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Summary. Let C~(t) be the Wiener sausage of radius e in R d up to time t. 
We obtain bounds on the asymptotics of E exp (2lC.(t)l) as t--* o% for all 2 > 0. 

1. Introduction and results 

Let (w(t), t>O) be a Wiener process in euclidean space R a (d=2,  3 . . . .  ) with 
w(0)=0  and generator A, the Laplacian for R e. The Wiener sausage of radius 
e > 0 associated to this process up to time t, is the set 

(1.1) C.(t)={yeRdl inf ly--w(s)l<e}. 
O<_s<_ t  

C~(t) is Lebesgue measurable with probabil i ty 1. We denote its measure by 
I C~(t)l. 

The asymptotics of E exp(-2lC~(t ) l )  as t ~  oe for 2 > 0  has been of interest 
to many  authors (see e.g. [5], [10], [11] and references cited therein). In [5] 
it has been shown that for all 2 > 0 

(1.2) l i m t  ~ l o g E e x p ( - - 2 l C ~ ( t ) [ ) =  d+209/(a+2) /~2/(d+2) 

where a) d is the volume of the ball of radius 1 in R e 

(1.3) 
7~d/2 

O )  d - -  

and - 2 ~  is the highest eigenvalue of the Dirichlet Laplacian on a ball of radius 
1 in R a. 

* On leave from the Mathematical Institute of the Hungarian Academy of Sciences, Re~tltanoda 
u. 13 15, H-1053 Budapest 



250 M. van den Berg and B. T6th 

In this paper we obtain results for the large time asymptotics of E exp ( 
+21C~(t)l) for 2>0.  It follows from a standard subadditivity argument that 
the limit 

1 1 
(1.4) lim -~ log E exp (2lC~(t)l)= inf - log E exp (2lC~(t)l)= S(2, e)~ [,0, oe] 

t ~ o  t t>o t 

exists for any 2. (However, we know from [-5] that this limits is identically 
zero for 2 < 0.) Furthermore, by scaling one can see that 

(1.5) S(2, e)=e-2s(ed2,  1), 

so that we shall study only the case e = 1. Define 

(1.6) S(2, 1)=S(2). 

As a lira inf of convex continuous functions, 2 ~  S(2) itself is convex and lower 
semicontinuous. 

To our knowledge this problem has been considered in two papers only. 
It has been shown that S()~)=)~ 2 in the one-dimensional case [-4]. Furthermore, 
it has been shown that Eexp(+21C~(t)[) is finite for all 2 > 0  and t > 0  [-9]. 
In this paper we complement the results of [-4] and [-9] by obtaining upper 
and lower bounds for S(2) in two and more dimensions. We include for the 
sake of completeness the one-dimensional case in the main result of this paper: 

Theorem 1. The limit (1.4) is positive and finite in any dimension and for any 
2 > O. (i) In one dimension 

(1.7) S(2)=22. 

(ii) In two dimensions 

(1.8) 42z <S(2)____ i6e 4 max {2, 22}. 

(iii) In three and more dimensions 

(1.9) max {c02_ 1 22, d ( d -  2) me 2} < S(2) < 2 a dmd-1 e2d-l~ max {2, 22}. 

It is not difficult to obtain slightly better constants in the upper bounds of 
Theorem 1, in the asymptotic regimes 2 >> 1 and 2 ~ 1. However, the sharp behav- 
iour can not be caught with our method. 

One can see that the sign in the exponent in (1.2) respectively (1.4) makes 
essential difference. Due to the minus sign the asymptotics in (1.2) is determined 
by the large deviations of the volume of the Wiener sausage towards small 
nontypical values. And this is the phenomenological explanation of the fact 
that the asymptotics in (1.2) is exactly the same as that of E exp(--2coam(t) a) 
where re(t) is the maximum displacement of the Wiener process. Both asymptot- 
ics are determined by nontypical small values of JC~(t)[ and re(t) respectively, 
and a Wiener process conditioned to a small nontypical m(t) fills completely 
the sphere of radius re(t). Thus the trivial upper bound 

(1.1 O) I C~ (t) l =< COd (m (0 -4- ~)d 
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becomes sharp in this non-typical regime. 
On the other hand the large time asymptotics of E exp (+2[  C~(t)[) is domi- 

nated by large deviations towards large non-typical values of [C~(t)t. A first 
phenomenological guess would be that once more the asymptotics of a trivial 
bound 

(1.11) IC~(0l~oa-1 ed-lm(t)+o)ae d 

becomes sharp, since both asymptotics are dominated by non-typically long 
Brownian excursions. As one can see from the main result, the situation is 
more complicated. 

The structure of the present note is the following: in Sect. 2 the explicit 
calculations are presented for the one dimensional case. In Sect. 3 the lower 
bounds are proved. Finally Sect. 4 is devoted to the upper bounds in Theorem 1. 

2. Proof  of Theorem 1 (i) 

Consider the Wiener process w(t) on R, with w(0)=0. Let 

(2.1) r ( t )=  max w(s)-  min w(s), 
O<_s<_t O<_s<_t 

be the range of the Wiener process up to time t. Then for d = I 

(2.2) Ee ~ Icl (01 = EeX(m) + 2). 

The density of the random variable r(t) has been computed in [1] and is given 
by 

4 k~l( - (2.3) f ( p ,  t ) =  ~ = 1) k-x k 2 e  -p2k2/(4t), p ~ O ,  

tO, p < 0 .  

To prove Theorem 1 (i) we first obtain a lower bound for Ee ~1c1(01. For  p > 2 t 1/2 
k 2 e -pzkz/(4t) is strictly decreasing in k. Hence 

4 4 {e-p2/(4O-4e-P2/ t}>=~(1-~)e-V~/~4o (2.4) f(p, t ) > ~  

for p>=2t t/2. For t > 2  -2 we have by (2.4) 

(2.5) EeXlCl(~l>e 2a o dpe~Pf(P, t) >ezx ~ dP ex" 1 -  e -p2/(4~) 
2tl/2 2tl/2 

=__e 2z dpe  xp (72t)1/2 1-- e-PZ/(4t)=e tz2+2"~ 2-- >_e tz2. 
2t). 
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This proves that  

(2.6) lim inf --1 log Ee ~lc'(~)l >•2 
t - ~  t ~ " 

Next  we obtain an upper  bound  for Ee zlcl(~)l. 

(2.7) 
I tl/2 ~ 1 

Ee ~lc'(~ = e  2"~ ~ dpeZPf(p, t)+ dpe~Pf(p, t) 
0 2t 1/2 

2t112 

~e22+2rt/22 S dpf(p,  t ) + e  2a ; dpeaPf(p, t) 
0 2 t l /2  

231/2 
Moreover ,  for p __> 2 t 1/2 

dpe;'P f(p,  t). 

4 
(2.8) f(p,  t) < ~  e - p2/<4~). 

tTtt) ' 

Hence,  by (2.7) and (2.8) 

(2.9) Ee~lC'(~ ztl/2X+e2Z ~ dpeXP-PZ/(4t)4(Tzt) -1/2 
2t l /2  

=<eZ~+2~l/2Zq-e 2;~ ~ dpe~P-P2/(4~)4(rtt)-l/Z=e2~+zt~/2~-q-8e2~+)~zt. 

This proves that  

(2.10) lira sup 1 10 Ee  zlcl(~ <22. 
t - ~  t g = 

Theorem 1 (i) follows from (2.6) and (2.10). 

Remark. Computa t ions  very similar to those of [1], but  related to the range 
of a one dimensional  Brownian bridge ra ther  then the range of the Wiener  
process have been carried out  [2]. 

3. Proof of the lower Bounds in Theorem 1 (ii) and I (iii) 

By Jensen's inequali ty 

(3.1) Ee,t IC~ (t)l ~ e.~lCllt)l. 

Hence  

1 log Ee zlcl(~ ->2 EICI(t)I (3.2) ~- _ 
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For d = 3, 4 . . . .  we have (see [1], [6], [8]) 

EIC~(t)[ 
(3.3) lim - -  = C (d), 

t -+O0  t 

where C(d) is the Newtonian capacity of the unit ball in Re: 

(3.4) C(d) = d (d -  2) co a. 

Combining (3.1)-(3.4) we obtain 

(3.5) S(2)>).d(d-2)o) a, d=3 ,  4 . . . .  

Furthermore, by (1.11) 

(3.6) Ee ~ jc~t)l > eaO,~ Eea,Od_ ~ ~(o. 

Define 

(3.7) g)(4, t )=~  {m(t)> 4}. 

By Levy's maximal inequality (Theorem 3.6.5 of I-7]) 

2 
(3.8) qb(4' t)<=2~{lfl(t)l>4}=(4nt)a/2 I e-1~?/(4t)dx 

Ixl>r 

_ 2 ~f e_qq~a_2)/2dq" 
F(d/2) r 

Define for 4 > 0  and x~R a 

(3.9) 

and 

(3.1o) 

Then 

(3.tl) 

But 

(3.12) 

B e ( x )  = {yeRa [ I x - y l  < ~} 

H(4) = {x~Ra[xl < ~}. 

q~(~, t )=~{3s~[O,  t]:fl(s)6B~r 

1 ~ e-qZ/(4t) dq. ->~{3sE[0, t]: fl(s)6U~(~)} = ~  r 

oo 

Ee~,od_lm(t)=_ ~ d4eZO, d_lr 0q5 
o a4 (4, t), 

so that integration by parts together with (3.8) yield 

oo 

( 3 . 1 3 )  E e  ~ . . . . .  (t) = 1 + 2 co a_  1 j" d ~ e ~ ~  ~ r (~, t) .  
0 
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By (3.11) 

(3.14) 

Hence  

(3.15) 

oo  oo  

EeXO~d-l,,(t) > 1 + S d ~ 2 roe_ 1 (n t ) -  ~/2 e~O)d ~ r S dq e -  q~/(40 
o 

=(TOt) -1/2 ; d~e'~Oa-l~-~z/(4t)>=(gt) -1/2 ; 
0 2 t)~cod- 1 

�9 e~OJa-l~-~z/(4t)=eXa~ it. 

S(2) = l i m  inf ~1 log Ee  ~'1c1r > 2  2 co~_ 1, 
t~OO t 

d~ 

and the lower bounds  in T h e o r e m  1 (ii) and  1 (iii) follow f rom (3.5) and (3.15). 

4. The upper bounds 

4.1. The basic construction 

Let us fix a posit ive number ,  y > O, and  define the following sequence of consecu- 
tive s topping t imes of the Wiener  process  s ~ w (s): 

(4.1) 0~ = 0 ,  

0Y,+ 1 = i n f  {s>  OY, l[w(s)--w(OY,)J > y } .  

I.e.: at  the t ime 0, y we fix a ball of radius y centred at the actual  posit ion,  
w(W,), of the Wiener  process, and  0Y+I is defined as the first hit t ing t ime of 
this ball. Clearly, the consecutive t ime intervals  

- Y  Y > 1  (4.2) z, r - 0, -- 0,_ 1, n 

are independent  identically dis tr ibuted and  their c o m m o n  dis t r ibut ion is tha t  
of the hit t ing t ime of a ball of radius y by the Wiener  process�9 

We  denote  by v y the renewal process 

(4.3) vY(t) = m a x  {n~N]  0. y_-< t}. 

The  geometr ic  cons t ruc t ion  we are going to use is the following: we place a 
ball of radius  y + 1 centred at each one of the consecut ive posi t ions  of  the 
Wiener  process  at  the s topping times 0Y,, n = 0 ,  1, 2 . . . .  , vY(t). The following set- 
inclusion is evident  

vY(t) 

(4.4) C(t) = U B1 +y(w(Of,)). 
k = O  

Hence  we get an  upper  bound  to the vo lume of the Wiener  sausage:  

(4.5) I t ( t )[  < on,(1 + y ) d +  h(y) vY(t), 
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where h(y) is half of the volume of the symmetric difference of two balls of 
radii y + 1 with the centres displaced by a distance y. By elementary geometry 
we get the expression 

Y 
2(1 +y) 

2. d - 1  . ( 4 . 6 )  h(y)=2coa_l(l+y) a ~ ( 1 - z ) ~ - d z .  
0 

Since the left hand side of (4.5) is independent of y, we conclude that 

(4.7) S(2)< inf lim 1 log Ee ah(y)~'(t). 
y>O t~o9  t 

The existence of the limit on the right hand side easily follows again from 
a subadditivity argument (see the proof of Lemma 4.1 (ii)). 

We want to exploit once more the scaling properties of the Wiener process: 
the processes 

t v' (t) 

and 
t ~ v 1 (t/y 2) -= v(t/y 2) 

have the same distribution, and consequently (4.7) is equivalent to 

(4.8) 

with ~" R ~ R defined by 

(4.9) 

1 
S (2) N inf ~ ~, (2 h (y)), 

r>o Y 

~(2)= lim -1 log Eea~(0" 
t~O0 t 

4.2. A large deviation principle for renewal processes 

We are going to find an expression for ~ (2) defined in (4.9). Let Zk, k = 1, 2, ... 
be independent identically distributed non-negative random variables and define 
the renewal process t ~ v(t) in the usual way: 

(4.10) v ( t ) = m a x I n e N  k~=lZk <-~tl" 

Define the logarithmic cumulant generating function 

(4.11) q~(2) = log Ee z~'. 
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q~(2) is finite and real-analytic at least for 2e(--oo, 0). By virtue of Cram6r's 

Theorem the large deviations of the sums T, = ~ z k of the independent identi- 
k = l  

cally distributed random variables are governed by the rate function 

(4.12) I (x) = sup (2 x - q~ (2)) e R + U { oo }. 
;tell 

(Note that in this case I(x)= oo for x < 0 and the level sets of I are not necessarily 
compact: if q5(2)= oo for 2 > 0  then lim I(x)=0.) 

x ~ o o  

Lemma 4.1 states a large deviation principle for the renewal process v(t). 

Lemma 4.1. (i) For any subset A e R  the following asymptotic bounds hold 

lim i.,1,o  ' (4.13) 
x e ~  - -  t ~  co t \ t  j 

1 
= lim_.sup ) - l o g ~  ~nf J(x), 

with the rate function J given by 

(4.14) 

(ii) The limit 

(4.15) 

exists and is given by 

(4.16) 

J (x) = x I (l/x). 

~(2) = lim -1 log Ee ~'r 
t ---~ oo t 

0 ( 2 ) =  - q ~ - ~ ( - 2 ) .  

Remark. Lemma 4.1 is probably well known, but as we did not find it explicitly 
stated anywhere, we were obliged to state it ourselves. 

Proof. (i) By definition of process v(t) we have the following identities: 

(4.17) {v (t) < y} = { Tr, 1 > t}, 

{v(t) ~ y} =- { TLy j + 1  > t}, 

{v(t) > y} = { rL, j +1 _-< t}, 

{v (t) e Y} = { Tr,1 --- t}, 

where 

[ y ]  = m i n  {neZfn>y}, 
kyJ = m a x  {nsZ[n<=y}. 
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We prove the asymptotic bound (4.13) for semi-infinite intervals of the form 
( -  ce, x), ( -  o% x], (x, oo), Ix, oe), where xe(0, oo). For example: 

(4.18) liminflt-.oo t l ~  :liminflt-*~o t l~ 

= l i m i n f [ t x ]  1 /Tp~ 1 t \ 
t~o t [tx] l ~  

 x,imin --  ' X in f  
m ~ ~ tg"l \ D'I y > l + e 

for any e > 0. Cram6r's Theorem has been used in the last inequality. Using 
convexity and continuity of I in the interval (0, oo) we finally get: 

(4.19a) l i m i n f l l ~  > - t - - - , c o  t - y<xinfyI(1)" 

In exactly the same fashion we get 

(4.19b) 

(4.19c) 

(4.19d) 

l iminfl  l ~  x ) > -  inf yI(1) t y>~ 

liminfll~ yI(1) y<=~ 

lim i n f l  l~ ~ ( ~  > x) > t-~ - inf y I ( 1 ) "  y>__x 

Passing from the semi-infinite intervals to general subsets A c R is done exactly 
in the same way as in the proof of Cram6r's Theorem (see e.g. [11]). 

(ii) The existence of the limit (4.15) follows from a subadditivity argument. 
In (4.20) below we shall use the auxiliary notation: 

and 
v(tl, t2)= ~ {k[tl < Tk~t2}, 

q(t) - -Ee ~(t). 

With this notation 

(4.20) q (t + s) = Ee ~ ~<~ + ~) = E (e z(~ (t) + 1) e ), v (Tv(t) + l , t  + s)) 

= e 2 E (e 2 v(t) q (t + s - T v ( t ) +  1)) ~ e)~ E (e 2v (t) q (s)) 

= e ~ q(t) q(s). 

In the second equality the strong Markov property of the discrete time process 
T,, n > 0 has been used. In the last inequality we exploited the obvious monotoni- 
city in t of E exp 2 v (t). 
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The existence of 

(4.21) 
1 

~(2) = lim • log Ee ~(~ = inf • log Ee ~(~ 
t - , m  t t > O  t 

follows from (4.20) via a standard subadditivity argument. Given the existence 
of the limit (4.15) and the large deviation principle (4.13)-(4.14) we can apply 
the Laplace,Varadhan asymptotic formula 

(4.22) ~(2) = sup (2x -- J(x))= sup (2x--xl(1/x)) .  
x~R xeR 

Since the Legendre transform is an involution in the class of convex and lower 
semicontinuous functions, it is sufficient in order to get (4.16) that 

(4.23) sup (2x + q~-i ( _  2)) = xI(1/x). 
Xdl  

This is straightforward: 

(4.24) sup (2x + ~b -1 ( _  2)) = sup ( -  2x + 4) - 1  (2 ) )  = sup ( 2 ' -  x q~ (2')) 
2~R 2~R 2 ' eR  

= x sup (2'/x - q5 (2'))= xI (l/x). 
2"~R 

In the second equality we have used the fact that q~ is monotonic increasing 
and, consequently, invertible. 

This proves Lemma 4.1. 

4.3. Proof of the upper bounds in Theorem 1 (ii) and 1 (iii) 

By (4.8) and (4.16) 

(4.25) S(2)< inf ~ - l  o -  l ( -  2h(y))} i 
- y > o ~  Y 

where ~b is defined in (4,11), z being the hitting time of the unit sphere of the 
Wiener process. 

By Theorem 2 of [12] we have 

. . . .  (2(d-2)/2 F(d/2) i(a_2)/2(pl/2)} 
(4.26) - q~t--P)='~ ~ " p ~  257~- 

, f r ( d / 2 )  ~ 
= log ~ 1 / 2  F(~-d- 1)/2) I epl/2 *~176 sin 0) d-2 d0 j .  

o 

Lemma 4.2. For p > 0 and d = 2, 3, ... 

(4.27) - q ~ ( - p ) > l o g  ( 1 +  2 ~  ) . 
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Proof F o r  p __> 0 and  d = 2, 3 . . . .  

rc r~/2 
(4.28) S ePl/~c~176 a-zdO=2 ~ c~ 1/2 c~ a-2dO 

o o 

>_2 1-~ (sin O)a-2 dO-  na/2 F((d-1)/2) 
- 0 2 r ( d / 2 )  1 +  . 

Subs t i tu t ing  (4.28) in to  (4.26) gives (4.27). 
To comple t e  the p r o o f  of T h e o r e m  1 we inver t  (4.27): 

(4.29) -4)-t(-p)<=2d(eP-1), p>O. 

Hence  by  (4.25) 

1 1 z 
(4.30) S(2)__<2d inf ~ (e zh(y)- 1)_<2d inf - - ( e  gtY)- 1), 

y>o y - y>0 ya 

where  g: [-0, ~ ) ~  [0, oe) is defined by  

(4.31) g(y)  =~o~_  a y ( l  + y)~-  1 

F o r  0 < 2 < 1 we have  by  (4.30) 

(4.32) S(2) < 2d(e  ~g(~) - 1) =< 2dg(1)  e g(l) 2. 

F o r  2 > 1 we have  by  (4.30) 

(4.33) S(2)<=2d22(eZg(i/~o-1)<=2d(eg~)-1)22<=2dg(1)eg(~)22. 

C o m b i n i n g  (4.32) and  (4.33) gives 

(4.34) S ( 2 ) < 2 d g ( 1 )  e g(a) m a x  {2, 22} < d 2 a  coa_ t e 2d- 1~ ~ m a x  {2, 22}. 
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