the previous lemma)
and X (the SRBM which is a semimartingale). Using (1.2) we get

Bs(X)=8s(Xo)+ [ 2s(X) B, | %8 (x) Lid) +5 !Aga(xs)ds

Now, we divide through by J and apply (a), (b) and (¢) of Lemma A 6. Notice
that (b) implies that (0 g;/dn)(z)= —dc(z) + 0(5%), if zedD. The result is:

[ e(X) Lids)—

o]

55 J e(X) 15,(X) ds=0(6)+ | 0@ Lds)

+O(1)fID6(XS)ds

1 t
+= j Vgé(Xs)st
5 0
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or, equivalently,
A (D) —A2)=0(8)+0(8) L()+ O (8) 2 (t) + ft Ves(X,)-dB
94

Next, we take the supremum in ¢ over [0, T] and then I?(P%)-norms. Trivially,
the norm of the right-hand side is less or equal than the sum of the norms
of its terms. The first three terms have norms that go to 0 with § by Corollary
A5 (applied to L and I9). To finish this case, we need to estimate the norm
of the stochastic integral.

By Doob’s inequality (see [C-W]) we have

e rocssanf e s fraons )}

Using the independence of the components of B, the isometry for the stochastic
integrals and the fact that the stochastic integral is a zero mean martingale,
we get that the last term above is equal to

T
£ {5 [ I7ailds|

and by condition (b) of Lemma A 6, this equals
1 T

which tends to 0 as 6 0. So, we have proved the proposition for ce C*(D).
Finally, if ce C(D), for any (given) ¢>0 there is a ce C?(D) such that

suple(x)—c(x)| <e

xeD

{(by the Stone-Weierstrass Theorem). Therefore,

E*{ sup |A.()— A2} SE*{ sup |A.()— A0}

tef0,T] te[0,T]
+E*{ sup |A()—A20*}*
tef[0,T]
+E*{ sup |A2(t)—A2(1)*}*
te[0,T]
<eE*{L(T)?}* + E*{ sup |A(t)—A%1)*}*

te[0,T]

+eEF {I(T}E.
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Now, take suprema over D and then let §|0. Since ¢eC*(D), we can use the
previous analysis for the second term above and conclude that it goes to 0.
Also, we can apply Corollary AS to the other two terms and get

lim sup E*{ sup |4.()—A2(t)*}* <eKy,

4,0 xebD te[0,T]
where K is a constant that depends on T only. So we are done, since & was
arbitrary. []

Theorem AS8. For all t=0 we have

gilné etV =AWy [1(P%)

and the convergence is uniform in x (on D) and in t on compact sets.
In particular,

lim eX°®=¢L® iy [1(P%)
810

Proof. If 0 | 0, then (see the proof of Proposition 1.1)

A1)~ A(t) forae. o.
Next, we notice that

(A3) 1

/x

<e*, if x>0 and |e*—1|Ze*—1, forall xeR.

Now

3

(A4 E* {IeAé;(t) _ eAc(t)|} =FE* {eAc(t) |eA§(t) —A.) _ 1 I}
<E* {eZAc(t)}% EX{[elAﬁ(t)~Ac(t)l — 1]2}%,

by Schwarz’s inequality and (A3). But E*{e*4®} =E*{e42<®) and so it is
bounded by some bound K7 that depends only on ¢, because of Corollary
AS. So, (A4) becomes

AS() _ A0 s el B — Al _ 172 3
B (e e <K, B {1420~ 401 g ]| |

<K E*{|AN0) — A (0P} Br {24807 400,
by Schwarz and (A 3). But

E* {21420~ A0, < px fpaf101 0+ 42110}

and so it is bounded, again by Schwarz and Corollary A5. So we are done
by using Proposition A7. []

Remark. An immediate corollary of the theorem is that if 6 | 0, then
A A i (P

uniformly in x on D and in ¢t on compact sets.
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