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Summary. Bounds are obtained for the Kullback-Leibler discrimination distance 
between two random vectors X and Z If X is a sequence of independent random 
variables whose densities have similar tail behavior and Y = A X ,  where A is 
an invertible matrix, then the bounds are a product of terms depending on 
A and X separately. We apply these bounds to obtain the best possible rate 
of convergence for any estimator of the parameters of an autoregressive process 
with innovations in the domain of attraction of a stable law. We provide a 
general theorem establishing the link between total variation proximity of mea- 
sures and the rate of convergence of statistical estimates to complete the exposi- 
tion for this application. 

1. Introduction 

1.1. The application 

The past two decades have witnessed an increase of interest in the statistical 
analysis of linear processes with infinite variance. Such stochastic processes have 
the property that each observation is a linear combination of independent ran- 
dom variables with infinite variance. F rom a theoretical point of view these 
processes are a natural extension of finite variance models; in practice, they 
provide a better fit to certain time series, e.g. stock market prices. 

The statistical theory of parameter estimation for linear processes with infi- 
nite variance is complicated by the fact that the Fisher information of the param- 
eter to be estimated is generally infinite. In particular no theory of "efficient" 
estimators has been developed for such processes, except, as in [8], when obser- 
vations are independent. 

Autoregressive models with innovations in the domain of attraction of a 
stable law with characteristic exponent 2e(0, 2) constitute a useful subclass of 
linear processes with infinite variance. For  any metric p on IR p which is uniformly 
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equivalent to the usual Euclidean metric (as in (3.7)), the results in [6], [7], 
and [9] show that for all e in a suitable subset of IR P 

(1.1) lira nl/Op(l/V~, e )=0  (a.s. P~), 
n ~ o o  

where 6 > 2 and I/V, is the usual least squares estimate of the vector parameter 
cr defining the autoregressive process with corresponding measure P~. If 2 = 2, 
then (1.1) still holds by virtue of classical finite information, finite variance theory 
which completely specifies the limit in (1.1) if 6 = 2 = 2. Recently [4], an advance 
has been made in the case 2 < 2 ;  the closely related Yule-Walker estimate W,' 
was shown to satisfy 

(1.2) (n/log(n))l/x(W,~-v.) d , F~, 

where d ~ stands for convergence in distribution and F~ is a continuous distribu- 

tion function. Based on these results, one might conjecture that the ,,best" rate 
of convergence for any estimator V, is offerred by sequences of the form c, 
= n t/~ s,, where s, is slowly varying as n ~ co, i.e. lim sn/s, +l = 1. 

n ~ o o  

Our present state of knowledge is such that we can only demonstrate a 
comparatively primitive version of this conjecture; i.e. for V~ and c, as above, 
we will show that the limiting distribution G~ (t) of c, p (V~, e) satisfies 

( 1 . 3 )  (G~(+oo)<l /2  if (5<2; G~(0+)< l /2  if 6=2)  

for all but countably many a. The interpretation is that for 6 < 2 the sequence 
n ale increases so quickly that at least half the mass in the distribution of c, p (V,, c0 
is sent to co, while in the boundary case 6 = 2  no more than half the mass 
is sent to 0. 

Our method for proving (1.3) consists of the following steps: 
(a) Tying together the rate of convergence of parameter estimates with the 

total variation distance of the corresponding measures. 
(b) Noting that the Kullback-Leibler discrimination distance dominates the 

total variation metric. 
(c) Bounding the discrimination distance. 
Step (a) is made in Theorem 4.1. Step (b) is just the well known inequality 

(3.19). Step (c) is our main result. It is accomplished by developing discrimination 
distance bounds for random variables, and then applying these inequalities to 
autoregressive processes. These one-dimensional bounds are extended in Theo- 
rem 2.3, where the discrimination distance between two random vectors is 
expressed in terms of the distance between a sequence of independent random 
variables and the new sequence gotten by scaling the original sequence by con- 
stants and then adding random shifts. 

1.2. Preliminary definitions 

We start by defining the Kullback-Leibler discrimination distance K(P:Q,) in 
the simple case when P and Q are probability measures on IR" with density 
functions f and g, respectively: 

(1.4) K(P:Q)  = y f ( x )  log ( f (x) /g(x))  dx.  
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If X and Y are random vectors with distributions P and Q respectively, 
we shall write K(X: Y) for K(P:Q). If X and Y are infinite dimensional random 
vectors, we define 

(1.5) K (X: Y) = lim K (X t'q : yt,,l), 
n - - *  oo 

where XL"1=(X1, ..., X,) if X =(Xx, ..., X, ,  X,§ a . . . .  )- 
Suppose now that (V, X) and (W, Y) are random vectors in N m+". We need 

to define Kv((Xt V):(Y[ W)), the Pv average discrimination distance between 
X and Y given V and W, where Pv is the distribution of V If v is a point 
in N m, we put 

(1.6) Kv (X: Y) = ~ log (fv (x)/gv (x)) f~ (x) dx, 

where f~ and g~ are the conditional densities of X given V= v and Y given 
W =  v, respectively. We define 

(1.7) Kv ((X t V) :(Y [ IV)) = y Kv (X: r) dPv (v). 

We simplify notation and write Kv (X: Y) in place of Kv ((X] V):(Y] W)) if Pv = Pw 
and the joint distributions of (V, X) and (W, IT) are clear from the context. We 
note that m may equal oo in the above definition, i.e. V may be an infinite 
dimensional random vector. 

If (V, X) and (W, Y) are random vectors in N "+", then we have 

(1.8) K((V, X):(W, Y))=K(V:W)+Ky((Xl V):(rl W)). 

This well known additivity property for K follows directly from (1.6) and is 
the basis for our success in computing K(Y:X) for linear processes X, Y. 

The other properties of discrimination distance that we use are shared by 
the other standard distances between measures such as the total variation dis- 
tance. Among these properties is the important  inequality 

(1.9) K (X: I1) > K (T(X): T(Y)), 

where T is Borel measurable. 

1.3. Summary of results 

Since our results are easier to describe in the case when all random variables 
are symmetric, we will implicitly make this restriction in this section in order 
to summarize our work with less clutter. We emphasize that our actual results 
are not so restricted. 

Upper  bounds for the discrimination distance between random variables 
constitute the core of this paper and comprise most of Sect. 2. We open Sect. 2 
with the following inequalities for a random variable X with absolutely continu- 
ous density f :  

(1.10) IE(log ( f  (aX)/f  (aX + z))l < (1/2) M (Oh) z 2 

(1.11) E(llog ( f (aX) / f (aX  + z)t ) <= M (h/r) log (1 + lz[), 
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where h = - f ' / f  and r(x)=(1-k-lxl) -1. (See the beginning of Sect. 2.1 for the 
definitions of M(c~h) and M(h/r).) As a direct consequence, we show that 

(1.12) [K(aX + z :X ) -K(aX:X) [  < J~ (X) log (1 + z2), 

where J1 (X) is defined in (2.19). (See (2.25) for the general version of (1.12).) 
To proceed further we treat z in (1.12) as a random variable Z and take 

the expectation. We characterize the tail behavior of the distribution of Z via 
the constant aa(Z). This constant is explicitly defined in terms of the characteris- 
tic function ~z(t)=Eexp(itZ)) in (2.17); when 2=2,  it equals the variance of 
Z. We get 

(1.13) IKz(aX + cZ :X) - K (aX :X)I < F (2) J, (X) a ~.(Z) Icl *. 

n 

If cZ is a sum ~ c i X  ~ with independent random variables Xi, we show that 
1 n 

~(Z) lc l  ~ may be replaced by ~az(Xi)[ci] ~ in (1.13). This important property 
1 

follows by virtue of the subadditivity of the Q functional defined in (2.27). We 
conclude the section with the multivariate inequality 

(1.14) 
t~ 

K (AX:X) + log (I det (A)l) <= ~ (K  (aii Xi:Xi) + log (1 aii [)) 
1 

+ v (2) J (x) ~ (x) N (~i), 

where X = ( X  1 . . . . .  X,) is a vector with independent random components and 
A is an invertible matrix. (See Def. 2.4 and 2.5 for the definitions of J(X) and 
U~.(~).) 

Section 2 also contains a parallel stream of inequalities for which the Laplace 
transform of ]Z I replaces the Fourier transform ~bz if 2~(0, 1). This parallel 
development is not possible in the case 2~[1, 2); in that case we note that 
the condition that o-~(Z) be finite acts as an important centering device for 
non-symmetric random variables. 

Section 3 contains the statistical application of the bound (1.13) and its non- 
symmetric cousins; for a p-th order autoregressive process parametrized by 
=(cq . . . . .  %) via (3.3) we show that (1.3) holds for all but countably many 
c~ in the parameter space Mp defined in (3.6), if the innovations Xi of the autore- 
gressive process satisfy az (Xi) < oe. 

In Sect. 4 we derive a general result tying together convergence rates for 
parameter estimators with the total variation distance of the corresponding 
measures (Theorem 4.1). Since this section has more in common with the existing 
statistical literature than the other sections, it will be expedient to describe 
Theorem 4.1 in that broader context. 

1.4. Relation to previous work 

Many other authors have departed from the classical case of independent ob- 
servations and finite Fisher information. The recent book by Ibragimov and 
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Has'Minkii [8], for instance, develops quite extensively the situation when obser- 
vations about  a parameter with infinite Fisher information are taken indepen- 
dently. By contrast, Roussas [16] and Basawa and Rao [2] consider estimation 
of a parameter when observations have Markov dependence; however, these 
authors hold to the restriction that the Fisher information of the parameter 
be finite. On a more general note, the works [13] and [14] of Le Cam contain 
important background information with regards to general estimators in the 
non-classical setting. 

Previous work which most directly impinges on this paper involves the deri- 
vation of general results linking convergence rates of estimators to the proximity 
of the corresponding measures. Given a parameter space M with metric p, Aka- 
hira and Takeuchi [-1] define "c,-consistent" estimators as measurable functions 
V, such that for e sufficiently small 

(1.15) lim lim sup sup {P~ [-c, p(V,,/~)> t]: p(~,/~)<e} =0 ,  
T ~ c O  n - + o o  fl  

for all c~M,  where c, is a given sequence strictly increasing to oo. For such 
estimators their Theorem 2.3.i implies 

(1.16) lim lim inf inf {D,(P~, Pp): p(a, fl)>r/c,} =2 .  
r + o o  n ~ a o  

(See Sect. 4.1 for the definition of the total variation distance D,(P~, P~).) It is 
not clear that the least squares and Yule-Walker estimates IV, considered in 
[-7] and [4] can be modified to satisfy (1.15) with c ,=n 1/~ and c,=(n/log (n)) 1/~, 
respectively. For  this reason we consider more general parameter estimators 
V~ satisfying (1.15) without the sup over fl (i.e. with 5=0). If such an estimator 
exists, our Theorem 4.1 has as consequence that d , (+  oe)= 1 for all but countably 
many a, where 

(1.17) d,(r) = (1/2) lim sup (sup {D, (P~, P~): rc21 < p (~, fl) < rc~21} ). 

The relationship between [1] and Theorem 4.1 can be brought into sharper 
focus if we paraphrase Theorem 2.3.1 in [-1] as 

(1.18) lim inf( inf P~[c, p(V, , /~)<r/2])<1(1 + 2  -1 lim infD,(P~, ~,)) 

for all ct in M, where /~, is a sequence in M satisfying p(e,~,)>rc21. In fact, 
examination of the proof  in [1] reveals that e may be replaced by c~- ~ r, i.e. 
fixed neighborhoods of e may be replaced by shrinking neighborhoods. By con- 
trast, the inequality proved in Theorem4.1 replaces ~ with 0 and 
2-1 lira infD,(P~, Pp.) with d~(r) in (1.18), and allows for a countable exceptional 
set of e. The proof of (1.18) is comparatively simple; it can be achieved by 
replacing F2(t)+ F~(t) with 2(min (F~"(t), F~(t)) in Lemma 4.1. For our purposes 
Theorem 4.1 is more appropriate, because our discrimination distance inequali- 
ties give us control over the quantity d~(r) and thus we need not restrict our 
consideration to "c,-consistent" estimates. We should also mention that Vostrik- 
ova and Birg6 prove results similar to (1.18) in [18] and [3], respectively. 
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The bounds developed in this paper were first presented in [10] in the context 
of applications to the theory of measures on infinite dimensional linear spaces 
as well as to statistical estimation. In this paper we have reworked [10] with 
an increased focus on statistical applications; in particular we treat infinite vari- 
ance autoregressive processes of any order p rather than just p = 1 as in [10]. 
We have also removed the restriction of symmetry previously imposed on proba- 
bility distributions in [-I03. On the other hand, [10] contains material on multi- 
dimensional discrimination distance inequalities which extends the result indicat- 
ed in (1.14). This material will be reworked in a future paper, wherein applications 
to equivalence-singularity dichotomies for measure on infinite dimensional 
spaces will be given. 

2. Information discrimination inequalities 

2.1. One-dimensional inequalities 

Conventions. All random variables X considered in this section will have an 
absolutely continuous density function, usually denoted by f(x), and a score 
function h ( x ) = - f ' ( x ) / f ( x ) .  (We interpret 0/0=0.) We shall let I(X) stand for 
E(h(X)2), the Fisher information of X; and we shall let H(X) stand for 
S - f ( x )  log f (x)  dx, the Shannon differential entropy of X. We define the func- 
tional t/(X)--1 if X is symmetrically distributed; otherwise we set t/(X)= 2. (The 
functional ~ will be used to give our inequalities a concise form, applicable 
to both symmetric and non-symmetric random variables.) 

For any complex valued function g defined on the real line IR, we let 
M(g)=sup {Ig(x)l: xelR} and M(Bg)=sup {Ig(x)-g(y)l / lx-yl:  x+y}.  If 
x, yeN,  we let x/~ y = m i n  (x, y) and x v y = m a x  (x, y). We let r(x) =(1 + ]x[)- 1 
and note that R(x) = sign (x) log (1 + Ix[) is the indefinite integral of r(x) specified 
by R(0)=0. 

Our first lemma is a useful compendium of basic results. First, a definition: 

Definition 2.1. The random variable X is called regular if either (a) M(3h)v 
E(IX[)< oe or (b) M(h)< oe. 

Lemma 2.1. Let X be a random variable with density f and score function h. 
Let a+O. 

(i) I f  h is locally integrable with respect to Lebesgue measure, then f is strictly 
positive everywhere. 

(ii) I f  X is regular, then h is locally integrable with respect to Lebesgue mea- 
sure, h(aX + z) has finite expectation, and the decomposition 

(2.1) K (aX + z:X) = g (log ( f  (aX)/f  (aX + z)) + K (aX:X) 

holds for all ze l l .  Furthermore 

(2.2) JK(aX+z:X)+K(aX--z :X) - -2K(aX:X) l<r l ( (a - -1 )x )m(ah)z  2. 

Proof To prove (i) write 

(2.3) log ( f  (ax)/f (ax + z)) = ~ h(a x + y) dy, 
0 



Discrimination bounds 409 

and conclude that f does not vanish anywhere. (Otherwise the left hand side 
of (2.3) would be _+ oe for some x, z in IR, in contradiction to the local integrabil- 
ity of h.) 

To prove (ii) note that if X is regular, then h is locally integrable and h (aX + z) 
has finite expectation in case (b) of Definition 2.1; furthermore, the same conclu- 
sions follow in case (a) by virtue of the inequality 

(2.4) Ih(s+t)-h(s)l<M(Oh)lt[ (for s, teN).  

We prove (2.1) by noting that l a[ f (a x + z) is the density of a -  1 ( X  - -  z ) ;  thus 

(2.5) ~f(x) log (f(x)/Fa[ f ( a x  + z)) dx 

= ~f(x) [log ( f (ax) / f (ax  + z)) + log (f(x)/I a[f(ax))] dx. 

We now define va(y)=E(h(aX+y)) and use (2.3) to write 

(2.6) K(aX + z:X)+ K ( a X - z : X ) =  i v , (Y ) -G( -Y )  dy+ 2K(aX:X).  
0 

The bound (2.2) is a consequence of (2.6) and 

(2.7) IG(Y)-v . ( -y) l  ~ 2M(Oh) y. 

(The last inequality follows from (2.3) and (2.4).) 
To prove (2.2) when t / ( (a-  1)X)= 1 (i.e. if X is symmetric or a =  1) we need 

to show that v,(0)=0. (We can then rewrite (2.6) and (2.7) without va(-y), 
without K ( a X - z : X ) ,  and without the factor of 2 in front of K(aX:X)  and 
M(Oh).) If X is symmetric then va (0)= 0 without computation. If a = 1 we write 

(2.8) vl (0) = ~ f '  (x) dx = lira ( f  ( t ) -  f ( -  t)) = O. 
t--~ oO 

(Note ~[f'(x)[dx < oe because h(X) has finite expectation.) Q.E.D. 

Remark 2.1. It is appropriate to recall the known result [11] that 

(2.9) lira z-  2 K (X - z:X) = (1/2) I (X). 
z ~ 0  

We conclude that (2.2) is not sharp in the limit as z ~ 0 .  In fact, variants of 
(2.2) are available in which the right hand side is replaced by 
(2a)- 1 M(h)(I(X)) 1/z z 2 or by a - 1  {(�89 E[exp (zh(X))-  1 -zh(X)]}  1/z (see 
[10]). The factor a - l  renders these bounds unsuitable for our use, though they 
may be sharper as z ~ 0. 

Remark 2.2. If h is differentiable, then M(h')= M(~?h) by the mean value theorem. 
Using the inequality ]h'(x)[<lf"(x)/f(x)[ +(h(x)) 2, we can verify that M(h')< Go 
if the density f is strictly positive everywhere with M ( f " ) < ~  and f ' ( x )  
~[xJ -~a+z) as Ix]--* oe for some 2e(0, 2). Such densities will have the property 
that f (x),,~ Ix I-(1 + 4) as ]x[~  ~ and will have infinite variance. Stable and Pareto 
densities of index 2 are examples. 
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Remark 2.3. In future applications of Lemma 2.1 it will be useful to replace 
K(aX+z:X)  and K(aX:X) in (2.2) by K*(aX+z:X)  and K*(aX:X), where 
K* (aX + z: X) = K (aX + z: X) + log (] a]) for any random variable X. K* is the 
renormalized form of K. If the differential entropy H(X) exists and is finite, 
then we can define 

(2.10) K* (z:X) = lim K* (aX + z:X) = H ( X ) -  log ( f  (z)), 
a--+O 

and (2.2) is valid as a limit at a = 0. 
Lemma 2.1 will suffice for our future needs only in the special case when 

X has finite variance. Otherwise we need a sharper inequality in the region 
Iz[ > 1. The following lemma provides the first step in this program. 

Lemma 2.2. Let g(x)=g(lx])>O be decreasing as a function of Ixl. Let G be 
the indefinite integral of g specked by G(O) = O. Then for all z > O, 

(2.11) (�89 (for xelR). 

Proof We may assume without loss of generality that x > 0. If z > x we rewrite 
(2.11) as G(x+z)-G(z)<G(z) - -G(z-x) .  If O<_z<_x, we rewrite (2.11) as 
G(x+z) -G(x - z )<2G(z ) .  Now use the fact that g is decreasing on [0, oo) to 
argue each case. Q.E.D. 

Remark 2.4. Any symmetric random variable X is a mixture of symmetric ran- 
dom variables taking on the two values i x .  It follows that E(G(X + z))< G(]zl) 
for such random variables. 

We now establish our sharper bound for large z. We let r(x) and R(x) be 
defined as preceding Definition 2.1. 

Lemma 2.3. Let X be a regular random variable. Then for z~lR, 

< 2 M (  h-] log(1 + ]zl)- (2.12) [K(aX + z:X)+ K ( a X - - z : X ) - 2 K ( a X : X ) I  
\r!  

Proof We may assume z_>_ 0 without loss of generality, since X may be exchanged 
with - X .  We note 

(2.13) K ( a X - z : X ) - K ( a X : X ) = K ( - a X + z :  - X ) - K ( - - a X : - X '  

and use (2.1) to write 

(2.14) K ( a X + z : X ) + K ( a X - - z : X ) - - 2 K ( a X : X )  

= E [log ( f (aX) / f (aX + z)) + log ( f ( - -  aX)/ f(--  aX + z))] 

We recall (2.3) to get the estimate 

(2.15) 
z 

l log ( f  (a x)/f  (a x + z))[ < M (h/r) ~ r (a x + y) dy 
0 

= M(h/r)(R(ax + z)-- R(ax)). 
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Using the obvious relation 

(2.16) E [R (aX) + R ( -  aX)] = O, 

and applying Lemma 2.2, we get (2.12). Q.E.D. 

Remark 2.5. The motivation for defining r(x)=(1 + Ix])-1 comes from the simple 
fact that if 0 < 2 < 2  and f is a density with f(x),,~lxl -(1+~) as ]x l~oo ,  then 
M(h/r) is finite in most cases. (For example, the extra conditions that f ' (x)  

I xl -(2+x) and M(hr)< oo will ensure that M(h/r)< oo.) Another possibility 
for defining r would be to use r(x)= 1, thereby getting 2M(h)lzl in the right 
hand side of (2.12). This choice of r(x) is unsatisfactory because we need to 
replace z by random variable Z to proceed further, and Z will generally not 
have a finite expectation. We will categorize the tail behavior of Z via the 
quantity a~. (Z): 

Definition 2.2. Let Oz(t)=E(exp (itZ)) be the characteristic function of Z. For 
0<2____2 define 

(2.17) a~ (Z) = 2 sup t-  a 11 -- q~z (t) l. 
t > 0  

Remark 2.6. It is a classical result that a~(Z) will be finite if Z is in the domain 
of attraction of a stable distribution with norming coefficients n 1/~. If o-~(Z)< oo 
for 1 < 2 < 2 ,  then E(IZ])<oo and &'z(O)---iE(Z)=O. (The finiteness of E(IZ]) 
follows from the truncation inequality in Lo6ve [-15, p. 196], which easily implies 
that P(IZI>s] is bounded by (7/(l+2))~r~(Z)s -~ for any s>0.) If 2 = 2  it is 
easy to check, using the elementary inequality [eiX-l-ixl<=x2/2, that o-2(Z ) 
=~(z2)-(E(z)) 2. 

In the cases 0 < 2 < 1, the random variable Z can be categorized in an alterna- 
tive fashion via the following definition: 

Definition 2.3. Let t)z(t ) stand for the Laplace transform E(exp(-tlZI)).  We 
define/~ (Z) via 

(2.18) #4 (Z) = sup t -  z (1 - ~9 z (t)). 
t > O  

Remark 2.7. It follows from the well known relation - ~ } ( 0 ) =  E(IZI ) that #~(Z) 
will be infinite if 2>  1 and Z is not identically 0. In most cases /~a(Z) and 
o-~(Z) will be simultaneously finite or infinite when 0 < 2 <  1, but we will not 
spare the space to give a precise rendering of this assertion. 

Our work thus far culminates in the following theorem. Given a random 
variable X with score function h, we define 

(2.19) J~ (X) = {2M (h/r)} v {(log (2))-1 q ( ( a -  1) X) M (Oh)}, 

where a~lR and J/is defined at the beginning of Sect. 2.1. 
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Theorem 2.1. Let Xo, Xa . . . . .  X . . . . .  be random variables such that Xo is regular 
oo 

and such that ~ c ~ X i = Z  converges a.s. for a given sequence ci in IR. Let Pz 

stand for the distribution of Z and let F(2) = t ~.- 1 e-~ dt. Define 
0 

(2.20) Az(KaXo)) = ~ IK(aXo + z :Xo) + K ( a X o -  z :Xo)-  2K(aXo :,go)] dPz(z). 

Then for a*O, 

co 

(2.21) Az(KaXo))<2M(ho/r)~F()Q#z,(Xi)Ic~I ~' (if 2~(0, 1)Vi). 

Furthermore, if (X 1 . . . . .  XN . . . .  ) are independent, 

oo 

(2.22) (if 23 Vi). 
1 

Proof. To prove (2.21) we use the trivial inequality log (1 + [x+y l )< log  (1 + Ixl) 
+ log (1 + lyl) and (2.12) to conclude that 

(2.23) Az(K~Xo)) < 2M(h/r) ~ E(log (1 + [c~ X~ I))- 
1 

Furthermore, for any random variable X 

oo 

(2.24) E(log (1 + IcX 1))= ~ (1 -t~x([C[ t)) e-~t -~ dt, 
o 

and (2.21) follows immediately. (Check (2.24) by letting X be constant and then 
randomizing.) 

To prove (2.22) we start by combining (2.2) and (2.12) via the inequality 

(2.25) IK(aXo + z : X o ) + K ( a X o - z : X o ) - 2 K ( a X o ; X o ) l  <J~(Xo) log (1 +z2). 

(Note that log (1 + z 2) > log (2) z z for I zl < 1, while log (1 + z 2) > log  (1 + ]zl) for 
tz[->_ I, in checking (2.25).) Companion to (2.24) is the identity 

(2.26) E(log (1 + c 2 X2)) = 2 ~ (1 - Re ((Ox(t)) e-~t-* dr, 
o 

from which follows 

oo 

(2.27) E(log(1 +eZX2))<Q(X)==-2 ~ Ii-q)x(t)l  e - t t  -1 at. 
0 
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The functional Q defined in (2.27) satisfies the subadditive property 

(2.28) Q X~ __< X~) 
\ 1  / 1 

as a consequence of the relations 

(2.29) 
co 

I1 - q6z(t)l = I1 -H~bx,(t)[ ~ ~211 -qSx,(t)[. 
1 

We conclude (2.22) from (2.25), (2.27), and (2.28). Q.E.D. 

Remark 2.8. If 2 i=2  for all i in Theorem 2.1, we may replace Ja(Xo) in (2.22) 
by the smaller constant t/((a--1)Xo)M(t?ho). (Note that log (1 + z  2) is replaced 
by z 2 in (2.25) and that we use the additivity of variances instead of (2.28), 
since the X~ all have expectation 0 by Remark 2.6.) 

Remark 2.9. The inequality (2.22) will be more useful than (2.21), because (2.22) 
is applicable over the full range 2E(0, 2]. The fact that (2.21) is valid without 
assuming independence of the random variables X~ is basically a curiosity in 
our present work, since the applications we have in mind will impose indepen- 
dence. 

Remark 2.10. If X is symmetric then Q(X) reduces to E( log( l+X2) )  and the 
subadditivity property (2.28) can be straightforwardly proven without taking 
Fourier transforms. (See [10].) 

Given the random variables X 0 and Z, we shall use the notation Y, = aXo + Z 
and ~lra = aX  o -- Z. If X = (Z, Xo) and Y = (Z, Y,), then the relations 

(2.30) K ( Y : X ) = K ( Z : Z ) +  Kz(Y,:Xo)=Kz(Ya:Xo)  

show that 

(2.31) K(Y~ :Xo)< Kz(Ya :Xo), 

(since K(Y~:Xo)<K(Y,, X) by virtue of (1.9)). We now develop a bound for the 
right hand side of (2.31). 

Corollary 2.1. Let X o and Z be given as in Theorem 2.1, with the extra hypothesis 
that X o and Z are independent. Then for a ~= 0 

c o  

(2.32) Kz(Ya:Xo)+ Kz(~a:Xo)<2K(aXo:Xo)+ M(h/r) y'F(2i)#z,(Xi)]c~]Z~ 
1 

/f 2i~(0, 1)for all i. I f  (X1, ..., X . . . . .  ) are mutually independent, then 

o0 

(2.33) Kz(Y,:Xo)+Kz(~o:Xo)<2K(aXo:Xo)+J,(Xo)~F(21)o~,(Xi) lci lX, .  
1 

Proof. We can write 

(2.34) Kz(Ya:Xo)=~ K(aXo + z:Xo)dPz(z) 
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because Z is independent of Xo. We conclude that 

(2.35) Kz(Ya:Xo)+Kz(Y~:Xo)<2K(aXo:Xo)+Az(K(aXo)), 

so (2.32) and (2.33) follow from (2.21) and (2.22), respectively. Q.E.D. 

It will be useful to remove the restriction that a ~ 0 for future applications 
of these results. 

Theorem 2.2. Suppose either (a) M(ho/r) v E(log (1 +[Xo [))< o% or (b) 
M(~?ho) v E([X o l)< oe. Then the restriction that a +-0 in Theorem 2.1 and its corol- 
lary can be removed by replacing K with the renormalization K* throughout. 
(See Remark 2.3.) 

Proof. It suffices to show that the differential entropy H(Xo) is defined via 
an absolutely convergent integral. We write 

(2.36) I H (Xo) + log (fo (0))1 = ~ log (f0 (x)/fo (0)) fo (x) dx. 

(Here fo, the density of Xo, is strictly positive everywhere on account of Lem- 
ma 2.1.) Using (2.3), the theorem follows from (2.15) in case (a), and from (2.4) 
in case (b). Q.E.D. 

Remark 2.11. Let 0 < 2 < 2 .  If a~(X)< 0% then E(log (1 + IX])) is finite by virtue 
of (2.27) and the simple inequality E(log (1 + IX])) < log (2) + E(log (1 + X2)). If 
#~.(X)< oc then EOog(l+[X[) ) is finite on account of (2.24). This remark will 
be useful in showing that the hypotheses of Theorem 2.2 hold in the context 
to be established in Sect. 2.2. 

It is interesting to present two examples for which we can calculate 
K* (aX + z :X) exactly. 

Example 2.I. Let X be a Cauchy random variable with density function f (x)  
=7~-1(1q-X2) -1 and characteristic function ~b(t)=exp(-lt[). We evaluate 
K*(aX:X) by noting that K*(aX:X)=V(a)-V(1) ,  where V(a)=E(log(1 
+ a  2 X2)). Using (2.26), we get K*(aX:X)=log ((1 + [a[)2/4). 

To evaluate K*(aX+z:X)  when z+0 ,  we let w~(z) stand for the partial 
derivative of K* (aX + z:X) with respect to z. Using (2.1), we get 

(2.37) w, (z) = ~ h (a x + z) f (x) dx, 

where h(x)= 2rrxf(x). We apply Parseval's relation to get 

(2.38) w,(z)=la[ -~ Se -It/~l sin(tz/la[)e-ltldt 2z/(z2+(l+[a[)2). 

We conclude that K* (aX + z:X) = log ((z 2 + (1 + 1al)2/4). 

Example2.2. Let X be a Gaussian random variable with density f (x)  
= (2 re) - 1/z exp ( -  (1/2) x2). It is easy to show that K* (aX + z:X) = 1 (z 2 + a a _ 1). 

2.2. Multi-dimensional inequalities 

Our final result of the section will be the application of the preceding one- 
dimensional discrimination bounds to yield a discrimination distance bound 
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for random vectors. This theorem will form the basis of a future paper on 
the applications of discrimination inequalities to probability theory on infinite 
dimensional linear spaces. Lack of space prevents the further development of 
these ideas here, though a preliminary exposition can be found in [10]. 

Definition 2.4. Let X = (X1, " ' ' ,  X . . . . .  ) be a finite or infinite sequence of regular 
random variables with score functions h,, respectively. For 2 in (0, 2] define 
ax(X)=supax(X,).  We shall say X is tame of order 2 if 62(X)<o0 and we 

n 

shall set J(2, X ) =  sup t/(X,)M(Oh,) in that case. (See Remark 2.8.) If aa(X)= ~ ,  
n 

but o-~(X)<oo for some 2~(0,2) we shall say X is tame of order 2 and we 
shall define J(2, X) = sup 2m(h,/r) v (log (2))- 1 ~/(X,) M(Oh,). 

n 

Given the matrix A = (aij), we let a a and ~ stand for its diagonal part (% 6 0 
and non-diagonal part (a~j(1- 60), respectively. We define Nx(A)= ~laij] ~ and 

i , j  

N~,(~) = ~ I%1 ~. (We shall also use the notation N~.(x) for vectors x, i.e., Nx(x) 
i * j  

=Ylx l .) 
i 

Theorem 2.3. Let X=(X1 ,  ..., X,) be a finite sequence of independent random 
variables such that X is tame of order 2 for some 2e(0, 2]. Given the invertible 
matrix A = (aij), form the random vector Y = AX. Then 

n 

(2.39) K* (Y: X) = ~ K~  (Y~ :X~), 
1 

where Zi= ~ aijXj, K*(Y:X)=K(Y,  X)+log  (]det (A)]) and K~,(Yi:Xi) 
j * i  

=Kz,(Yi:Xi)+log(lau] ). Setting ~ = a i i X i - Z  i and Y=(Ya . . . . .  Y,), we get 

n 

(2.40) K* (Y: X) + K* (Y: X) < 2 ~ K*~ (ag~ X~ :X~) + F (2) J(2, X) ax (X) Nz (/l). 

Proof Letting W =  A-  1 X, we have K (Y:X) = K (X: W). The density of X 
is f(x)-Hf~(x~), where fi is the density of Xg; hence the density of W is 
Idet (A)I f (Ax) .  It follows that 

(2.41) K (Y: X) = E [-log ( f ( X ) / f  (AX))] - log (I det (A)1). 

We can write 

(2.42) 
?t 

E (log ( f  (X)/ f  (AX)) = ~ E [log (fi (X,)/f~ (ai, X, + Z,))]. 
1 

It is clear from definition that K*(auX~+z:X~) is the conditional expectation 
of log (fi(Xi)/fi(au Xi + Zi)) given that Z i = z; hence (2.39) holds by virtue of (2.34). 
(Note that the differential entropy of Xi is finite on account of Theorem 2.2, 
so all of the above goes through even if some au are 0.) 
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The proof of (2.40) follows by applying (2.33) and (2.39) to Y and Y.. Q.E.D. 

R e m a r k  2.I2.  If aA and A commute, then we can rewrite (2.40) as 

(2.43) K (Y: X) + g (Y: X) < log (det (a2a)) - log (det (a~ - ~2)) 
n 

+ 2 ~ .Kz, (a .  x i :xi) + r(4)J(;~, x )  o~(x)  N~(~/), 
1 

wherein we have used the identity (aA--A)(a A + d ) = a ~ - ~ 2 .  Since 
log (det (a~))- log (det (a 2 - A2)) = log (det ( I -  a X i d2 a,~ 1 d2 aX 1)- 1), we con- 
clude that the right hand side of (2.43) decomposes K(Y:X)+ K(~':X) into non- 
negative components, under the condition that I > a~ 1 ~2 a/t i. If eI  > a~ 1 ~2 a,~ 1 
for some ee(0, 1), then we can use the inequality 

(2.44) log (det (t--  aX 1/~2 a~ 1)- l) __< trace (a A 1 d2 aA 1 (I -- a ;  i-32 a~ 1)- ~) 

to simplify (2.43), since the right hand side of (2.44) is bounded by 

(2.45) ( l - e )  - i  t race(a~lAZaA1)=(1--e) -1 ~ , a [ - X a  2 - aj 1. 

ir 

(The inequality (2.44) is essentially a consequence of Hadamard's inequality 
and can be found in Simon [17, p. 47].) 

3. Parameter estimation for auto-regressive processes 

In this section we will combine the one-dimensional discrimination distance 
bounds from Sect. 2 with the general results concerning statistical estimation 
from Sect. 4 in order to study a particular "non-regular" example where a finite 
dimensional parameter has infinite Fisher information. The example we will 
study is the class of p-th order autoregressive processes with infinite variance. 
We start by establishing notations and conventions about general statistical 
estimation. 

3.1. Convent ions  

Our results about statistical estimation will be developed in the context of a 
collection of probability measures (P~: eeM)  where M is a separable metric 
space equipped with a metric p. The measures P~ will all be defined on ~oo. 
In the typical situation we observe the first n coordinates yE,~ of a point y 
=(Y~, Y2 . . . .  , y , ,  . . .) in IR ~176 and attempt to estimate the parameter e e M  by 
a sequence V, of Borel measurable functions from IR n to M. We shall treat 
V, as a random variable V,* on (N ~176 P~) by setting 

(3.1) V* (y)= Vn(y Lnl) (for y~R~).  

We shall denote the distribution function of p (V* ,  a) under P~ by F2, i.e. 

(3.2) F2 (t) = e~ [p (vn*, e) < t3, 
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for t in R.  (Note that F2( t )=0 for t < 0  and that F~" is continuous from the 
left.) We shall write pt,l to stand for the image of the measure P~ under the 
restriction mapping y ~ yr,1. 

3.2. Auw-regressive processes 

The class of p-th order autoregressive processes is defined by the real parameters 
c~ = (ej: 1 < j  < p) and the equation 

(3.3) Y~+~I Y,-1 + . . .  +ep Y,_p = X , ,  

where X = ( X k :  k=0 ,  + 1, +_2 . . . .  ) is an infinite two-sided sequence of indepen- 
dent identically distributed random variables. We shall assume for the rest of 
this section that X is tame of order 2e(0, 2] with associated constants J t (X )  
= J1 (X o) and ax (X) defined in (2.19) and (Def. 2.4), respectively. 

Let co be any non-negative integer or + ~ .  Given w, the corresponding 
solution of (3.3) can be written as 

(3.4) Y.(cr ~ A(.~kXk (for n>co). 
k =  - t o  

The coefficients A~ p) have the representation 

P 

(3.5) A~ p) = ~', l~ (ai) r' 
(r i}  i = 1 

(summed over r 1 + ... +rp=r>O) ,  

where rl . . . .  , rp are non-negative integers and al, ..., ap stands for the complex 
roots of the characteristic equation z P + e i z P - l + . . . + c g = O .  If co is finite, we 
have Y_o,(e)=X_~, and Y,(c~)=0 for n <  -co.  If co is infinite, then we need the 
condition that max( l a j l )< l  to insure that the infinite sum in (3.4) converges 
a.s. We shall observe the random variables Y,(~) only for n > l ;  hence co is 
a way of specifying the initial values (YI(cQ, ..., Yp(cO) of the p-th order Markov 
process Y(c~)--(Yl(e), ..., Y,(e) . . . .  ). If co= 0% then Y(c~) is stationary. 

It turns out that the condition max (Jail)< 1 is necessary for the application 
of our discrimination distance inequalities even when co is finite. For  this reason 
it is necessary to express the condition max( [a j [ )< l  in terms of the actual 
parameters c~ = (c9:1 < j  <p). We let r denote the mapping from IRP into itself 

p 
such that for 1 <j  < p, r (a)j = ej is the coefficient of z p - j  in [ I  ( z -  a j). We define 

j=l  

(3.6) Mp='c({a: a ~ R  p, max (laj[) < 1}). 

We shall treat Mp as a metric space with metric p satisfying 

(3.7) c p(7, fl)~,o2(0 q fl) <= C p (o~, fl) 

for all c~, fi~Mp, where pz(cq fl) is the usual Euclidean metric (Nz(c~--fl)) 1/2 and 
0 < c < C are constants. (See Def. 2.5 for N2 .) 
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For  c~EMp we let P~ denote the probability measure on IR ~ induced by 
the stochastic process Y(~) satisfying (3.4). (The parameter co, which will not 
be estimated, is suppressed.) In order to explain how the results of [-4] and 
[7] indicate that the rate n 1/~ is best possible in (1.1), we define the distribution 
function 

(3.8) G,(t) = lira inf F2 (c~- 1 t), 
n --+ oo 

given any sequence of constants c. strictly increasing to oe and any sequence 
of estimates V. as in (3.2). We define G~( + oo)= lira G~(t) and G~(0+)= lira G~(t). 

t~o~ t~0 

When the sequence c, is of the form nilus,, where s, is slowly varying at 0% 
the following theorem shows that no sequence of estimators V~ can converge 
to e so quickly that c,(V~-~) converges properly in distribution for an uncount- 
able set of e. If 6=2 ,  the theorem shows that no sequence of estimators can 
converge to c~ so quickly that c,(V~-c 0 converges in distribution to 0 for an 
uncountable set of ~. In the course of the theorem we will sometimes refer 
to material in Sect. 4 concerning the total variation metric on measures. 

Theorem 3.1. Let the linear process Y(c0=(Y~(e): n__> 1) be defined in terms of 
X as in (3.4) and let P~ denote the corresponding probability measure on IR ~176 
Let s, be slowly varying at eo and assume c,=nl/~ s, is strictly increasing with 
n, where 0 < 6 < 2. Given any sequence V, of BoreI measurable functions, let G~ 
be defined via (3.2) and (3.8), where p satisfies (3.7). Then there exists a countable 
set M'p such that (1.3) holds for c~Mp/M'p, where A/B stands for the set of 
points in A but not in B. 

Proof We will first prove that 

(3.9) K (pt,l:p~,l) < nF (2) f2;~ (a) J1 (X) az (X) U~ (fl -- o0, 

where f2~(a)= 1-] (1 - l a j l  ;'A 1)-(~ ~ 1) and a = z- t (~)  for z as in (3.6). We note that 
J 

(3.10) K (P~['] : P~["]) =< K (WJ"] : I'V~ "]) 

by (1.9), where W ['] stands for the infinite vector ( .... X _ ,  . . . . .  X - l ,  Xo, 
I71 (a), ..., Y,(a)). We can apply (1.8) inductively to get 

tZ--1 
(3.11) K(WJ"]: W~ In]) = Z Krrt(W[m+ 1]: w~m+ 1]), 

m=0 

where Km (W~ m +11: W~m + 1~) = Kw~m ~ (( Ym +1 (e) [ W~[ml): ( Ym +1 (fl) I W~])) - 
The conditional distribution of Y~ + 1(cr given W~ t~j is identical with the condi- 

tional distribution of Y~§ given (Ym-p+l(e), gm-p+2(c0, ..., Ym(@, because 
Y(c0 is a p-th order Markov process. We use convolution notation 

P 
(3.12) (~ * Y(~)).~ = Z ~J g , . - / ~ ) ,  

j = l  
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to write 

(3.13) K,,(W}"+11: ]/vB[m+l] ) 

= E {~ log [ f ( x  --(~ * Y(OO)m)/f(x -- (fl * Y(c0)m)] f ( x - -  (~ * Y(oO)m) d x } ,  

where f is the common density of the random variables Xk. The simple change 
of variables x -  (c~ �9 Y(a))m = Y then yields 

(3.14) + Kz (X  + z .  

where Z,, = ((fi-c~), Y(c0),,. Using (2.32), we bound the right hand side of (3.14): 

(3.15) 
m+~ p A k ),) 

Kzm ( X  m -}- Z m :Zm) ~ I" (,~) J1 (X)  0-), (X)  Z (flJ-- aj)A~ j . 
k j=l  

It is convenient to define ( f l j - 7 j ) = 0  for jq~{1, ..., p} and to define A~P)=0 
for r < 0. We then recognize the sum from 1 to p/x k in (3.15) as a true convolution 
(which we shall denote as ( f l - cO*A  (p), in accord with the notation in (3.12)). 
We now borrow from harmonic analysis (see [5]) the well known inequality 

(3.16) 

to get 

(3.17) 

N), (c * A) <= N), (c) (N~/,,1 (A)))" v 1, 

Ezra ( X  m -}- Z m :Zm) ~ F (1~) J1 (X) 0- 2 (X) N)~ (fl - ~) (N X A 1 (A(P))))` v 1 

(If 2 =  1, then (3.16) is a special case of Young's inequality. If )o~(0, 1) then 
(3.16) follows directly from the sub-additivity of x~lx[)'.) Since the sequence 
A (p)= (A~P): r => 0) defined in (3.5) is the p-fold convolution of the sequences A(i) 
=(1, ai, a 2, . . . ,  a~, ...) for 1 <=i<=p, we can apply (3.16) p times to get 

(3.18) N), ̂  1 (A(')) < (f2),(a)) 1/()` v 1) 

The inequality (3.9) follows from (3.11), (3.14), (3.17) and (3.18). 
We now recall [11, p. 69, Problem 7.32] the relation 

(3.19) D2(p, Q)<=4K(P, Q) 

valid for any probability measures P and Q. For Y=(71,-. . ,  7v) with 0 < y i < l  
for all i, (3.9) and (3.19) yield 

(3.20) D~ (P~, P~) < 4 n C (2) f2), (7) dl (X) a), (X) N), (fl - a) 

if [ai] <7i for all i. (See the paragraph containing (4.1) for the definition of D 
and D,.) 

If we assume temporarily that p(a, fl)=p2(cq[3), then p(ct, fl)Zp(2-)`)/2>= 
N),(fi-a); whence by (1.17) 

(3.21) d~(r )<r) , /Z(F(2)y2) , (y )d l (X)  0-)`(X))1/2 p(2-),)/4 lim inf tn, 
n---~ oo 

where t, = ( n -  1) ((~- z)/a O)(s,_ 1)-)'/2. Using Theorem 4.1 and letting 7i]" 1 for all 
i, we conclude that there exists a countable set M ;  such that (4.5) holds for 
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asMv/M'  p and all rational r. The relations in (1.3) then follow immediately 
from (3.21). 

We remove the assumption that P=P2 by noting that (1.3) holds for P=P2 
if and only if (1.3) holds for p satisfying (3.7). Q.E.D. 

4. Parameter estimation and total variation proximity 

In this section we will present some general results linking asymptotic parameter 
estimation with the total variation distance between probability measures. 

If P and Q are probability measures on IR ~ we define the total variation 
distance D (P, Q) by 

(4.1) D(P, Q)=2 sup IP(C)-9,(C)I 

where the supremum is taken over all Borel subsets C of IR". We shall write 
D,(P~, P~) to stand for D(P~ ["1, p r,]). Other notation will follow the conventions 
in Paragraph 3.1. 

Our first result is almost a triviality, yet is fundamental. 

Lemma 4.1. Let (P~: e~M) be a collection of probability measures on N, ~ and 
let V, be a Borel measurable function from IR" into M. Then, for t < p (c~, b)/2: 

(4.2) F2(t) + F?(t) < 1 + (1/2) D, (P~, P~). 

Proof The triangle inequality for p implies 

(4.3) 

whence it follows that 

(4.4) 

[p(v,*, s)>__t] u [p(v*,/~)__> t] =IR ~176 

(1 -F2(t))+ 8[p(V,*, fi)>= t3 >= 1. 

We use (4.1) to compare the P~ and P~ measure of [p(V*,/?)>t], and thereby 
get (4.2). Q.E.D. 

Theorem 4.1. Let M be a separable metric space and let (P,: ~ M )  be a collection 
of probability measures on ~ o .  Let c, be a sequence of positive numbers strictly 
increasing to oo. Define d~(r) as in (1.17) and G~(r) as in (3.8). Then, for any 
sequence V~ of Borel measurable functions from IR" to M, there exists a countable 
subset M' such that 

(4.5) G (r/2) <_ (1 + G (r))/2 

for all ~6M/M'  and all rational r>0 .  

Proof For any v > 1, define 

(4.6) B~(r) = {c~eM: F2(c2 1 r/2) > (v + d~(r))/2} 

and let B*(r) stand for the set of ~ in M which belong to all but finitely many 
B~,(r) as n varies. We claim that B~(r) contains no limit points. Suppose, by 
way of contradiction, that the claim is false and that there exists a sequence 
fik in BY(r) and a point c~ in BV(r) such that the distance p(~, ilk) is strictly 
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decreasing to 0. I t  follows tha t  there exists a sequence nk tending to oo such 
tha t  

(4.7) (r/c,~) <= p (~, ilk) < (r/c,k- 1) 

for k sufficiently large, whence 

(4.8) D,k(e, ilk) < 2(v--  1 + d,(r)) 

for k sufficiently large. Us ing  L e m m a  4.1, we conclude that  

(4.9) F$ k (p (~, ilk)~2) + F;2 (p (~, ilk)~2) < V + d~ (r) 

for k sufficiently large. Since p(~, flk)>r/c,~, (4.9) is in cont rad ic t ion  to the 
a s sumpt ion  tha t  ~ and  flk are in B~(r); thus the claim is proved.  

We  refer now to the considera t ions  in [-12, Th. 1, p. 161] leading up to 
the Can to r -Bend ixson  T h e o r e m  and conclude tha t  B~(r) must  be countable .  
The  p r o o f  of the t heo rem is comple ted  by letting v tend to 1. Q.E.D.  

Remark 4.1. Some of the a rguments  in T h e o r e m  4.1 are similar in spirit to those 
in Propos i t ion  9 of  [13, p. 191], t hough  the details and  appl ica t ions  are quite 
different. 

Remark 4.2. A m o r e  measure  theoret ic  vers ion of T h e o r e m  4.1 was p roved  in 
[10]. Tha t  p roo f  applies  in the case when M is a subset  of  any  locally c o m p a c t  
group,  # is H a a r  measure ,  and p is a g roup  invar iant  metric. U n d e r  extra  measur -  
abili ty assumpt ions ,  (4.5) is demons t r a t ed  to hold for  # a lmos t  all ~ in M;  
in that  vers ion the s u p r e m u m  over  fl defining d~(r) in (1.17) is t aken  over  /3 
such tha t  p(e, fl) = rc2 1 

Remark 4.3. If  G , ( +  oe )=  1, then d~(+ ~ ) =  1 as a consequence of (4.5). This 
r emark  facilitates unders tanding  the re la t ionship of T h e o r e m  4.1 to 
"c , -cons i s t en t "  es t imates  defined in (1.15). 
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