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Summary. Using standard reflected Brownian motion (SRBM) and martingales 
we define (in the spirit of Stroock and Varadhan - see IS-V]) the probabilistic 
solution of the boundary value problem 

�89 in D; 
3u 
~ + c u = - f ,  on ~D, 

where D is a bounded domain with C 3 boundary and n is the inward unit 
normal vector on OD. The assumptions for q, c and f are quite general. 

The corresponding Dirichlet problem was studied by Chung, Rao, Zhao 
and others (see [C-R1] and [Z-M]) and the corresponding Neumann by Pei 
Hsu in [H2] .  Here we show that the probabilistic solution of our problem 
exists, is unique (unless we hit an eigenvalue), continuous o n / 5  and equivalent 
to the weak analytic solution. The method we use is to reduce the problem 
to an integral equation in D that involves the associated semigroup and, hence, 
to the study of the properties of this semigroup. In this way we do not have 
to assume that the spectrum is negative (almost every previous work on these 
probabilistic solutions makes this assumption). We construct the kernel of this 
semigroup and we prove certain estimates for it which help us to establish 
many other results, including the gauge theorem. We also show that, if the 
boundary function c is continuous, our semigroup is a uniform limit of Neumann 
semigroups and, furthermore, that the Dirichlet semigroup is a uniform limit 
of semigroups of our type. Therefore the Dirichlet spectrum is a "mono tone"  
limit of spectra of mixed problems (see Sect. 5 B), a fact which is mentioned 
without proof  in Vol 1, Ch. IV, Sect. 2 of the Methods of Mathematical Physics 
by Courant  and Hilbert. This establishes the interrelation of the three boundary 
value problems. Finally, we add a drift term to our differential equation, which 
becomes 

�89 Vu+qu=O 

and we solve the third boundary value problem for this equation probabilisti- 
cally, with the help of Girsanov's transformation. 
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1 Preliminaries 

Let D ~ R d be a bounded domain (a domain is an open, connected and nonempty 
set) with C a boundary #D. A (continuous) path in /7  is a (continuous) function 
defined on [0, oo) and taking values in s Now let B=B(t) be a continuous 
path in R d with B(0) in/7. We say that a pair (X, L) is a solution to the problem 
of reflection (or Skorohod equation), if the following conditions are satisfied: 

(i) X = X ( t )  is a continuous path in/7; 
(ii) L=L(t) is a continuous nondecreasing function (with (0)=0) which 

increases only when X(t) is on ~D, namely 

(1.1) L(t)= i lop [X(s)] dL~ ; 
0 

(iii) The following relation (Skorohod equation) holds 

(1.2) X(t) = B(t) + i n [X(s)] dL~, 
0 

where n(x) is the inward unit normal vector of 0D at x. It is known (see [S.Y], 
[L-S] or [H 1]) that, under the above assumptions for D and B, the problem 
of reflection has a unique solution (X, L). Furthermore X has the same modulus 
of continuity as B, where the modulus of continuity of B is defined to be 

As(a; B)= sup {lB(a)-- B(b)l" a, be[0, s + a], Ib-al < a} 

(for x e R  d, we denote by Ix[ its Euclidean norm). 
If B=(B,, ~t, px) is a (standard) Brownian motion (BM) in R e starting at 

xe/7 and (X, L) is the solution to the problem of reflection for B and D, then 
X = {X,, t > 0} is a diffusion (i.e. a strong Markov process with continuous paths) 
living in/7 called the standard reflected Brownian motion (SRBM) in D starting 
at x and L =  {L,, t>0} is an increasing process called the boundary local time 
of X. The transition densities p (t, x, y) of X satisfy the following initial-boundary 
value (parabolic) problem (see [H1] or Theor. 6.1 later in this article) 

(1.3) ?7 p(t, x, y)= �89 Ax p(t, x, y), 

lim p(t, x, y) = 6y(X), 
t,L o 

- - p ( t ,  x, y)=0,  

(t, x, y)e(O, oo) xD x D; 

(x, y)eD x D; 

(t, x, y)e(0, oo) x aD x/7. 

Here A x is A acting on the x variables, O/Onx=n(x).V~ where Vx 
=(O/Oxl, ..., O/Oxe) and ~y is the Dirac &function at y, so that the second 
equation above means that, for any feC(D), ye/7, we have 

lim ~ f(x) p(t, x, y) dx =f(y) .  
t$O D 
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It is shown in [I] that (under our assumptions for D) there exist a unique 
solution p(t, x, y) of (1.3) defined on (0, oe) x D x D and having the following 
properties. 

PI.  p( t ,x ,y)  is strictly positive and symmetric in x and y, for all t > 0  and 
x, y in /5. 

P2. As a function of x, p(t, x, y) belongs to C 2 (O)c~ C 1 (/)), for fixed (t, y)e(0, oo) 
x/5. In fact, we have joint continuity (and differentiability) in (t, x, y), if t>0 ,  

by standard theorems regarding continuous dependence on the parameters (see 
[S.L]). 

The continuity ofp(t ,  x, y) ond/5  implies that X has the strong Feller proper- 
ty, namely for any bounded Borel measurable function f defined on /5 and 
any fixed t > 0, the function x ~ E x {f(Xt)} is continuous on/5. 

P3. Given any positive constant to, there are constants K=K( to )>O and c 
= c (to) > 0 such that, if 0 < t <__ to, then for all x in /5  we have 

(1.4) p(t, x, y) < K t-el2 e-clx-yl2/t. 

For  a proof  see [H 3]. 
If we denote by {Pt, t>0}  the transition semigroup of X, then the above 

statements imply that Pt has the Feller property (i.e. P~ is a continuous operator 
on C(/)) and converges strongly to the identity as t$0). Its infinitesimal generator 
d is A/2 with domain the closure of 

D o ( ~ ) =  { f e  C2 (/5): Of~On =0,  on OD} 

with respect to some natural Sobolev type norm. For  more details see [H3]  
or [I-W]. 

P4. There are positive constants C and fl such that, if t > t t > O, then 

1 
(1.5) sup p ( t , x , y ) - - -  <Ce  -~t, 

~,,~1 re(D) = 

where m(D) is the Ra-Lebesgue measure of D (this estimate means that p(t, x, y) 
approaches the uniform distribution on D, exponentially fast, as t~ov) .  Also, 
the function 

(1.6) p(t)= sup p(t,x,y), t > 0  

in finite and nonincreasing (see [H1]). 
If D is as above, then it can be shown by elementary differential geometry 

that there is a constant 60 > 0 such that, for 0_< 6_< 6o the map 

(1.7a) x~--~x+6n(x), x~c3D 

is a one-to-one continuous map from OD onto the hypersurface 

(1.7 b) D (6) = {x + 6 n (x): x ~ ~D} 
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with a continuous inverse (by compactness). We denote by D a, the domain 
bounded by ~D and D(6), namely 

(1.8) D a = {xeD: d(x, 8D) < 6}, 

where d( .,.  ) is the Euclidean distance in R e. Then, P3 and P4 imply 

P5. There are positive constants A, C and 6 o such that, if 0 < 6 < 6  o, then for 
all (t, x) in (0, oo) x / )  we have 

(1.9) 

and also 

(1.9') 

1- S  t+c 6 0 ~ p( t ,x ,y)dy< 

P(t,x,Y)a(dY)<=~t+C, 
eD 

where a(dy) is the (d-1) -d imensional  volume element on 8D. In the case D 
=(a,  b) (d = 1) we agree that 

f (y) a(d y) = f ( a )  + f (b). 
OD 

We now give some properties of the process L. First we set 

(1.1o) 
1 t 

/ 2 ( t ) = ~ !  Ioo(Xs) ds. 

Obviously, L ~ is a continuous additive functional (CAF). 

P 6. Let D, B, X and L be as previously defined. Then 

(i) For  any fixed t > 0, 

lira sup E x {IL(t) - La (t)l 2 } = 0, 
,~,~O xeD 

i.e. L a converges to L in L2(px), uniformly in x. 

(ii) There is a set O o (independent of x) with P~(f2o)= 1 such that, if co~O o, 
then 

L(t, co)= lim La(t, co). 
a $ o  

In both (i) and (ii) the convergence is uniform in t on compact  subsets of 
[o, oo). 
Remarks. (a) The fact that the L 2 convergence is uniform in x, is not mentioned 
explicitety in our reference EH1], but it clearly follows from the proof  presented 
there (see also the Appendix). 

(b) Part  (ii) together with the fact that the convergence is uniform in t 
imply that L is a CAF of X (since L a is). 

(c) In fact, the limit in (i) exists in a much stronger sense (see Appendix). 
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(d) Finally, let's discuss the factor 1/2 in (1.6). To understand its meaning 
consider the one dimensional Brownian motion B and reflect it at 0, so that 
we get the reflected process X =  [B[. Then D =(0, oo), D~=(0, 6) and so 

ID~(X~) _ IDo(IB~I) _ I(_~,o)(B~) 
26 26 26 

Notice that 26 is the length of the interval ( - 6 ,  6). Another argument, that 
we can say (for the general case D =Rd), is that the time that the reflected 
path spends in D 0 (for small 6) is approximately twice the time that the (locally) 
nonreflected path spends in it. 

The rest of this section contains propositions that we need in the sequel 
but we were not able to find in the existing literature. 

Let c be in ~(SD), the Borel functions on 8D. We assume that Ic[<oo 
and we set 

t 
(1.11) Ac(t) = ~ c(X~) dLs, 

0 

where the integral is in the Lebesgue-Stieltjes sense and, in general, it may 
not be defined (At=At+ - -A  c_ so we may have oo -oo) .  

If c is in C(OD), then it can be extended to a function ~ in C(/)), such 
that ~ =c  on 8D. So, without loss of generality, we may assume ceC(D). We 
define (in order to avoid long expressions) 

(1.12) i i A~(t) = ~ c(Xs) dL~(s)= c(Xs) 1D~(X~) ds. 
0 

Proposition 1.1. Let cE~((?D) be nonnegative (in order to avoid the possibility 
co - oo). Then 

(1.13) EX{A~(t)} = p(s, x, y) c(y) a(dy) ds. 

Proof. Assume first that c is continuous on 0D. By P6 we have that LO(t)~,L(t) 
for W-a.e. co, as 6~0. Now, c(XO is continuous for a.e. co and so, by "vague 
convergence" (a standard 3 e argument: for s E [0, t], we approximate c(X~) by 
step functions, etc.), 

(1.14) A~ (t) -+ At(t), for a.e. co (uniformly on bounded intervals of t). 

Since LO(t)~L(t) in L 2 (by P6) and so in L 1, by (1.12) and an extended 
dominated convergence theorem (see [R], Ch. 4, Theorem 16), we get 

E x {A~(t)} = lim E ~ {A~(t)}. 
~.~0 
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But, 

1 '  ds}=~ol a o~ E ~ {a~ (t)} = E ~ { ~  Io c (x,) xo~ (Xs) p (s, x, y) c (y) a y d s. 

Letting 6 $0 we obtain (1.13). 
The general case follows by standard dominated and monotone  convergence 

arguments (first we take c to be bounded, etc.). []  

Remark. The above proposit ion together with P2 imply that  if A cOD such 
that a(A) = 0, then 

E~{i lA(X~)dL~}=O.  

(In the Appendix we compute the higher moments  E x {At(t)"}.) 
The next proposit ion can be considered as an at tempt  to extend Andr6's 

Reflection Principle (which is a property of the one dimensional BM - see 
[C1], Sect. 4.2, Exer. 12) to higher dimensions. 

Proposition 1.2. Let t > 0 be f ixed (and D as usual). We set 

(1.15) M ( t ) =  sup d(B~, D), 
O<_s<_t 

where B is the BM in R d. Then, given any ~ > O, there is an e > 0 such that 

inf U {M (t) > e} > 1 - c~. 
xEOD 

(1.16) 

Proof. Let 

En={xeRa 'd (x ,D)<ln} .  

By elementary differential geometry we know that, since 0D is C 3, there is 
some n o such that, for n>n o, we have that aE ,  is smooth (and so E n is regular). 
F rom now on we assume n >  n 0. The exit times of the En's are defined by 

% = i n f { t > 0 :  BtcEC~}. 
Now let 

f . ( x )=P~{r .<t} .  

Each f .  is continuous on R e (see [C2])  and equals to 1 on E~. Also, f .+ l (x )  
>=L(x). 

Furthermore,  the continuity of the paths and the regularity of D (and of 
D C) imply that for all x in /5  we have 

z .~zo=zo ,  px-a.s., 

hence 
f . (x )~PX{~o<t} ,  as n ~ o o .  

Now px{zo<t}  is continuous on R d (as a function of x, of course) and so 
the convergence in the above formula is uniform o n / 5  (in fact on Ra), by Dini's 
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Theorem. In particular, we have uniform convergence on 0D. But z~OD implies 
that pz {*D < t} = 1, because D is regular. Therefore, by taking n sufficiently large, 
we can make 

inf P~{%<t} > 1 --c~. 
xeOD 

From this, our proposition follows immediately (just take e<  1/n}. [] 

Next, using Proposition 1.2 we prove a useful estimate regarding the bound- 
ary local time L. This estimate is needed for the analysis done in Sect. 5. 

Theorem 1.3. Let t > 0 be fixed. Then, given any a > O, there is an e> 0 such 
that 

(1.17) inf W {L~>~} > 1 --a. 
zaOD 

Proof. From (1.2) we get that 

s s dL, 
Ls= S ~o n(x") =IX~--BsI>=d(B"D)" 

The rest follows from the monotonicity of L~ and the previous proposition. []  

Remark. An immediate corollary of Theorem 1.3 is that inf W { L t > 0 } = I .  
z~OD 

Therefore (PX-a.s.) 

(1.18) 
d e f  

~D= inf{t>O:Bt~D c} =inf{t  > 0: X,e~D} = inf{t > 0 : L t > 0  }. 

2 The classes Kd(D) and Zd(OD ) 

(2.1) 

where 

Here we describe two classes of functions which are suitable for our boundary 
value problem. The first is a well known class but the second is introduced 
here for the first time. 

In what follows, all the functions are assumed to be Borel measurable in 
their domains of definition. For  A c R  e, we denote by bN(A) the class of the 
(real- or complex-valued, depending on the context) bounded Borel functions 
on A. 

Definition I. Let q be a real-valued (or complex-valued) function, defined on 
R d. We say that q is in the class Kd (the Kato-Stummel class) if 

lim sup S Gd(x, y)lq(y)[ dy=O, 
a l  O x ~ R a l x - y l < ~  

]x--y[, if d = l ;  
Ga(x,y)= --ln [x--y[, if d = 2 ;  

[x -y l  2.a, if d>3 .  
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Modulo a constant factor, G d is the potential kernel for Rd(G3 is the standard 
Newtonian potential and G 2 is the so called logarithmic potential). 

If qlo~K d we say that q~Kd(D) (thus, Ka(Rd)=Kd). In this case q need 
not be defined outside the set D. 

Remarks. (a) Kd(D) is a vector space and if q~Ka(D), then ]q[, q+ and q are 
in K d (D) (recall that: q + = q v 0, q-  = q/x 0). 

(b) bN(D)cKd(D) for any DcR~. If D is bounded, d > l  and p>d/2, then 
LP(D) ~ Kd(D ) ~ I2 (D). For  the one-dimensional case we have K 1 (a, b) = L 1 (a, b), 
if a and b are finite (easy). 

(c) There are several equivalent definitions for the class K d. Some are given 
below (also, see [A-S], [C-Z], [H1], IS.B]). 

Proposition 2.1. Let D be a bounded domain. We have that q~Kd(D) if and only 
if 

(2.2) x~-+ ~ Ga(x, Y)Iq(Y)[ dy is continuous (on Rd). 
D 

For  a proof  see [C-Z]. 

Remarks. (a) Changing q in (2.2), first to q+, then to q- ,  and subtracting, we 
get that, given qeKd(D), the function that we obtain by replacing Iql by q in 
(2.2), is still continuous. This remark applies also to Proposition 2.4 below. 

(b) If q~b~(D), then the function in (2.2) is in CL~(R d) for all e < l .  On 
the other hand, if qEC~(D) for some ~>0 ,  then the function in (2.2) is in C2(Rd). 
The verifications are easy (see I-G-T]). 

The following theorems relate Kd with the Brownian motion (BM) in R d 
and with the SRBM in a domain D. 

Theorem 2.2. Let B be a BM in R d. Then qeKe if and only if 

(2.3) lim sup EX { i t  ~ o ~ad Iq(B~)[ds}=-O. 

For  a proof see [C-Zl. Here we see why we need q to be Borel measurable, 
namely to guarantee that q(BO is measurable. 

Theorem 2.3. Let D c R  a be a bounded domain with C 3 boundary and X the 
SRBM in D. Then q~Kd(D ) if and only if 

(2.4) lim supE x q(X~)Ids =0.  
t .t 0 x~/5  t. 0 3 

For  a proof see [C-HI. Notice that the "only if" part follows from P3 
of Sect. 1. 

Remark. Equation (2.4) together with the additivity imply that 

} (2.5) s u p E ~  [q(X~)[ds < o% 
x ~ b  t~O 

for any t > 0. 
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The following proposition seems missing from the existing literature. (We 
don't really claim something new here. The proposition must be an easy conse- 
quence of the properties of the semigroup for the Neumann problem, given 
in [H 3].) 

Proposition 2.4. Same assumptions as in the previous theorem. Then, q~Ka(D ) 
if and only if, for some t > O, the function 

(2.6) F(x)=Fq(t;x)=g ~ ~. Iq(XOI ds 
t . O  

is continuous on D. 

Proof. First assume qeKd(D). Then, for any fixed t, Fq(t; x) is bounded on/3 ,  
because of the previous remark. Now, for 0 ___ r < t we have 

(2.7) Fq(t; x)= Fq(r; x) + E~ { f  lq(Xs)l d s} 

=Fq(r; x) + E~ {[ i-rlq(Xs)[ ds]~ 

= ~(r;  x)+ E~ {r~(t-r; X0} 
= F~(r; x )+  [ g  Fq(t--r;-)] (x), 

where Pt is the transition semigroup of X. Since X has the strong Feller property 
(see Sect. 1) and Fq(t; .) is bounded o n / 3  (by the previous remark), we get that 
the second term in the right-hand side of (2.7) is continuous on /3. So, if we 
let r+0, since Fq(r; x) approaches 0 uniformly on /3  by (2.4), we get that Fq(t; x) 
is continuous on/3, for any fixed t > 0. 

Conversely, assume that, for some fixed t>0 ,  Fq(t;x) is continuous on /3. 
Observe that, if O<_r<_t, then Fq(t-r;x) is bounded by Fq(t;x) and so (2.7) 
implies that Fq(r; x) is continuous on/3. Next, define 

q,=lqlAn, cL=lql--q~. 

We will simplify our notation, a little, by writing F(t;x), Fn(t; x) and ffn(t;x), 
instead of Fo(t; x), Fq.(t; x) and F~.(t; x) respectively. 

Now, q, is bounded and so q,cKd(D). Thus, F~(t; x) is continuous on /3, 
for any fixed t, by the first part of this proof. Moreover, 

(2.8) F(r; x)=  F,(r; x)+ ff~ (r; x) 

and so ft,(r; x) is continuous on/3, for any fixed re[0,  t]. 
Finally, since q, EKe(D), Theorem 2.3 and (2.8) give 

(2.9) Iim sup F(r; x)=< supffn (r; x). 
r J, 0 x E D  x e D  
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But, ~, + 0 a.s. on/5,  so 

r 

decreases to 0, as n ~ ,  for each xE/5, by dominated convergence (notice that 
the occupation time of a set of Rd-measure zero is zero a.s.). In fact, it decreases 
uniformly in x by Dini's theorem. So, the right-hand side of (2.9) can be made 
as small (positive) as we wish, by taking n sufficiently large, and so, we are 
done (by Theorem 2.3). [] 

Definition IL Let X be the SRBM in D c R  a, where d>2 ,  and c be a Borel 
function on ~D. We say that c is in the class Ze(OD ), if 

{i ) (2.10) lim sup_ E x le(X=)l dLs =0,  
t , .  O x e D  

where L is (as usual) the boundary local time of X and the integral inside 
the expectation is in the Lebesgue-Stieltjes sense. (Notice that c(Xs) is Borel 
measurable a.s. as a function of s by the continuity of the paths and the fact 
that every Borel subset of ~D is also Borel in Rd.) 

Remarks. (a) bCC(c~D)cZe(OD)cLI(~D) by Proposition 1.1 and P2, P4, P5 of 
Sect. 1. 

(b) If CeZd(c~D), then 

( i )  (2.11) sup g x Ic(Xs)ldg s <o% 
x E D  

for any fixed t > 0. 

Proposition 2.5. Let d >_ 2. Then, C~Zd(C~D ) if and only if the function 

(2.12) 
t 

is continuous on D for some fixed t > O. 

Proof. We can just imitate the proof  of Proposition 2.4. [] 

Remark. As in Proposition 2.4, if there is a t > 0  such that 1r is continuous 
on/5, then the same is true for any t > 0. 

It would be nice to have an analytic characterization of Za(OD ). A sufficient 
(analytic) condition for c to be in Za(0D) is given below. We don't  know if 
this condition is also necessary. 

Proposition 2.6. Assume that c satisfies 

(2.13) lira sup S Ga(x, y)ic(y)l a (dy)=0 ,  
ctj. 0 x ~ D  ODc~B(x;~)  

where Gd(x, y) is the potential kernel for R a (see Def. I). Then ceZa(t?D ). 
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Proof. Proposition 1.1 gives 

{ j  ~ I t  
~x Ic(Xs)l dL =~ S ~ p(s, x, y)lc(y)l ~(dy) as. 

d 0 0 D  

We choose some a > 0  and then we split the above integral over 8D into 
two integrals 11 and 12, the first over 8D~B(x;~) and the second over 
8D~B(x;oO C. As t+0, I 2 ~ 0  uniformly in x, because of P3 of Sect. 1 and the 
fact that (2.13) implies that eED(SD). Now, by P3 again there are constants 
K, b > 0 such that, for all t sufficiently small, 

f 

0 3 D n  B ( x ; ~ )  

The rest follows by elementary calculus (reverse the order of integration, substi- 
t u t e u = b I x - y f 2 s  -~ and use (2.13). [] 

From now on, q is taken in Ka(D) and c in Xa(SD). 

3 Semigroup and gauge 

The main purpose of this work is the study of the third (or mixed or Robin) 
boundary value problem for the time-independent Schr6dinger equation, using 
probabilistic methods. In mathematical terminology, we want to obtain a proba- 
bilistic expression for the (weak) solution u of the following boundary value 
elliptic problem: 

(3.1) �89 in D; 
8u 
8n+CU=-f ,  on 8D. 

If D =(a, b)~R 1, then 8u/On is u'(a) at a and -u'(b) at b. 
In this section we investigate the properties of the semigroup associated 

with the above problem. The main result is Theorem 3.4. Then we define the 
so-called gauge for (3.I) and we prove the theorem about its finiteness (Theo- 
rem 3.6). 

In the probabilistic treatment of problems like (3.1), there is a famous func- 
tional that plays a dominant role. It is, traditionally, called the Feynman-Kac 
functional and is defined as follows: 

t e:--eXP[oS ] 
For the mixed problem, we need a second functional, in addition to the above, 
that will play the role of eq(t) on the boundary. So, for ceZd(OD), we define 

(3.3) 0c(t)=exp c(X,)dL , if d>2 .  

Notice that 0c(t) = e AAt). 
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In the case d =  1, D must be a finite open interval of R ~, say D=(a,b). 
Then OD={a,b}, so c is defined for two points only. Let's put c(a)=cl and 
c(b)=c2. Also, let L,(a) and Lt(b) be the local time of X at a and b respectively. 
Then (3.3) becomes 

(3.3') ~ (t) = exp [c 1 Lt (a) + c2 Lt (b)]. 

The same applies to Ac(t) of (1.11) of Sect. 1, i.e. A~(t)= c 1 Lt(a)+ c2 Lt(b). 

Proposition 3.1. Under the previous assumptions we have that, for any fixed t > O, 

F ( x )  = E ~ {eq(t) 0c(t)} 
is continuous on D. 

Proof. For  t > 0 sufficiently small the finiteness follows from Theorem 2.3, Propo- 
sition 2.5 and Khas'minskii's Lemma (see Appendix). The continuity is a conse- 
quence of the strong Feller property of X. The rest follows from the multiplicati- 
vity (see the definition below). [] 

Definition. Let M be a (right continuous) functional of a Markov process Y. 
We say that M is a multiplicative functional of Y if Mo = 1 a.s. and for 0_< s_< t 
we have 

Mt=Ms(Mt_~oO~), a.s. 

Remarks. (a) If M and N are multiplicative functionals, then so is MN. 
(b) If A is an additive functional, then e a is a multiplicative functional. 
(c) If M is a multiplicative functional of Y, then the operators 

Tt(f)(y)=EY{Mtf(Yt)}, t>__O, 

from (at least formally) a semigroup. 
So, eq(t), Oc(t) and eq(t) de(t) are multiplicative functionals of X and we can 

define a semigroup by 

(3.4) (Tr f)(x) = E x {eq(t) Oc(t) f (Xt)}. 

As we will see, the above semigroup is the basis for the study of the boundary 
problem (3.1). We could call it the Feynman-Kac semigroup associated to the 
third (or mixed) problem. There are similar semigroups for the Dirichlet and 
the Neumann problem (see [C-Z] and [H 2] respectively). To examine the prop- 
erties of this semigroup, we construct its kernels k(t, x, y) by using a standard 
method, similar to the one used by P. Hsu in [H2] .  (For ceC(OD), the properties 
of this semigroup can be derived from the corresponding ones of the Neumann 
semigroup. This is demonstrated in Sect. 5). 

For  n = 0 we define 

(3.5 a) ko(t, x, y)=p(t, x, y) 



The probabilistic solution of the third boundary value problem 

and for n = 1, 2, 3 . . . .  

(3.5 b) k~(t,x,y)= i ~p(s ,x ,z)q(z)kn_l( t -s ,z ,y)dzds 
0 D 

+~ ~ p(s,x,z) c(z)k,,_l(t-s,z,y)a(dz)ds. 
0 OD 

Also, we set 

(3.6) 
x~/5 kO x~/) kO 
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Observe that, if qEKe(D) and cEZa(c~D), then M(t) is finite for all t, increases 
with t and l imM(t)=0.  

t+o  

Theorem 3.2. Assume that q~Ka(D ) and c~Zd(OD ). Then k,(t, x, y) is continuous 
on (0, oo)• D • D and symmetric in x and y. Furthermore, there is a constant 
A > 0 such that 

Ik.(t, x, Y)I <=A "+ 1 t-a/2 M (t).. (3.7) 

Proof. Throughout the proof we assume, without loss of generality that q > 0  
and c_>0. 

The symmetry of k,(t, x, y) in x and y follows by expanding it in terms 
of p(t,x,y) using (3.5b) repeatedly and the fact that p(t,x,y) is symmetric in 
x and y by P1 of Sect. 1. 

To establish (3.7) we need the following inequality (for all n > 0, y ~/5): 

i 1 ' (3.8) ~ q(x)k.(s ,x,y)dxds+ 5 ~ ~ c(x)k.(s,x,y)a(dx)ds<=M(t) "+1 
O D  - - O O D  

For the proof of (3.8) we use induction. If n = 0, then (3.8) is true by the definition 
of M(t). Also, by (3.5 b) and the symmetry of k,, we can write the left-hand 
side of (3.8) as 

t r] Io q lx )   (r'Y'z)q(z)k~ d ds 

+ q (x) ~ p (r, y, z) c (z) k._ ~ (s-- r, z, x) a (d z) d d x d s 
LO OD 

+~ ~ c ( x )  D~P(r'Y'z)q(z)k"-l(s-r'z 'x)dzd a(dx)ds 

+~  i ~ c(x) I p(r,y,z)c(z)k,_~(s-r,z ,x)a(dz)d a(dx)ds. 
0 ~ D  LO OD 
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Now we change the order of integration. We have to be careful only when 
we interchange the integrals with respect to r and s. After the interchange we 
make the substitution u = s - r  in the integral with respect to s. Then, the above 
expression becomes 

i 1 t p (r, y, z) q (z) A._I  (t-- r, z) d z d r + -  ~ ~ p (r, y, z) c (z) A._I  ( t -  r, z) a (d z) d r, 
oD 200/ )  

where 

, - r  1 I A " - l ( t - - r ' z ) =  ~ ~ q ( x ) k " - l ( U ' z ' x ) d x d u + 2  o a9 
0 D 

But A,_ l ( t - r ,  z) is less than M(t)" by the inductive hypothesis, the symmetry 
of k, and the monotonici ty of M(t).  Then (3.8) follows immediately. 

Coming back to the proof  of (3.7), we first observe that it is true for n = 0  
(by P3  of Sect. 1) and then we use (3.5b) to express k, in terms of k , -1 .  Then 
we split the integrals with respect to s into two parts: from 0 to t/2 and from 
t/2 to t. Using the induction hypothesis we obtain 

k n (t, x, y) <= 2 a/2 A n t - a/2 M (t) n + 1 q_ i ~ P (s, x, z) q (z) k ,_  1 ( t -  s, z, y) d z d s 
t/2 D 

1 t 

+--  ~ ~ P(S,X,Z) C ( z ) k . - l ( t - s , z , Y ) a ( d z )  ds 
2 ~/20D 

and so, by P3 of Sect, 1 and (3.8) 

k~ (t, x, y) <= 2 a/2 A" t -  a/2 M (t)" + 1 + K t -  d/2 2a/2 M (t)" 

< 2 a/2 (A" + K') t -  a/2 m (t)" + 1, 

where K and K' are constants independent of n. Therefore (3.7) is established 
by choosing A > 2d/2 (1 + K'). 

Finally, we show the continuity of k,. For  n = 0 the statement is true by 
P2  of Sect. 1. Assume that k,-1 is continuous on (0, oo)xD x D and split the 
integrals with respect to s in (3.5b) into three parts: from 0 to e, from ~ to 
t - e  and from t - e  to t. The integrals from ~ to t - e  are continuous by the 
induction hypothesis~ The integrals from 0 to ~ tend to 0 uniformly as ~,L0 
since they are bounded by M ( e ) k , _ l ( t - e ,  x,y).  Likewise, the integrals from 
t - -e  to t tend to 0 with g. To show that we substitute s for t - - s  in the integrals 
with respect to s and then we use (3,8) and the estimate for p( t , x , y )  given 
in P3 of Sect. 1. [] 
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Remark. The above properties of k, allow us to write (3.5b) in the form (see 
Proposition 1.1) 

(3.9) k , ( t , x , y ) = E  ~ k ._~( t - -s ,X~,y)q(X~)ds+ ~k ._~( t - - s ,X~,y)c(X~)dL . 
0 

Inequality (3.7) has an interesting consequence: 

Corollary 3.3. (Same assumptions and notation as in Theorem 3.2.) There is a 
t o > 0 such that the series 

~ k ,( t ,x ,y)  
n = 0  

converges absolutely and uniformly on any compact subset of(0, to] x D x D. 

We define 

(3.10) k(t, x, y) = ~, kn(t, x, y). 
n = O  

Thus k is continuous on (0, to] •  x D and k=O( t  -a/2) as t$0. Of course, we 
expect k(t, x, y) to be the kernels of our semigroup and this can be justified 
in the following way: 

Let geLl(D). We set  

K.(t, x; g)= j k.(t, x, y) g(y) dy. 
D 

By the formulas (3.5) we get 

Ko(t ,x;g)=EX{g(Xt)} 
and 

t 

k 0  0 

Then the Markov property gives 

t n 

0 

and so, for 0 < t < to 

(3.11) j k(t, x, y) g(y) d y =  ~" K,(t, x; g)=(T~ g)(x), 
D n = 0  

where 

(3.12) (Tt g)(x)= E x {eq(t) Oc(t) g(Xt)}. 
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It follows (by Chapman-Kolmogorov) that k(t ,x ,y)  is continuous on (0, oe) 
x D x D. Furthermore, k(t, x,y) is nonnegative and k(t, x, y)--+6y(x) as t J,0. A 

probabilistic representation of k(t, x, y) is 

k(t, x, y)= EX {eq(t) ~e(t)[ X~= y} p(t, x, y). 

Therefore we have shown the following (main) theorem regarding the semi- 
group { Tt, t > 0}. 

Theorem 3.4. For each t> O, Tt is a bounded (linear) operator that maps L 1 (D) 
into C(D) (so, Tt maps LP(D) into itself, for any p in [-1, oo]) and there are 
positive constants K and fi that depend only on D, q and c such that 

(3.13) sup [(T~ J)(x)[ <= K t -d/= e p' ~ If(x)] dx, 
x~/ )  D 

i.e. l] Tt [11, co < K t-d/2 ePt. Moreover: 

(a) If f ,  g e L  I(D) or if, f ,  g are just positive, then 

(3.14) S f(x)(Tt g)(x) dx = ~ (Ttf)(x) g(x) dx, 
D D 

which says that Tt is symmetric; 
(b) for each pc [ l ,  oo] and each t>0 ,  T, is a compact operator from LP(D) 

into itself with norm satisfying 

(3.15) [I r,[Ip~ [I r~[Ioo ~ K e  ~'** (in the selfadjoint case: l[ r~l[2 = eZ*'), 

where K and 21 are constants. (The exponent fl that appears in (3.13) can be 
taken equal to 21, since ][ r ,  II 1,oo < II Till 1,~ II r~-i II 1. A s  we will see in Sect. 5, 
in the self-adjoint case, 21 is the largest eigenvalue of the mixed problem.) If 
c is real and Tt is considered acting on L2(D), it is a self-adjoint operator. In 
fact, it possesses a symmetric and continuous kernel kt (x, y), namely 

(Ttf)(x)= 5 kt(x, y) f (y)  dy 
D 

and its eigenfunctions are in C(LS). Therefore, T, is a compact operator on C(L)) 
too. Finally, if fE C (/5), then 

lim(Ttf)(x) =f(x) ,  for all xeD, 
t $ o  

which is equivalent (by a standard argument that can be found in [C1]) to 
the fact that T t is Fellerian (i.e. Tt is an bounded operator on C(D) and it 
converges strongly to the identity as t$0). 

Remarks. (a) An immediate consequence is that if we replace q by q - 2 ,  where 
2 is a sufficiently large constant, then the norms I[Ttlll,~ and [ITtllp, where 
1 _<p__< o% go to 0 exponentially fast, as t --+ oo. 

(b) If q < 0 and c < 0 then T~ is (submarkovian and so) the transition semi- 
group of a diffusion in D. In this case, - q  and - c  are the killing rates in 
D and on 0D respectively. If q = 0  the process is called elastic Brownian motion. 
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(c) [f q and c were complex-valued functions, then the estimates in (3.13) 
and (3.15) would still be true (by applying the theorem to the real parts of 
q and c). However, T~ would not be self-adjoint any more (but it would still 
be compact). 

We continue with another property of the semigroup which complements 
the previous theorem, since it gives a lower bound for (T~f)(x). It plays an 
essential role in the proof of the Gauge Theorem (Theorem 3.6). 

Proposition 3.5. Let f > O  be Borel measurable on/5. Then, for any t>0 ,  there 
is a constant Ct such that 

(3.I6) IIfll~ = ~ f ( y )dy<C~ in_f(Tj)(x). 
; x ~ D  

Proof. (Fatou's Lemma cannot help.) Assume first that f is integrable. Observe 
that, for each t>0 ,  by P1 and P2 there is a constant A ,>0  such that 

(3.17) E x {f(Xt)} = ~ p(t, x, y ) f (y)  dy > At 11 f II1. 
D 

Now, using a nice trick we found in [C-HI, we have 

E ~ { f (Xt) } 2 = E x {eq/2 (t) eel2 (t) f+ (Xt) e_ q/2 (t) ~_ c/2 (t) f+ (X,)} 2 

= E ~ {eq(t) ~(t) f (X t )  } E ~ {e q (t) ~_~(t)f(Xz) } 

=(Tt f ) ( x ) (~ f ) ( x )  

<=Stllflll(T~f)(x), 

where we first applied Schwarz's inequality, then we denoted by {~, t=>0} the 
semigroup that corresponds to - q  and - c  and, finally, we applied Theorem 
3.4 to Tt to get the last inequality (where Bt > 0). 

Therefore, (3.17) implies that 

A2 I1 f]]~ ~=Bt ]If I] l(Ttf)(x) 
and so 

Hflll =<~-~ (T~f)(x), for every x~/5. 
A ;  

I f f  is not integrable, we apply (3.16) t o f A n  and then we use monotone conver- 
gence. [] 

For  the rest of this section, q and c are real-valued. 
In the probabilistic treatment of the Dirichlet or the Neumann problem 

for the (time independent) Schr6dinger equation in a bounded domain D, there 
is a positive function that plays an important role. It is called the gauge for 
the corresponding boundary value problem. One property of the gauge is that, 
if it is finite at one point of /5, then it is bounded (in fact continuous) on 
/5. A second property is that the gauge is finite if and only if 21 < 0, where 
21 is the first eigenvalue of the corresponding boundary value problem. The 
gauge is not uniquely defined, but, usually, the (probabilistic) solution of the 
problem for boundary data - 1 can be taken as a gauge. 
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We will see that all the above work for the third problem too. We define 
the gauge for (3.1) to be 

(3.18) G(x) = E x ~(t) eq(t) dL t . 

Then we have the following 

Theorem 3.6. (The Gauge Theorem.) I f  there exist an xo~D such that G(xo) 
is finite, then the function G(x) is continuous on D (and so bounded on D). 

Proof. We can imitate the proof for the Neumann case, given in [C-H]. From 
(3.18) we get 

(3.19) 
t 

G(x)=EX{!O~(S)eq(s)dL~}+E':{;O~(s)eq(s)dL~} 

where t is taken to be some (fixed) number in (0, oe). Let El(t) and E2(t) be 
the first and the second term, respectively, of the right-hand side of (3.19). Then 

0 < E 1 (t) < E ~ {e I q i(t) el~ I(t) L(t)}, 

which is bounded on /) by Schwarz's inequality and Proposition 3.1. In fact, 
the same statements imply that 

(3.20) lim sup E 1 (t) -- 0. 
t~0 xED 

Next, set 

oo 

(3.21) Y = Y(co)= ~ eq(s) O~(s) dL~. 
0 

Then 
oo 

YoOr= ~ [eq(s)oOt] [Oc(s)oOt] d(LsoO~) 
0 

= exp ~ q(X,)du exp c(X,,)dL dLs+t 
0 t t 

=eq(t) -1 ~c(t) ~1 S eq(S) dc(S) dL~, 
t 

where in the integral with respect to dLs+t, the dummy variable is s. Hence, 
(3.19) gives 

E2 (t) = E ~ {eq(t) Oc(t) [ Yo Or]} 
=EX{eq(t) ~c(t) E [Yo 0tl ~ ]  } 

= E ~ {eq(t) ~(t) E x~ [Y]}, 
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where the last equality follows from the Markov property. Using (3.21) and 
(3.18) we get 

E 2 (t) = e x {eq(t) Oc(t) G(Xt)} = (Tt G)(x) 

and so (3.19) becomes 

(3.22) G(x) = E 1 (t) + (T t G)(x). 

Now we use Proposition 3.5 to get (since G__> 0) 

oo > G(xo) >= ( Tt G)(xo) >= C t II G II1- 

Therefore G e L  ~ (D) and so, by Theorem 3.4 we get that 

(TtG)eC(D). 

Hence G is bounded on /), because of (3.20) and (3.22). Furthermore, since 
the limit in (3.20) is uniform in x, we get that G is in C(/)). []  

Remark. Since/)  is compact, we get that G(x)> Go > 0, for all x~/5. 
Thus, we have shown that the Gauge Theorem follows, in a rather straightfor- 

ward way, from Theorem 3.4 and Proposition 3.5. The theorem that follows 
shows that the relation between the gauge and the semigroup is really intimate. 

Theorem 3.7. The gauge is finite if and only if 21<0,  where IlTtU2=e ;~lt (in 
other words, e ~'t is the first eigenvalue of Tt). 

Proof. First we assume that G ~  oo. We write again the formula (3.22)that  
appears in the proof of the Gauge Theorem: 

G(x)=EX{ieq(S)~c(s)dLs}+(T~G)(x). 

Letting t ~ oe and using monotone convergence and the definition of the gauge 
we get 

lim (T~ G)(x) = O. 
t - + c o  

If Go is the minimum of G(x) i n / )  then 

0 <  Go(T t 1)(x)<(T t G)(x) 
and so 

(3.23) lira (Tt 1) (x)  = 0. 

Now, by Proposition 3.5,  

(Tt 1)(x)= [-T 1 (Tt_ 1 1)] (x) > C [I Tt- 1 1 II1, 
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hence 

lim II T~ 1 II1:0. 
t ~ o 0  
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Finally, by applying (3.13) to T 1 we get 

(T~ 1 ) ( x ) < g  I/T~-I 1 [11 

and so the limit in (3.23) is uniform in x, i.e. 

lim IIT~lll~=lim IIr, l l~=0, 
t --* oO t ~ o 0  

which means that 21 < 0, because of (3.15). 
Conversely, assume that 21 <0.  Using the Markov property and the defini- 

tion of G, we get 

G(x) ~ E x eq(n)Oc(n)E x" ~ eq(t)Oc(t)dL . 
n = 0  k .  LO 

But 

E x" ~ eq(t) Oc(t) dL <supEX{elql(1) 01~1(i) L(1)} = M <  o% 
',-0 ) xeD 

by Schwarz's inequality etc. So, 

G(x)<_M ~ EX{eq(n)~c(n)}<=M ~ ]lT,[l~o<0 , 
n = 0  n = 0  

by (3.15), since 21<0.  []  

4 The third boundary value problem 

We are now ready to give the probabilistic solution of the mixed problem (3.1). 
We apply the method introduced by Stroock and Varadhan for a more general 
set-up (see IS-V]). The same method was used by P. Hsu in [-H2] for the Neu- 
mann problem. The case where q and c are smooth and negative was studied, 
rather briefly, by Sato and Ueno in IS-U] (also, recently, in [Fr]) with analytic 
methods. In our treatment the functions q and c are not necessarily smooth 
or real-valued. 

In this section: 
(a) all martingales we consider are assumed to have mean equal to zero; 
(b) when we say that a process is continuous or has continuous paths, we 

mean that it has a version with continuous paths. 
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4 A Weak solution and its path integral representation 

Let u~C2(D) c3CI(D) be a (strong) solution of (3.1). We can then apply the 
multidimensional It6 formula (see [C-W]) to u(Xt), since X = { X t ,  t>0} (the 
SRBM in D) is a semimartingale, by (1.2), and get 

t 

0 0 0 

i t t 
= Vu(Xs).dBs-- 5c(Xs)u(X,)dL ~-  Sf(X~)dL~ 

0 0 0 

t 

- -  ~ q (X~) u (X~) d s. 

Hence, if we define 

(4.1) 
t t t 

M} (t) = u (Xt)-- u (Xo) + ~ c (X~) u (Xs) dL s + ~ f (Xs) dL~ + ~ q (X~) u (X~) d s, 
0 0 0 

we must also have 

t 

M}(t)= S Vu(X~).dBs 
0 

and so M}(t) is a continuous W-martingale. This computation motivates the 
following definition. 

Definition I. A function uebN(D) is called a weak solution of the third problem 
(3.1) if, for all xe/3, M}(t) of (4.1) is a continuous W-martingale. 

The fact that q is in Ka(D) implies that the third integral in the right-hand 
side of (4.1) has a continuous version, since for any fixed to>0,  q(X~) is (as 
a function of s) in LI(0, to), W-a.s. for all xe/) ,  by the remark after Theorem 
2.3 and 

t t o 

o~ [q (Xs) -- n A q (Xs)] d s =< ! ]q (X~)- n/x q (X~)I d s, 

which says that j q(xs)ds is the limit of continuous processes and this limit 
0 

is uniform in t on bounded intervals. Similarly, the integrals in (4.1) with respect 
to dL~ (which are pathwise Lebesgue-Stieltjes) they exist, having in fact continu- 
ous versions, since L is a continuous process. Thus, assuming u is bounded 
we get that M}(t) must be a continuous process. It turns out that if u is a 
weak solution, then it is automatically continuous (see Theorem 4.3). Further- 
more, (see Appendix) it is easy to see that M}(t) is in L2(W), for all x~/3 and 
the process is U-bounded if t is restricted in a finite interval (in fact, exp [M}(t)] 
is in Lv(PX), for any p <  oe). 
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Remarks. (a) Notice that the above definition does not involve test functions. 
(b) It follows that, if a strong solution of (3.1) exists, it is automatically 

a weak solution. 
It turns out that there is an equivalent way to define the weak solutions, 

which, sometimes, is more convenient for this kind of calculations. 

Proposition 4.1. Let u~b~(D) and assume that q, c and f are as specified at 
the beginning of this section. I f  we define 

(4.2) A4}(t) = eq(t) Oc(t) u (X t ) -  u(Xo)+ i eq(S) Oc(s)f(Xs) dLs, 
0 

then file(t) is a continuous W-martingale, for every x~D, if and only if the process 
M)(t) of (4.1)is. 

Proof. (In this proof, the integrals with respect to martingales are It6 stochastic 
integrals.) 

First, let's assume that M)(t) is a continuous W-martingale. Then (4.2) implies 
that eq(t)~c(t)u(Xt) is a continuous W-semimartingale and so 

u(X,) = e_q(t) O_c(t) [eq (t) Oc(t) u(Xt)] 

is also a continuous PX-semimartingale (since e_q(t) 8_~(t) is a continuous process 
which is locally of bounded variation). So, (4.2) gives 

d ff/l)(s) = eq (s) Or (s) d u (Xs)+ eq (s) O~ (s) u(X~) c (X~)dL~ 
+ eq (s) O~ (s) u (X~) q (X~) d s + eq (s) ~ (s) f (X,) dL, 

which implies that 

e_q(s) O_~(s) d~/l)(s) = du(X~) + u(X,) c (Xs) dL~ + u(X~) q (X~) ds + f (X~) dL~. 

Now, we integrate the above from 0 to t and then we use (4.1). The result 
is: 

i e_q(s) O_r dM}(s)= M}(t) 
0 

which shows that M"g(t) is a continuous PX-martingale. The converse follow 
in a similar way. [] 

Remark. Since (by Jensen's and then Schwarz's inequality) 

p 

EX~[!eq(s)~(s)f(Xs)dL~]}<=l'f"~EX{LPtep,q,(t)Op,~l(t)} 

< I[fll~ E~{LatP}-~E~{e2plql(t) ~2pM (t)} ~, 

we get (see Appendix) that /H~(t) is in LP(W), for all p<co ,  x~/5 and, in fact, 
M}(t) is LP-bounded, if we restrict t in a finite interval. Moreover, if u~C(D), 
then ]Q}(t) is a continuous process (to show that, we can use an argument 
similar to the one used for the continuity of M}). 

The next lemma consists of two simple (but useful) formulas. 
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Lemma 4.2. I f  0 <= s <= t, then 

E {M}(t)l~} = M}  (s) + E x~ {M}( t - -  s)} 
and 

E {2~r} (t)] ~ }  = _~r~ (s) + eq (s) ~ (s) E x~ {~I"r (t - s)}, 

where M~ and IVI} are the processes defined by (4.1) and (4.2) respectively. 

Proof. We will prove only the second formula (the proof of the first formula 
is even easier). 

By applying the Markov property to (4.2) we obtain 

E {Mr~(t)[~} = eq(s) G(s) E x~ {eq(t--s) ~( t - - s )  u(X~_s)} 
$ 

- u(Xo) + ~ eq(r) ~(r) f (X~) dL~ 
0 

+ eq (s) G(s) E x~ I eq (r) G (r) f (X~) dL 
0 

If we add and subtract eq(s) Oc(s) u(X~) in the right-hand side of the above equa- 
tion, we get the desired result. [] 

The lemma implies that in order to prove that M} or M} is a martingale, 
it is enough to show that EX{M"z(t)}=O (or E~{~r}(t)}=0 respectively) for all 
t__>0 and all xe/ ) .  

We continue with one of our main results. 

Theorem 4.3. Suppose that, for  any t > O, u satisfies the following integral equation 

(4.3) (I--  Tt) u(x)= E ~ eq(S) Oc(s)f(Xs) dL~ , for all x~/),  

where I is the identity operator. Then, u is continuous on D and it is a weak 
solution of  the mixed problem (3.1). Conversely, if u is a weak solution of (3.1), 
then it satisfies (4.3), for  all t > 0 ;  therefore it is continuous. I f  2,4=0 for  all 
n (see part 4 C for the definition of 2~), then the mixed problem has at most 
one weak solution. 

Proof. Assume that u satisfies (4.3). Let 

F ( x ) = E  x ~ %(s) Oc(S)f(Xs) dL~ . 
t. 0 

This function could be called the "truncated gauge" of the mixed problem 
(3.1). If we can show that F is continuous on t5, then, by Theorem 3.4 and 
the Fredholm Alternative, u is continuous on 15. Here is the proof of the contin- 
uity of F: 

Set 

Y =  i eq(s) ~c(s) f (Xs )  dLs. 
0 
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For 0__< ~_< t we have 

(4.4) F(x)= E~ { Y} = EX { YoO~} + Ex { Y - YoO~}. 

The first term of the right-hand side of (4.4) is continuous on /5 because X 
has the strong Feller property (see Sect. 1). Also, 

t + E  

YoO~=e_q(e) ~_~(e) I eq(s) O~(s)f(X~) dL~ 

and so 

t 

Y--  YoO~= i eq(s) ~(s) f (X~) dL~ + [I --e_q(e) ~_r ~ eq(s) O~(s) f (X~) dL~ 
0 e 

--e_q(~)  O_e(e ) ~ eq(s) ~c(s) f (X~)  dL~. 

Thus, 
lim sup E x { Y -- Yo 0~} = 0, 
~$0 xeb 

by standard arguments. 
Now, for any xe/5 and any t_>0, (4.3) implies 

EX {M}(t)} =0  

and so {M)(t)} =0  is a continuous W-martingale, by Lemma 4.2 (second part). 
Hence, the same is true for M}(t), by Proposition 4.1. If u is a weak solution 
then, by Proposition 4.1 it satisfies (4.2). By taking expectations in (4.2), we 
arrive at (4.3). 

Finally, 2n:~0 implies that eZn*4:l and so, 1 is not an eigenvalue of T~, 
if t>0 .  Hence, by the Fredholm alternative, there is at most one u that can 
satisfy (4.3) simultaneously, for all t. [] 

The previous theorem has a very interesting corollary. We remind the reader 
that the gauge of (3.1) is defined in (3.18) to be 

G(x)=E~ ~ S eq(t)Oc(t)dLt}. 
t.O 

Corollary 4.4. (The Path Integral Representation of the Weak Solution.) Let 
qeKd(D), fe~(OD) and c~C(OD), where D ~ R  d is a bounded domain with C 3 
boundary. If, for some xoeD, we have that G(xo)< c~, then 

(4.5) u(x) = E x eq(t) Oc(t) f (Xt) dL 

is the unique weak solution of (3.1). Furthermore, u is continuous (and so bounded) 
on JD. 
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Proof. In the same way that  we obtained (3.22) we can get that (for any t > 0)u 
of (4.5) satisfies 

t 

u(x):EX { ~o eq(s) Oc(s) f (Xs) dLs}+ E x {eq(t) Oc(t)u(Xt)}. 

This is (4.3) and so, u is a weak solution. 
Conversely, assume that u is a weak solution. Then, by the previous theorem 

u(x)= EX {eq(t) Oc(t) u(Xt)} + EX { i  eq(s) ~c(s) f (Xs) dL~ }. 

Letting t ~ oo and using Theorem 3.7 and dominated convergence, we get that 
u satisfies (4.5) and (because of that) is unique. [] 

In Theorem 4.3, the requirement that (4.3) must  hold for all t > 0 ,  in order 
for u to be a weak solution seems too strong, but it is not (at least for the 
case where 1 is not an eigenvalue of Tt), because if it holds for one t > 0 then 
it holds for all t: 

Theorem 4.5. Suppose that none of the 2,'s is O. Then, the mixed problem (3.1) 
has always a unique weak solution. 
Proof. Our assumption is equivalent to the fact that 1 is not an eigenvalue 
of Tt, for all t > 0 .  So, for any fixed t, there is a unique u that satisfies (4.3). 
We have to show that this u is independent of t. 

We start with a convenient definition. 

[u] = {s > 0: u satisfies (4.3) for t = s}. 

Now, suppose that  a t  [u] and be  [u]. Then, (4.3) for t =  a gives 

a 

u(x)=EX { ~o eq(s)Oc(s) f (X~)dL~} +(Ta u)(x). 

Next, we apply T b to the above equation. The result is 

(Tb u)(x)=EX {eq(b) Oc(b) EXb[i eq(s) Oc(s) f (Xs) dLs]}+(T~+b u)(x), 

which (by the Markov  property) is equivalent to 

( a+b 

(Tb U)(X): EX ~. ! eq(s)Oc(s) f(Xs)dLs} +(T,+b u)(x). 

But be[u], i.e. u satisfies (4.3) for t=b. Using this in the above equation we 
get 

a+b~[u]. 



52 V.G. Papanicolaou 

Now let's fix u to be the solution of (4.3) for t = 1; in other words 1 ~ I-u]. Then, 
the above analysis implies that ne[u] for every positive integer n. Also, if v 
is the unique function for which 

1 
- e E v ] ,  
n 

then 1 e [v] and so v = u, by uniqueness. Therefore, 

r e [u], for any positive rational r. 

Thus, u satisfies (4.3) for a set of t's which is dense in (0, oo). Since u is continuous 
o n / 3  and T~ is Fellerian (see Theorem 3.4), we get, by dominated convergence, 
that u satisfies (4.7) for all t. []  

For  the rest of the section we assume that ceC(OD). 

4 B Connection with the weak solution in the classical sense 

We want to examine the relation between weak solution as was defined in 
the previous section and the weak solution in the classical sense. We start with 
some notation. 

and 

b C 2 (D) = {g e C 2 (D): g has bounded second derivatives in D} 

bC~(D)={g~bC2(D)nCI(/3): 00~gn=0 on 0D}. 

Next, we want to specify what we mean by a "classical weak solution": 

Definition II. A Borel measurable function, u defined on /3, is called a weak 
solution of (3.1) in the classical sense (or a classical weak solution) if, for every 
(test function) g E b C 2 (O), we have 

~ u(x)[2 +q(x)J g(x) dx= -�89 el)~ g(z)[f (z)+c(z)u(z)] a(dz)' 

where, as usual, a(dz) is the ( d -  1)-dimensional volume element on 0D. 
(To justify the above definition, write the second Green's identity for the 

operator  A/2 + q on/3, applied to u and g, and then use the fact that u "satisfies" 
(3.1) and that g is in bCZ(D). Notice that a strong solution is automatically 
weak in the classical sense.) 

Remark. A slightly different but essentially equivalent definition for the classical 
weak solution could be used, in which the test functions satisfy a g/an + c g = 0 
on ~D. 

We continue with a couple of technical lemmas. 
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Lemma 4.6. Let g E b C 2 ( D ) c~ C ~ ( D ). Then 

 46a, 

+EX{jeq(s)Oc(s)(~--~+c)g(Xs)dLs} 

i[( )1 (4.6b) = T~ ~-+q  g (x)ds 
0 

53 

Proof. Apply the It6 formula to Vt g(Xt), where Vt= eq(t)Oc(t) is a process which 
is locally of bounded variation" 

t 

e. (t) ~ (t) g ( x o  - g (Xo) = 5 e. (s) o~(s) v g (x~)- dB~ 
0 

+ e.(s)OAs) +q g(X3ds 
0 

+ i eq(s)ec(S)[~n (X~)+c(X~)g(X~)]dL~ �9 

Taking expectations we obtain (4.6a). To get the second formula, we just need 
to justify the application of Fubini's Theorem to the first term of the right-hand 
side of (4.6a). Let 

sup 2 g ( x  ) +sup lg (x ) l=M and sup[c(z)[=Co. 
x ~ D  x e D  x E ~ D  

Then 

(4.7) 

t 

= ME~ { e~~ el.I (t)} + ME x {e ~~ [e I q i(t)-- 1]}, 

which is bounded uniformly in x, by the case p =  ~ of Theorem 3.4, since 
the semigroups that appear above are of the same type as the one examined 
in this theorem. [] 
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Remark. Theorem 4.6 implies that  A/2 + q is the infinitesimal generator  of Tt. 
The next  lemma is a little tedious. It is harder  than its corresponding one 

for the N e u m a n n  case (see [H2]) ,  because of the presence of Oc(t) which, as 
t+0, goes to 1 slower than  eq(t). 

Lemma 4.7. Let h be in C(D) and k be in b~(OD). Then 

(4.8) limt~o it ~D h(x)E x { i  eq(s)~c(s)k(Xs)dLs} dx =I~D ~ h(z)k(z)a(dz). 

Proof. First  we show that  

(4.9) lim l-- s E~{i t D 

Let c o = [] c [I ~, as usual. If co = 0 then (4.9) is trivially true, so let's assume that  
c o > 0. To  show (4.9), it is enough to show that  

t 

(4.10) limlSEx{!(ec~ t D 

because 14r (s)-- 11 =< e~~ 1. 
The  left-hand side of (4.10) equals 

1~ lim-1 ~ E~{e~~ 
c o .rio t D 

Therefore  (expand e ~~ in powers of Co L~), to prove (4.10) it is enough to show 
that  

(4.11) lim 1 f E x t ,o  t ; {L~} dx=O. 

Now,  (see (1.8) for  the definition of Do) 

1 EX{ L2} d x = l  f E~{ L2~} d x + l  ~ E~{ c2} dx. 
t D t D\D6 De 

The second integral of the r ight-hand side is less than K ~, where K is a constant  
which depends only on D. Also 

1 1 
t eX{L s)dx=- S 

D\D6 t D\D~ 

1 < f 
= t  D\Dd 

Ex (L~;-~.__< t} dx 

E ~ {L~}Sp ~ {ZD < t)�89 
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which goes to 0 with t (see Appendix). Thus, we have shown that the limit 
in (4.11) is (nonnegtive and) less than K6, where 6 > 0  is arbitrary. Therefore, 
we have established (4.11) and so (4.9). 

Next, we are going to show that 

(4.12) 
t 

liml-~E={e~~ t D 

The expression inside the limit, above, is equal to 

1 { , ,  } 
~ ~ E ~ e~~ ~o ~o [q(Xr)[ elql(r) drdL , dx 

=1 ~ E= ~e~oL, i lq(X~)] el,l(r)(Lt_ L~) dr} dx 
to  ( o 

= E~{e~~ elql(r ) EX'[eC~ dxdr, 

where we have apply Tonelli (easily justified, since everything is nonnegative) 
and then the Markov property. Now, by Schwarz's inequality, we get that, 
as long as t is bounded above (say by 1), 

EX~{e~~ <=K/t-r, O<_r<_t, 

where K is a "universal" constant. Therefore, 

1 ~ dL~} - ~ EX ~e~~ ~ [el ql (s)-- 1] 
t o  ( o 

d x < K  i ] ~ - r  ~ E={eC~ dxdr 
: t 0 D 

=K i f(r lql)(x)dx r, 
t o D 

where (Tr f ) ( x ) =  E x {e c~ e I ql(r)f (X,)} is a semigroup of the form we have studied 
in Sect. 3. In particular, Theorem 3.4 gives 

Hr~f[ll <K'llflll, 

where II-hi1 is the norm of D (D) and K is independent of r, if r is bounded 
(say by 1). Hence, the above formula becomes 

1 t "( < KK~ 
-- [EX~ec~ [elql(s)-l]dL dx i t]/~-rdr~]q](x)[dx. 
t o  ( o sj = t o 9 

Remember that q~Ka(D)cL I(D). Therefore, letting t~O above and observing 
that 

lim l _ i  tl/t--r--rdr=O, 
t~o  t o 

we arrive at (4.12). 
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Combining (4.9) and (4.12) we get 

(4.13) lira 1 EX{i } t,o t ~ [elql(S)Olcl(s)-l]dL ~ dx=O. 

Because 

t t 

[elql(s ) ~lcl(S)- 1] dL~= ~ [elql(S ) OM(s)--el~l(s)] dL~ + i [OM(s) - 13 dL~ 
o o o 

, , ) 
<=ee~ I [elql(S ) -  1] dLs+ ~ [01cl(s)-1] dL s . 

o o 

We continue with the following computation. 

(4.14) lim 1_ ~ h ( x ) E ~ { i k ( X ~ ) d L , } d x  
t ~ o  t D 

t 

=l im 1 I h(x) ! I k (y )p(s ,x ,y )a(dy)dsdx  
~ $ 0  ~ D OD 

1 t 
= lira S k (y) ~ .I (~ h) (y) d s a (d y) 

t$O ~D 

k(y) h(y) o(dy), 
OD 

where Fubini is justified because everything is bounded, the first equality follows 
from the remark after Proposition 1.2, the fact that p(s, . , .  ) is symmetric (see 
P1 of Sect. 1) and {P~, s__> 0}, the transition semigroup of the SRBM, is Fellerian 
(see Sect. 1). 

Finally, 

is } <[[hl[oo l[kl[~o E x [elql(s)~M(s)-l]dL~ dx 
t D kO 

and so we are done, by letting t~,0 and using (4.13) and (4.14). [] 

The next theorem shows that the weak solution (as was defined in part 
4A) is essentially equivalent to the classical weak solution. 

Theorem 4.8. The function u is a weak solution of (4.1) in the sense of Definition 
I if and only if it is a continuous weak solution in the classical sense. 

Proof. Let gebC~(D). Then (4.6b) becomes 

' A + E ~  ! eq(s)e~(s)c(Xs)g(X,) 
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We multiply the above equation by u(x) and then we integrate over D. The 
result is: 

A 
ju(x)[ (Ttg) (x) - -g(x)]dx=ju(x) i [T~(2+q)q  

{i } + I u (x) E ~ eq (s) O~ (s) c (Xs) g (X~) dL~ 
D 

dx. 

Next, we apply Fubini to the first term of the right-hand side. This is allowed 
because, as in (4.7), the integrand is bounded. Then, we use the symmetry of 
Tt, which was proved in Theorem 3.4 and so, we obtain 

[i l D 5 +  g(x) (Zu)(x)ds dx (4.15) ~g(x)[(T~u)(x)-u(x)]dx=~ q 

+ ~ u(x) E ~ ~ eq(S) Oc(s) c(X~) g(X~) dL 
D ~-0 

dx. 

Now, assume that M"y(t) is a continuous PX-martingale. Then Proposition 
4.1 implies 

(4.16) 
t 

We substitute the above in (4.15) and, after dividing by t, we get 

~ (~_+ q) g(x) [T i (T ~ A  1 u)(x)ds] d x = -  ~g(x)E x {1  ieq(S)ec(s)f(Xs)~ dL~} dx 
0 D 0 

Letting t$0 and using Lemma 4.7 and the fact that 

1 
lim j (T~ u)(x) ds = u(x), boundedly 
t~O t O 

(by Theorem 3.4 applied to u, which is continuous by Theorem 4.3), we get 
that u is a weak solution in the classical sense. 

Conversely, assume that u is a continuous classical weak solution. By (4.1) 
we know that M)(t) is a continuous process. To show that M"i(t ) is a 
W-martingale, because of the first part of Lemma 4.2, it is enough to show 
that, for any fixed t > 0, 

(4.17) EX{M"c(t)} =0, for all x~/). 
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We apply a trick found in [H 2]" 
From Sect. 1 we have that p(t,x, .)  is in bCZ(D), if t>0 .  So, we can use 

it in (4.5) in the place of g and get 

d E ~ ~ u(y) ~--s p(s, x, y) dy ds {u(X,)} =D 

= ~ u(y) �89 p(s, x, y) dy 
D 

= -- y u(y) q(y) p(s, x, y) dy 
D 

_1  y [ f  (y) + u(y) c(y)] p(s, x, y) a(d y). 
OD 

Now, we integrate the above from r to t and we apply Fubini (justified since 
qeKd(D ) and u is continuous). With the help of Proposition 1.1, we get 

EX {u(X~)} -- EX {u(Xr)} = -- EX { j  q(Xs) u(Xs) ds} 

--E~'{j [f(Xs)+c(X~)u(X,)]dLs}. 

The continuity of u and the Dominated Convergence Theorem allow us to 
let r$0. Then, what we get, together with (4.1), which is just the definition 
of the process M}(t), imply immediately (4.17). [] 

Remarks. (a) If none of the ,~,'s is 0, the above theorem together with Theorem 
4.5 imply that there is always a continuous weak solution (in both senses) to 
the mixed problem and this solution is, also, unique. 

(b) For any c~e(0, 1) let qeC~ and c, feC~ Then (given that no 
eigenvalue of the problem is zero) there is a unique strong solution u, i.e. 
ueC2'~(D)nC~ This is a result of the (analytic) theory of second-order 
elliptic partial differential equations (see [S.L]). So, our weak solutions (in both 
senses) must agree with this u, by uniqueness. 

Important observation. The previous results remain true if q and c are taken 
to be complex-valued functions such that IqleKa(D ) and ceC(SD). The only 
exceptions are Theorem 4.5 and the uniqueness part of Theorem 4.3, since the 
eigenvalues of Tt may not be real and so the 2,'s are not well-defined (see 
Theorem 3.4). The gauge, also, becomes meaningless in this case, but we could 
consider instead the gauge that corresponds to the mixed problem that one 
obtains by replacing q and c by 9l(q) and 9t@) respectively. The finiteness of 
this gauge again guarantees the existence of a weak solution in the form of 
(4.5). 

Finally we would like to mentioned that the kernel 

QO 

(4.18) re(x, y)= ~ k(t, x, y) dt 
0 
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could be called the "Poisson kernel" for the third problem. It is finite for x # y  
if and only if the gauge of (3.1) is finite (equivalently 21<0) and, if this is 
the case, then the (weak) solution of (3.1) is given by 

(4.19) u(x) = ~ re(x, y) f (y) a(dy), 
OD 

which is, of course, the analytic analog (4.5). 
If we let w(t, x)= (Ttf)(x), then w satisfies the (backward) equation 

Also, (trivially) 

Ow 1 
Ot - 2  d:, w+qw. 

w(O,x)=f(x). 

The above two equations are satisfied by the Dirichlet and Neumann semigroups 
too. It is their boundary behaviours that distinguish them. In our case we have 
that, if zet3D, then (in a certain sense) 

Ow (t, z)+c(z) w(t, z)=0, 
0n 

for all t > 0. 

5 Connection with the Neumann, the Dirichlet and the general mixed case 

In this section we show that the semigroup of (3.1) is a uniform limit of Neumann 
semigroups and, also, that the Dirichlet semigroup is a uniform limit of semi- 
groups that correspond to third boundary value problems. As an application 
of the second statement, we give the probabilistic solution of the general mixed 
problem. 

5 A The connection with the Neumann problem 

In what follows c is in C(~D), but, without loss of generality it can be considered 
being in C(/)) and b is a positive number not bigger than some fixed 60>0 
(this 6o must satisfy P5 of Sect. 1). We set 

(5.1) 

and 

(5.2) 

q6(x)=q(x)+2~C(X)ID~(X) 

(Tt ~ f)(x) = E ~ {eq~(t) f(Xt)}. 

Notice that q~aKo(D) and for each b>O, {Tt ~, t=>O} is a semigroup associated 
to a Neumann problem. 



60 V.G. Papanicolaou 

Theorem 5.1. Let feLP(D), where p> 1, and f ix  a t>0 .  Then 

(5.3) lim(T~6f)(x)=(TJ)(x), uniformly on /). 
6,~0 

In particular, for any fixed t>0 ,  Tt is the uniform limit of Tt 6, as 650, in C(/)) 
and in LV(D) for 1 < p <  ~ .  

Proof. Let []fl[p be the norm of f in LV(D). Using Holder's inequality we get 
(r is taken such that lip + 1/r= 1): 

sup [(Tt f ) ( x ) -  (Tt ~ f)(x)[ = sup E x {[e A~tt) -- eAr(t)[ eq (t) f (Xt)} 
XE/) XE/) 

1 1 

< sup E x {1 eA~ e a~(~ [req(t)r} 7 sup E x {If(X0['} ~ 

1 

< C~ Ilfl[p sup E~{le a'~ - e  Ar176 ] e~q(t)} ~, 
X E D  

where Ct>O is a constant that depends only on t. To bound sup EX{lf(Xt)[v} p 

by Ct F[ f I Iv, we have used P5 of Sect. 1. We have also used the trivial inequality: 

So, 

]x-yl~<[x~-y~[,  if x, y>O and r > l .  

suN(T, f )  (x) - (T~ ~ f )  (x)] 
x~/) 

1 1 

< Ct Jr f ]r v sup E x {1 e A~dt )  - -  e ar 12} 27 sup E ~' { e r q  (t)2} ~7, 
xe/5 xe/3 

which goes to 0, (see Appendix). [] 

Remarks. (a) The condition p >  1 in the hypothesis of the theorem enabled us 
to use Holder's inequality. Clearly, the proof  fails for p = 1 (although the state- 
ment may still be correct). 

(b) The theorem suggests that the problem (3.1) can be viewed (since Tt ~ 
Tt, as 6 ~ 0) a limiting case of the Neumann problems 

1Au+qou=O,  in D; 
~u 
0n f ,  on •D. 

This is, in fact, an alternative way to approach (3.1). 

5 B The Dirichlet and the general mixed problem 

Let B =  {Bt, t>0}  be the standard BM in R d with Bo = x~/).  We set 

z = i n f { t > 0 :  Bt~DC}. 
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Then, as we have already pointed  out  in the remark  after Theorem 1.3, 

(5.4) ~ = in f{ t  > 0: Xt~c~D} =in f{ t  > 0 : L t > 0  }, px-a.s. 

Consider  the Dirichlet  problem 

(5.5) �89  in D; 
u = f ,  on 0D. 

The probabilist ic solut ion of (5.5) is well known  (see [C-R1]  or [C-Z]). The 
corresponding semigroup {S,, t > 0 }  is given by (since Bs=X~, if s <  r) 

(5.6) (St g) (x) = E * { l{t =<,~ eq (t) g (X,)}, 

where eq(t) can be taken to be the one defined in (3.2). Next,  let's consider 
the mixed problem 

1 
(5.7) ~ A u + q u = O ,  in D; 

0u 
~?~--Nu=-- f ,  on 0D, 

where N > 0  is a constant .  Its cor responding  semigroup {Tt u, t > 0 }  is defined 
by (according to (3.4), where c(x)= - N )  

(5.8) (Tt N g)(x)= EX{eq(t) e-NLtg(Xt)}. 

Theorem 5.2. Let Tt u and St be as in formulas (5.8) and (5.6) respectively. Then 
for any f ixed t we have 

(5.9) lim sup ]lT~Ng-Stglloo=0. 
N~o, i[g[iz= 1 

Proof. If t = 0 there is nothing to prove, so let's assume t > 0. Then 

[( TT N g)(x)--(St g)(x)l < E~ { eq(t)] e - NL'-  ltt<~lll g(Xt)J} 

<= EX {]e -NL, -  l[t<q[2} i/Z EX {e2q(t)lg(Xt)12} l/2" 

The second factor  above  is bounded  by some constant ,  say At, uniformly in 
x, by Theorem 3.4 (since Ir g2 [l~ --- [[ g I[ 2 z = 1). Also, Lt = 0 if t < z, so 

[(T~ g)(x) - (St g)(x)[ ~ At E x {e- 2NLt lit >__ ~]} 1/2 = At E x {e- 2 ~L~ lt, >*J} 1/2, 

which, by domina ted  convergence,  decreases to 0 as N T 0, since L , > 0 ,  P~-a.s. 
if t > ~. So we are done  by Dini 's Theorem.  []  

Remarks. (a) The functions g above are taken in L2(D), but  we could take them 
in any LP(D) for p >  1. The  p roo f  is essentially the same in this case, but  if 
p = 1 we don ' t  know if the result is still valid. 

(b) Not ice  that  the above  theorem implies that, for each fixed t, T~ N converges 
to S, (considered as an opera to r  on C(/~) or LP(D), 1 <p=<a~) in the uniform 
opera to r  topology,  and since T~ N is compac t  and self-adjoint we can conclude 
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a 

B 

I 

b 

Fig. 1. a first case, b second case 

that the spectrum of St consists of the limit points, as NToo, of the spectrum 
of TtN. In fact we get that 

2 k (N) ~, #k, 

where )~1 (N)> 22(N) > ... are the eigenvalues of (5.7) and #1 > #2 > ... are the 
eigenvalues of (5.5). This last statement is stated (without proof) in Vol. 1, Ch. 
IV, Sect. 2 of [Co-HI,  namely the Methods of Mathematical Physics by R. Cour- 
ant and D. Hilbert. 

Now consider again a bounded domain D in R a, d>= 1, with C a boundary 
0D. Let's assume that OD=A •B, where A and B are disjoint open portions 
of 0D (i.e. they are open relative to 0D) and connected. (Connectivity is not 
really necessary but we assume it here in order to avoid wild cases.) We also 
require A • B, which, in general, is a (d-2)-dimensional  manifold, to be at least 
C 1 (it may be empty or just two points). The possible cases are shown in Fig. 1. 

Let f~b~(A) and g~bN(B). We consider the following general mixed prob- 
lem: 

(5.10) �89 in D; 
0u 
On t-cu=-f, on A; 

u~g, on B. 

(n is, as usual, the inward unit normal vector on 0D.) 
This problem can be considered as a limiting case (as gToo)  of the family 

of problems 

(5.11) �89 in D; 
0u2v 
On +CNUp=--fN, on OD 

where 

and 
cN=c 1A--N 1B 

fu=f 1A+Ng 1~. 

The semigroup that corresponds to (5.11) is given by (3.4): 

(5.12) (TtNh)(x)=EX{eq(t)expIic(X,)lA(Xs)dLs ] 

�9 exp[-NilB(Xs) dLs]h(Xt) }. 
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Letting N]'oo we obtain (as in the Dirichlet case) that, for each fixed t>0 ,  
Tt N converges in the sense of Theorem 5.2 to T~, where 

(5.13) (T~ h)(x) = E ~ {eq(t) ~c(t) lr~< T•1 h(X,)}. 

Notice that this Tt has all the properties listed in Theorem 3.4, since TtN has 
them and the convergence happens in a very strong sense. 

By Theorem 4.3, the weak solution u N of (5.11) must satisfy 

{j } ^ X (5.14) (I-- T~ N) uN(x)= E ~ eq(s) ec~(s) fN( s) dLs . 

Assuming that 1 is not an eigenvalue of T~, for some t>0 ,  we can take limits 
as N]'oo in (5.14) and conclude that uN(x ) ~ u(x) where 

(5.15) ( I -  T ) u ( x ) =  E ~ ~ ~r~ )}. eq (s) ~ (s) f (Xs) dL~ + 1 [t >= r.l eq (TB) g (X re 

(T B is, of course, the first time X t hits B.) 
Imitating the steps of Sect. 4 we can show that the above u is the unique 

weak solution (in the martingale sense) of (5.10). Furthermore,  if all the eigen- 
values of T, are strictly less than 1, then (5.15) implies (by letting t T ~ )  

u(x)=E~{i~eq(t)~(t)f(Xt)dLt+eq(TB)g(XT~) }. 

6 T h e  dr i f t  t e r m  

In this section we examine the problem 

(6.1) �89 Vu+qu=O, in D; 

3u 
~n+CU=-- f ,  on ~D, 

where D c R d is, as usual, a bounded domain with C 3 boundary, b = (bl, ..., ba) 
is a Rd-valued function of class C 1'~ defined on 15, q is bounded and Borel 
measurable on /5 and c and f are continuous on 0D. (We take q bounded 
in order to be sure that the semigroup associated to (6.1) - see (6.8) later in 
this section is Fellerian.) 

It is well-known (see [L-S] or [S.Y]) that there exists a (normally) reflected 
diffusion Y=  { Y~, t >0} in O (similar to the standard reflected Brownian motion 
- SRBM) whose paths satisfy the Skorokhod equation 

t 

(6,2) Y~ = B~+ ~ b(Y~)ds+ y n(Y~)dLs, 
0 0 

where n(z) is, as usual, the inward unit normal vector of 0D at zEc?D, (B,, 4 ,  P~) 
is a Brownian motion in R e with B o in /5 and L =  {L,, t>0},  Lo=0 ,  is the 
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boundary local time of Y. The process L has similar properties to those of 
the corresponding process for the SRBM as given in Sect. 1; for example, it 
is nondecreasing and it increases only when Yt is on 0D (for more details look 
at the references mentioned above). Furthermore, we notice that (6.2) can be 
written as a stochastic differential equation 

(6.2') dY~=dBt+ b(Y~) dt + n(Yt) dLt. 

Now let A be the operator 

(6.3) A = 2  + b. V. 

(The part b. V is the drift term.) We consider the initial-boundary value (parabol- 
ic) problem (compare with (1.3)) 

(6.4) ~? 
~tr(t,x,y)=Axr(t,x,y), (t,x,y)~(O, oo)xDxD; 

limr(t,x,y)=6y(x), (x,y)~DxD; 
t $ o  

- - r ( t , x , y )=O,  (t,x,y)c(O,m)xODxD, 
Onx 

where A~ is the operator A of (6.3) acting on the x variables and O/Sn~ = n(x). Vx. 
It is known (see [I]) that the above problem has a unique (fundamental) solution 
r(t, x, y) which is strictly positive. It belongs to C2(L) x D), as a function of (x, y) 
it is continuous in (t, x, y) on (0, ~ ) x  D x D, its integral with respect to y on 
D (and on/ ) ,  of course) is equal to 1 and it satisfies the Chapman-Kolmogorov 
equation 

r(s+t,x,y)= S r(s,x,u)r(t,u,y)du. 
D 

(Compare with the properties of p(t,x,y) which are given in Sect. 1.) From 
the same reference we also get that r( t ,x,y)  is not necessarily symmetric in 
x and y, but as a function of (t, y) it solves an initial-boundary value parabolic 
problem which is the adjoint of (6.4), namely 

(6.5) 0 ~-~r(t,x,y)=A*r(t,x,y), (t,x,y)~(O, oo)xDxD; 

limr(t,x,y)=6y(x), (x,y)~DxD; 
~ J~ o 

On r(t,x,y)-2(b.n)(y)r(t,x,y)=O, (t,x,y)~(O, oo) xDxOD, 

where A* is the (formal) adjoint operator A* of A acting on the y variables. 
Integration by parts gives 

A * ~ = ~  ~ -  F'(vb)= = ~jxj (v bj)" 
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The above properties imply that there is a Markov process ~-= {~, N, t>0}  
with transition densities r(t, x, y) and, in fact, that Y has the strong Feller proper- 
ty. In fact, Y is also a Feller process (see IS-U]). It is reasonable to expect 
that, as in the case of the SRBM, the processes ~-and Y of (6.2) are essentially 
the same. Such a result is not mentioned in our references, so we give it below 
as a theorem. 

Theorem 6.1. The processes Y and ~Y have the same law. 

Proof. (Following the method of the proof of Theorem 3.2 of [H1].) If we 
apply the It6 formula to g(Yt), where g~ C 2 (/3) we get 

g(Yt)-- g(Yo) = Vg(Y~).dB,+5 g(Y,)dL~+~(Ag)(Ys)ds, 
0 0 0 

thus, if we set 
t 

F(g; Yt)=g(Yt)--g(Yo)-- ~ (Ag)(Y~) ds, 
0 

we have that F(g; Yt) is a submartingale whenever Og/•n>O on 0D. But then 
Y must be unique in law (see [S-V]), so we just have to show that F(g; ~) 
is a ~t-submartingale whenever O g/On > 0 on 0D. Now, since F(g; ~) is an addi- 
tive functional (not of bounded variation, of course), the Markov property gives 

E{F(g; ~)]~} = E L { F ( g ;  ~-s)} +F(g ;  ~). 

Therefore, to finish the proof we need to show that 

E~{F(g; ~)} > 0  

for any (t, x) in (0, ~ )  x/3. But the properties of r(t, x, y) - especially (6.5) - 
give 

t 

= ~ r(t, x, y) g(y) dy--g(x)--  i ~ r(s, x, y)(Ag)(y) dyds 
D 0 D 

t 

= i ~ g(y)(A* r)(s, x, y) d y d s -  ~ ~ r(s, x, y)(Ag)(y) dyds  
O D  O D  

= r(s ,x ,Y)~ng(y)a(dy)ds  , 
0 

which is nonnegative. To obtain the last equation we made use of the boundary 
condition of (6.5) and the standard multi-dimensional formula for integration 
by parts. [] 

We can now define the weak (probabilistic) solution of (6.1) in the same 
way as we did in Sect. 4 for the problem (3.I), namely 
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Definition. A function uEb~(D) is called a weak solution of the problem (6.1), 
if, for all x~D, M}(t) is a continuous P~-martingale, where 

(6.6) 
t t 

M~f(t) = u(Y,)-- u(Yo) + ~ c(Y~) u(Y~) dLs + S f(Y~) dL~ + i q(Y~) u(Y~) ds. 
0 0 0 

This definition is justified by the fact that if u is a strong solution of (6.1) 
and we apply the It6 formula to u(Yt), we will find that the right hand side 
of (6.5) is equal to a stochastic integral with respect to B. 

As in the case without the drift term we set 

e.:e ,IiqI t,  ] a.d exp[i.s ,   l 
Then we have the following propositions 

Lemma 6.2. The process M"s(t ) of (6.5) is a continuous P~-martingale if and only 
if Ny(t) is where 

(6.7) N~ (t) = eq (t) ~ (t) u (Yt) - u (Yo) + i eq (s) ~ (s) f (Y~) dL s . 
0 

Proof. The proof  is identical to that of Proposition 4.1 [] 

Theorem 6.3. For g EL 2 (D) let's define the semigroup 

(6.8) (Tt g)(x)= E~ {eq(t) 0c(t) g (Yt)}- 

Then u is a weak solution of (6.1) if and only if there is a t > 0 such that 

( t 

(6.9) ( 1 -  r~) u(x)=E~ ~ ~ eq(s) Oe(s) f (Y~) dLs~. 
ko ) 

Proof. Again we can repeat (essentially without any change) the proofs of the 
corresponding statements for the case with b - 0  (see the proofs of Lemma 4.2, 
Theorem 4.3 and Theorem 4.5). [] 

Remark. If the norm of Tt is strictly less than 1, then we can let t--* oo in (6.9) 
and get the representation 

u(x) = E~ eq(t) Or dLt . 

The above statements reduce problem (6.1) to the study of the semigroup 
T~, defined in (6.9). One way to do this analysis is by using estimates for r(t, x, y) 
that can be found in EI] and [S-U]. This way is the analog of what we did 
in the previous chapters for the case without drift. Here we prefer to follow 
a different approach, based on the Cameron-Martin-Girsanov (C-M-G) transfor- 
mation. 
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In (6.2) we set 

(6.10) Wt=Bt+ i b(Y~) ds. 
0 

This can be also written as 

(6.10') dB,= -b(Yt) dt + dWt. 

By the C-M-G transformation (see [O] or [I-W]), if we assume that (Wt, o~t, P~) 
is a Brownian motion in R d, then (Bt, ~tt, PB x) is also a Brownian motion, provided 
that for any Z ~ t t ,  we define 

(6.11) E~{Z} =E~{MtZ} ,  

where 

(6.19) Mt=exp{-2i]b(Y,)[2ds+ib(Y~)'dW, }. 
0 0 

(If b = V~b, we can use the It6 formula to get rid of the stochastic integral 
that appears in the above formula.) Thus, (going backwards) since we have 
already taken B to be a Brownian motion, we can, in addition, take W also 
to be a Brownian motion and still be consistent if we assume that (6.11) is 
always valid. Now, by using (6.10) in (6.2) we get 

Yt = Wt + in(Ys)dLs. 
0 

In other words (Y~, P~) becomes a SRBM! Then, because of (6.11), (6.8) becomes 

(6.13) (Tt g)(x) = E~r {Mr eq(t) ~c(t) g(Xt)}. 

Theorem 6.4. For each t > 0  the operator T t is compact on LP(D), for pc(l ,  oo l 
and on C(D). I f  g~LP(D), then TtgeC(D ) and there is a constant Ct (depending 
only on t) such that 

(6.14) [] T, g ]100 _-__ C~ 11 g ]]v. 

Also, if g__>0 is Borel measurable and p >  1, then there is another constant 
C~ such that 

(6.15) [[ g [1 v < C; in( (Tt g) (x). 
x~D 

Proof. Let p' be such that I/p+ 1/p'= 1. We apply H61der's inequality to (6.13) 
and get 

(6.16) I(~ g) (x)] ~ E~v {M~'} l ip '  E~ V {epq(t) ~pc(t) g(Xt) p} 1/p. 
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Since MF' has the same form as Mr, by the stochastic process version of the 
John-Nirenberg inequality (see [D-M]) there is a constant K t such that 

Hence, if we define 

then (6.16) becomes 

o r  

E~ V {Mff' } 1/p'~ Kt" 

(Tt ~ g)(x) = E~v {epq(t) ~p~(t) g(Yt)}, 

I(T~ g)(x)l _-</~ I(T, ~ gp)(x)l ~/~' 

(6.17) [I Tt g II oo < Kt II Tt ~ gP I[ ~P. 

But T~ ~ is a semigroup of the type we studied in Sect. 3 (remember that (Yt, P~) 
is a SRBM). Thus, by Theorem 3.4, (6.17) becomes 

II r, g l loo~C,  llgPlll/p, 

which is (6.14). The continuity of Ttg follows from the Feller and the strong 
Feller property of Y (see [C2]). Since the inclusion operator from L~176 to 
LP(D), pe(1, oo), is compact (6.14) implies that T~ is compact on LP(D) for pe(1, oo). 
Also, for O < r < s < t ,  we have that Tt=Tt_s T~_r T~ and we can suppose that 
T~ maps L~(D) or C(/3) into LP(D), where pc(l ,  oo), that T~_~ maps LP(D) into 
itself and that T,_s maps LP(D) into U~ or C(/)) respectively, by (6.14). Since 
T~_r is compact on LP(D) we can conclude (since the product of a compact 
and a bounded operator is compact) that Tt is compact on L~176 and on C(/)). 

To prove (6.15), we follow the method of Proposition 3.5. First we assume 
that g is bounded. The positivity and continuity of r(t, x, y) imply 

E~ {g (Yr)} = ~ r(t, x, y) g(y) dy >->_ A~ II g [11. 
D 

Therefore, for each p > 1 there is a constant A, (independent of g and x) for 
which 

(6.18) Atllgllp~ E~ {g(Y,)}. 

Now 
EX {g (Yr)} 2 = E~ {eq/2 (t) ec/2 (t) g~ (Yt) e_ q/2 (t) ~_ c/2 (t) g-~(Yt)} 2 

<= E~ {eq (t) Oc (t) g (Yt)} E~ {e _ q (t) ~ c (t) g (Yt)} 

= (T~ g) (x ) (~  g)(x) 

_-< C IL g LIp(T~ g)(x), 

where we first applied Schwarz's inequality, then we denoted by {~, t > 0} the 
semigroup that corresponds to - q  and - c  and, finally, we applied (6.14) to 

to get the last inequality (where Ct > 0). 
Hence, (6.18) implies 

A 2 II g I1~ <-_ q II g LI ~(T~ g)(x) 
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and so 

I l g l l p ~ ( r t f ) ( x ) ,  for every xe / ) .  

This is (6.15) for bounded g. If g is not bounded, we apply (6.15) to f a n  and 
then we use monotone convergence. []  

Remark. We don't  know whether Theorem 6.4 remains valid for p = 1. 

Corollary 6.5. I f  1 is not an eigenvalue of  T~, then problem (6.1) has a unique 
weak (probabilistic) solution which is continuous on D. 

Proof. The result follows from (6.9), Theorem 6.4 and the Fredholm Alternative, 
provided that the function 

t 

of the right-hand side of (6.9), is in C(/)). This can be shown in exactly the 
same way as in the case without drift (see the proof  of Theorem 4.3). We need 
the strong Feller property of Y, (6.14) and an estimate for r( t ,x ,y)  that can 
be found in IS-U], namely 

E~{Lt}= r ( s , x , y ) a ( d y ) d s < C ~ t .  [] 
0 

Corollary 6.6. I f  u is a strong (analytic) solution of (6.1) and 1 is not an eigenvalue 
of T~, then u is also the weak (probabilistic) solution of(6.1). 

Proof. This follows immediately by applying the It6 formula to u and the unique- 
ness of the weak solution (Corollary 6.5). []  

Finally, we define the gauge of (6.1) to be 

(6.19) {i } G(x) = E~ eq(t) 8~(t) dLt . 

Notice that monotone convergence gives 

t t 

We have to write the expressions for finite t first and then take limits because, 
if we just put t = oo, we get the factor Moo which usually doesn't make sense. 
Then we have the following theorem which is similar to Theorem 3.6. 

Theorem 6.7. (The Gauge Theorem.) I f  there is an x o s D  for  which G(xo) is 
finite, then G is continuous on D. 
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Proof. (The proof  is a slight modification of the proof of Theorem 3.6.) 
From (6.19) we get 

(6.20) G(x)=E~ ~(s)eo(s)dL +EL ~c(s)eo(s)dL~, 
t . O  t 

where t is taken to be some (fixed) number in (0, oo). Let El(t) and E2(t ) be 
the first and the second term, respectively, of the right-hand side of (6.20). Then 

0 < E~ (t) __< E~ {e I q i(t) ~l~ I(t) L(t)}, 

which is bounded on /) by Schwarz's inequality and the estimate for E~{L~} 
mentioned in the proof of Corollary 6.5. In fact, the same estimate implies 
that 

lim sup E 1 ( t )  = 0 .  
t ~ O  x e b  

(6.21) 

Next we set 

(6.22) 

Then 

Z = Z(a 0 = ; eq(s) ~(s) dLs. 
0 

Z o Ot = j [eq (s) o 0,] E~c(s) o Or] d(Lso 0') 
0 

= exp ~ q(Yu)du exp c(Y,)dL, dLs+ ~ 
0 t 

o:3 

= eq(t)-i ~c(t)-i y eq(s) ~(s) dLs, 
t 

where in the integral with respect to dL~+, the dummy variable is s. Hence, 
(6.20) gives 

E 2 (t) = E~ {eq (t) ~ (t) [Zo Of] } 

= EL {% (t) Oc (t) EB [Zo 0,143 } 

= E~ {eq(t) ~c(t) EB r~ [Z]}, 

where the last equality follows from the Markov property. Using (6.22) and 
(6.19) we get 

E 2 (t) = E L {eq (t) ~c(t) G (Yt)} = (Tt G)(x) 

and so (6.20) becomes 

(6.23) G (x) = E 1 (t) + (T~ G)(x). 

Now we use (6.15) of Theorem 6.4 to get (since G>__0) 

oo>G(xo)>=(TtG)(xo)>=C't[]Gl[p, for any p > l .  
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Therefore GeLP(D) and so, by Theorem 6.4 we get that 

(r, ~ ) e  c ( N .  

Hence G is bounded on /), because of (6.21) and (6.23). Furthermore,  since 
the limit in (6.21) is uniform in x, we get that G is in C(/:)). [] 

Appendix 

First we mention a (slightly generalized version of a) result (known as Khas'mins- 
kii's Lemma) that plays a dominant role in the probabilistic study of the Schr6- 
dinger equation, when the potential function is not negative. The original state- 
ment can be found in [Kh].  

Proposition A1. Let A(J),j= 1 . . . . .  n, be (nonnegative) additive functionals of the 
Markov process Y with state space E. I f  for a fixed t > 0  there are ei's such 
that 

sup E y {AI j)} < ~zj, j = 1, ..., n, 
yeE 

then 

y ~ E  k j = l  -~ = " ] = 1  

Remark. Instead of the deterministic time t we could have a terminal time T. 
An optional time T is terminal if T = l i m ( s +  To Os) and T = s +  ToO, on the 

sl ,  0 

set {c~:s < T(co)}; for example, every hitting time is terminal). 

Corollary A2. I f  

sup E ~ {At} < c~ < 1, 
yeE 

then 

1 
sup E'{e  A,} < 
y ~ E  ~ i -- O( " 

Remark. If there is a t > 0  such that supEY{eA~}<cC, then the same is true 
y e E  

for all t~R § This is because 

E '  {e A2t } = E' {e A' (eAt~ 0~)} = E y {e ~4~ E v~ [e At] } < E' {e At} sup E y {e A~} etc. 
yeE 

(In fact, this argument works for any multiplicative functional. For  the definition 
of a multiplicative functional see Sect. 3.) 

Proposition A 3. Let A and B be additive functionals of Y such that 

supEY{A,}<cq and sup EY{Bt} <=et, 
yeE y~E 
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where lim ~t = 0. 7hen, 
t J . o  

lim sup E y {I eA~ -- eBq; = 0, 
t 5 0  y ~ E  

for any p > 1. 

Sketch of proof. Let k be a positive integer. Using the binomial expansion of 
(e A~- 1) k and the previous corollary we get 

lim sup E '  {(e  At - -  1) k} = 0. 
t ~ O  y ~ E  

But, 
gy {leA~-e'qv} l/p < EY {(e A~- 1)v} ~/V + EY {(e "~-  1)p} 1/p. [] 

From now on we assume that ceC(D).  The additive functionals A~(t) and 
A~(t) are as in (1.11) and (1.12) respectively. 

Proposition A4. Let n be a positive integer. I f  0 < 6 < 6  o (see P5 of Sect. 1), 
then 

r - s  n t - s  n -  . . ,  - s  2 

n! f I "'" f f "'" I p ( s l , x ,  Y l ) " "  ( a l )  E ~ { A ~ ( t ) ' } = ( ~ o  o o ,~ ,~ 

p(s,_ l , y ,_  z, y ,_ O p(s,,  y ,_ l , y,) c(Yl) . . .  C(yn) d y 1 . . .  d y,  dsl ... ds,  l ds, .  

Also, 

x n n [  t - s n  t - s n -  "'" - s 2  

(A2) E { A f i t ) } = ~ i  I "'" ~ ~ ... ~ p(s l , x ,  y O . . .  
0 0 0 OD OD 

p(s,_ 1, Y,-2, Y,-  1) p(s,,  y ,_ 1, Y,) c(yl) ... c(y,) ~(dy~) ... ~(dy,) dsl ... ds,_ ~ ds, 

and, in fact, (A2) is true for any c ~ ( O D ) .  

Proof. The proof is a direct extension of the proof  of Proposition 1.1. []  

Corollary A5. There is a 6o>0  and a K = K ( 6 o ) > 0  such that, for  all t~[0, ~) ,  
all 6~(0, 6o] and all integers n > 0  we have 

sup E~{lA~(t)l "} <=g'(t +~t ) "  and sup gx{lA~(t)l "} <=g'(t +]~t) ~. 
x ~ O  x E D  

Notice that the above formulas imply immediately that 

sup E X { e  A~(t)} <eK(t+~)<K'  e Kt and supEX{e At(~ <e K(~+~) < K '  e K~, 
x e 9  x e 9  

where K'  > 1 is some constant. 

Proof. Just use P5 of Sect. 1 and the previous proposition. []  

Lemma A6. Let 6o and D o be as in P5 of Sect. I. Also, assume that c~C2(D) 
i.e. c is twice continuously differentiable in D and its derivatives extend continuous- 
ly on D. Then there is a family of  functions {g~, 0 < 5 < 60} satisfying the following 
conditions: 
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(a) ga e C 2 (/)), ga = 0 (6 e) and supp (go) c L) a ; 
(b) V go = 0 (6) I0~ and V ga (z) = - 6 c (z) n (z) + 0 (62), for z ~r 
(c) A g0 = [ e ( x ) +  O(6)] XD~. 
The notation f = 0 ( 5 )  means, as usual, that there is a positive constant K 

such that If(x)[ < K 6, for all x~lD, 6c[0, 6o]. J 
(Remember that D is a bounded domain with C 3 boundary and n(z) is the 

inward unit normal at z e OD.) 

Proof. If be[0, 6o], every xe/)a can be written (uniquely) as 

x=z+~n(z), 

where z is the (unique) point on 0D which is closest to x and ~=d(x,(?D). 
Now, let 

f~ -- {~f a -  =)2' ifif xX=Z+~n(z)eOa;e ~ \ ~ .  

It is easy to prove (see [H1] for the details) that the family {fa, o__<a__<ao} 
satisfies the following: 

(a') fa e C 2 (L)), fa = 0 (62) and supp (f~) c / ~  ; 
(b') Vf~ = O (6) ID~ and Vfa (z) = - 6 n (z) for z e 0D; 
(c') A f o = [ l + O ( 6 ) ]  IDa. 
So, if we take go = c f~, we are done since: 

V ga = c Vfo + f~ V c = c 0 (6) ID~ + 0 (6 2) 11)~ V c = 0 (5) Io~. 
Similarly, 

Aga=cA f o + 2 V c .  V fa+fa Ac=[c+O(6) ]  ID, 

and, in exactly the same way, we can evaluate Vga(z) for z in ~D. [] 

Proposition A 7. Let c e C (D) and T > O. Then 

supEr{ sup [A~(t)--Ac(t)]2}~O, as 6{0. 
x e D  O<-t<-T 

(i.e. A~ converses to Ac in the L2(W) sense and the convergence is uniform in 
x and in t on compact sets.) 

Proof. First take ceC2(/)). Let's write It5 formula for g0 (of the previous lemma) 
and X (the SRBM which is a semimarfingale). Using (1.2) we get 

t t 

ga(Xt)=ga(Xo)+ ~ Vga(X,).dB~+ ~ aga 1 j o o TYn (xo  L (d s) + ~ A so(X3 d s. 

Now, we divide through by 6 and apply (a), (b) and (c) of Lemma A6. Notice 
that (b) implies that (6 go/O n) (z) = - 6 c (z) + O (32), if z e OD. The result is: 

[. c(XO L(ds)- c(X3 ID~(XO ds = O(a)+ S O(al L(ds) 
0 0 0 

I 

+ o 0 )  5 I.~(x~) ds 
0 

1 
+ ~  f Vga(X,) 'dB, 

O 
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or, equivalently, 

A~ ( t ) -  A~ (t) = 0 (~) + 0 (6) L(t) + 0 (6) L ~ (t) + 1 i V g~ (X~). dB~. 
0 

Next, we take the supremum in t over [0, T] and then L2(PX)-norms. Trivially, 
the norm of the right-hand side is less or equal than the sum of the norms 
of its terms. The first three terms have norms that go to 0 with 6 by Corollary 
A5 (applied to L and Lo). To finish this case, we need to estimate the norm 
of the stochastic integral. 

By Doob's inequality (see I-C-W]) we have 

Vg,~(Xs)'dBs) }--<4EX{(~ iFgo(Xs '  �9 

Using the independence of the components of B, the isometry for the stochastic 
integrals and the fact that the stochastic integral is a zero mean martingale, 
we get that the last term above is equal to 

T 

and by condition (b) of Lemma A6, this equals 

E x ~ O(fi)2Ioo(x,) ds =O(6) E~{L~(T)}, 
0 

which tends to 0 as 6 $ 0. So, we have proved the proposition for c e C 2 (O). 

Finally, if c ~ C(/)), for any (given) e > 0 there is a O E C 2 (/)) such that 

s u p  l c (x )  - ~(x)l  < ~ 
xa l )  

(by the Stone-Weierstrass Theorem). Therefore, 

E x { sup 
tel0, T] 

IAc(t)- A~(t)[z}~ <=E~ { sup [Ar Ae(t)]z} ~ 
t~ [0, T] 

+ gx{ sup IA~(t)-A~(t)[2} ~ 
t~[O, T] 

+EX{ sup [A~(t)-A~(tl[2} ~ 
te[O, T] 

<= eE ~ {L(T)2} i + E ~ { sup [Ae(t)-- A~ * 
re[O, T] 

4 ; - ~ E X { L 3 ( T ) 2 }  �89 . 
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Now, take suprema over /3  and then let 6 $0. Since ~ C2(/5), we can use the 
previous analysis for the second term above and conclude that it goes to 0. 
Also, we can apply Corollary A 5 to the other two terms and get 

lim sup E~{ sup ]A~(t)--A~189 
6,~0 xeD tE[0, T] 

where K r  is a constant that depends on T only. So we are done, since e was 
arbitrary. [] 

Theorem 18.  For all t>O we have 

Iim e A~ (~ -- e &~t) in L ~ (P~) 
~ 0  

and the convergence is uniform in x (on D)  and in t on compact sets. 
In particular, 

lim e L~(t) = e L(t) in L 1 (px). 
~ $ 0  

Proof. If 6 +0, then (see the proof of Proposition 1.1) 

Next, we notice that 

(A 3) e ~ -  1 ~/~ < e x, 

Now,  

(14) 

A~(t) --, Ac(t) for a.e. (~. 

if x > 0  and [e~-l]__<el~l--1, forall x e R  t, 

EX {[ e A~(~ eA~(0 l} = E~ {eA~176 I eA~(0-A~(0-- 1 [} 

E x {e2Ac(t)}�89 E x { ['elA#(0- At(t)]_ 112}§ 

by Schwarz's inequality and (A3). But EX{eZAo(~ A2c(t)} and so it is 
bounded by some bound Kt z that depends only on t, because of Corollary 
A 5. So, (A4) becomes 

E ~ {[e A*~ e&(t)[} ~ Kt E ~ {]A~~ Ar [el&~'~- &(,)t_ i]2t~ 
[ ]A~(t)- A~(t)[ ~ ] J 

<=Kt E~ { lA~( t ) -  Ac(t)[2}+ E~ {e2lA~(t)-~t~(r)l} {, 

by Schwarz and (A 3). But 

EX {e21A~(O- Ao(t)I} <= E~ {ea~,o,(t)+ Aa,o,(t)} 

and so it is bounded, again by Schwarz and Corollary A5. So we are done 
by using Proposition A7. [] 

Remark. An immediate corollary of the theorem is that if 6 4, 0, then 

A~(t) --, A~(t) in L' (P  ~-) 

uniformly in x o n / )  and in t on compact sets. 
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