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Summary. Let W(t) be a Wiener process. The lira inf behavior of the L2-norm of 
W(t) on the interval [ T - -  a(T), T] and of [ W(t + OT) - W(t)J on the interval 
[aT, f iT] is given under suitable conditions. 

1 Introduction 

Let { W(t), t > 0} be a standard Wiener process. There are various types of limiting 
results for W(t)  and its increments. For  an account on the subject and references, 
see, for example, Grill [9] for the increments of W(t), Li [13] for W(t) itself. 

In this paper, we consider the lim inf of the Wiener process and its increments 
on certain intervals under the Lz-norm. On the interval [0, T],  Donsker and 
Varadhan [-7] showed by using their functional law of iterated logarithm for local 
times that 

log log T ~ 1 
lim T 2 a m2( t )  dt = ~ a.s. (1.1) 

T--+ oo 0 

What happens on the interval [ T - a(T), T]  for a(T)  > 0? We have the following 
results. 

Theorem 1 Let a( T) satisfy the conditions 
O) 0 < a(T)  <= T, a (T)  is a non-decreasing function of T, for 0 < T < oo ; 

(ii) a ( T ) / T  is non-increasing as T-+ oo ; or 
(ii)' l imr- ,ooa(T) /T= p, 0 < p N 1. 

Iflimr-~oo log(T/a(T)) . ( log log T) -1 = oo, then 

lim log(T/a(T))  T 1 
r-+~o a2(T) r-a(r)S W2(t) dt = a.s.. (1.2) 
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I f  limT-+oo l o g ( T / a ( T ) ) ' ( l o g l o g  T) -1 < ~ and l i m T ~  a ( y T ) / a ( T )  < oo for 
some y > 1, then 

r 1 
lim qS(T) ~ W2(t) dt= ~ a.s. (1.3) 

T ~ o o  T - a ( T )  

where 

c~( T) = (log( T/a( T)) + 2 loglog T)/a2(  T) . 

To illustrate what Theorem 1 tells us, we give here the following examples. 

Example  1. For  x > 0, let a(T)  = (1 + x) -1 T, then (1.3) tells us by the change of 
variable that 

lim log log T (x+l)T 1 T2 ~ W2(t) d t =  g a.s..  (1.4) 
T ~ c o  x T  

I f x  = 0, (1.4) becomes (1.1). It is somewhat  strange that (1.4) is true no mat ter  what 
x > 0 is. One might expect (1.4) has something to do with the zeros of W(t).  In fact, 
for almost all cocO, there exist Tk(co) such that 

W(xTk(co)) = 0 k = 1,  2 , . . . ,  lim Tk(co) = Go . 

Hence we can see in a very rough sense (we use - ), for ~ ( T )  = T - 2  log log T, 

(x+ 1)T (x+ 1)Tk(o) 

lim O(T)  ~ W 2 ( t ) d t  ~ - lim ~(Tk(co)) ~ W 2 ( t ) d t  
T ~ oo x T  k--+ co XTk(O3) 

Tk(o)) 1 

~- lim 0(Tk(co)) ~ W2(t )  d t~-  - .  
k ~ m  0 8 

The problem, however, is to make this precise. 

Example  2. Let a l ( T )  = c, a2(T) = cx / log  T, a3(T)  = c T  ~ where 0 < c~ < 1 and 
c > 0 is a constant.  Then (1.2) says that  

T C 2 

lim l o g T  ~ W 2 ( t ) d t = ~ -  
T--* m T - c  

a . s .  , 

T C 2 

lim ~ _ _  W2(t) dt = ~- a.s. ; 
T - * ~  T - c . , / l o g T  

lim log T r c 2 
T2 ~ ~ W2(t) d t - 4 ( l _ ~ )  

T ~ o o  T - c T  ~ 

a . s ,  . 
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Hence we see from (1.2) that a (T)  = c 1 ~  T is the critical function, i.e. under our 
conditions (i) and (ii), 

T 

lim S 
T ~  T - - a ( T )  f! W2(t )d t  = 2 

a.s. i f l i m  a ( T ) / l x ~ T = O  

a.s. i f l i m  a ( T ) / l ~ T = c  
T---~ ~ 

a.s. i f l im  a( T)/  lx~ T =  a~ . 
T--*~ 

Now we turn to the lim inf of the increments ]W(t  + OT) - W(t)[ on the interval 
[aT, fiT] under the L2-norm. 

T h e o r e m  2 I f  0 >/3 - a > 0 and a > 0, then 

lim log log T]P5 = .  T ~  [W(t + OT) - -  W(t)[ 2 dt (/3 - a)2 
T ~  ~T 4 

a.s. (1.5) 

I f  O < 0 < / 3 -  a and a > O, then 

0 2 log log T ~  " 
- -  < l i m  T~ j I W( t  + OT) - W ( t ) [  2 d t  < 
4 T ~ o o  c~T 

(/3 - a ) ( /3  + 0 ) ~  2 
a.s. (1.6) 

An interesting thing about Theorem 2 is that as long as 0 >/3  - a > 0, the limiting 
constant does not depend on 0 which is not intuitively clear. For  the case 
/3 - a > 0 > 0 in Theorem 2, our proof  for (1.5) will work in principle. However, 
due to the complexity of an eigenvalue computation, we could not obtain the 
desired small deviation estimates and hence the exact constant. The difficulties 
come in because when we consider 

fiT 

~T 

I w ( t  + OT) - W(t)l  2 a t  

for/3 - a > 0 > 0, both t + OT and t can lie inside the interval [aT, fiT] and, as 
a result, the computations become too involved. We also remark that the lira sup 
results similar to Theorem 1 and Theorem 2 are given in Li [12]. 

We list some necessary lemmas in Sect. 2. Our Lemma 13, Lemma 14 and 
Lemma 18 provide the necessary lower tail estimates that are new and 
can be viewed as an application of the comparison results given in Li [11] 
(see Lemma 1 and Lemma 2 in this paper). Our Lemma 10 and Lemma 16 
are the useful probability inequalities for the Wiener process, which have 
independent interest and are also true for the sup-norm, Lp-norm and some other 
norms. We give the proof of Theorem 1 in Sect. 3 and the proof  of Theorem 2 
in Sect. 4. 

Now we need some notation for the next three sections. Let e stand for a small 
positive number  given arbitrarily, and C denote various positive constants inde- 
pendent of k and n, whose values might change from line to line. f ( e )  ~ g(e) as 
e ~ 0 means l im~o f ( e ) /g ( e )  = 1. 
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2 Lemmas 

Let ~ll, n > 1 be independent and normally distributed with mean zero and 
variance 1. Lemma 1 and Lemma 2 below are the comparison theorems in Li [11]. 

L e m m a l  Let  all > O, ~ , >  l all < ~ and b, > O, ~,.>> l bll < ~ .  
I f~ll>=l I 1 -all~bill  < ~ . t h e n  

n > l  / \ n > - - i  

Lemma 2 For positive integer N and ~ .  > ~ an < oo , all > O, we have 

P a l l ~ 2 < e  ~ 2all zN(N-1)/ZP a n ~ 2 ~ g  as g-+O 
n _  1 \ n = l  n 

where zN = zN(e) , for  e > 0 small enough, satisfies the equation 

all 

e = 1 + 2anZN n= 

The following lemma was first given by Anderson and Darling [1]. 

Lemma 3 Let  {B(t): 0 < t _< 1} be a Brownian bridge. Then as e ~ O, 

P B 2 ( t ) d t < e  = P  ~ 2 < e  ~ 'exp - . 
0 n 1 

The lemma below was given by Cameron and Martin [3]. 

Lemma 4 A s  e --* O, 

(i ) ' P w Z ( t )  d t < e  = P  ~ 2 ( n _ 1 / 2 )  2 
n 1 

Lemma 5 For al > O, we have as e ~ 0 

P a l ~  + n>lE ~ ~2+1 ~8 ~ a l g  e 'exp ~ , 

P II 1 ~2(n --k 1/2) 2 ~2 ~ ~ ~ 4~-3 /2 'x~  exp 1 

Proof. By Lemma 2 and Lemma 3, we see that as e ~ 0 

P al ~ + ~nTn 2 42+1 < e 
7 1 = 1  

2 .z_l/2.exp ( 1 )  - 

exp( ) 

(2.1) 

(2.2) 

(2.3) 
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where z = z(e), for 5 > 0 small enough, satisfies 

5 =  >~1= rc2n 2 + 2 . c - 2 x / / ~  l _ e x p ( _ 2 x / ~ )  . (2.4) 

The last equality above can be found in Gradsh teyn  and Ryzhik [8]. Hence we 
obtain (2.1) by substituting ~-1/2 ~ 2x//~. 5 as e ~ 0 from (2.4) into (2.3). 
Similarly, by Lemma  2 and Lemma 4, we have that  as e -~ 0 

p ~ 2 ( n + 1 / 2 )  2 { 2 < 5  = P  - = (2.5) 
n 1 n 2 ZC2( n 1/2) 2 ~Z < e 

? 1 ) 
2 .71/2. p rcz( n 1/2) 2 ~2 < 5 

n = l  

(1) 8~-3/2.(2~)l/2-71/2"exp - ~ , 

where 7 = 7(5), for 5 > 0 small enough, satisfies the equat ion 

1 4 1 4 
5 =  

,>2-"2 rc2( n - 1/2) 2 +  27 = ,~1  rc2nZ + 87 n>~al 7~2n2 + 27 7~2 + 87" 
= = = 

Hence by using the identity in (2.4), we have 71 /2  ~ (2w/25)- 1 as 5 ~ 0. Therefore 

we obtain (2.2) by substituting 71/2~ (2x/~e) -1 into (2.5). This finishes the 
proof. 

By the Karhunen-Lo6ve  expansion, we have the following lemma. The detailed 
calculations can be found in Li [12] and are similar to the calculation in our  
Lemm a  18. 

L e m m a 6  For any b > a >= O and s > O 

P ( ! W 2 ( t ) d t < = s ) = P ( ~  2n(a'b)~z"<=s 1 

where 2,(a, b) is the n th solution of the equation in deereasin9 order 

b - a  
a ' s i n b - a  x f ~ . c o s - - .  

N o w  we list some of the properties of 2,(a, b) defined in (2.6). 

Lem ma  7 Let 2,(a, b) (n > 1) be defined as in (2.6) and b > a > d > O. Then 

( b - a )  2 ( n - 1 / 2 ) - 2 ~  - 2 < 2 . ( a , b ) < ( b - a ) z ( n - 1 ) - 2 z c  -2 for n>=2; 

a(b - a) < 21(a, b) < (b 2 - a2)/2 ; 

2,(a - d, b - d) < 2,(a, b) < a2(a - d) -22 , ( a  - d, b - d) . 

(2,(a, b)) -1/2 = (b - a ) - l (n  - 1)~ + O(1/n). 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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Proof  Let p, =(2 , (a ,b ) )  -1/2. Then t a n ( b - a ) p , = ( a p , )  -1. It is easy to see 
by looking at the graph of the function t a n x  and (ax)-  ~ that  
(n - 1)re < (b - a)p, < (n - 1/2)1c for n > 1. This gives (2.7). 

By using the inequality tan x > x on (0, ~/2), we have 

(ap~) -1 = t a n ( b -  a)pl > ( b -  a)p~ 

which gives our  lower bound  in (2.8). Turn  to the upper bound  in (2.8). We need to 

show P I > ( 2 / ( b 2 - a 2 ) )  1/2. If ( b - a ) p l > x f 2 ,  then PI > x f 2 / ( b - a ) >  

(2/(b 2 -  a2)) 1/2. If  ( b -  a)px < ~ ,  then by using the inequality tan x < 2x/  

(2 - x 2) on (0, xf2), we have 

(apl) -1 = tan(b - a)pl < 2(b - a)pl / (2  - (b - a)2p 2) 

which is Pl > (2/( b2 - a2)) 1/2. Hence (2.8) holds. 
For  (2.9), it is easy to see it holds by the lower half of (2.7) when d = a. Let 

p', = ()o,(a - d, b - d))-1/2 and a > d > 0. Then 

p', tan(b - a)p', = (a - d) -  1 > a -  1 = p, tan (b a)pn. 

Hence p', > p, which is the lower half of (2.9). The upper half follows from 

(p',(a - d)) -1 = tan(b - a)p'n > tan(b - a)p, = (p ,a)  -1 . 

N o w  turn to (2.10). By the inequality tan x > x on (0, n/2), we have 

(aTc(n - 1)) -1 > (ap,) -1 = tan(b - a)p~ 

= tan((b - a)p, - (n - 1)To) > (b - a)p, - (n - 1)rE > 0 

which gives (2.10). Thus we finish the proof. 
Our  next lemma is a part icular case of Theorem 2.1 of Hoffmann-Jorgensen et al. 

[10] which is a well known  fact about  the measure of  the translated bali. 

L e m m a 8  For any b > a > O, e > O and x e R 

P W ( t ) + x )  2 d t < = e  <=P WZ(t )  d t < e  

L e m m a 9  For any b > a > d > O, s > O and x ~ R  

P (  W 2 ( t ) d t < s l W ( d ) = x  < P  WZ(t) dt<=s 
\ a \ a - - d  

Proof  By using Lemma 8 and the fact that  the Wiener process has independent  
and stat ionary increments, we have 

P ( !  W Z ( t ) d t < = s , W ( d ) =  x )  

= P ( ! ( W ( t ) -  W ( d ) + x )  2 dt<=s, W ( d ) =  x )  
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= P ( W ( t )  - W(d)  + x) 2 dt <= s 

(7 ) = P ( W ( t )  + x) 2 dt =< s 
a d 

=< P W2(t)dt =< s 
\ a - d  

where the second equality is by the vector form of Corollary 4.38 in Breiman [2]. 

L e m m a l 0  For any b > a >_ d >_ O and s > O 

P W2(t) de < s < P W2(t) dt < s < a 1/2 \ a - d  = --- \ a  -- d]  P W2(t) dt <= s . 

In particular, i f  d = a, 

P W2( t )  dt<__s <=P 0 W2( t )  dt<-_s = P  0 W2( t )  d e < ( b  a) 2 " 

Proof. The first part can be easily seen by integrating the inequality in Lemma 9. 
For  the other part, we have by the basic properties of the Wiener process 

P W2( t )  dt  < s 
\ a - d  

) = P ( W ( t ) + x ) 2 d t < = s  d P ( W ( a - d ) < x )  
- o o  

(7 ) < P ( W ( t ) + x )  2 d t < s  d P ( W ( a ) < x )  
- o o  - -  

\ ~ d -  d ]  P W2(t) dt =< s 

where the first equality is by similar argument as those in the proof of Lemma 9 and 
the last equality follows from the first equality backward. 

Lemma l l  Let  an > 0 and ~,>= 1 an < oo. Then for  any s > O, 

n > 2  n 2 

Proof. By conditioning on {41 = x}, we have 

P al~ 2 +  ~ an~ 2 < s  = P al + anon < s  
n>--2 a l .x2<=s n >  2 

n > 2  < s  \ n > 2  
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Lemma 12 Let a, > 0 and ~n~  1 a, < oo. Then for any s > 0 and 0 < 6 < 1, 

n > 2  

>= (2n-1)l/2"(c~sa[a) 1/2"exp -- ~c~sa~ "P <= (1 -- 6)s . 
i1 

Proof By conditioning on {~l = x} as we did in the proof of Lemma 11 and 
restricting al x 2 <= 6s, we have 

P (  al ~ + Y', a . ~  < s )  
n>=2  

a t x  2 < as  n = 2 

a l x  2 --< ~S n ~ 2 

> (2n- t ) l / z . (6sa[1)x /2 .exp  --~gJsa~ t -P an~ 2 < (1 -- 6)s . 
n 2 

Lemma 13 I f  s/(b - a) 2 small enough, then 

( !  ) ( 1 ( b - a ) 2 )  
P W2(t) dt <_- s =< K2"((b - a)/a)t/2"exp 8 s ' 

where K2 > 0 is a constant independent of a, b and s. 

Proof By using Lemma 6, Lemma 7, Lemma 11 and Lemma 5, we have 

(! ) ) P W2(t) dt<=s = P  2.(a,b)~ 2 < s  
n 1 

- - a )  y 2  < S  
< P a ( b -  a)~2a + ( n -  1/2)an 2~" = 

n =  2 

<= (s/a(b - a)) 1/2" P (n + = (b -a)  2 
n l 

( 1 ( b - a )  2 ) 
K 2 .((b - a ) / a )  1 / 2 "  exp 8 s " 

Lemma 14 I f  s/(b - a) 2 small enough, then for 0 < 6 < 1 

P W2(t) d t <  s >= KI" ( 6 s / ( b  2 - a2))UZ'exp 8 (1 -- 6)s/t 

where K1 > 0 is a constant independent of a, b, (5 and s. 
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Proof By using Lemmas 6 and 7, Lemma 12 and Lemma 3, we have 

(! ) (~ ) P W2(t) dt = s = P 2,(a, b ) ~  <= s 
n 1 

p f  b 2 - a2~2 ( b - a )  2 ~2 < s~ 
_-> \ - 5 - - , 1  + ~ (n_ 1)2~2r176 : / 

__> (2re- 1)1/2. (26s/ (b 2 _ a;))x/2, exp(_  6s / ( b 2 _ a2)) 

. _ 1  = (b a) 2 J 

> Kl"(6s/(b 2 -  a2))l/2"exp 8 (1 5)s /"  

The following is a well known version of the Borel-Cantelli lemma. 

Lemma 15 I f  Ak are events such that ~k  >= x P(Ak) = oQ and 

i ~ P(AkA,) 
lim k=ll=i =< 1 , 

"-+~ ~ ~ P(Ak)P(A1) 
k = l / = l  

then P(Ak i.o.) = 1. 

Lemma16  For any b' > a' > b > a > O and s' > O, s > O, we have 

(! ) (~; ) =<P W2(t) dt=<s 'P  W2(t) dt=<s' 
\ a ' - b  

~a ~ (! ) (i ) <\a--TZ~_b/ 'P  W2(t) dt<=s "P W2(t) dt<__s' . 

Proof By Lemma 9, Lemma 10 and the basic properties of the Wiener process, we 
have 

P (  iW2( t )d t<=s ' iW2( t )d t<=s ' )a  ,, 

= P W2(t)dt<=s, W2( t )d t<=s ' [W(b)=x  d P ( W ( b ) < x )  
- o o  a '  

= P W2(t) d t < = s [ W ( b ) = x  "P wg( t )d t<=s ' lW(b)=x dP(W(b)<x)  
- o r )  
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< P W2(t) d t < s I W ( b ) = x  "P ~ W 2 ( t ) d t < s  ' d P ( W ( b ) < x )  
--co a ' - b  

(! ) cv ) = P  W2(t) d t < s  "P W Z ( t ) d t < s '  
\ a ' - b  

<\a-7~_bj  "P W2(t) t<=s .P Wa(t)dt<=s ' . 

where the second equation is the fact that the past and the future are conditionally 
independent given the present (see Theorem 9.2.4 in Chung [5]). 

Lemma 17 Let fl > 1 and M > 1. I f  k 1-~ < 1~2for k > ko, then 

Mk dx 
sup ~ < (M - 1 )  1 / 2  

k>-ko k + l  ( x ~  - -  1 - -  k B ) l / 2 " X  1 - ~ / 2  = 

Proof. Observing (k/x) ~ < k/x and x -~ < 1/(2x) for x > k > ko, we have 

Mk dx 
sup 

k>=ko k + l  ( Xfl  - -  1 - k ~ ) l / 2 " x  1 - ~ / 2  

Mk dx 
1" 

s u p  +J (1 - x - ~  - ( k / x y )  1/2 . x  k>_kok 1 

uk dx 
<= s u p  

J (1 - 1/(2x) - k/x) a/2"x k > k o  k + l  

1 Mk dx 

sup k~ ~ "  ~ ( x - k -  1/2) 1/2 
k > k o  k + l  

< (M - 1) 1/2 . 

as ~ 0  

The following two lemmas are basic for the 

Lemma 18 I f  a > 1, then 

P [ W ( t + a ) -  W( t )12d t<e  ~ K ( a ) . e . e x p  - ~  
o 

where K(a) is a positive constant. 

proof of our Theorem 2. 

Proof. Let X(t )  = W(t + a ) -  W(t), t > 0 and a > 1. Then {X(t): 0 _< t _< 1} is 
a Gaussian process with mean zero and covariance function 

r ( s , t ) = E X ( s ) X ( t ) = m a x ( 0 ,  a - [ s - t [ )  for s , t ~ [ 0 , 1 ] .  

Hence we have in distribution 

1 

S [ W ( t + a ) -  W(t)[ 2 d t =  ~ 2 ( ~ ,  2(d ) > 0 ,  
0 n _ > l  

by the Karhunen-Lo6ve expansion. Here, in decreasing order, ) ~  > 0, n > t, are 
the eigenvalues of the equation 

1 

; t f ( t ) = S r ( s , t ) f ( s ) d s  O<-t<- 1. 
0 
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We need to find 2(d ). For a > 1, the above equation can be written as 

2 f ( t ) =  ( a - t + s ) f ( s ) d s + ~ ( a + t - s ) f ( s ) d s ,  0 _ < t _ < l .  (2.11) 
0 z 

We may differentiate (2.11) with respect to t to obtain 

t 1 

2f ' ( t )  = - ~f(s) ds + ~f(s) ds. (2.12) 
0 

Differentiate again to obtain 2f"(t) = - 2 f ( t ) .  Hence 

f i t )  = c I sin 2x/~zTt + c2 cos ~ .  (2.13) 

Setting t = 0 in (2.11) and (2.12), we obtain boundary conditions 

1 1 

2f(O) = ~ (a - s)f(s) ds and 2f '(0) = ~f(s) ds. (2.14) 
0 0 

Substituting (2.13) into (2.14) and simplifying yields 

2 2 .  2 
(a + (l -- a)c~ 2 - -  x/~smN/~)c~ 

+ ( ( a  1)sin~/~ ~-22-( 1 ~ /~ ) )  
- - + cos c2 = 0 

and 

(1 + cos ~ 1 ) c l  + (sin ~ ) c 2  = O. 

In order that there are non-zero choices for cl and c2, the determinant of the above 
two equations has to be zero. We obtain after some simplification 

( 2 a - 1 )  s i n , ~  x / ~ c o s  / 2 2 j  ~ = 0 .  (2.15) 

Hence from (2.15) we have for n => 1, ~'~tv~(a)~-l/2Z, J = (n -- 1)~z + ~z/2 and (22~),_1) -1/z 
are the only solutions of the equation 

( 2 a - 1 ) t a n x = x  -1, a > l ,  o n [ ( n - 1 ) ~ , ( n - 1 ) ~ + ~ / 2 ) .  (2.16) 

Using the inequality tan x > x on (0, ~/2) and (2.16), we have 

(2a - 1) ~(22~_~) ~/2 = tan(22(2a~)_~) -~/2 

(a) - 1 / 2  = tan((22~_ 1) -1/2 -- (n -- 1)re) > (222n-1) -- (n -- 1)re >= 0 

which gives us (222._1) -~/2 = (n -- 1)7~ + O(t/n). Hence 

n~l (2-12{~)+1)'(n2~) - t - 1  < oo. 
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Thus by L e m m a  1 a n d  the first par t  of L e m m a  5, we obtain  

P [W(t + a ) -  W(t)l 2 dt__< e 

n _ l  

=P(2-1"~(ia)~2+~,2-1~(a) "~n+ 1 ~ n +  1 ~'2 : < 2-18) 
n__>l 

( 1 ) 
- C ( a ) ' P  2-1).i")~ 2 + 2 n ~ 2 ~ 2 + a  < 2 - * g  

n > l  

~ K ( a ) . e . e x p -  as e ~ 0  

where C(a) and K(a) are positive constants.  This finishes the p roof  of  L e m m a  18. 
As ment ioned  in the introduction,  when 0 < a < 1 we are unable to find an 

expression similar to (2.15) for 2(, a). 

L e m m a 1 9  If  b >_ a >_ 1 and s > O, then 

) (i ) P [W(t + b) -- [/V(t)] 2 dt < s <= P [W(t + a) - W(t)[ 2 dt < s . 
0 

Proof. Let 2(, "), n >_ 1, be defined as in the p roof  of L e m m a  18. Then for b _> a _> 1, 

(a) ~(b) and ~ (") < .(b~ 
2n ~ "~2n Z ~ 2 n - 1  ~ Z 2 n  1 

since the function x t a n x  is increasing function on [ ( n -  1)n, ( n -  1)n + n/2). 
Hence 

" ( i l W ( t + b ) - W ( t ) [ 2 d t < s ) = ' ( ~  2 ( , b ) ~ 2 , < s ) < P ( ~  2(~)~2<S) 
0 n 1 n _ l  

which concludes the proof. 
Finally, we ment ion  two results for further reference. They relate to l emmas  we 

give early and are not  used in the p roof  of our  theorem. First, by L e m m a  6 and (2.9) 
in L e m m a  7, we have for any b > a > d_> 0 and s > 0, 

/ 

P [/V2(t) dt =< a2 s < P I/V2(t) dt < s < P WZ(t) dt < s 
\ a - d  \ a - d  

A little bit s t ronger  form of the second par t  of the above  inequali ty is given in 
L e m m a  9. Second, we have f rom (2.10) in L e m m a  7, 

[2,+l(a,b) ' (b-  a)-2rt2n2 - 11 < oo . (2.17) 
n = > l  
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Hence  for 0 < 0 < 1, we obta in  as e -~ 0, 

0 n _ l  

n__>l 

~c(o).P ~1(o, 1)~+ Z -~  U.+~<= 
n > l  

~K(O).e.exp( ( 1 8 0 ) 2  ! )  

where C(O) and K(O) are constants.  Fo r  the above  estimates,  the first equality is 
L e m m a  6, the first ~ follows f rom L e m m a  1 together  with (2.17), and the second 

holds by (2.1) in L e m m a  5. 

3 P roof  of  Theorem 1 

Let us note  that  under  our  condit ions (i) and (ii)', our  theorem becomes 

t og log  T r r p2 
lira T2 j W2(t)dt = a.s., 0 < < 1 

T ~ m T - a( T) V t0 = " 

This can be easily derived as follows if our  theorem holds under  our  condit ions 
(i) and (ii). F o r  O < p < l  and e > O  small, we have O < T - ( p + e ) T <  
T - a (T )  _-< T - (p - e) T < T if T is large and thus 

log log T r (p + 5)2 
lim T2 ~ W2(t) d t -  - -  a.s. 

T~o~  T - ( p + e ) T  8 

> lim log log T r 
S W2(t) dt  T 2 

T ~ o ~  T - a ( T )  

log log T T 
-> lira T2 ~ WZ(t) dt = (p - ~)2 

T~ex) T - - ( p - - e ) T  8 a . s .  

For  p = 1, the above a rgument  also works  by using (1.4) as the upper  bound.  So we 
only need to show our  theorem under  condit ions (i) and (ii). 

Under  condit ions (i) and  (ii), l i m T ~  a(T)/T= p < 1 and when p = 1 we 
actually have a(T)= T. In this case the result follows immediate ly  f rom (1.4). 
Hence, for the rest of this section, we assume condit ions (i) and (ii) hold and 
l i m r _ ~  a(T)/T = p < 1. N o w  we formulate  the following three s ta tements  which 
together  imply our  theorem. 

r 1 
lim ~b(T) ~ W2(t) dt >~ a.s. (I) 

T ~ o ~  T - -a (T )  

lim log(T/a(T)) r 1 W2(t) d t -<  ~ a.s . .  (II) a 2 
T~o~  (T) T - a ( T )  
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If l i m r . ~  log(T/a(T))'(loglog T) -1 < m and limr+ooa(2T)/a(T) < oo for 
some 7 > 1, then 

r 1 
lim qb(T) ~ W2(t) dt < a.s. (III) 

T ~ o o  T - a ( T )  -~- ~ ' 

Let us first show (I). Define 

Tz = 1, Tk+l - - e l a ( T k + ~ ) =  Ilk (3.1) 

where e, = 1 - (1 - , s  and 0 < e < 1. Note  that T -  ela(T) is a strictly in- 
creasing and cont inuous function by our  conditions (i) and (ii). Hence Ilk in (3.1) is 
well defined and Tg +, > Tk, limk-,~o Tk = c~. Since 

$( T) > (log(Tk/a(Tk)) + 2log  log Tk)/a2(Tk+l) and T -  a(T) < Tk+a -- a(Tk+a) 

for Tk+l > T >  Tk, it is sufficient to show 

Tk i -- g 
lira log(Tk/a(Tk)) + 2 log log Tk S W2(t) dt > - -  a.s. .  (3.2) 
k-~oo aZ(Tk+a) Tk+~-,(r~+~) = 4 

Note  that for k large, Tk -- a(Tk) > (1 -- p)/2. Thus by Lemma 13, we have for 
k large 

Tk I - -  g~ ~/log(Tk/a(Tu)) + 2 log log Tk ~ W2(t)d t < 

r~+~-a(r~+~) = 4 log(Tk/a(Tk)) + 2 log log Tk 

=< c (  ~r~ ~ ~--  ~ r ~ ) -  r~+a + a(r~+~)) ~/~/ 

( log(Tk/a(Tk))+21oglogTk (Tk--Tk+a+a(Tk+a)) 2)  
�9 exp -- 2(1 - - ~  a2(Tk+l) 

_ C. ( ~ , .~  el )a( Tk + l )'~ l/2 log( Tk/ a( Tk ) ) + 2 log log Tk - e x p ( -  

- \ : r , , + ~ - a ( ~ + , ) /  \ T,, / ' 

= \~rk-a(~'O/  \ ~rk / \log:r~/ 
Tk- Tk-1 

< C  
- (Tk -- a(Tk))a/2T~/Z'(log Tk) 1+~ 

Tk -- Tk-1 T~ dx 
<= C T~gg ~k)l-+~ <-_ C" f x ( l ogx ) ,+  ~. 

T k -  1 
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Hence by the Borel-Cantelli  lemma, we obtain (3.2) which shows (I). 
Now  turn to the p roof  of (II). Let Tk be the unique solution of the equat ion 

x / a ( x ) = k  ~ where / 7 = 2 ( 1 + 0 / ( 2 + ~ ) > 1 .  (3.3) 

Then  Tk+ 1 > Tk and limk~ oo Tk = oO. Define the events 

T~ (1 + ~)a2(Tk) 
Ak = ~ m2(t) dt < 

We then show P(Ak i.o.)= 1 by Lemma 15 which in turn gives us (II). Let 
6k = (log k)-1.  N0te  that  Tk/a(Tk) = k p. Hence by Lemma 14 and the choice of/7 in 
(3.3), we have for k large 

(5k'a(Tk)(1 + e) "~/2 [ log(Tk/a(Tk))  
P(Ak)  > C" 4(2Tk Z a ~ k ) ) ~ g ~ / a ( T k ) ) )  - exp~  -- 2(1 + e)(1 -- 5k)] 

> C ' (  6k )))1/2 a(Tk)1 /2  

= log (T~a(Tk  " ( T ~ - k )  

( l o g ( T k / a ( T k ) )  6 k l o g ( T k / a ( T k ) ) ) >  C ' ( k l o g k )  -1 
-exp - 2(1 + e) = 

which shows ~ k  >=1 P(Ak)  = oQ. 
For  given ~ > 0 small, define ko large such that for l >  k > ko, we have by 
Lemma 17 

(1 p -  1 - k ~) uz . / -z+r  (3.4) 
k < l < ( h -  l + l ) k  

( 6 -1+  1)k 

<-_ 2 ~ (x ~ - 1 - kP)- i /2"x- l+P/2 dx  < C .  
k + l  

Note  that for 1 > k and/7 > 1, 

Tl -- a(Tz) > Tk+ l -- a(Tk+ l) = (k + 1)r -- a(Tk+l) > kPa(Tk) = rk . 

Hence for given k, ko < k = n, we can split the set {/:ko < k < l__< n} into two 
parts, 

L ,  = { l : k o  < k < l, T~ - a(T~) > T~ > c~(T~ - -  a ( ~ ) ) }  ; 

Lz = {/:ko < k < l,~$(Tz - a(T~)) > Tk } �9 

If l f fL2,  then by Lemma 16, 

< ( T~ - a(T~) ~,/~ 
P(AkAt )  = T~ ~ ~(~)t) ~- ~ , /  P(Ak)P(A~) < (1 - 5)-~/2P(Ak)P(Az) .  (3.5) 

Note  that  by Lemma 16, we also have for ko < k < l 

T,-T~ a2(Tl) (1 + e) 
P(AkAl)  <= P ( A k ) ' P  ~ W2(t) dt < . (3.6) 

Tk = 4 - 1 T ( T j . T T S ) ;  
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If l ~ L1, then 

3-1kPa( Tk) = (~ -  l T k  ~ T l - -  a (  T l )  = ( l  fl - -  1 ) a ( T / )  ~ ( l  fl - -  1)a(Tk) 

which gives k < 1 < (3 -1 + 1)k. Now for l~L~, we have by Lemma 13, 

/ Tl-rk a2(T/)(1 + ~) 
P S W z (t) < (3.7) 

r z - a ( T , ) - T k  dt = 4 ~ ~ - T ~ ) ) /  

( a(Tl) ,~1/2. ( log_ (__T1/a(Tt))'] 
<__ C. Tl -- a(Tz) - Tk/ exp 2(1 + e) ] 

<__ C" ( Tt/ a( Tt) - 1 - Tk/ a( Tk) )- l/a " ( Tg/ a( Tl) ) -1/(2 + 2") 

= C.(1 ~ -  1 - U)-~/2"I -~+m 

Hence we have by combining (3.4), (3.6) and (3.7) 

Z ~, P(AkAl) (3.8) 
ko<k<-_n I~L1 

( C ' P ( A k )  k < l < ( 6 - 1 + 1 )  ( l f l -  l - kfl) -1/2"1-1+p/2 ) < 2 
k o<k <=n  

<= C 2 P(Ak).  
ko< k <n 

Now by Lemma 15, (II) follows from l im,~o ~ = 1  P(Ak) = oe and the estimates 

k = l  l = l  k = l  l <=k<l<=n 

ko 

k = l  k = l  l = k + l  k = k o + l  leL1 

+ 2 ~ 2 P(AkA,) 
k = k o +  l l~L2 

k = l  k = l  l = 1  

Now turn to the proof of (III). Define 

Vl = 1, Tk+l - -  a ( T k + l )  = Tk. (3.9) 

Then for k large, 

lira Tk= oQ and l > T k / T k + t > ( 1 - p ) / 2 > 0  
k--+ cJo 

Thus 

Tk'(log Tk)'(1og log Tk) 1/2 < C" Tk-1 "(log Tk_l) ' ( log log Tk-1) ~/2 �9 (3.11) 

Define the events 

B k = { ~  k Wa(t)dt  < (l+e)a2(Tk) } 
Tk--a(Tk) = 4(log( Tk/a( Tk)) + 2 log log Tk) " 

(3.10) 
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We then show P(Bk i.o.) = 1 by L e m m a  16. By our  assumpt ions  for case (III) and 
the fact that  if e > 0 is small enough, we have 

log( T/a( T)) < 2e -1 . log log T .  (3.12) 

Hence  by L e m m a  14 (choose 6 > 0 such tha t  (1 + e) (1 - 6) = 1), (3.12) and (3.11), 
we have for k large 

P(Bk) > C" (2Tk -- a(Tk)) (log(Tk/a(Tk)) + 2 log log Tk)J 

( log(Tk /a (Tk) )+21oglogTk)  
�9 exp - 2 ( 1 + e ) ( 1 - - 6 )  

> C ' \ T ~ - k  ] " \ (2e  - l + 2 ) l o g l o g T k ) , ]  

exp( log og ) 
a( Tk) 

>_C" 
- Tk'lOg Tk'(1og log Tk) 1/2 

Tk--Tk-1 
>C" 
- T k -  2 '  log Tk- 1" (log log Tk- ~ )1 /2  

Tk dx 

> C.  S ( l og log  x) 1/2 rk- 1 x" log x" 

which shows ~k >= 1 P(Bk) = co. 
Since a(T) is non-decreasing,  we observe that  a(2(1 - p)- i  T)/a(T) <= C for 

T la rge  by i terating limT-.o~ a(TT)/a(T) < oe for some ? > 1 if necessary. Hence  by 
(3.10), we can define ko large such that  for l > ko, 

a(Tz) < C ' a ( T t _ l )  . (3.13) 

Note  that  for l > k + 1, Tl -- a(Tz) > T~+I -- a(Tk+i) = Tk. Hence  for given 6 > 0 
small and k o < k _ - < n ,  w e c a n  split the set { t : k o + l < k + l < l _ _ < n }  into two 
parts ,  

L~ = {l:ko + 1 < k + 1 < l, Tz - a(Tz) > Tk > 6(T~--  a(Tl))} ; 

L z = { / : k o + l < k + l < l ,  6 ( T ~ - a ( T ~ ) ) > T k } .  

If IEL2, then by L e m m a  16, 

P ( Bk Bt) < ( T~ - a( Tt) tl/2 = T~ - ~) l )  ~ Tk P(Bk)P(B,) <= (1 - 5)-I/zP(Bk)P(B~). (3.14) 

Note  that  by L e m m a  16, we also have for ko < k < l 

/ T,-T~ a2(~)(1 +~) ,~ 
P(BkB,) <= P(Bk)'P~ ~r W2(t) dt < 

r,-~( ,)--rk = 4( log(Tz/a(T,) )  + 2 log  log T~)J " 
(3.15) 
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I f /eL1,  then Tk > cS(Tl -- a(Ti)) = ( ~ T / _  1 which gives Tk < Tl 1 < b-1Tk. Now for 
feLl ,  we have by Lemma 13, (3.12) and (3.13), 

Q T t - r k  aZ(Tl) (1 + S) ) 
P ~ W2(t) dt < (3.16) 

Tz-a(Tl)-Tk = 4(log(Tt/a(T~)) + 2 log log Tl) 

( <__C. Tz -a (T~) -Tk]  -exp 2 ( 1 + e )  

a(T~) ( Tz/a( T~) ) ~/(2 + 20 
= C "  

(Tl -- a(Tt) Tk) 1/2" T~/2 (log Tl) 1/~1+~) 

a(T~)  
-<C' 
- (T~ - a(T~)  - T W / 2 .  T F  2 

a(Tl-1) 
_<C" 
- ( Tt - -  a ( T t )  - -  Tk)  ~/2" T ~ / 2  

~ - l - - T i - 2  
: C "  

( T~_ I - r~) 1/~ TF ~ 

T I -  t dx 
< C. r 

J (x - T~?/2.x ~/~" 
T t -  

Hence we have by combining (3.15) and (3.16), 

}" P(BkBz) <= Z C'P(Bk) 2 (x - Tk)l/2"x ~/2 
k o < k  <:n I ~ L 1  k o < k  < n T k  < T ~ -  I < ( O -  I + I ) T k  T I -  2 

(a-~+t)r~ dx ) 
<= E c'e(Bk)" ~ (x -- Tk~ 12" x 1/2 

ko < k <= n T k  

< C  ~ P(Bk). (3.17) 
k o < k < - _ n  

Now similarly to what we did at the end of the proof of (II), P(Bk i.o.) = 1 follows 
from (3A4), (3.17) and lira . . . .  ~ = 1  P(Bk) = ~ .  Thus we complete the proof of 
(III) and hence finish the proof of our Theorem 1. 

4 P r o o f  o f  T h e o r e m  2 

Note that (1.6) follows from (1.5), Chung's law of iterated logarithm [41 

lim ( l~  l~ T)  1/2 ~88 _ _  sup I W(t)l = a.s. 
T - ~  oo T O < t < T 

and the simple estimation 

( a + O ) T  f i T  

S 
a T  

I W ( t + O T ) -  W(t)] 2dt<= j I W ( t + O T ) -  W(t)] 2dt  
~:T 

4(fl -- cOT sup W2(t) 
O < ~ < ( f l + O ) T  
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if 0 < 0 < fl - a. Hence we only need to show (1.5). 
Define Tk+I = (1 + f ( T k ) ) T k ,  T1 = 2e and f ( x )  = (log2x) -s. Here and 

throughout this section, log2x = log log(max{x, 2e}). Let us first show that for 
0 > f l - ~ > 0 , ~ > 0  

lim log2 Tk flTk r~oo T ~  ~ [W( t  + OTk) - -  W(t)[ 2 dt > (fi - e)2 a.s.. (4.1) 
aTk + 1 ~ 4 

For any ~ > 0 and k large, we can pick 6 > 0 such that 

Tk+I/Tk < 1 + 6 and e' = ((fi - c~ -- a6)/(fi - cQ)2" (1  - a ) - i  _ 1 > 0 .  

Thus we have for k large 

{log2 Tk ~r~ 
P ~  ~ J ] W ( t + O T k ) - -  W(t)] 2 d r <  ( f i -  c02 

\ k ~rk + 1 = 4 
- - . ( 1  - e)) (4.2) 

< 

p (/~ - ~)~ ) 
P ~ I W( t  + O) - W(t)l 2 dt =< 4iog2Tk (1 -- a) 

aTk+l/Tk 

P ~ [W( t  + 0 ) -  W(t)[ 2 d t <  ( f l -  cQ2 -(1 - e) 
~(l+a) = 4 log2 Tk 

p - ~ ! + 6 )  
P I W ( t  + O) - -  W ( t ) ]  2 dt __< - -  (/~ _ ~ ) 2  ( 1  - ~)~ 

4 log2 Tk 

( i  ( 0 ) 2dt  ( f l - c ~ ) 2  lfo~2Tk) P W t + - w ( t )  < 
o ~ - ~ - ~  = p - ~ - c ~ 6  4 

=< C . e x p ( - ( 1  + e')'log2 Tk) = C-(log Tk) -(1+~') 

where the first and the third equality hold by the scaling properties of the Wiener 
process, the second equality holds since the Wiener process has stationary 
increment, and the last inequality follows from Lemma 18. Now by 
limk-~o Tk/ Tk + l -= 1, 

(log T~)-. +~') 
(log Tk)-(l+~') = >~ ( T k + l -  Tk) 

g ~ 1 k = 1 Tkf (Tk)  

C >~ (log Tg+I) -(1+~') __< 
~=1 Tk+lf(Tk) (Tk+l-- Tk) 

( log log x) 5 
__< C)e  T0 ogT;l  dx < 

We conclude (4.1) by the Borel-Cantelli Lemma and (4.2). 
Now consider Tk =< T < Tk + 1, and note that we have 

lim T k / T =  1 and lira T/Tk+I = 1.  
T--+ oo T+oo 
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x ( t )  = I w ( t  + ork) - w ( t ) l  ; 

Y(t) = sup [W(t + OTk + s) -- W(t + 0Tk)[ ; 
0 < = s < O ( r - r t ~ )  

Z(t)  = I W(t + OT) - W(t)[.  

Then Z(t)  > X( t )  - Y(t) and therefore 

zZ(t)  > X2(t) - (X( t )  + Z ( t ) ) g ( t ) .  

Hence 

1,~- T P r ~  log2 T~f  X2( t )d  t (4.3) lim Z 2 ( 0 d t  > lim T2 fT 

,. log2 TPr r 
- n m  ~ J (X(t )  + Z ( t ) ) Y ( t ) d r .  

T -~ oo T a T  

From (4.1) and limT-~ Tk/Tk+l = 1, we have 

log2 T ~r 10g2 Tk prk 
r-,oolim ~ -  arS X2(t) dr>- T~oolim ---T2+1 aTk+iS ]W(t + OTk)- W(t)12dt 

>- lira log2 Tk r 
- - T ~  T~--k ~ J W ( t + O T k ) - W ( t ) ] 2 d t  

a T k  + 1 

> (fi _ ~)2 a.s.. (4.4) 
4 

By Theorem 1.2.1 in Cs6rg6 and R6v6sz [6], we obtain 

lim (Tlog2 T) -1/2 sup X(t )  
T ~ m  a T ' < r < -  f lT  

< lim (Tlog2 T) -~/2 sup IW(t + OTk) -- W(t)} 
T - ~ m  0 <--t < ( f l+O)  T - - O T k  

< x / ~  a.s. 

and 

lim (Tlog2 T) -1/2 sup Z(t )  
T --+ o~ ~t T <_ t <_ fl T 

< lira (Tlog2 T) -1/2 sup I W(t + OT) -- W(t)[ 
T ~ o 9  0 < t < ( f l + O ) T - O T  

= < x / ~  a.s. 

Note that 

r ( t )  < 

< 

sup sup ] W( t + OT, + s) -- W( t + 0Tk)l 
O <_t <_flT O < s <=O(Tk+ t -  T k )  

sup sup [W(t + s) - W(t)l . 
O < _ t < _ ( f l + O ) T  O < - - s < = O f ( T k ) T k  

sup 
a T  <=t <=flT 

(4.5) 

(4.6) 
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We have by Theorem 1.2.1 in Cs6rg6 and R6v6sz [6] 

lira ( f (T )T log2  T) -1/z sup Y(t) 
T -~ oo a T <_ t <_ fl T 

< lira ( f (T )T log2  T) -~/2 
T ~ o o  

_< C a.s.. 

Hence 

sup sup 
O < t < ( f l + o ) r  O < s < O f ( T k ) T k  

I w ( t  + s) - w(t)l 

Therefore we obtain our  lower bound  of Theorem 1 by (4.3), (4.4) and (4.8). N o w  let 
us show that  for 0 > f l -  e > 0, e > 0 and any e > 0 

log2 T r 
lim [W(t + OT) - W(t)[ 2 dt < (fl - e)2 (1 + e) a.s. (4.9) 
r - ,~  T2 ~JT = 4 " 

Case (I) :  c~ > 0. Let  Tk = b k for b > 1, c~b > fl + 0 and define the events 

f l o g  2 Tk #rk "~ 
B k = (  T~ ~ [ W ( t + O T k ) - W ( t ) l / d t <  ( f l -cO~ ( l + e ) j .  

e T k  - -  4 
Note  that  C~Tk+ 1 > flTk + OTk by the choice of b. Thus the events Bk are indepen- 
dent  since W(t) has independent  increments. By using Lemma 18 and looking at 
what  we did in (4.2), 

( i (  ) P(Bk) = P W t + - dt <_ "(log2 bk) -1 
- -  4 

( '  ) > C" ( log/bk)  - 1. exp -- ~ log2 b k 

which shows ~ k  >= ~ P(Bk) = 0o. Hence by the Borel-Cantetli  lemma, we conclude 
(4.9). 

Case (H):  c~ = 0. Let  Tk = (log k) ak and the events 

~ log/  Tk /~r~ f12 ; 
A k = (  ~ ~ [ W ( t + O T k ) - w ( t ) l / d t < _ _ ~ ' ( l + Q  

J ( f l + O ) T k -  1 
f l T k  

~- I [W(t + OTk) -- W(t)] 2 dt < f12(1 + e) T (  _ 
o -- 4 l o g / T  k J " 

lira (T  -1 (log2 T)3) 1/2 sup Y(t) = 0 a.s. .  (4.7) 
T ~  a T  < t < = p T  

Combining (4.5), (4.6) and (4.7), it follows that  

log2 T ~ f  
lira ~ j (X(t)  + Z(Q) Y(t) dt (4.8) 

T ~ o o  e T  

_-< (fl - e)" lim (rlog2 T)-11/( sup X(t )  + sup Z ( t ) )  
T ~ ao o: T <= t < fl T ~t T < t <= fl T 

�9 lim (T  -1 log2 T)3) 1/2 sup Y(t) 
T ~  ~ t T<- t <- - f l T  

= 0 a.s. .  
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By using the scaling p rope r ty  of the Wiener  process  and  L e m m a  18, we ob ta in  

P(Ak) >= P W t +  - dt < 
0 

1 4 + e ' ( l~176  

1 log(3k log 2 k ) )  C ' ( l o g ( 3 k  log2 k)) -1 .exp - l +~ 

which shows ~k>= 1P(Ak)= ~ '  Since the Ak are independent ,  we have P(Ak 
i.o.) = 1. No te  tha t  by the law of i tera ted  logar i thm,  

log2 Tk (a+o)frk-i o (  Tk- l " 
-~2 j [ W ( t + O T k ) -  W ( 0 1 2 d t =  (log2Tk) 2 ~ 0  a.s. (4.10) 
Tk 0 \ Tk J 

as k ~ ~ .  (4.9) follows f rom (4.10) and P(Ak i.o.) = 1. 
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