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Summary. Let {xt: t ~ 0} be the solution of a stochastic differential equation 
(SDE) in Na which fixes 0, and let 2 denote the Lyapunov exponent for 
the linear SDE obtained by linearizing the original SDE at 0. It is known 
that, under appropriate conditions, the sign of 2 controls the stability/insta- 
bility of 0 and the transience/recurrence of {xt: t> 0} on ~ \ { 0 } .  In particu- 
lar if the coefficients in the SDE depend on some parameter z which is 
varied in such a way that the corresponding Lyapunov exponent 2 z changes 
sign from negative to positive the (almost-surely) stable fixed point at 0 
is replaced by an (almost-surely) unstable fixed point at 0 together with 
an attracting invariant probability measure #z on Nd\{0}. In this paper 
we investigate the limiting behavior o f /~  as 2 z converges to 0 from above. 
The main result is that the rescaled measures (1/2 z) ~z converge (in an appro- 
priate weak sense) to a non-trivial a-finite measure on IRe\{0}. 
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1 Introduction 

Consider the (Stratonovich) stochastic differential equation in IR d 

r 

(1.1) dxt= Vo(xt) dt + ~ V=(xt)odWtt ~ 

where Vo, V1, ..., V~ are smooth vector fields on N d satisfying 

(1.2) Vo (0) = VI(0) . . . . .  V~(0) = 0 
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and {(Wt 1, ..., Wtr): t > 0} is a standard 1Rr-valued Brownian motion on some 
probability space (O, ~-, P). The resulting (possibly explosive) diffusion pro- 
cess {xt: t=0}  in IR a has 0 as a fixed point and the non-trivial behavior 
of the diffusion takes place in IRa\{0}. In a previous paper [Ba3] we studied 
the relationship between the stability of the linearized system at 0 and 
the recurrence or transience of the diffusion process {x~: t>0}  on lRa\{0}. 
More precisely consider the linear stochastic differential equation 

(1.3) dvt=Ao vtdt + ~ A~vtodWt ~ 

where A~ = D V~ (0) e L(IR a) for 0 _< e _< r, and define the Lyapunov exponent 

] 
(1.4) 2=  lim ~-log [Ivt]l w.p.1. 

t ~ a o  t 

Under suitable non-degeneracy conditions 2 is well-defined (i.e. the limit 
exists and is independent of vo4=0 ) and then it is clear that the sign of 
2 controls the almost sure stability properties of the linearized process 
{vt: t>0}.  Returning to the original process, if we impose conditions which 
ensure that P{llxtH ~ ov as t--, oe} = 0  then the process {xt: t>0}  on IRa\{0} 
is transient, or null recurrent, or positive recurrent according as 2<0 ,  or 
2 = 0, or 2 > 0. For  full details and proofs see [-Ba3]. A slightly more general 
version is given here in Theorem 2.8. 

In this paper we consider the situation where the vector fields in the 
stochastic differential equation (1.1) depend on some parameter z, say. Then 
the Lyapunov exponent 2 and the invariant probability measure # on 
IRa\{0} (defined when 2 > 0) will also depend upon the  parameter. We write 
2 z and #z. Theorem 2.12 asserts the continuous dependence of #z upon 
z in and up to the boundary of the region where 2z>0. Our main result, 
Theorem 2.13, describes the rate of convergence of the invariant probability 
measures #w as the parameter w is varied in such a way that w ~ z  and 
2 w converges to 2~= 0 from above. It asserts that, under suitable conditions, 
the rescaled measures (1/2 w) #w converge to an invariant measure fi, say, 
on lRa\{0} for the system with parameter z. Moreover the measure fi assigns 
finite mass to sets of the form IRa\B(O, r), and we identify the finite positive 
limit of ~(IRd\B(O, r))/llog r] as r ~ 0 .  Thus our result gives a rate for the 
weak convergence (as probability measures in IRa) of #w to the unit mass 
at 0. 

The reason for our title is as follows. Suppose that the parameter z 
is varied in such a way that 2 ~ passes from negative values through zero 
into positive values. Then the (almost-surely) stable fixed point at 0 is re- 
placed by an (almost-surely) unstable fixed point at 0 together with an 
attracting invariant probability measure #~ on IRa\{0}. Moreover for small 
positive 2 z the corresponding measure #~ has most of its mass near 0; 
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our Theorem 2.13 gives a quantitative version of this assertion. Thus our 
findings may be viewed as a stochastic version of the Hopf  bifurcation 
for deterministic dynamical systems (see e.g. [-GH]). Notice however in the 

bifurcation the limit cycle is at distance O(~/2~) from deterministic Hopf  
0; this is a very different sort of scaling from that involved in the stochastic 
case, see Corollary 2.14. 

While discussing stochastic bifurcation theory we should mention the 
work of Arnold and Boxler and Xu Kedai on bifurcation theory for random 
dynamical systems using multiplicative ergodic theory and stochastic stable, 
unstable and center manifolds, see [AB1], [AB2], [AK4], [Bo]. There is 
also recent work by Arnold and Xu Kedai on normal forms for random 
dynamical systems, see [AK1-3] .  

The plan of this paper is as follows. Section 2 describes the setting, 
makes precise the assumptions needed at various stages, and has the state- 
ments of the three theorems 2.8, 2.12 and 2.13. Section 3 deals with the 
behavior of {x~: t > 0} away from 0. Section 4 is concerned with constructing 
suitable Lyapunov style functions in a neighborhood of 0; these are then 
used in sub- and supermartingale inequalities in Sect. 5 to obtain some 
very detailed estimates of occupation times for the process {xt: t >  0} near 
0. Section 6 deals with the construction of the invariant measures #~ on 
IRa\{0} whenever the Lyapunov exponent U > 0 .  The results of Sects. 3 
through 6 are put together in Sect. 7 to obtain the proofs of Theorems 
2.8, 2.12 and 2.13. Finally in Sect. 8 we give three examples of applications 
of our results to bifurcation scenarios. 

2 Statement of results 

Throughout  this paper z will denote a parameter which can vary smoothly 
in some fixed parameter space N. The precise structure of N will not be 
important  except that we wish to be able to talk about smooth dependence 
on z. Since our results are local in z, we may without loss of generality 
assume that N is an open set in some Euclidean space. In particular z 
can be multidimensional. Consider for any zeN  the (Stratonovich) stochas- 
tic differential equation in IRd 

(2.1) dxt= Vo(xt, z) dt + ~, V~(xt, z)odW~ ~ 

where V0, V1 . . . .  , V~ are smooth functions from IR a • N to IRa satisfying 

(2.2) Vo(0, z)= 1/1(0, z )=  ... = V~(0, z )=0  

for all z~N. For  each fixed z and ~ we regard the mapping x~---~V~(x, v) 
as a vector field V~ on Ra. Thus we may rewrite (2.1) as 

dxt= Vd(xt) dr+ ~, V~Z(xt)odWt % 
r  
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Where appropriate we shall denote the dependence on z of the resulting 
(possibly explosive) diffusion process by writing {xf: t>0}.  For z e N  the 
process {x~: t > 0} has generator 

(2.3) L~= 1 ~ (V~)2+ V~ 
r  

and we write W(t, x, A) for the corresponding transition probability. 

Linearizing (2.1) at 0 we obtain the linear stochastic differential equation 

(2.4) dvt=A~ovtdt + ~, A~,vtodWt ~ 
~ = 1  

where A~ = D V~ ~ (0) ~ LOR d) for 0 _< e _< r. Define 0t = vff H vt 11 e S d - 1. Then apply- 
ing It6's formula to (2.4) we obtain 

(2.5) dOt=A~o(Ot) dt + ~ A~(O,)odWt ~ 
c e = l  

where the vector fields A~ on S d-1 are defined by A~(O)-A~O-(A,O,-2 - ~ ~ O) 0 
for ~ > 0  and OeS a-1. 

We are almost ready to define some of the hypotheses which we shall 
require at various places in this paper. Let S(x, r )={yeRa:  [ly-xlP =r}, 
B(x , r )={y~Ra:  i ly-xJ j<r} ,  and B'(x,r)={yelRa: 0 <  [ly-xl[ <r}. For 
T>0 let q/T= C([0, T]; IW). For u~q/r  let {~(t, x; u): 0<t -<  T} denote the 
solution of the control problem in R a associated with (2.1) 

er x; u)= v?~(~(t, x; u))+ • v~(~( t, x; u)),,,(t) 
c~t a=l 

with ~(0, x; u)=x. Similarly let {qz(t, 0; u): O<_t<_T} denote the solution 
of the control problem in S d- 1 associated with (2.5) 

r 

~ ( t ,  x; u)=2g(~z(t, 0; u))+ E ~(~(t ,  0; u))u~(t) 
8t ~=l 

with qz(0, 0; u)=O. 
For any z ~ N consider the following assumptions. 

H1 (z) There exist functions f ~  COR d) and g ~ COR d) with g > 1, positive con- 
stants c and R~ and a neighborhood W of z in N such that for 
each w ~ W  the process {x7': t>__0} is non-explosive and there exists 
fwEC2(~ d) satisfying O~fW < f LW f~'+g<=c, and LW fW(x)+ g(x)~O 
for Ilxll _->R1. 

H2 (z) For all r > 0 and x 4= 0 there exists T< oo such that P~ (T, x, B (0, r)) > 0. 
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H3 (z) (i) Lie(A~, A~I . . . .  , A~)(v)= IR d for all v =t = 0, and if d = 2 the linear map- 
pings A~, ..., A~ are not all multiples of I. 
(ii) {r/~(T, 0; u): r > 0 ,  Ue~r}  is dense in S ~-1 for all OeS d-1 
(iii) For  all sufficiently small R > 0 there exist roe(0, R) and a neigh- 
borhood W of z in N such that 

{~(t, x; u): t>0, u~%, IlU(s, x, u)H < R  for all s<t}  nS(0,  ro) 

in dense in S(0, ro) for all xES(O, ro) whenever w~W. 

Under the assumption H3(z) the Lyapunov exponent 

(2.6) U = lim 1 log IIv~ll (almost-surely) 
t ~ o o  t 

and the Lyapunov moment function 

1 
(2.7) AZ(p)= lira -logE(Hv~lL p) 

t --+ o9 t 

for p~lR 

are well-defined, i.e. the limits exist and do not depend on v~ + 0. Clearly 
the values of 2 z and AZ(p) control the almost-sure stability and p~h-moment 
stability of the linearized process (2.4). For more details see [Arn], [AOP], 

[Bal i  and [Str]. They are related by the formula 2z=~(AZ)(0) .  The func- 

tion AZ(p) is analytic and convex in p, so we may define 

d 2 
V z = ~ (A z) (0). 

The convexity of A z implies that VZ> 0. 
Let us now assume Hl(z), H2(z), H3(z) for some fixed z~N.  Our first 

result is essentially a restatement of Theorems 2.12, 2.13, 2.14 of [Ba3], 
except that the assertions are valid for all parameter values w throughout 
some neighborhood of z. We write px, w to denote probabilities associated 
with the process {xt: t >= 0} started at Xo = x~]R ~ and run with fixed parame- 
ter value weN.  

(2.8) Theorem. Suppose that Hl(z), H2(z), H3(z) are satisfied for some zEN. 
In the case that 2~>0 assume also that AZ(p)>0 for some p<0.  Then there 
exists a neighborhood W of z in N such that for all w ~ W  the Lyapunov 
exponent 2 TM and the Lyapunov moment function A'~(p) are well defined in 
(2.6) and (2.7) (and vary continuously in w) and the following are true. 

(i) I f  2 ~ < 0 then 
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for all x 4 = O. 

(ii) I f  2~>0 then there exists a unique probability measure #~ on IRa\{0} 
such that 

(2.9) 
(to 

for all bounded measurable ~b: IRa\{0} ~ I R  and all x4:0. In particular #~ 
is the unique invariant measure for {x~': t>0} on ~.d\{0}. Moreover there 
exist 7 (w) > 0, 3 (~) > 0 and K ~) < oo such that A TM (-- 7 ~)) = 0 and 

(2.10) 
1 

K(~) / ~ )  < #~(B'(O, r)) < K (w) r 7~' 

for 0 < r  <6(w); and 

~gd#W< ~ .  

(iii) I f  2~=0  then there exists a a-finite measure #w on IRa\{O}, unique up 
to a multiplicative constant, such that 

i q~(x~) ds 

p ~ ,  ~ ~ t 
O(x ) ds 

0 

S O d ~  ~ a s t - - , ~  =1 

for all bounded measurable #W-integrable O, ~P: ~ a \ {  0} ~ IR with ~ ~9 d#W4:0 
and all x +O. In particular #w is the unique, up to multiplicative constant, 
invariant measure for {x~' : t > 0} on lRa\{0}. Moreover there exists a~(O, ~ )  
such that 

(2.11) 

and 

#w(Nfl\B(O, ~)) 

[log er 
+a as e ~ 0 ;  

g d # W < ~  foralI e>0 .  
Ra\U(O, ~) 

We now consider how the invariant measure #w on lRa\{0} changes as 
w is varied. The next result considers the pw as probability measures on 
IR a. For notational convenience we define #w,=6(0), the unit mass at 0, 
whenever 2 TM < 0. 

(2.12) Theorem. Suppose that Hl(z), H2(z), H3(z) are satisfied for some z 6 N  
with 2z>0, and that the function g in Hi(z) satisfies g ( x ) ~  0o as []xll ~ ~v. 
There exists a neighborhood W of z in N such that the family {pw: w ~ W }  
of probability measures in IR a is tight. Moreover the mapping w~-~ #w is contin- 
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uous at z (with respect to the topology of  weak convergence of  probability 
measures in lRa). 

Finally we give our main result, which considers the rate at which the 
probability measures #* converge to 6(0) when w ~ z with 2 TM converging 
to 0 from above. 

(2.13) Theorem. Suppose that Hl(z), H2(z), H3(z) are satisfied for  some z e N  
such that 2 ~= 0. Then V~> 0 and we denote by fi the unique a-finite invariant 
measure for  {x2: t >= 0} on lRd\{0} satisfying 

f i (~a \B(O,  s)) 2 
* - -  as s-+O. 

]logs] V ~ 

There exists a neighborhood W of  z in N such that the following are true. 

(i) The mapping ww-~ 2 TM is continuous on W. 
(ii) As w ~ z through W + =- {we W: 2 TM > O} the rescaled measures (1/2 TM) #~ 
converge to fi in the sense that 

S q~(x) d~W(x)-~ # ~(x) d~i(x) 

for  all continuous q~: IRa\{0} ~ I R  satisfying O ( x ) / g ( x ) ~ O  as ][xl[ ~ oo and 
~b(x)/llxllp ~ 0 as x ~ O  for  some p>0 .  
(iii) As w ~ z through W + the exponents ytw) in (2.10) converge to 0. 

(2.14) Corollary. Under the assumptions o f  Theorem 2.13, for  each p > 0  
such that [Ix LlP/g(x) ~ 0 as Ilx 1[ ~ oo there exists 0 < C v < oo such that 

S][xllPdl~W(x)~Cp2 TM as w ~ z  through W +. 

The estimate of Corollary 2.14 should be compared with the deterministic 
Hopf  bifurcation where the nearby attracting limit cycle consists of points 
at distance O(12[~/2). 

(2.15)  Remark.  The three assumptions Hl(z), H2(z), H3(z) concern the 
behavior of the process {x~: t>0}  near infinity, between infinity and 0, 
and near 0 respectively. They correspond more or less to the three conditions 
in [Ba3], except that they are now designed to have implications for {x~': t 
> 0} when w lies in some small neighborhood of z. 

The assumption H3(z) is a weaker version of the simpler condition 

H4(z) Lie(A~ . . . .  , A~)(v)= N. a for all v @ 0. 

It is clear that H4(z) implies H3(z)(i) and H3(z)(ii), and the fact that it 
implies H3(z)(iii) follows easily from a version of Lemma 6.1 applied to 
H4(z) instead of to H3(z)(i). However H4(z) is too strong for many interesting 
examples, see e.g. Example 8.6. 
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The condition H3(z) deals with behavior near 0 and in particular it 
contains assumptions about the linearized process {vt: t>0}.  In Sects. 4 
and 5 we will use just that part of H3(z) which we need to obtain results 
about {vt: t > 0}. Accordingly we define the condition 

H5(z) (i) Lie(A~, A] . . . . .  A~)(0)= T0S e- 1 for all OES d-l, and if d = 2  the vec- 
tor fields A~ . . . . .  A~ are not all identically 0. 
(ii) {t/Z(T, 0; u): T>0,  ue~gr} is dense in S d-1 for all OeS d-1. 

It easy to verify that H3(z) implies H5(z). 

(2.16) Remark. In Theorem 2.8 in the case 2w>0 there will exist p < 0  
with A~(p)>0 unless there exists QeGL(d, IR) such that QAZlQ -1, 
QA~ Q- 1 . . . .  , QA~ Q- 1 are all skewsymmetric and inf{(QA~ Q- ~ v, v): 
IlvlJ = 1} > 0  (see [Bal, Thm 4.2] and [AOP, Prop 4.1]). In particular such 
a p exists under the stronger assumption H4(z). Even if U >  0 and A z (p)=< 0 
for all p < 0  then all of Theorem 2.8 except for the estimate (2.10) remains 
valid. 

(2.17) Remark. We have stated all of our results with a state space IRe 
of general dimension d >  1. The results remain valid in the special case 
d = 1 subject to the following comments. 

(i) The process {xt: t> 0} on IR\{0} decomposes into two separate processes 
on the two components {x~N: x>0}  and {x~N: x<0}.  Any statements 
involving ergodicity of the process {xt:t>O} on IRe\{0} or uniqueness of 
the invariant measure on IRd\{0} should be replaced when d =  1 by the 
corresponding statements for the process restricted to one of the components 
{x~lR: x>0}  or {x~lR: x<0}.  For d--1 our result should be called a sto- 
chastic pitchfork bifurcation instead of a stochastic Hopf bifurcation. 
(ii) The assumptions H3(z), H4(z) and H5(z) and most of the calculations 
in Sect. 4 involve the behavior of the projection {0t: t>0} of the linearized 
process {vt: t>0} onto the unit sphere S a-1 in IR d. When d = l  the unit 
sphere S d-~ reduces to the two point set { - l ,  +1} and {Or: t>0} is con- 
stant. We can replace the assumption H3(z) by the simple requirement that 
at least one of the linear mappings Aft, A[ . . . . .  A~ is non-zero. 

The fact that S o is disconnected is obviously related to (i) above, and it 
makes d = 1 a special case. On the other hand we observe that the projection 
of {v~: t>0} onto S d-1 can equally well be done onto the projective space 
pd-1, and now for example the controllability condition H3(z)(ii) is trivially 
satisfied on the singleton set po; thus the case d =  1 really does fit into 
the general setting. 

Of course if we were only concerned with the one-dimensional case 
the proofs in this paper would be very different. The theory for one-dimen- 
sional diffusion processes is very well developed. In this paper we have 
to do some hard work in Sect. 4 to obtain Lyapunov like functions for 
the processes {x~: t > 0}. Using these functions we can estimate the behavior 
of the one-dimensional process {llx~llzt>0}. For d > 2  the process 
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{ILx~']l: t>0} is not in general a diffusion process since we are ignoring 
the angular part {x~'/ll x'~ H" t > 0}. The usefulness of the Lyapunov exponent 
and the Lyapunov moment function comes about because they contain 
information about the growth of the linearized process { II v~'lI t > 0} where 

0 w �9 the dependence on the angular part { t �9 t > 0} is averaged out in exactly 
the right way. They play a crucial role when one wishes to apply one- 
dimensional estimates to multi-dimensional diffusion processes. 

3 Behavior away from 0 

This section contains 'locally uniform' versions of results in Sects. 3 and 
4 of [Ba3]. For any a > 0  we define %=inf{ t>0:  [Ixtll =a}. 

(3.1) Lemma. Assume H2(z) and f ix  r > O. For every x + 0 there exist T> O, 
e>O, and neighborhoods U (x) of x in Nd and W (~) of z in N such that 
Pw (T, y, B (0, r)) > ~ whenever y ~ U (x) and w ~ W (~). 

Proof Use Lemma 4.5 of [Ba3] applied to the process (xt, w) in NJ x N, 
vector fields (V~(x),O), and truncated vector fields of the form 
(a,(x, z)(V2~(x), 0) where qS, has compact support and qS,= 1 on B(0, n)x W 
for some neighborhood W of z. [] 

(3.2) Proposition. Assume H2(z) and f ix  0 < r < R 2 < o o .  Then there exist 
T>0,  e>0, and a neighborhood W of z in N such that 

V~,W(zr< T)__>e 

whenever r< Ilxll ~R2 and wEW, 

Proof. This follows from Lemma 3.1 using exactly the same method as 
in the proof of Prop 4.6 in [-Ba3]. [] 

(3.3) Corollary. Assume H2(z) and f ix  0 < r < R 2 < o o .  Then there exist a 
neighborhood W of z in N and K < oo such that 

~r 

whenever ]lx[I >r and weW.  

Proof. Use the proof of Theorem 4.7 of [Ba3]. Notice that W is the same 
as in Prop 3.2 and that we can take K = Tie. [] 

(3.4) Proposition. Assume Hl(z) and H2(z). Then for each r > 0  there exist 
a neighborhood W~ of z in N and Kr < co such that 

E x'~' ~ g(x~)ds < K ~ + f ( x )  
\ 0  
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whenever [Ixll ~ r  and we W~. In particular E~'~(z~)< oo whenever IIx[[ >=r and 
w e  W r, 

Proof. Fix r > 0  and take R 2 to be the R~ of Hl(z). Then let W~ be the 
intersection of the neighborhoods W of Hl(z) and W of Corollary 3.3. The 
proof of Corollary 4.8 of [Ba3] now gives 

E ~'w g(xs)ds <Ksup{LWfW(x)+g(x): xelR'~}+fW(x) 

whenever I[x[l~r and weW~, where K is the constant in Corollary 3.3. 
The result now follows from Hl(z). [] 

4 Lyapunov style functions for the behavior near 0 

In this section we construct some functions which will be used in sub- 
and super-martingale estimates for the process {xf: t > 0} when IIx II is small. 
Throughout this section we will assume just H5(z). 

We establish some notation. Define L ~ = A~ + ~ (32)2. Define functions 
0c= l  i q~(O)=(A~O, 0), Q~(O)=q~(O)+�89 ~ ~ ~ (A~q,)(O), R~(O)= (q~(0)) 2 and the 

~ = 1  ~=1 p2 
vector field X~(0)= ~ q~(O).4~(O). Finally write/2p=/2 ~ 7~+pX~§ + ~ R  

~ t = l  
for p e R .  

(4.1) Proposition. Assume H5(z). Then for each bounded interval [a, b] there 
exists a constant K < oo such that the following assertions hold. 

(i) For each pe[a, b] there exists a smooth function (@: S a-1 ~ IR satisfying 

L~v ~b~= AZ(p) ~b~, l <  c~p(O) <= K for all OeS d-l, and Hq~llc2_-<K. 

(ii) There exists a smooth function ~bz: S e-1 ~ N  satisfying LzOz=2~-Q z 

and II~,~llc=</. 
(iii) There exists a smooth function tlz: S d - l ~ l R  satisfying L~q~+2(X~+ 
Q ~ - 2  ~) 0 ~ + R " =  V ~ and II~[Ic2 <K.  

Proof These results appear in the preliminaries to Theorem 3.18 of [BS] 
and Proposition 5.2 of [Ba2]; the original ideas are contained in Arnold 
et al. [AOP]. We briefly sketch the proof. The Perron-Frobenius theorem 
(together with our assumption H5(z)) yields the existence of positive eigen- 

z I2, q~, = A (p) 4p on functions ~bp corresponding to the eigenvalue problem ~'z ~ ~ 
S d- 1. In particular we can take ~b o--- 1. Since for fixed z the operator L~ 
is an analytic (in p) perturbation of L z then it follows that qS; can be chosen 
so as to depend analytically on p. Parts (ii) and (iii) now follow by differen- 
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tiating the eigenvalue equation 7 . . . .  /2p q~p- A (p) ~b; with respect to p and putting 

p = 0. In particular we obtain 0z=  q~; [p = 0 and t / ~ - - - -  Op2 q~ Ip = o. [] 

The result above deals just with the fixed parameter value z, and so 
in particular the constant K may depend upon z. Since we are concerned 
with behavior when the parameter changes we would like a version of 
Proposition 4.1 where the constant K is locally bounded as a function 
of z. The following result is a strengthening of part (ii) of the Proposition 
above, and will suffice for our purposes in this paper. 

(4.2) Proposition. Assume H5(z). Then there exist a neighborhood W of z 
in N and a constant K < co such that for each we W there exists a smooth 
function tpw: S d- 1 ___, IR satisfying L w 0 TM = 2 TM -- QW and [I ~ hw I] c2 <= K. Moreover 
the t) TM may be chosen so that the mapping w~--~tp w of W to C2(S a-l)  is 
continuous. 

Notice that although the perturbation L v of L ~ in p is a lower order 
perturbation (and analytic perturbation theory can be used), the dependence 
of L ~" upon the parameter z can occur in the coefficients of the top order 
terms. Moreover we do not assume that the operator I5 is elliptic, and 
so we cannot claim that L '~ -L  z is bounded relative to L ~. Accordingly the 
method of proof of Proposition 4.2 is very different from the method used 
in 4.1 above. 

Before giving the proof of Proposition 4.2 we give some preliminary 
results. Let pz (t, 0, B) = P {0~ e B I 0~) = 0} denote the transition probability 
for the process {0~: t>0} on S d-l ,  and let Pt ~ denote the corresponding 
operator acting on functions on S d-1. We will denote by IlP, Zllc~c2 and 
ILeal[co,c: the operator norms of P~ when acting as an operator from 
C 2 (S d- 1) to C: (S d- 1) and from C ~ (S e- 1) to C 2 (S e- 1) respectively. 

(4.3) Lemma. Assume H5(z). Then there exists a neighborhood W of z in 
N such that for all w e W  and all t > 0  the transition probability P~(t, O, d~) 
has a smooth density p~(t, O, ~) with respect to the uniform probability measure 
on S d- 1. Moreover for each To > 0  there exists Ko < Go such that 

]D~D~pW(To, O, ~)l_-<Ko 

for all i+j<_2, O, ~ S  d-l ,  and w~W. 

Proof. The proof is based on results of Kusuoka and Stroock [KS]. By 
assumption we have 

Lie(~),  ~z A~)(0) S d 1 A1, ..., =To 

for all 0 e S d- 1. Since each A~ is an analytic vector field on S d- 1 we deduce 
by Nagano's theorem that 

J ~ ( A 1 ,  2~)(0) = To S d -  1 
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for all O~S a- ~, where J;ts(Al,-~ ..., A~)-~ denotes the smallest Lie algebra of 

vector fields containing ~ ..., -~ A 1, A~ and closed under Lie multiplication by 
Ao .-z (Here and elsewhere in this proof we use the notation of [KS].) If 
d > 3 this follows since S e- ~ is not a product, and if d = 2 then otherwise 
we would get A ~ - . . . - A ~ - 0 ;  for details of this argument see [-IK, Thins 
2* and 2**]. It follows that for each OeS ~- 1 there exists L >  1 such that 

~(o, ,7),= ~ E ((3~)~)(o), r 
~ = 1  fl/~ll < L -  1 

for all q ~ T o S a- ~, q + 0. Here each ~~ (A~)(a) is a vector field obtained by apply- 
ing a finite number of Lie bracket operations involving the vector fields 
Ao, A~ . . . .  , A~ to the vector field -~ ~ A~. For  complete details of the notation 
see [KS]. A simple compactness argument shows that there exists L >  1 
and e > 0 such that 

for all OeS ~-~ and fleToS e-1. Now we vary the parameter. Since each 
vector field A~ depends smoothly upon w, the same is true of each of 
the finitely many vector fields -w (A~)(e), l<7=<r ,  II/~lr < L - 1 .  So there exists 
a neighborhood W of z in N such that 

~w(~ ~)~ 2 ll~[I2 

for all O~S d-l ,  ~]ETo Sd-1, and w~W.  We may now apply Corollary 3.25 
of [KS] to the stochastic differential equation (2.5) for the process {0S: t > 0} 
on S e- 1, noting that in this case since S ~- 1 is compact then automatically 
7m-~0. (The result of Kusuoka and Stroock is given with state space IR a, 
but it is clear that the result remains true when IRe is replaced by any 
smooth compact manifold.) 

(4.4) Lemma. There exists a neighborhood W of  z in N and a constant 
K 1 < ~ such that 

sup { IIP, Wltc~ c2: 0 <  t <  1} =<K1 

for all wEW,, and the mapping (w, t)~--~ TM from W x  [0, 1] to L(Cz(Sa-1)) 
is continuous. 

Proof This is merely a uniform version of Theorem 3.14 of [KS]. More 
precisely it comes from applying [KS, Thm 3.14] to the process {(0~', w): 
t > = O } o n S a - ~ x N .  [] 
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(4.5) Lemma. Assume H5(z). Then there exist a neighborhood W of z in 
N and constants T > 0  and s > 0  such that 

(4.6) i0~(T, 0, 0 > s  

for all O, r d-1 and weW.  

Proof. By Lemma 4.3 there exists a neighborhood W of z such that for 
all t > 0  and w s W  the density /3w(t, 0, () exists and is a smooth function 
of (t, 0, 4). 

First we prove the estimate (4.6) for w=z .  For each 4~S d-1 the open 
set U~ = {4 e S d- 1 :/3~(1, {, {)> 0} is non-empty (since otherwise/3 ~ (1,., ~)= 0 
which is impossible). For each O~S d- 1 there exists t > 0  and a control path 
u~//t such that r/~(t, 0; u)~ Ur It follows from the support theorem for diffu- 
sion processes (see [SV]) that P~(t, 0, Ur and therefore/3~(t+ 1, 0, 4)>0. 
Moreover using the continuity of /~(t, 0, ~), we deduce that for each 
0, 4ES d- 1 there exist an open interval A c(0, oo) and neighborhoods B and 
C of 0 and 4 respectively such that /~ > 0  on A x B x C. An elementary 
combinatorial argument can now be used to prove the existence of T > 0  
and 5 > 0 such that 

(4.7) /3~(T, 0, 4)>6 for all 0, ~eS e-a 

Now we wish to vary the parameter w. We observe that Lemma 4.3 yields 
the following Lipschitz estimate: there exists a constant Ko < oe such that 

(4.8) IF'(T, 0, r 0, ~)[_<_Kop(r ~) 

for all 0, 4, ~ S  d- 1 and all we W. (Here p denotes the geodesic distance 
on Sd-1.) Moreover the Feller property for the process {(0~', w): t>0} in 
S d- 1 x N implies that the mapping (0, w)~--~ S ff~(T, 0, 0 f ( Q  d4 is continu- 
ous for each f e  C ~ (S d- 1). sd , 

For  7 > 0  choose 4a . . . . .  ~N SO that the balls B(~i, 7) cover S a-x. We 
note that all of these balls have the same volume B 7. For each i choose 
a continuous fi: S d- 1 ___, [0, 1] such that supp(f/)~ B(4i, 7) and 

fi(4) dr189 Then by (4.7) we have 
S a -  a 

P~f~(O)>6 ~ f~(~)d4>=~B~ 
S a -  1 

for all i=1  . . . . .  N and O~S d-1. The Feller property implies the existence 
of a neighborhood W1 of z in N such that 
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for all i=1,  ..., N, OES d-l,  and w e W  1. Now for 0, ~eS d-1 choose i so that 
~eB(r ?). Since p(~, ~)<27 for all ~esupp(fi) we obtain 

6 
~B,<= ~ f,(O~W(T,O, Od ~  

S d -  1 

<[2~Ko+P~(Z 0, 0] ~ f~(0d~ 
S a -  1 

<[ 2yKo +~W(T, 0, 0] By 

for all wE Wc~W~, where the second inequality uses (4.8). Therefore 
/~W(T, 0, 0 > 6 / 4 - 2 7 K o  and the result follows by choosing y<6 /8Ko.  [] 

(4.9) Lemma. Assume H5(z). Then there exist a neighborhood W of  z in 
N such that the following are true. 
(i) H5(w) is valid for all weW.  
(ii) The mapping w ~ 2 TM is continuous on W. 
Off) For each pMR the mapping w-+ A~(p) is continuous on W. 

Proof The fact that H5(w)(i) is valid in some neighborhood follows easily 
from the fact that each mapping w v - ~  is continuous in w. The validity 
of the controllability condition H5(w)(ii) in a neighborhood follows immedi- 
ately from Lemma 4.5 (using the Stroock-Varadhan support theorem for 
diffusion processes, see [SV]). 

For W as in Lemma 4.5 the lower bound on the transition density 
implies that for we W the process {07': t_>0) on S a- ~ has a unique stationary 
measure ~r w, say. Then Khas'minskii's formula (see [KhlJ)  gives 2w= 
~QWdrc~. Now for w e W  there exists Ow such that 2w=L'~OW+Q w. So if 
ue W is close to w then L u ~ +  Q" is uniformly close to 2 ~ and consequently 
2" = ~ (Lu ~ + Q,) d ~r u is close to 2 TM, proving (ii). 

To prove (iii) let wsW, p e n  and let Cp ~ satisfy Ep7 . . . .  Cp - A (p) Cp.~ Given 
e > 0  there exists a neighborhood U of w inside W such that (AW(p)-e) r 
<Lpr  for ueU.  It follows (arguing as in [Bal, Cor 2.3]) 
that A ~ ( p ) - e < A " ( p ) < A ~ ( p ) + e ,  and we are done. [] 

Proof of Proposition 4.2 Let W, T and e be as in Lemma 4.5. Then a 
standard argument in the theory of Markov processes (see e.g. Doob [Doo]) 
shows that for the stationary measure rcw we have 

[ ~ f ( 0 ) -  ~ fdn'~l<=Z[]fllco(1-e) t/T-1 
S a -  1 

for all f~C~ all t>0 ,  all OES a-~ and all weW.  Moreover we may 
assume (by Lemmas 4.3 and 4.4) the existence of K < o e  such that 
IlPl~]]co, c~<K and [[PSI]c~,cz<K for all te[O, 1] whenever weW.  Define 
for n__> 1 the function ~p~eC2(S a-a) by 

n 

wo p.~ ~9, ( ) = ~ [( t Q'~) (0)-  ~ Q ~ d 7r TM] d t. 
0 S a a 
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For m > n >_ 1 we have 

m-1 
'l~/~n--~/nW]'c 2~--" FlW(n ~ 1 [PttwQ~W--sa!l QWdT~W]dt  ) c2 

m--1 t C ~ <llp~[/co, c~ ~ [~WQ~ ~ QWd~]d 
n-1  S a-1 

rn-1 
<2K[lQWl]co ~ (1--e)t/r-ldt 

n-1  

< 2KTHQW][c~ (1 __~)(n--1)/T--1 
1 

log - -  
1 - ~  

Therefore ~,~ ~ ~ ,  say, in C 2 (S d -  1) as n --* ~ .  Now 

Lw Ow = lim -w w _ I2 f f , - l i m P W Q ~  QW= ~ QWdz~_QW=2W_QW 
n ~ o o  n ~ o o  S d -  i 

so that ~ satisfies the required equation. To obtain the uniform C 2 estimate 
on Ow notice that 

1 dt c2 i[~Wllc2=lim ]]~w_~p~[]c~+ S[/~,~QW_ ~ Q,~dnW] 
n--* o~ 0 S d-1 

<= 2KTlIQwllc~ ( l - - e ) -1+  sup {[k~W][c~,c2)[[ Qw-)YILc~ 
1 o=<t_<~ 

log - -  

<(. 2_KT ( l_e)_  ~ + K )  IIQ'lLc~ 

- \ l o g  i l e  

and that Qw(O) depends smoothly on 0 and w. Finally it follows from the 
continuity with respect to w of P~w and S Q ~ d ~ = 2 ~  (see Lemmas 4.4 

sa-1 

and 4.9) that the mapping w~--~, ~ is continuous from W to C2(S d-l) for 
each n. The estimate above on II~-~'~lLc2 implies that the continuity is 
preserved in the limit as n ~ o e ,  i.e. the mapping w~--~ ~ is continuous 
from Wto  C2(sd-1). [] 

The reason for our interest in the functions in Proposition 4.1 lies in the 
following lemma. Let TU denote the generator of the {v~: t>0} process 
in Re given by (2.4), so that 

TL ~ = A~o + ~ (A~) 2 
~t= l 
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where we regard each of the linear mappings A~, 0 < e < r, as a vector field 
v~--~A~v on IRa. 

(4.10) Lemma. Let  cy v, ~z and tl ~ be the functions in Proposition 4.1. Then 

a n d / f  22= 0 

( TL z (log Hv]l)2+2@ z log Nvll +q~ = 

Proof  This is a direct calculation based on the fact that in polar coordinates 

(r, 0) where r =  IIv[] and O=v/Hvl[ we have A ~ = r q ~ r + A  ~. For  details see 

the preliminaries to Theorem 3.18 of [BS] and Proposition 5.2 of [Ba2]. []  

It is clear that the equations above are very useful when combined with 
martingale inequalities in describing the growth properties of the linearized 
process {v~: t>0}.  Our next step is to obtain some similar results for the 
original process {x~: t >0} near to 0. We adapt here the method used in 
I-BS] to obtain some estimates which are locally uniform in the param- 
eter w. 

(4.11) Lemma. For any z ~ N  and any 0 < 6 < 1  there exist a neighborhood 
W of  z and a constant K <  co such that 

(4.12) [(L w -  TLW)(f| <_<K(r[f(r)[ +r21f '(r)[  + r  3 [f"(r)[)][g[Ic2 

for all f e  C 2 (0, 6), all g e C 2 (S e- 1), all (r, O)e(O, 6 ) x  S d- 1 and all w e W. Here 

f |  g denotes the function x ~--~f (ll x [3 g (x/ll x II). Moreover in the special case 
when g -  1 the term r lf(r)[ may be omitted f rom the right hand side of  (4.12). 

Proof  We mimic the calculations of [BS, Cor 3.10]. Define 

H w (r, O) = (V~ TM (r O) -- A'~ (r O))/r 2 

for 0 < r < 6  and OeS d- ~. Then Taylor's theorem gives 

1 

H•(r, 0)= f (1--s) D 2 V~(srO)(O, O)ds. 
0 

Since for each c~ the vector field V~ together with its first three derivatives 
depend continuously on w, it follows that there is a neighborhood W on 
which all the H~ (~ > 0) and their first covariant derivatives (in the directions 
r and 0) are bounded. Moreover (so long as Wis precompact) all the matrices 
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A~ will be bounded on the same neighborhood. The proof in [BS] now 
gives the desired result; the constant K depends only on the bounds on 
the H~ and their first derivatives and the bounds on the A~. [] 

(4.13) Proposition. Assume H5(z) and AZ(p) ~- O. 
(i) There exist 6>0,  K <  0% and a neighborhood W of z in N such that 
for every we W there exist smooth functions ~+- : B' (O, (5) ~ ]R satisfying 

c~ O~+ (x)>__,~>=L~ O~- (x) 
and 

[~-+ (x ) - log  I[xlll<K 

whenever 0 <  Ilxl] <6. 
(ii) For each p=t=O and each e a > 0 there exist 6 >0, K < 0% a neighborhood 
W of z in N and a smooth function C~p: S~-1-~(0, Go) such that the function 

z [ qT~,(x) = Ilxll p ~bp [TW,~ ] satisfies 
\Hxll/ 

(AZ (p) + ~ )  qS; (x) _>_ L ~ qS; (x) __> (A~ (p) - ~ ~) ,~; (x) 

for all 0 <  ]]x]] <6  and weW, and 

1 
IlxllP ~ ~; (x) ~ g Ilxll p 

for all x # O. 
(iii) I f  2z=0 then for all ~1>0 there exist 6>0,  K <oo, a neighborhood 
W of z and for each w e W satisfying 2w= 0 a smooth function FlW: B' (0, 3)---, 
such that 

and 
lOW(x)-(log I[xll) 2 ] < K  [log I]xll L 

whenever 0 < [[ x ][ < 3. Moreover there exist 6 > 0, K < 0% and smooth functions 
tl ~ +- : B' (0, 3) -~ N~ such that 

and 
LZtlZ+ (x)> V~> L~tt z-  

]q~+ (x)--(log Ilxll)2[ =<K Ilog Ilxll ] 

whenever 0 < lix II < 3. 

Proof We remark first that for the parameter w fixed at z the results are 
contained in [-BS, Thin 3.18] and [Ba2, Prop 5.2]. In particular the final 
assertion of part (iii) is contained in these references. To prove the proposi- 
tion we will use essentially the same construction as in [BS] and verify 
that the constants 6 and K can be chosen to be locally uniform in w. 
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To prove (i), choose q ~ [�89 3] such that AZ(q)4: O, and define 

~,W• w +_kllxllq~b ~ x 

where k is a constant to be determined later. Then 

Lw 0 ~ +- (x) = TL TM ~k w +_ (x) + (L TM -- TL  TM) ~, w +_ (x) 

+ k l,xllq C'r  e l  

where the remainder term R1 can be estimated by applying Lemma 4.11 
to the functions log Ifx/I +~'W(x/Hxl[) and !lxlV4q(X/Irxl3. Since 4 ~ s C 2 ( S  d- l )  

and the coefficients of/27q are continuous in w it follows that -w z /2q 40(0) has 
the same sign as A'(q)  and satisfies 

~W z Cq(0)l _-__ 4 (0) 

for all w sufficiently close to z. The rest of the proof  of (i) follows as in 
[BS, Thin 3.18]. To prove (ii), let 4;(0) be the function given by Proposition 
4.1. The result follows from an application of Lemma 4.11 to the function 
Ilxll ~ 4;(x/lfxfl) together with the estimate 

I(Lp-L;) 4;(0)j 4;(o) 

for all w sufficiently close to z. 
To prove (iii) define 

. X 

By a calculation similar to those in Lemma 4.10 we obtain, whenever 2~= 0, 

Now as w ~ z the right side above converges to V ~, so that 

VZ_e~  < rL~qW(v)< V~+ ~ 
2 -  2 

whenever 2~'=0 and w is sufficiently close to z. The result now follows 
from another application of Lemma 4.11. 

Remark.  Henceforth in this paper  6 and K will be used solely to refer 
to the constants in the appropriate  part  of Proposition 4.13. 
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5 Expected occupation times near 0 

Recall % = inf{t > 0: LI x~][ = a}. In this section we obtain some estimates on 
the random variables % and ZR when 0 < e <  Hxll < e  and R is sufficiently 
small. We use the functions provided by Proposition 4.13 to get uniform 
versions of estimates in [BS], [-Ba2] and [Ba3]. 

(5.1) Lemma. Assume H5(z). 
(i) There exist ~>0,  K < o o  and a neighborhood W of z in N such 
p~, w { % A Z R < O0 } = 1 whenever 0 < e < 11 x II < R < 6 and w E W. 
(ii) Moreover if there exists p < 0  such that A~(p)>0 then there exists also 
k<  1 such that P~'~{Z~<ZR} > 0  whenever 0 < s <  Ilxll < k R < k 6  and w 6 W. 

Proof. Write a = %/x zR. We consider the three cases 2 ~ > 0, 2 ~ < 0 and 2 5 = 0 
separately. First suppose U > 0. We take 6, K and W so that the assertions 
of Lemma 4.9 and Proposition 4.13(i) are valid. Moreover we may assume 
that W is sufficiently small that ) ~ >  0 for all w~ W. The assertion (i) now 
follows from the fact, from Proposition 4.13(i), that CW+(xt^~)-2~( tA a) 
is a P~' w submartingale. To prove the second assertion we may now assume 
that 6, K and W are chosen so that additionally the assertions of Proposition 
4.13 (ii) with p < 0 so that A~(p)> 0 and e~--A~(p)/2 are valid. Then Proposi- 
tion 4.13(ii) implies that []xt^~n p ~'~(xtA~/llxt^~ll) is a p~,w submartingale, 
which yields the inequality 

P~'w{%<'CR} > 
K -2 ]]xllP-Rp 

eP -- R p 

So we take k - - K  2/p and the case 2~> 0 is complete. 
Now suppose 2~<0. (Notice that in this case automatically A~(p)>0 

for all p < 0.) We take 6, K and W so that the assertions of Lemma 4.9 
and Proposition 4.13(i) are valid and so that 2w< 0 for all we W. The proof  
of both assertions now follows easily from the fact that r  (xt ̂  ~ ) -  2w(t ix a) 
is a P~' w supermartingale. In particular we obtain the inequality 

(5.2) PX'W {z~ < ZR} >--_[lOg ~x l -- 2 K ] / [ l o g R  ] . 

Finally we consider the case U = 0 .  Here the existence of p < 0  such that 
A~(p)>0 is equivalent to either of the statements A~(p)~-O or V~>0. We 
take 6, K and W so that the assertions of Lemma 4.9, Proposition 4.13(i), 
Proposition 4.13(ii) (with p < 0  and ~1 =A~(P)/2) and Proposition 4.13(iii) 
(with 51 = V~/2) are valid. If 2w4=0 the assertions (i) and (ii) follow as above. 
If 2w=0 the assertion (i) follows from the fact that qW(x~A~)--VZ(tA~)/2 
is a px, w submartingale, and the assertion (ii) from the fact that Cw-(xt^ ~) 
is a px, w supermartingale. In fact we obtain the inequality (5.2) in this 
case also. []  

(5.3) Proposition. Assume H5(z). There exist 6 > O, K < ~ and a neighborhood 
W of z in N such the following hold. 
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(i) I f  w e W a n d  2 ~ > 0  and 0 <  I]xl] < R < 6  then PX'W{ZR < o0} = 1 and 

R ~w 1 R 

(ii) I f w e W a n d  )?~=0 and 0 <  Ilxll < 1 < ~  then Px'~{ZR< 0O}= 1. I f  in addi- 
tion Ilxll <e-  2r R then EX'W(ZR)= oo. 

Proof. We use the same notation as in Lemma 5.1. Suppose first that 2 w >0.  
Using the facts that Cw+ (x~^~)-2w(t/~ a) is a W 'w submartingale and that 
Ow-(xtA ~)-2~(t/x a) is a px, w supermartingale, we obtain 

1 ~,w- ~w ,U FEx' w (0w- (x~))- (x)] __< E ~, w(~)__< [Ex, w(~,~. (x~))- 0w. (x)]. 

The estimates on r imply 

1 
(5.4) ~ - [ E  ~'w log IIx~ll-log ] lx l r -2K]  

__<E~,W(G) 

< ~  [E~'W log [rx~[]-log []x]] + 2 K ] .  

The upper bound on E x' w follows immediately by letting e ~ 0, and the 
lower bound will follow similarly as soon as we can prove that 

(5.5) (loge) px'~{Z~<ZR}-*O as e ~ 0 .  

Notice that the right hand inequality in (5.4) implies that (log e) P~' TM {z~ < zR} 
is bounded below as e ~ 0 .  In particular for fixed 0 < r < R < 6  and fixed 
we W with 2 w > 0 we obtain 

sup W ' w { L < Z R } ~ 0  as e---,O. 
I[xll =r 

The condition H5(w) together with 2'~> 0 implies that AW(-7 )<0  for some 
7>0.  It follows that there exist 60>0,  Ko<GO and a function q~_~: 
B'(0, 60)~(0,  oo) such that 

1 
g ~  IIxN-'<~w-,(x)<g [Ix[I-' 

and -w W' TM ~b_~(x~ . . . . .  ~o) is a supermartingale for 0 < e <  ]lxl] <6o.  (This fol- 
lows from Proposition 4.13(ii) with z replaced by w, p by - 7  and el = 
-A~(7).) It follows that 

~ 
whenever 0 < e <  IlYrl <C~o- Here the constants C~o, ), and K o may depend 
upon w. In particular 6 o may be very much smaller than R so we cannot 
deduce (5.5) immediately. Instead we proceed as follows. We need only 
prove (5.5) for each fixed w and x so without loss of generality we may 
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assume 60 < ILxH, and then we may  choose 61<60 such t h a t  PY'W{z6l <ZR} 
< 1 whenever Ily II = ~o. Then we have 

px, w {z, < ZR} _--< 1 sup PY' w {z~ < ZR} 
I[Yll =01 

and for any y with Ilyll =Oa we have 

W' w {z~ < ZR} < W' w {Z~ < Zoo} + �89 sup pz, w {L < ZR}. 
Ilzll =Ox 

Together we obtain 

p~, w {z~ < ZR} =< sup W' TM (z~ < Z~o } <-_ K 2 ( T Y  
I[Yll =Oa \~'1/ 

which implies (5.5) and the proof  of (i) is complete. 
To prove (ii) observe that  for 2w=0 the process 0~+(x , , , , )  is a W '~ 

submartingale,  which gives the inequality 

(5.6, P~'W {z~ < ZR} < [log IlX~ + 2K]/ [1og R ] . 

Letting e ~ 0 in (5.6) we obtain px, w {za < oo } = 1. Using the px, ~ supermart-  
ingale qW(x t ̂  ~) - 3 V~(t/x 0-)/2 together with the inequality (5.2) we obtain 

3 V ~ 
2 E~' TM(z"/x ZR) 

> [(log e)2 - ( l og  R)2 - K llog el - K llog Rl] [log ~x[l - 2 K][log R]  -1 

+ (log R)2--( log Ilxll) 2 - K  Ilog R ] - K  [log [Ixll I. 

Now let e ~ 0 and we are done. [] 
The previous result gave some estimates on EX'~'(z~/x ZR) when 2w=0. We 
now go on to obtain estimates on the same quanti ty which are valid in 
a neighborhood of some z with 2 ~ --- 0. The extra strength is that  the estimates 
are valid for all w sufficiently close to z; this is paid for by the fact that  
in Proposi t ion 5.7 the ne ighborhood W1 depends on e. 
(5.7) Proposition. Assume H5(z) for some z with U = 0  and A~(p)~sO. Let 
6, K and W be as in the proof of  Lemma 5.1. Fix 0 < e < R < 6  with eR <l .  
Then for each fie(O, V ~) there exists a neighborhood Wt of  z with W1 ~ W 
such that for all w~ W1 and e < IIx II < R the following assertions hold. 

]log el 2 + 2 K  ]log el 
(i) EX' ~(z~/x zR)< 

V ~ -  fl 

log f f ~ -  (2 K + flE~'W(z~/x zR) ) 
(ii) ~ "  ~PX'W{Ze<'CR} 

R 
log - -  

R 
log ~ + (2 K + fiE x'w (z,/x zR)) 

__< 
R 

log - -  
8 
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(iii) l (log~xF log~--[6K+2flE~'W(z~/xrR)]llogel ) 
V~+fl 

<= E ~" ~ (z~ /x "oR) 

) < VZ_fl log log +[6K+2fiEX'~(~Az~)][loge[ . 

Proof Let  0z+ and tfl + denote  the functions (corresponding to parameter  
z) in Proposi t ion  4.13. Then  we have U~,  z+ >0 ,  U O  ~- <0 ,  U~/~+ > V ", and 
U q  ~- < V  ~ in the compac t  set {xelRa: e <  [[xJ[ <R}.  Since the coefficients 
of L TM are cont inuous  in w, it follows that  for each f l > 0  there exists a 
ne ighborhood  W1 of w with W~ ~ W such that  for all w~ W1 and e <  [[xl[ < R  
we have L ~ ~,~ + (x) > -- fl, L TM ~,z- (x) < fl, L w qz + (x) > V ~ -  fl, and L w q~- (x) 
< w + f l .  

Write o = ~/x  vR as above. To  prove (i) we use the fact that  M~-q~+ (x~ ~ ~) 
-(V~--fl)(t/x o) is a P~'~ submartingale.  To  prove (ii) we use the fact that  
~,~ + (x~ ̂  ~) + fl (t/x 0 3 is a W'  ~ submart ingale to obtain 

EX' ~'(log IIx~ll)+ K + 3 E X ' ~ ( ~ ) ~ l o g  Ilxll--K 

which yields right hand  inequali ty in (ii). The  left hand  inequali ty follows 
in a similar manner  f rom the W'  w supermart ingale 0~-(xtA ~)-fl(t/x a). Fi- 
nally to prove (iii) we return to the submart ingale  Mt above to obta in  
the estimate 

1 
E ~, w (o) < V @ ~ _  3 (E ~' w (tfl + (x,~) - qz + (x)) 

1 
< (E~,~(log I[x~ll)2-(log Ilxll)2 + 2KIlog~[) 
= VZ_fl  

1 
< V ~ -  fl ((log 0 2 px, ,~ {r e < zR} + (log R) 2 (1 -- px, w {z~ < zR}) 

--(log []xll)2 + 2 K llog el) 

< log log + 2 K ] l o g e l  
=VZ_fi 

+ [-2K + fiE x' ~(z~/x za)] log ~R) '  

where the last inequali ty used the upper  bound  in (ii) and the fact that  
l log el > l log R[. The right hand  inequali ty in (iii) now follows immediately,  
and the left hand  inequali ty follows similarly from lower bound  in (ii) togeth- 
er with the fact that  tfl (xt,, ~)- (V z + fl) (t/x o) is a P . . . .  supermartingale.  [ ]  

Define for 0 < e < R  and 0 <  Hxl] < R  

. . . .  ) G~,R(x)=E lt~,o~)(llxt[l)dt . 
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We write w, + w, - G~,R ( r )=  sup G~,R(X) and G~,R ( r )=  inf G~,R(X). 
I[x[I =r II~ll =r 

(5.8) Corollary.  With the assumptions and notation of Proposition 5.7 the 
following are true. 
(i) For each 0 < e < R < ~ there exist a neighborhood W1 of z and a constant 
K~,R (depending only on g, R, V ~ and K) such that G~R(X )~  K~,R whenever 
wEW1 and 0 <  ]lxl] < R .  
(ii) For each 0 < r < R < 6 

log - 4 K < lim i n f - -  l im inf G~ 'R- (r) 
- - ~ o  ] l o g e l  ~,-+~ ' 

1 
_ lira sup - -  l im sup w, + 
- ~-+o [ l o g e [  w - + ~  Ge, R (r) 

< - -  log + 4 K  g = 

Proof. Withou t  loss of  general i ty we m a y  assume tha t  eR < 1. Not ice  first 
tha t  for Ilxll < ~  we have  G~,R(x)<G~'R+(e). F o r  Itxll>~ we m a y  argue as 
in [Ba2, P rop  5.6] to obta in  the es t imates  

and  

W'w{z~<ZR} sup EY'w(%A za) 

6~R(X)< lI,H =~ 
1 - sup W'w {% < ZR } 

[lyll = ~  

W'w{z,<ZR} inf EY'w(%AZR) 
I[y]l = a  

G~(x)> 
1 -  inf W'w {z~ < ZR} 

Ilyl[ = a  

EX W z 

t- E ~' w (%/x % )  

for any  0 < b < e < a < R and e < [1 x II < R. Wi th  the obvious  modif ica t ion  these 
es t imates  are valid also when IIxH =e .  N o w  the results of P ropos i t ion  5.7 
(with e replaced by b in places) give the required estimates.  In  par t icular  
the m e t h o d  of p r o o f  in [Ba2, P rop  5.6] for G~,g(X) is equally valid for 
es t imates  on lim inf G ~  (r) and l im sup G ~' + ~,R (r). 

w ~ z  w ~  

(5.9) P r o p o s i t i o n .  Assume H5(z) for some z with 2 = = 0  and A~(p)@O. Let 
3 be as in the proof of  Lemma 5.1. Then for each 0 < R < 3  and pc(O, 1] 
there exist a neighborhood W (a' v) of z and K (g'v) < oo such that 

E ~'~ ~ [Ixt]]Pdt<-_K ~e'p) 
0 

whenever w6 W (R'v) and O< I[xll < R .  
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Proof. For pc(0, 1] we have A~(p)>0 and so by Proposition 4.1.3(ii) there 
exist a neighborhood W (v) of z, 6p > 0 and K ~v) < oo such that 

A Z  f w 6~(x) >= ~ 6~(x) 

for all 0 <  Ilxll <3v and w e W  <p), and 

1 
K(V) IIxllP ~ ~ ( x )  ~ K(p) Ilxll ~ 

for all x + 0. Since the coefficients of L w are continuous functions of w there 
exists cR,p<oo such that L ~ O ~ ( x ) - A ~ ( p ) q S ~ ( x ) / 2 > - c R  p on the compact 
set 6p< I[xJl<R for all w s W  <p). (Here we may h-ave to replace W <p) by 
a smaller neighborhood which we write W <R'').) Then 

t A ~  R 

E .... ( ,~(x ~a qS;(x)+E ~'w ,v'v, t^,,~,, = ~ LWO;(Xs) ds  
0 

Therefore 

EX, ,~ 
t..~R 2K(,) ( t...R ) 

E x ,  ~ --z  I I[xsll'ds<~(~ (%(x,A~.)+ f CR,.lto,,~o)(x~)ds 
0 0 

2 K(,) 
< (K (v) R ;  + cR. p a~,, R (x)) 
= A ~ (p) 

and the result now follows from Corollary 5.8. [] 

6 Construction of pw for gw__> 0 

(6.1) Lemma. Assume H3(z)(i). There exists a neighborhood W of  z in N 
and 6 > 0 such that 

Lie ( Vd ~, V~ . . . . .  V~ w) (x) = R ~ 

whenever 0 <  [Ixfl <~5 and w~ W. 

Proof  The proof is based on that of [-BS, Lemma 4.4]. By assumption 
there exist ~>0  and linear mappings A(~), l < f l < M ,  each one obtained 
by a finite number of Lie bracket operations involving the linear mappings 
A~,.  .., At, such that 

M 

(A(%x, u5 2 >=~ jlxlF 2 
fl=l 
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whenever x, u ~ Z  a with x=~0 and LluH = 1. Let A(%, 1 __<//NM be linear map- 
pings obtained from the linear mappings AF, ..., A~ and let V(a~), 1 </? < M 
be vector fields obtained from the vector fields VOW,..., ~ using the same 
sequences of Lie bracket operations. Then with appropriate sign conven- 
tions for the two sorts of Lie brackets (namely on linear mappings and 

w _ w on vector fields), we obtain DV{a)(O)-A(e) for all w and /~. For the finite 
number of vector fields V{~') . . . .  , V(~u) there exists a neighborhood W of z 
and 6 > 0 such that 

II H < [Ixtl 

whenever 0 <  ]lxll <3,  w e W a n d  1 __</~<M. It follows that 

M 

u)2>0 
3 = 1  

whenever 0 <  Ikx[] <c~, HuH =1 and weW,, and we are done. [] 

Now we assume Hl(z), H2(z), H3(z) and 2z>0. Notice that H3(z) implies 
that AZ(p)~-O. Choose 3>0,  a neighborhood W of z in N, and K < o o ,  
k < l  so that the assertions of Lemma 4.9, Proposition 5.3 and Lemma 
6.1 are valid. Now fix Re(0, 3). Replacing W by a smaller neighborhood 
if necessary we may assume that with this value of R the assertion of 
H3(z)(iii) is valid for all weW. Finally we take re(0, ro] where r o is as 
in H3(z)(iii) so that r<Re  2K, and let W~ and Kr be as in Proposition 
3.4. 

For 0 < r < R < oo as above define random times inductively 

a o = i n f { t > 0 :  Ikxtl[ =r} 

a',=inf{t>a,: Hxtl ] =R} 

an+l=inf{t>=a'n: lLx,]l =r}.  

Propositions 3.4 and 5.3 imply that 

PX'W{a,<oo forall n > 0 } = l  

for all x + 0  and w e W n  W~ such that )~w>0. Consider the induced Markov 
chain {Z,: n>0} on S(0, r) given by Z , = x ~ .  It has transition probability 
HW(x, A)=px'w{xr for xeS(O, r), AeN(S(O, r)). The following lemma 
is based on [BS, Lemma 4.4]. 

(6.2) Lemma. Assume Hl(z), H2(z), H3(z) and 2~>__0. Let 0 < r < R < 6 ,  W 
and W~ satisfy the conditions above. Then for all weWc~ Vr with 2w>0 the 
M arkov chain { Z," n > 0} on S(0, r) has a unique invariant probability measure 
v ~, say, and flW(x, ") is equivalent to v w for all xeS(O, r) and Ae~(S(O, r)). 

Proof Let w ~ W n  Vr with 2w>0. The assertion will follow from standard 
Markov chain theory once we know that for each fixed AeN(S(O, r)) then 
(i) xw-,HW(x, A) is a continuous function on S(0, r); and 
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(ii) either IIW( ., A)=O or else HW(x, A)>0 for all xeS(O, r). 
This is because (i) and (ii) imply that {Z,: n > 0} satisfies Doeblin's condition, 
see for example [MT]. 

So fix AeM(S(O, r)) and define h: B'(0, R) ~ [0, 1] by 

h ( x ) = l -  ~ PY'W{x~r~A}P:"W{X~R~dY } . 
][yll =R 

Then L TM h = 0 and hls(o ,,) = I -HW( ., A). Lemma 6.1 implies that L w is hypoel- 
liptic on B'(0, R) so we obtain (i). Moreover if h(x) = 1 for some xeS(O, r) 
then the Stroock-Varadhan maximum principle [-SV] implies first that 
h(y)= 1 for some yeS(O, ro) (since W'w{Z~o < or}= 1) and then h (y )= l  for 
all y~S(0, ro) (using the assumption H3(z)(iii)). But hls(o,~o~=l implies 
h [s(o,~)- 1 for all re(0, ro] and we have (ii). [] 

We may now define for each w e W ~  Vr with 2w>0 a probability measure 
kt w on IR~\{0} as follows. For each Ae~(lRa\{0}) define 

(i  1 (6.3) ~W(A) = C TM ~ E x'w 1A(Xs) d dvW(x) 
S(O, v) 

where the normalizing constant C TM is given by 

(6.4) (CW) - 1 =  j" E x'w(al)dvw(x). 
S(O, r) 

This construction is due to Khasminskii [Kh2] and Maruyama and Tanaka 
[MT]. The proof of the fact that #w is the unique invariant probability 
measure for {x~: t >  0} on 1Re\{0} is given in these references. 

A similar construction can be made of the invariant measure for {x~': 
t>0} when 2w=0 except that in this c a s e  EX 'W( tT1)=oo  for all xeS(O, r) 
so that the normalizing constant C w in (6.3) is omitted and the resulting 
measure has infinite total mass, see [Ba3] for more details. 

We conclude this section with some of the estimates which we shall 
use in the proof of Theorem 2.13 in the next section. Throughout we con- 
tinue to assume Hl(z), H2(z), H3(z) and 2z>0, and 0 < r < R < 6 ,  W,, W~, 
K and Kr satisfy the conditions above. 

(6.5) Lemma. For all weWr~ W, with 2w>O 

1 [ l o g R - - 2 K l < - ( C W ) - l < f ~ w [ l o g R + 2 K ] + K , + f ( R ) .  
, )w = 

Proof. This is a combination of the estimates of Proposition 5.3 for the 
first half cycle 0-<t-<a~ and Proposition 3.4 for the second half cycle 
o-; <t<o-~. [] 

(6.6) Lemma. For all w e W  + n Wr with 2w>o 

g(x) d ~W (x) <= CW (Kr + f (g)) �9 
Ilxll > g  
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Proof This uses Propos i t ion  3.4. [ ]  

(6.7) Lemma.  Assume in addition that 2z=0 .  For all p > 0  there exists a 
neighborhood W (v) of z in N and a constant K (p) < oe such that for all 
W ~ W n  l/V~c~ W (v) with 2 w > 0  

Ilxl]P dFW(x)< CW(K(P) + RV(Kr + f (R))). 
Ilxll _-<g 

Proof Clearly there is no loss in generality in assuming p < 1. Dur ing  the 
first half  cycle we get a cont r ibut ion  at mos t  

Ilxll =r \ 0  

and we use Propos i t ion  5.9. Dur ing  the second half  cycle we get at mos t  
C w sup Ex'~(RP~r) and we use Propos i t ion  3.4. [ ]  

IIxN =R 

(6.8) Lemma.  Assume in addition that 2 ~ = O. For 0 < ~ < r < R < S < ~ write 
U,,s= {x~lRa: e< [Lx[[ <S}.  For each S t ( R ,  oo) 

2 #~(U~,s) 

= ~ o  [log~[ w ~  

1 #w(U~,s) 
< lim sup - -  lim sup 2w 
- ~ 0  ] loge[ ~-~ 

< 

where the lira inf and lim sup are taken as w tends to z through values where 
2w>0.  w . . . . .  

Proof  Observe that  for wEWc~ W~ with 2 w > 0  

c TM ~(u~,s) c 
2~ G ~ ( r ) <  2w < (G~ '~ ( r )+Kr+f (R) ) .  

The result now follows f rom Corol lary  5.8 and L e m m a  6.5. [ ]  

7 Proof s  o f  the t h e o r e m s  

Proof of  Theorem 2.8 It  suffices to choose  a ne ighborhood  W of z in N 
such that  the condit ions for Theorems 2.12, 2.13, 2.14 of [Ba3] are satisfied 
whenever w ~ W. 
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We note first that the condition that A ~ (p)> 0 for some p < 0 is automati-  
cally satisfied whenever 25<0. Let us fix such a p. Choose W so that the 
assertions of Hl(z), Lemma 4.9 and Lemma 5.1 are valid, and so that A~(p) 
> 0  whenever w~W. If  2 ~ = 0  we deduce immediately that VW>0. If ) J > 0  
then the convexity of A~( ' )  implies the existence of a unique 7(w)> 0 such 
that AW(-7(~)) =0.  

Let fi, K and k be as in Lemma 5.1. Choose r and R so that O < r < k R  
<k6 ,  and consider the neighborhood W~ as in Proposit ion 3.4. Clearly 
the assumption (2.3) of [Ba3] is satisfied for ws W. Combining Proposit ion 
3.4 and Lemma 5.1 (ii) we see that P~' w {r~ < oe } > 0 whenever 0 < ~ < r, lp x I[ > r 
and wE Wc~ W~, which implies condition (2.4) of [Ba3] for all we Wc~ W~. 

If U < 0  we are done at this point, see [Ba3, Thin 2.12]. If 2~>0 we 
continue to shrink our neighborhood by assuming that W is small enough 
so as to satisfy the requirements in the preamble to Lemma 6.2. Now Lem- 
mas 4.9 and 6.2 together with the assertions about  7 (~) and V TM above imply 
that the conditions of Remark  (6.4) of [Ba3] are satisfied whenever 
we W n  W~ satisfies 2 ~ > 0. [] 

Proof of  Theorem 2.12 It  follows from Lemmas 6.5 and 6.6, together with 
the continuity of w ~ 2 ~, that there exists R > 0  and a neighborhood W 
of z such that 

sup ~ g(x)d#W(x)< oe. 
w~W Irxll >=R 

The first assertion follows immediately by Markov 's  inequality. Now sup- 
pose that w , ~ z  and #~- converges weakly to a probabili ty measure v, 
say. It suffices to show that v = # L  Since the coefficients of the generator 
L TM depend continuously on w, and since each #~- is invariant for the corre- 
sponding diffusion process, it follows easily that ~ L ~ q5 d v = 0 for all C 2 func- 
tions q5: ]Ra ~ R with compact  support. Therefore v is an invariant probabil-  
ity measure for the process {x~: t =>0} on ~d. If 2 5=0  we are done since 
#~= 6 (0) is the unique such measure. However  if 2~> 0 there are two possibil- 
ities, n a m e l y / F  and 6(0). In this case choose p < 0  such that A~(p)<0. We 
take W, c5, R and r as in Sect. 6 except that in addition we wish the conclusion 
of Proposit ion 4.13 (ii) with e a = - A ~ ( p ) / 2  to be valid, and also we choose 
W sufficiently small that 2 ~ is bounded away from 0 and ~ on W. Then 
for w ~ W and e < r we obtain 

~ s) #'~(B(O, e))<_C~'( sup E ~'w ~ l(o,~)(llxsll)d 
- -  \[Ixll =" o 

< C  w sup PX'W{~<rR} sup EY'w(~R) 
Ilxll =r [lyll =~ 

e v 1 R 

where the upper bound on px, w {z~ < zR} follows directly from the fact that 
q~z-;(xt^~) is a px, w supermartingale together with the bounds on ~b-~. It 
follows from Lemma 6.5 that v({0})=0 so that v=/~ z and we are done. []  



A stochastic Hopf bifurcation 609 

Proof of Theorem 2.I3 Notice first that the simultaneous vanishing 2z=0 
= V  z would imply that A~(p)-O and hence that A~, A~, . . . ,A  z can be 
simultaneously conjugated into skew-symmetric matrices; this would con- 
tradict H3(z) (see [-Bal, Thin 3.1] and [AOP, Thm 3.2]). We choose the 
neighborhood W and constants 6, K, R and r as in Sect. 6. Lemma 4.9 
gives assertion (i) immediately. We now commence the proof of assertion 
(ii). For  0 < p < l  choose a continuous function h: Ra\{0} ~(0,  Go) so that 
h(x)= I[xl[ v for 0<[Ixl l<R,  h(x)=g(x) for []x][>l and h(x)<g(x) for all 
x~lRa\{0}. Here g is the function in assumption Hi(z). Let {w,: n >  1} be 
any sequence converging to z through W +. For convenience of notation 
we write (1/2 TM) #w. = #.. 

(7.1) Lemma. There exists a a-finite measure 7, say, on the Borel sets of 
lRd\{O} and a subsequence {nk: k >  1} such that 

~a\{o} ~a\(o} 

as k ~ o o  for all continuous qS:Nd\{0}~lR satisfying 4)(x)/h(x)~O as 
Ilx[I ~ 0  and as Ilxll ~ o0. 

Proof We may assume w,~W + ~ W ~ W  (p) for all n > l .  By Lemmas 6.5, 
6.6 and 6.7 we obtain 

hd#,< 
~a\{o} 

[K(p) + (1 + RV)(K~ + f  (R)] 

= K1 ,  say.  

Define M to be the one-point compactification of IRa\{0}, so that M =  
(lRa\{0})w{.}, say, and let N(M) denote the space of Borel probability 
measures on  M with the weak topology. Define fi, e~ (M)  by 

if Ae~(IRd\{0}), and 

1 
f i , ({*})=1-~11 S hd#,.  

~a\{o} 

Since M is a compact metrizable space, then so is ~ (M)  and so there 
exists ~ ( M )  and a subsequence {rig: k__>l} such that fi,k--*~7 weakly in 
N(M) as k --+ oo. Now define the a-finite Borel measure ~ on Ra\{0} by 

~ ( A ) = K  1 ~ (1/h)d~. 
A 
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If 0 is as in the statement of the lemma, then ~/h has a unique extension 
to a continuous function ~, say, on M with ~(*)= 0. Then 

IRa\{O} M 

f 
M 

= ~ ~bd7 
Rd\{0} 

as required. [] 

(7.2) Lemma. Let 7 be as in Lemma 7.1. Then 7=ft. 

Proof. Observe first that 7 is an invariant measure for LL This follows as 
in the proof of Theorem 2.12 above, except now we test on C 2 functions 
with compact support in ]Rd\{0}. Therefore by Theorem 2.8(iii) 7 is unique 
up to a multiplicative constant. In order to complete the proof it suffices 
to show that for any sufficiently large S 

(7.3) ?(U~,s) 2 * - -  as g~O.  
]loge] V ~ 

Now if 3 < S~ < S < $2 then 

lira sup #..(U~/2,&)<=7(U~,s ) ~l im inf/~.~(U2~,s~). 
k ~ c o  k ~ o o  

It follows from Lemma 6.8 that 

2 log - 4 K  log 4K 
; ' ( G , s )  < 2 r 

(7.4) VZ ~ < l i m  ~og ]" = ~ o  Ilogel = V z R _ 2  K 
r 

The existence of the limit in the central term of (7.4) is guaranteed by 
Theorem 2.8 (iii). Now the invariant probability measures/~'~ are unchanged 
if we replace r by some smaller positive value (even though the size of 
the neighborhood VV~ used in Lemmas 6.5 through 6.7 may change with 
r). In particular the measure 7 obtained as a limit in Lemma 7.1 does 
not depend on the particular choice of r. As a result we may let r ~ 0  
in (7.4), thus obtaining (7.3), and we are done. [] 

We have done the hard work now and can quickly complete the proof 
of assertion (ii). The fact that the limit y in Lemma 7.1 is unique implies 
that for any sequence {w~: n >  1} converging to z through W + we have 

1 
f 

Ra\{o} lRa\{0} 

as n ~  oo for all continuous ~b:IRa\{0}--.lR satisfying O(x)/h(x)~O as 
[]x]j ~ 0  and as ]Jxll ~ oo. Since this result holds for all pe(0, 1] and since 
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obviously fi does not depend on the value of p then we obtain the assertion 
(ii) of Theorem 2.12. 

Finally we prove assertion (iii). Since 2==0 and Vz>O then A~(p)>0 
for all p=l=0. For  any e > 0  we have A ~ ( - ~ ) > 0  so by Lemma 4.9 there 
is a neighborhood U say of z in which A '~ ( -e )>0 .  For  w e W  + c~U we 
also have 2w> 0 so that there must exist 7 ~w)~(0, ~) such that AW(-7 (~)) = 0, 
and we are done. []  

8 Examples 

(8.1) Example. Stochastic pitchfork bifurcation. Consider the It6 stochastic 
differential equation on N given by 

(8.2) d x , = ( a x t - b x ~ )  dt +axtdW,  

where a e N ,  b > 0  and o.>0. (The law of the process is unchanged if we 
replace o. by - o .  so there is no loss in generality in assuming o'>0.) In 
Stratonovich form we have 

d x t = ( ( a - l  o. 2) x t - b x  3) dt + oxtodW,. 

This is equation is also studied by Arnold and Boxler [AB2]. The linearized 
system is 

dv t=(a- �89  a2) v~d t + ~vt odWt 

which has solution 

v~=vo exp {(a- �89 a 2) t+aWt}.  

We obtain )~=2(~'b'~)=a-a2/2 and A(p)=A("'b'~)=(a-a2/2)p+o.2p2/2. 
For  any (a, b, a) with b > 0 and ~r > 0, we may easily check that the conditions 
Hl(a ,  b, o-), H2(a, b, ~), H3(a, b, a) are satisfied. In Hl(a ,  b, a) we may take 
f ( x )  = g(x) -- exp {Ax z } for any A < b/a 2. 

In this one dimensional example we can explicitly solve the stationary 
Fokker-Planck equation to find the density p = p(a' b, ~) of the invariant mea- 
sure p = #(~' b, ~) on (0, oo) whenever )~ > 0. We obtain 

(8.3) p (x) = Cx 2a/~- 2 exp { - b x2/~ 2} 

for some constant C. Notice that p~I2(O, o0) if and only if 2 a / a 2 - 2 >  - 1  
which happens if and only if 2 > 0 ;  in this case C = C  ("'b'~) can be chosen 
so that p is the density of a probability measure. Moreover if 2 >0 ,  for 
any r > 0 we have 

C exp { - b r2/a 2} r2,/~2_ r 2 , /~ -  1 
2 a / a 2  1 1 =<p(0, r )<  C = 2 a/ff 2 - 1 
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and A ( l - 2 a / 0 " 2 ) = O ,  verifying (2.10). Now suppose (a, b, o-)--.(& b, 3) with 
6 >  0, 6 =~ 0 and c i -  62/2 = 0, through values where a -  a2/2 > 0. Then 
C = C ("' b. ~1 satisfies 

c(a, b, ~) 

2 a/a 2 -- 1 

and we obtain 

1 c(a, b, a) 
x2,/~2 _ 2 exp { - b 3(,2/0 -2 } ~(a ,  b, a) / O(a' b, a ) ( X )  = a - -  0"2/2 

2 1 exp { - bx2/62} 
~ - x  

It is easy to check that the limit is the density of an invariant measure 
for the process with parameters (d, b-, 6), and that 

2 lim 1 2 _1 e x p { _ ~ x Z / 6 2 } d x = 6 2 ,  J x  

thus verifying Theorem 2.12(ii). Notice that in this case we obtain a stronger 
form of convergence, namely convergence of densities rather than the partic- 
ular version of weak convergence given in the Theorem. 

(8.4) Example. Stochastic Hopf  bifurcation. Consider the It6 stochastic dif- 
ferential equation on ]It 2 given by 

(8.5) d x, = [ - Yt + (a - b (x{ + y{)) xt] d t + a xt d Wt 

d Yt = [xt + (a - b (xZ~ + y2)) y~] d t + a Yt d Wt 

with parameters aEN, b > 0  and a > 0 .  Notice that if the noise intensity 
a is zero then the equations reduce to a normal form of the (deterministic) 
Hopf  bifurcation, see for example Guckenheimer and Holmes [GH].  If 
o-= 0 and a < 0 then (0, 0) is an attracting fixed point, while if a = 0 and 

a > 0  then (0, 0) is a repelling fixed point and the circle of radius a ~  
is an attracting limit cycle. To study the stochastic version with cr > 0 we 
pass to polar coordinates (r, 0) and obtain by It6's formula 

(8.6) d r ~ = ( a r t -  br3t ) d t + ar tdWt  

dOt=dr.  

The fact that there is rotational symmetry in the system (8.5) causes the 
equations (8.6) to be uncoupled, and this in turn allows us to do explicit 
calculations here. The equation for rt in (8.6) is the same as equation (8.2) 
for x~ in example 8.1, and we may use the computations above. The Lyapun- 
ov exponent and Lyapunov moment function are given by the same formu- 
lae as in Example 8.1. The bifurcation occurs when a=a2/2 .  (This shift 
in the bifurcation point is a typical phenomenon when noise is added to 
a deterministic system). When a - 0 - 2 / 2 > 0  the process {(x, y~): t__>0} has 
an 'attracting'  invariant probability measure It=l~(~176 on 1R2\{(0,0)} 
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which has density p(x, y)= p("'b'~)(x, y) with respect to Lebesgue measure 
given by 

C 2 2"a/o "2 p ( x , y ) = ~ ( x  +y ) -3/2exp{-b(x2+yZ)/a 2} 

where C=C ("'b'") is the same constant as in (8.3). Notice that /~ does not 
look like some blurry version of the deterministic limit cycle x2+y 2 
--constant; at this point similarities with the deterministic scenario break 
down. 

(8.6) Example. The noisy non-linear harmonic oscillator. Consider the fol- 
lowing equation for a non-linear harmonic oscillator with a parametric 
white noise excitation. 

(8.7) Yt+ 2a2~+(1 + bx 2 + al;V~) xt=O. 

This equation is studied by Wedig [Wed], where it is used to model the 
amplitude of the first mode of vibration of a flexible beam under axial 
excitations. The constants a~lR, b > 0, and a__> 0 represent respectively exter- 
nal viscous damping, the cubic rigidity of the beam, and the intensity of 
the white noise excitation. See also Ariaratnam and Xie [AX]. We rewrite 
(8.7) as the two dimensional stochastic differential equation 

(8.8) dxt = ytdt 

d y t = ( -  xt-bx3t -2ayt)  d t -ax tdWt .  

Note that for this equation the It6 and Stratonovich versions coincide. 
Before studying the stochastic case let us consider briefly the determinis- 

tic case a = 0 .  If a = 0  the system is conservative with closed orbits x2+ 
bx4/2+y2=constant. If a > 0  then (0, 0) is an attracting fixed point with 
]R 2 as its basin of attraction, while if a < 0 then (0, 0) is a repelling fixed 
point and all orbits go to infinity. (These statements can all be easily verified 
using the Lyapunov function x2+ b x4/2 + yZ.) Notice that in the determinis- 
tic setting there is no qualitative difference between the cases b =0  and 
b > 0. This fact will change in the stochastic setting. 

Now we consider the case a > 0. The linearized version of (8.8) is obtained 
by simply setting b = 0. This linear stochastic differential equation was stud- 
ied by Kozin and Prodromou [KP], who obtained conditions (involving 
numerical integration) which characterize the regions in (a, a) space where 
the Lyapunov exponent 2 is positive or negative. In particular they show 
that if o->0 and a < 0  then 2>0.  Notice that, for the linearized system, 
as soon as 2 > 0  all trajectories go to infinity exponentially fast (almost- 
surely) so there is no invariant probability for the linearized system on 
IR2\{(0, 0)}. It is at this point that the strict positivity of b becomes impor- 
tant. 

Henceforth we restrict to the region in parameter space where a >0, b > 0  
and a > 0 .  We check the conditions Hl(a,  b, a), H2(a, b, a), H3(a, b, a). It 
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is easy to verify H 1 (a, b, a) with functions f and g each of the form A x 4 +  B y  2 
and 

f(~, r,, ~ (x ,  y) = x 2 + ~x4 /2  + y2 + ~x  y 

where ~=min{2 ,  8} for (c~, b, ~) near (a, b, o-). With somewhat  more work 
it can be shown that  we may  also take 

f(~' b' ~)(x, y) = exp {/~ ~ 2 +  ~'x 4 + y2 + ax y} 

for sufficiently small /~ > 0, and then f and g can be taken to be of the 
form e x p { f l ~ }  (with possibly a different //). This extra work can 
be justified in view of the information it gives us about  the integrability 
properties of the measure #("' b, ~). The validity of H2 (a, b, o-) follows easily 
from the support  theorem for diffusion processes. The linearized system 
may  be written 

so that  

O1 --12a] and a 
0]~ 

Thus H3(a, b, o-)(i) is satisfied al though the stronger condit ion H4(a, b, o-) 
fails in this example. If we parametrize S ~ ={(coss,  sins): s~ l t}  then we 
obtain 

d ~ d 
~co~o b, ~)(s) = ( - 1 - 2 a cos s sin s) d~s and A(1 ~, b, ~)(s) = ( -  a cos 2 s) dss" 

The condit ion H3(a, b, a)(ii) can now be verified. Condit ion H3(a, b, o-)(iii) 
is easily checked using elementary phase portrai t  sketching techniques. 

Therefore we may  apply the Theorems 2.8, 2.12 and 2.14 to the Eq. (8.8) 
whenever the parameters satisfy a >0 ,  b > 0 and o->0. Let us observe just 
one of the consequences. Fix parameters (ci, b, 6) so that  2 (a'~'~) = 0  and 
suppose that  (a, b, a) converges to (d, b, 6) through the region where 2 ("' b, ~) 
> 0. Corresponding to (a, b, ~) the process {(xt, y,): t > 0} is positive recur- 
rent on IR2\{(0, 0)} with invariant probability/~(0' ~' ~). Theorem 2.12 implies 
that  for any polynomial  function 4): 1lt 2 ~ IR satisfying 4) (0, 0) -- 0 we have 

~. ,b ,  ~ ~ 4) (x, y) d d  ~ ~ --, ~ 4)(x, y) d f~(x, y) 

as (a, b, o-) converges to (ci, b-, 6), for some a-finite measure fi, and the right 
side is finite. In particular for any p > 0  the mean pth power ampli tude 
E(a,b,~)(X2 + y2)p/2 for the stat ionary version of the process with parameters 
(a, b, o-) satisfies 

E(a, b, ~)(x~ + y2)p/2 ~ )c(a, b, ,r) Cp 
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as (a, b, a) converges to (ci, b, #) where the finite positive constants Cp depend 
only on p and the law of the Eq. (8.8) at parameter values (& b, 6). This 
gives a theoretical explanation of part of the simulation results shown in 
[Wed, Fig. 2]. 
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