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Summary. A parametric model of planar point patterns in a bounded region is 
constructed using grand canonical Gibbsian point processes with soft-core poten- 
tial functions. A simple and explicit condition that this model becomes a uniform 
locally asymptotic normal (ULAN) family will be given. From this result we can 
conclude that the maximum likelihood estimator of the potential function is 
asymptotically efficient for a wide class of loss functions. 

I Introduction 

The statistical analysis of spatial point patterns has made remarkable advances as 
summarized in the book of Stoyan et al. (1987) or Ripley (1988). This is mainly due 
to the progress of the theory of spatial point process as a mathematical framework. 
Through these researches the importance of the Gibbsian point process as a model 
construction principle has been widely recognized. Besides the fact that it has 
a long history as a genuine physical model of point systems in equilibrium, an 
attractive feature of the Gibbsian process is the fact that it can offer a variety of 
complex point patterns starting from a simple object, potential functions, which is 
directly interpretable as quantitative measure of attractive and/or repulsive forces 
acting among points. There have been many attempts to estimate the potential 
function from point pattern data. The first is Ripley (1977) who used a trial- 
and-error method based on graphical summary statistics. Ogata and Tanemura 
have developed the maximum likelihood method based on a numerical approxima- 
tion of likelihoods in a series of papers, see, e.g., Ogata and Tanemura (1981, 84, 85). 
A similar idea was in Penttinen (1984). Moyeed and Baddeley (1989) proposed an 
iterative procedure of estimating the maximum likelihood estimator. Moment- 
method type estimators were proposed by several authors, see, e.g., G16etzl and 
Rauschenschwandtner (1981); Hanisch and Stoyan (1983); Fiksel (1984), and 
Takacs (1986). A non-parametric estimator based on Percus and Yevick approx- 
imation was given by Diggle et al. (1987). Finally an estimation procedure using the 
idea of pseudo-likelihood functions was proposed by Besag et al. (1982). However 
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justifications of these estimators are almost all intuitive and a simulation study is 
the last resource. Except the lattice case, see, e.g., Pickard (1976, 1977, 1979, 1982), 
Mase (1984); Ji (1989); Younes (1989), and Gidas (1991), there are few studies of 
theoretical properties of estimators. This is mainly because Gibbsian point pro- 
cesses have a discouragingly complex structure, combinatorial in nature, which 
makes direct theoretical manipulations quite difficult. Although this may seem 
a great handicap for Gibbsian processes to be good statistical models, note that all 
statistical models of point patterns must inevitably have complex structures if they 
should represent all the interactions acting among points. 

In this research we will give a rigorous basis of analyzing statistical properties 
of plana r Gibbsian point processes and will prove the efficiency of maximum 
likelihood estimators of potential functions. (As papers of Ogata and Tanemura 
show, the calculation of maximum likelihood estimator is rather difficult and some 
numerical approximations are indispensable.) The class of potential functions 
discussed in this research is so-called soft-core potentials, that is, points can be 
arbitrarily close to one another. We also assume that potential functions are 
translation-invariant, isotropic, and of Lennard-Jones type. With each such poten- 
tial function we associate a two- or three-parameters model of grand canonical (i.e., 
with random number of points) Gibbsian point processes on a bounded planar 
region G. The parameter 0 = (z, ~,/~), or 0 = (z, e) for two-parameters case, has 
natural meanings (at least in physical context), that is, z stands for the chemical 
potential, e for the inverse temperature, and/? for the scale parameter. From an 
observation XG of coordinates of points on G, the maximum likelihood estimator 
(MLE) 0 is defined. 

We are interested in the asymptotic behavior of MLE's as the region G expands 
to IR 2 monotonically. We will give explicit and simple conditions on the potential 
function which guarantees the asymptotic efficiency of MLE. Our argument is 
based on two theories. One is the theory of asymptotic expansion of the cluster 
integral due to Minlos and Pogosian. Their result is used as a technical tool of 
detailed analysis of grand partition functions, that is, normalizing constants of 
grand canonical Gibbsian processes. 

Another is the theory of locally asymptotic normal (LAN) families due to 
Le Cam. The LAN condition of Le Cam singles out a simple and essential 
statistical condition which guarantees a fine asymptotic statistical theory. It has 
been used as a basic tool of asymptotic theory of statistical models with complic- 
ated structures such as signal process with Gaussian noise, diffusion process model, 
and one-dimensional point process model, see, e.g., Kutoyants (1984). Also the 
LAN condition is examined for Gibbsian processes on two-dimensional lattice in 
Mase (1984) and on one-dimensional lattice in Ji (1989). In this reasearch we will 
use in particular the ULAN (uniformly locally asymptotic normal) condition, 
a variant of the LAN condition with uniformity, and relevant optimality results 
given in the book of Ibragimov and Has'minskii (1981). 

2 Gibbsian point process 

Let (x). denote an unordered n-ple (xl . . . . .  x.). For each Borel set G ~ IR 2, Cg(G) 
denotes the space of all locally finite subsets (configurations) of G. The space ~g(G) is 
the direct sum of ~.(G) -- {(x).; xis  G}, n > 0. We should set go(G) = {0}. The set 
cg.(G) is canonically identified with the quotient space G"/~ with respect to 
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permutation of coordinates. Hence the Lebesgue measure d x l . . ,  dx, induces the 
Lebesgue measure dc on Cg(G) canonically. It is convenient to let dc be the unit 
point mass at 0 on Cgo(G ). Each function qS(c) on Cg(G) is canonically identified with 
symmetric functions q~(x), on G", n _> 0, and hence 

1 
~(c)dc = r + • ~ t ~  q~(x).dx~ . . ,  dx. , 

c d ( C )  n > 1 �9 

where, and in the following, the notation like f (x) ,  means f ( ( x ) , ) .  A pair potential 
function 4~(x) is an even upper semi-continuous function defined on IR 2 which may 
take the value + oo. The interaction energy Ue(x) ,  and the local energy Ez, ~(x), of 
a configuration (x), are defined by 

l<i<j<=n 

E~,~(x ) .  = nz  + u ~ , ( x ) . ,  

where z is a constant called the chemical potential. The constant e -~ is called the 
activity or fugacity. We should set U~(c) = 0 if # c < 1. A potential function is 
stable if there is a constant B (stability constant) such that U~(c) > - B # c for all 
finite c e cF(IR2). The stability is known to be equivalent to the finiteness of the 
integral 

SC, z,a) = ~ e-E~'~(e)dc 

for each bounded G, see Ruelle (1969, Proposition 3.2.2). The integral Ec, , , r  is 
called the grand partition function. 

Let Xc denote the random element taking values in Cg(G). The Gibbsian point 
process Pc, ~, �9 is defined by the formula 

1 
r  - -  ~ O(c)e-E~"r 

3c, z, �9 ~(c) 

If z = 0 and q~ ~- 0 the Gibbsian point process is the Poisson point process on 
G with unit intensity and is denoted by Qc.  It is easy to see that Pc, z, �9 is absolutely 
continuous with respect to Qc and 

dPG, z, 
dQG (Xa )=  e x p { - E ~ , ~ ( X o ) } .  

For  details of Gibbsian point processes, see, e.g., Ruelle (1969); Preston (1976); or 
Stoyan et al. (1987). 

A potential function is said to be hard-core if there is a constant ro such that 
�9 (x) = + oo whenever Ix] < to. The supremum of such r0 is called the hard-core 
distance. On the other hand, a potential function which has finite values except at 
the origin is said to be soft-core. A Gibbsian point process having a hard-core 
potential is supported by those configurations with points at least the hard-core 
distance apart one another. Therefore two hard-core Gibbsian processes having 
different hard-core distances are not mutually absolutely continuous. This causes 
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some difficulties in the following study and is one of the reasons that we consider 
only soft-core potentials in this research. As to the stability of a given potential, 
there is a fine criterion. 

Theorem 1 (Ruelle 1969, Proposition 3.2.8) I f  there are two non-negative decreasing 
functions fl(r), f2(r) defined respectively on (0, al) and (a2, oo), 0 < a I < az, and 
satisfying conditions: 

> ~  fl(Ixl) /f I x l < a l ,  
4~(x) 

= [ - f2 ( lx [ )  /j" ]xl > a2, 

and 
a l  

rfl(r) dr = + co, 
0 

rfe(r) dr < + ~ ,  
a2 

then �9 is stable. 

A potential is said to be of Lennard-Jones type if it satisfies the preceding 
criterion withfl(r  ) =f2(r) = cr -z, 32 > 2, 3c > 0. All the potentials considered in 
this paper is isotropic, that is, {b(x) depends only on Ix [. Therefore we can rewrite 
�9 (x) as 05(Ix I). Also we assume {b is always continuous except at the origin. We will 
consider a family of local energies parametrized by three parameters 0 = (z, ~,/3), 
- o o < z < o % a n d c z , / 3 > 0 ,  as: 

go(x)~ 

Eo(X), 

where r i j=  Ix i -x~l .  By setting fl 

= c~ E fib(flriJ) , 
l < i < j < n  

= nz  + Co(x) . ,  

= 1 we also consider the two-parameters model. 
We will specify a possible range O of the parameter 0 later. The restriction to 
a three-parameters model is not essential, but most practical potentials are of this 
form, see Grandy (1987, Chap. 7). Following are examples of soft-core potentials. 
They are of Lennard-Jones type. 
(1) Soft-sphere potential (this leads actually to a two-parameters model); 

1 
�9 ( r ) = - -  n > 2 .  

r n~ 

(2) Repulsive exponential potential; 

1 
q ~ ( r )  = - e  - r  

r n } 
n > 2 .  

(3) Lennard-Jones potential; 

1 C 

{b(r) r '~ r "  c > 0 ,  r e > n > 2 .  

We take the asymptotic viewpoint and let regions G = G, expand monotonically to 
IR 2. In the rest of the paper we will fix {G,} and 4). Because of notational simplicity, 
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we use following notations; P., 0 for the Gibbsian distribution corresponding to G. 
and 0, Q. for QG., X.  for XG., and Uo (resp. Eo) for the interaction (resp. local) 
energy corresponding to ~b and 0. 

3 Uniform L A N  condition 

The main result of this paper is a consequence of a general optimality theory of 
maximum likelihood estimators under the ULAN condition. In the following we 
cite this condition (slightly modified to our situation) and a relevant theorem for 
convenience of reference. 

A statistical experiment {P,,0}, 0 e O, for observations Xn is said to satisfy the 
ULAN condition if there are non-degenerate matrices 05,(0) and if the following 
conditions N I - N 6  are satisfied; 
(N1) For  Vcompact K ~ O, Vsequence 0. ~ K, and Vsequence u. with u. ~ u and 
O. + (a.(O.)u. e K, likelihood ratios have the expression 

Z.,o.(U.) =- dP"'~176176 (X.) = exp{(A.,o., U) - lu~ + ~.(u., O.) } 
dP., o. 

where 5~(A.,o.lP.,o.) ~ ./g'(O, J) as n ~ + 0% J being the identity matrix, and the 
sequence O.(u., 0.) ~ 0 in {P., 0. }-probability. 
(N2) For gcompact K c O, 

lim sup trace(qS.(O)q~.(O) T) = O. 
n-+ oo O~K 

(N3) For Vcompact K c O, 3fi > 0, 3m > 0, 3D = D(K), and 3a = a(K), 

sup sup lu v l - P E . , o l Z ~ f ' W ( u )  x/~ m - - Z . , o ( v ) l  <D(1 +R"), 
O~K u, v c O n ,  o 

lu[, Ivl < R 

where O.,0 = { u ; 0 +  (~.(O)ueO}. The MLE 0. of the parameter 0 based on 
observation X. is one of the values which maximize the likelihood function 
p.(y, X.)  with respect to y ~ O. The class Wp consists of those functions w(t), t e IR 3, 
satisfying following conditions; 
1) w(t) >__ 0, w(0) = 0, w(0) ~ 0, and w ( - t )  = w(t), 
2) w(t) is continuous at t = 0, 
3) {t; w(t) < c} is convex for all c > 0, and is bounded for all sufficiently small 
c > 0 .  

With each w e Wp we associate loss functions W.(t, O) = w(dp~-l(O)(t - 0)). The 
MLE is said to be w-asymptotically efficient in K if for Vnon-empty open U c K 

( in f sup  E.,0 W.(T., O)-  sup E.,0 W.(0., 0)~ = 0 ,  lira 
n--*oo \ { T . } O ~ U  O ~ U  / 

where the infimum is taken over all estimators {T.} of the parameter 0. 
Under the ULAN condition a class of estimators including MLE can be shown 

to be w-asymptotically efficient for a wide class of loss functions w. 
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Theorem 2 (Ibragimov and Has'minskii  1981, Chap. 3) Let conditions N I - N 4  and 
N6 be satisfied with fl > 3 in N3. Let K be an arbitrary compact set in O. Then 
uniformly in 0 ~ K: 
(t) the estimator O, is consistent, 
(2) the estimator O, is asymptotically normal with the parameters (0, c)a, (0)), 
(3) all the moments of the random variables c~1(0)(0,, - O) converges as n--* oo to 
the corresponding moments of the normal distribution JV(O, J). 
For each e > 0 

lira sup e,,o {L~2 '(0)(6, - A., 0)1 > 0} = 0. 
n ~  O ~ K  

I f  the condition N5 is also satisfied, O, is w-asymptotically effcient for every w ~ Wp 
and every compact K ~ O. 

Note  that, since w(t)= ]tlz~wp, On is also asymptotically efficient under the 
quadrat ic  loss W =  IqS,-~(0)(t - 0)l 2. As to the definitions of the uniform consist- 
ency and the uniform convergence in law, see the book  of Ibragimov and 
Has'minskii. 

4 Strong cluster estimate 

A key tool in this research is the strong cluster estimate of the Ursell function 
associated with a given local energy. F rom a technical reason, we need to consider 
a complex-valued pair potential  function �9 and a complex chemical potential  z. 
A complex-valued potential  4~ is stable if its real part  is stable. Assume that 
q~ satisfies the following estimate with p > 4; 

le -~(x) - 11 __< K(1 + Ixl)  -P  for Vxs lR  2 . 

Define the constant  qo = eRe{z} + "+ 1K, an absolute constant  
Ao = max,>=22n"-Ze-"/n! ( < 0.147), and the function 

q(r) = qo(1 + r )  - p / 2  . 

Theorem 3 (Minlos and Pogosian (1977, Theorem 1 and Lemma 4)) I f  

(1) ~ q(txl)dx < 1, 

then the logarithm of the grand partition function 3a, ~, ~ = ~(ale-e""(e)dc can be 
defined and has the representation 

l o g Z ~ , z , e =  ~ 7tz,~(c)dc.  

The Ursell function 7Jz, e(c) satisfies the strong cluster estimate 

Ao 
I%,~(c)l <= ~ q o  F, l-[ q ( I x -  y l ) ,  

where the sum is taken over the set ~ of all chain graphs on c, and the product is 
taken over all vertices (x, y) of a chain 7. The inequality (1) is satisfied in particular if 
p > 4 and qo < �89 
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The proof of this theorem is given in Minlos and Pogosian (1977) for real- 
valued �9 and z. Its proof can be modified easily to the complex-valued case. This 
fact is used implicitly in Pogosian (1984). The explicit form of kgz, ~ is 

~Pz,~(c)=e #cz Z H [e-~(x-r)-l] ,  
(x ,y)e?  

where the sum is taken over all connected graphs on c and the product is taken 
over all edges (x, y) of 7, see Ruelle (1969, Chap. 4). 

Asymptotic arguments in this paper are based on the following asymptotic 
expansion of integrals of strong cluster functions. This result goes back to Yang 
and Lee (1952) and is elaborated extensively in Pogosian (1984). 

Theorem 4 (Pogosian (1984, Theorem 7)) Let a translation invariantfunction ~P(c) 
satisfy the strong cluster estimate 

I~(c)l=< E H q(x--y), 
yes (x, y)ay 

where the function q is of the form q(x) = q+(Ix])(1 + Ixl) -p with q+(r) being 
non-negative, bounded and integrable on [0, oo). Assume that p > 5, ~ q(x)dx < 1, 
and sup q(x) < 1/2. For each bounded convex set G define the cluster integral 

Q(G)= j" ~P(c)dc. 
(G) 

Then Q(G) has the following asymptotic expansion as G T ]R2: 

(2) Q ( G ) = [  y ~-(lC-+U-~--~}c)dClIGI+R(G)IV(G)I, 
ff(R 2) 

where IGI means the area of G and V(G)= {x~G; dist(x, OG) < 1}. The residual 
term R(G) can be bounded as ]R(V)I < C(q). The constant C(q) depends only on 
q and, if ql < q2, then C(ql) <= C(q2). 

Remark. The proportional constant to I GI of the first term of the right hand side of 
(2) can be interpreted as the Gibbs specific free energy in the context of statistical 
physics if ~ is the Ursell function of a Gibbsian point process. An explicit form of 
constants C(q) is not necessary but, for example, can be chosen to be 

C(q)= 1 - ~ q ( x )  dx 2(0 )+8  r2(r) dr , 
0 

where 2(0 = ~N>__r(q + q,2 + q,3 + . . . ) dx .  

5 Auxiliary lemmas 

We collect auxiliary lemmas in this section which will be used later. These lemmas 
are used in particular to show the existence of moment generating functions and 
the local uniformity of several estimates with respect to 0 e O. 
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Lemma 1 

S. Mase 

L e t  a cont inuous potent ial  q~ satisfy  two condit ions 

q~(r) > c l / r  q as r ~ + O,  

I~b(r)] _-< c2/r  p as r ---, oo , 

wi th  some posi t ive constants  c~, c2, p, and q. Then there is a cons tant  K such that 

[e - ~ ( r ~ - l j < K ( 1  + r )  -p  f o r  Vr > O . 

P r o o f  Easy. [] 

Lemma 2 Consider two convergent  sequences c~, ---, ~ > O, ft ,  ~ fi > 0 and numbers  
p > 1, q > 1, K > O, Cl > O, and c2. c2 may  be zero. Also  consider a potent ial  q~ and 
a f a m i l y  o f  potent ials  {~bp(r)}. L e t  cb(r) be cont inuous  f o r  r > 0 and supo [q~p(r)[ be 
bounded on any  interval  [r~, r2], 0 < rz < r2 < 00. As sume  the fo l lowing  conditions; 

[e ~ ( & ) - I  I < K ( l + r )  v f o r  Vr > O , 

�9 ( r ) ~ c l / r  q and s u p [ ~ p ( r ) l = O ( ~ ( r ) )  as r - - + + O ,  
p 

�9 (r),w, c2/r  p and sup[~bp(r)[ = O([~(r)l) as r -+  oo . 
P 

Then, f o r  Ve > O, there are q > 0 and N such that, i f [ x  + yi[ < tl and n > N ,  

[e (~+yl)e,(r)-~"~(p"~) - 1[ < (1 + e)K(1 + r) -p  f o r  Vr > O. 

P r o o f  The p roof  is divided into three parts.  
1) As r -+ + 0, we have, f rom the conditions, 

sup ]q~o(r)[ = O(ecb(fir)) 
p 

~ , , r  - ~ ( ~ r )  = o ( ~ ( ~ r ) )  . 

Hence there are 36 > 0, 3N, 3r~ > 0 such that, if Ix + yi[ < 6, n > N ,  and r < r~, 

[(x + yi)q~p(r) - ~.@(fi.r) + ~ ( f i r ) l  < �89 for Vp . 

F r o m  the e lementary  inequali ty le ~ - 1[ < [zle I~t for complex z and the inequali ty 

(3) [e r176 - II < e-~(~)le(~+~)| - II 

+ [e -~a~(~r~ 11, 

it follows 

I e(~+y~ -- l I <  }c~q~(fir)e -~e@)/2 + K(1 + r) - v  

= K ( 1  + r ) -PE1  + o ( 1 ) 3  �9 

Therefore,  there is 3rl  > 0 for V~ > 0 such that  the assertion is valid for r < r l .  
2) As r ~ + c~, we have, f rom the conditions, 

e,q~(fi ,  r) - c~qa(fir)= o(1/rP) . 
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Hence, for re, there exist 36 > 0, 3N, 3r2 > 0 such that, if Ix + yil < 6, n >= N,  and 
r ~ r2 ,  

I(x + yi)~bp(r) - c~,~(fl, r) + ~)( f i r )[  < e for Vp.  
r p 

F r o m  the preceding inequality (3) 

l e  ( x + y i ) q ' ~ ( r ) - ~ " o ( B " r )  - -  1[ ~ e-~e(&)--e e~/~" + K(1 + r) -p 
r p 

= K(1 + r)-P[1 + o(1)] . 

Therefore,  there is 3 r 2 > 0 for Vz > 0 such that  the assertion is valid for r > r 2 . 
3) Fix an arbitrary interval [-r~, r2], 0 < r~ < r2 < 00. F r o m  the uniform continu- 
ity on compact  intervals of cont inuous functions, there exist 36 > 0, 3N, Sr2 > 0 for 
V~, such that, if Ix + yi[ < 6, n > N,  and r > r2, 

I(x + yi)q~p(r) - c~.~b(fi.r) + c~(fir)l =< e for Vp . 

Using the inequality (3) again, 

le (x+ri)e,(~)-~"e(a"~) - 11 < e-~*(a~)ee ~ + K(1 + r ) - "  = K(1 + r)-P[1 + o(1)] . 

Therefore the assertion holds for r~ It1, r2] and, combining three cases, we can 
finish the proof. [] 

L e m m a  3 Under the same situation as in L e m m a  2, there is a constant 6 > O for  each 
e > 0 such that potentials q~ + (x + iy)d@, Vp, is stable with the stability constant  
(1 + e)B, B being a stability constant  o f  q), i f  Ix + iy[ < 6. 

P r o o f  F r o m  Theorem I, there is a positive r / such that  the potential 

q5 o = q~ - tlsup Iq)ot 
p 

is stable. Let Bo be its stability constant.  We can assume Bo > B without  loss of 
generality. If lxl < 6, then 

i < j  i < j  i 

>= 1 -  Bn -- - Bon . 

Therefore, if we let 6 = etlB/(B o -- B), the assertion holds. [] 

L e m m a  4 Le t  p and q be positive. Assume  that ~b(r)--* + oo as r ~ O, and that 
rPeb(r) --* c2 as r -~ + oo. Le t  Ks = supr>o(1 + r)Vle -~(~) - II. Then Ks  is monotone 
non-decreasing and is larger than both 1 and e[c2 ]. l im~oo Ks < oo /ff ~b is both 
non-negative and o f  bounded range. I f  so, l i m ~ _ ~ K ~ = ( 1  + r o )  p, where 
ro = sup {r; ~b(r) > 0}. 
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Proof Let t ing  r ~ 0  (resp. ~ oe) in (1 + r)P[e -~*(~) -  II, we see K~ > 1 (resp. 
> ~[c2[). I f K ~  = (1 + r)Ple -~(~) - iI for some  r, then ~0(r) + 0 and,  if c~ < ~', 

K~ = (1 + r) ' le  -~*(~) - 11 __< (1 + r)Ple -~'~(~ - 1] < K~,.  

If  K ~ = l i m ~ . o ( l + r ) P l e  - ~ ( ~ ) - 1 [ ,  K ~ = I .  Hence  K ~ , > I = K ~ .  Also if 
K~ = l im,,oo(1 + r)Ple -~*(') - iI, K~ = ~ztc2[. Hence  K~, > c(fc:[  > ~1c2] - K~, 
Therefore  K~ is m o n o t o n e  non-decreas ing .  
I f  #(r)  > 0, then 

s u p K ~  > sup(1  + r)Ple -~e(~) - 11 = (1 + r) p . 

Also if (b (r) < 0, then 

supK~  __> sup(1 + r)P[e -~e(~) - 11 = + oe . 

The  second  half  of  the l e m m a  follows f rom the last two relations.  []  

L e m m a  5 Let K~ and K~,#, c~, fl > 0, be the smallest constants such that inequalities 

le -~*(~) - 1[ _< K~(1 + r) - p  for Vr > O, 

l e  -=| - 11 < K,,#(1 + r) -p  for Vr > 0 ,  

hold. Then {K~ if #>__1 
K~,#-- fi-PK~ if fl < 1. 

Proof Easy. []  

L e m m a  6 Let B and B~,#, ~, fi > O, be the smallest constants such that the following 
inequalities hold for V(x)., 

�9 (ru) >= - B n ,  
l < i < j < _ n  

e#(13ri~) > - B~,#n . 
l < i < j < = n  

Then B~. # = ~B. 

Proof Easy. []  

L e m m a  7 Let A be a square 

F2(x) = e f(ax). Then gradient vectors 

a~ Fa = Fa are given by 

3xel  = A T ( ~ f ) ( A x ) ,  

OxF2 = F2 x AX(axf)(Ax) , 

a2F~ = AT[(O2xf)(Ax)]A , 

~2F2 = F2 x A T [(~xf)(Ax)(~xf)(Ax) T + ((?2f)(Ax)] A. 

Proof Stra ight forward .  []  

matrix. Define functions F l ( x ) = f ( A x )  and 
/ ,~ x 

~?xF~=[ ~ and Hessian matrices 
\axl / 
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L e m m a  8 Let Jr be the space of positive-definite n x n matrices. For X = {xij} 
rig, let P ( X )  be the vector (x~j)i<_j. The Jacobian OP(X -1)lOP(X) of the transform 
X ~ X - 1  is [X[ - " - 1 .  Also the Jacobian of  the transform X ~ X 2 is Fli<j(2i + 2j) 
where {2~} is the eigenvalues of X.  Transforms X ~ X  1/2 and X ~ X  -1/2 are 
holomorphic functions in variables P ( X )  on Jg,.  In particular, for each Xo E J / ,  there 
is a positive constants ~ and c such that, if I l x l  - No  II, l lx2  - Xo  II < c, then 

ilX~/2 _ x ~ / 2 l i ,  I l X ~  1/2 _ x~-l /2l l  < ~. 

Proof As to Jacob ian  formulas,  see Rogers  (1980, Chap.  14). The  rest follows f rom 
the wel l -known implicit  function theorem, see H S r m a n d e r  (1973, Chap.  2). [] 

L e m m a  9 Let a function f(z~ . . . . .  z,) of n-complex variables be holomorphic in 
a polydisk M = {]z~l < r~}. I f i f l  < C in M, then Cauchy's estimate 

I(~f)(0)l  < C[] cq!/r? 
i 

holds for every multi-index e = {el}. 

Proof See H 6 r m a n d e r  (1973, Chap.  2). []  

L e m m a  10 Let X = (Xt ,  X2 . . . .  )T be a random vector and a = (al, a2, �9 �9 �9 )v be 
its mean vector. Let f ( t )  = E {e (t' x)} be the moment generating function of X and let 
g(O = log f ( t ) .  I f  Ot denotes the vector ( ~ / & I , 0 / & 2 , . . . ) v  of partial differential 
operators, then 

(h, Ot)kg(t)[,=o = E{(h, X -- a) k} k = 2, 3 . . . . .  

Proof. Straightforward.  [] 

6 U L A N  condition of  Gibbsian point process 

In this section we will show that  the Gibbs ian  model  satisfies the U L A N  condit ion 
under  several regulari ty conditions. These regularity condit ions seem restrictive 
and may  be weakened in several points. First  we formulate  our  basic assumptions:  
(A1) The  potent ia l  function ~ is isotropic and, except at the origin, finite and 
two-t imes cont inuously  differentiable. 
(A2) There  are constants  c~ > 0, cz, p > 12 and  q > 2 such that,  if r --* +0 ,  

rq~(r) ~ cl, r~'(r), r2r = O(~(r))  

and, if r ---> 0% 
rPr ~ cz, r~b'(r), rE ~"(r)  = O([~(r) l ) .  

Let  B and K, ,  e > 0, be the smallest constants  satisfying inequalities 

qb(rij)>=--Bn for V(x),, 
l<=i<j<n 

[e -~r - 1[ < K~(1 + r) -p  for Y r > O .  
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For 0 = (z, cq/?)~IR x(0, 00) 2, let Bo = :~B, Ko = K~ if/~ > 1, =/~-PK~ if/3 < 1, 
qo(O) = e~+B~ and qo(r) = qo(0)(1 + r) -p/2. If 0 = (z, e), we should consider 
/~=1. 
(AD) The parameter space O is a bounded open subset of O0, where Oo consists of 
those 0 such that both qo(O) < 1 and ~qo(Ixl)dx < 1. 
For  a two-parameters model we need one more condition. Let p(O) = co(O) be the 
specific free energy corresponding to the parameter 0 = (z, e). 
(A4) The Hessian matrix of the specific fi'ee energy p(O) is positive definite on the 
closure of O. 

Remark. The finiteness of constants Bo and Ko under conditions A1 and A2 
is guaranteed by Theorem 1 and Lemma 1. Since ~qo(ixj)dx = 
8~Zqo(O)/(p - 2)(p - 4) and p > 12, Oo is defined actually by the sole condition 
qo(O) < �89 Three potentials cited previously satisfy conditions A1 and A2 if n > 12. 
From lemmas proved in the last section, it can be shown that, if (Zo, C~o,/?o) ~ Oo, 
then {(z, c~,/~)}; z < Zo, ~ < C~o,/~ >/~o)} ~ Oo. The specific free energy p(z, ~) is 
analytic on Oo. From H61der inequality applied to grand partition functions, p(O) 
is seen to be a convex function of 0 and, hence, has positive semi-definite Hessian 
matrix. 

Symbols such as Uo, Eo, X,, P,,0, E,,0, and Z,,o have the similar meanings as 
before. The grand partition function corresponding to G, and 0 is denoted by ~,, 0. 
The Ursell function corresponding to 0 is denoted by 7/0. Let OEo(c) be the gradient 
vector 

(4) ( # c , y ' ~ ( f l r o ) , c ~ y ' r l j d ) ' ( f l r ~ j ) ) i f O = ( z , c ~ , f i ) ,  
x i  , x j ~ c  x i ,  x j E c  

x i  ~ x j E r  

The following is the main result and the rest of the paper is devoted to its proof. 

Theorem 5 Let M., o and V., o be the mean vector and the covariance matrix of 
K-  ~/2 and the random vector ~Eo(X.) with respect to P., 0. Define the matrix ~).(0) = ., o 

A . , o  = - O . ( O ) [ O E o ( X . )  - M ~  

Under conditions A1-AD, the ULAN condition N1 N5 holds. For a two-parameters 
model, the ULAN condition N1-N6 holds if conditions A1-A4 are satisfied. 

Proof First consider the moment generating function of ~?Et(X,) 

~,,t(~) = ~ e (~'(c) ~'(C)dc, ~ C  a , 

which exists at least in a neighborhood of the origin from conditions A1-A3 and 
Lemma 2. Also the existence of partial derivatives up to degree 2 of ff,,~ with 
respect to t can be shown. Then, from Theorem 4, 

logff,,,(~) = ct(~)lG,[ + R,,t(~)[V(G,)[. 

From preceding lemmas, Theorem 3, and 4, it can be shown that, for each fixed 
t e  O, there is a polydisk D o = {4; maxi 1r < P}, a constant T, and a neighborhood 
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Wt of t such that  Cs(r and R., s(~) are ho lomorph ic  (as a function of r e 1123) in Op 
and have est imates 

[Cs(4)[ _<- T, IR,,s(~)l =< T for V~eDp,  Vs~ Wt, and Vn. 

F r o m  these est imates and L e m m a  8, it follows that  there is a constant  T' such that  
absolute  values of all the part ial  derivatives of cs(4) and R,, s(~) up to degree 4 are 
bounded  by T '  for V~ e Dp/2, Vs e Wt, and Vn. 

Since 
~ l o g  S.,~(~)[~=o = M . . . .  

0~logE.,s(~)lr = V. , . ,  

M., J iG .  I and V.. J IG .  I converge to ( ~  cs)(0) and ( ~  c~)(0) respectively uniformly in 
s ~ Wt. Note  that  these convergences are locally uniform in t. Hence 

IC. I -  ' / .  r  _+ (a~ c,)(0) 1/2 , 

16.11/2 r176 ~ (a~c, ) (o)- ' /~ ,  

locally uniformly in t. F r o m  these relations, we can conclude that  condit ions N2 
and N5 hold. 

Next  we will p rove  the asympto t ic  normal i ty  of A.,t. .  The  sequence {t.} is 
assumed to be in a compac t  set K and we can assume wi thout  loss of generali ty that  
t. ~ 3to. Consider  the function f..,(~) = ff.,t(~)/S..t(O) and expand logf. , , (~) as 

logf .  t(~) v 1 v 

with 4' = p~, 0 < 3p < 1. Then the m o m e n t  generat ing function 
f.(~) = E. , t .{e  - (~"'~"} of - A.,t. can be expanded as 

log f.(~) = log L.,.(qS.(t.) 4) - (q~.(t.)~.)VM., tn 

= �89 2 + residual t e r m ,  

where the residual term is a combina t ion  of part ial  derivatives of degree three of 
% and R . , , .  F r o m  the preceding est imates of these derivatives and the order  
relation r  = O(IG.[- 1/2), the residual te rm converges to 0 as n - ~  oo. This proves  
5e(A. , t . lP. . t . )  ~ ~2(0, J ) ,  a par t  of Condi t ion  N1. 

The rest of  Condi t ion N1 is proved  as follows. The  log-l ikelihood ratio 
log Z. , t . (u . )  is expanded as 

(5) logZ . , , . (u . )  = -r u.A., , , ,  �89 z lr.~ [t "~u 1TA* 
- -  - -  : ~ V . t  .~ . "  . , ,~162 

where u;, = p.u.  with 0 < 3p. < 1 and 

A* = (age,)(X.)  - E{(a2et ) (X . )}  

F r o m  the same reasoning used to show that  V..t = O(]G.I), we can show that  

T * 2 E. , , . { lu .A . , , .u . I  } = o ( IG . I )  

and, hence, E. . , .{ T . l U. A,,, t~u,, I} is of order  O(IG. I ~/2). Therefore,  the third term of the 
r ight-hand-side of (5), that  is, ~J.(u., t.) in Condi t ion  N1, converges to 0 in 
{P., t. }-probabil i ty  and we can complete  the p roof  of Condi t ion  N1. 
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Let us p roceed  to the proof  of Condi t ion N3. First note the inequality 

En, tlZn, t(u) 1/4 - Zn, t(V)l/4[ 4 ~ 8E,,,t{Zn.t(u ) + Zmt(v)} = 16.  

Hence, if lu - v l > 1, 

]U - -  U ] - 4 E n ,  t lZn, t(U)l/4 --  Zn, t(1))l/4] 4 ~ 16.  

Using Lemma 7, we have the relation 

(6) E.,~IZ.,Ju) T M  - -  Z n ,  t ( v ) l / 4 l  4 = ~ lit - -  vl4E.,~+,.(~).,l(O.(t)h)T A.,,+On(,)., [ 4 , 

where h = 1/lu - vl ' (u - v) and u' = v + p(u - v), 0 < p < 1. The expectation of 
the right-hand-side of this equat ion is shown, from Lemma 6, to be equal to 

(7) [(q~n(t)h)T Oe]'*logZn, t+4,.(t)u,(r162 = [(On(t)h)T Or Ct+~.(t)u,(r162 X IG.I 

+ [(@n(0h) -r 0r 4 R.,,+O.(,).,(~)l~=o • I V(G.)I �9 

Recall that  qS.(t) is of order I G. 11/2 locally uniformly in t, and that partial derivatives 
[0* /0~i . . . ] c j~) l r  and [~34 /0~ . . . ]R . , j r162  are bounded  in n and locally 
uniformly bounded  in t. For  e small enough, the compact  set K '  = {0 + u; 06  
K, lul < e} become a subset of  O. Then, from some n on, t + (0.(t)u' 6 K '  for V t 6 K  
and rVu'l < 1. Consequent ly  we can choose a constant  D = D(K) so that  Condi t ion  
N3 is valid for/3 = 4, m = 4 and a = 0. This finishes the proof  of Condi t ion  N3. 
The proof  of Condi t ion  N4 can be done as follows. First note the equality 

[e-V,(~' ]l/2Fe-V~§ ~l/2 
(g) = I d e ,  

' ~(G.)L Zn, t J L--n,(+v J 

where v = O.(t)u. F r o m  the expansion (2) the logari thm of the right hand  side of (8) 
can be expressed as the sum of two terms 

(1) In,,,~IG.[ + I(2,~,vlV(G.)I , say, 

where the term I.(~,. is equal to 

p(t + � 8 9  l(p(t) + p(t + v)) . 

If  02p denotes the Hessian matrix of p, the last expression can be rewritten as 

- �89 + pV)V, 

with 0 < 3p < 1. F r o m  the assumption A4, the smallest eigenvalue of (Op)(t) is 
positive and is bounded  by some Po > 0 from below uniformly for t e O. Hence 

1(1) < _ ~ . , , , .  = polvl z 
(2) On the other hand, the term I.,t, ~, that  is, 

1 R R.t+~--~(.,t+R.,~+~) 
can be bounded  in absolute value by rlvl 2 with some constant  r which can be 
chosen uniformly for t ~ O and v e O - t. 
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Therefore, recalling that qS,(t) = O(IG, 1-1/2) and I V(G,)I : O(IG, ll/2), we can 
conclude that there are positive constants Wl and w2 which are independent of 
t s O, such that 

.~2> IV(G.)l } sup [ulUE,,tz~{Z(u)= sup [c~2i(t)uINexp{I(~,vIG, I + l,,t,v 
U ~ O n .  t V ~ O  - -  t: 

wl [GnlN exp { --we IGnl }, 

for n large enough. This completes the proof  of the condition N4. [] 

7 Concluding remarks 

Our study is an at tempt to the rigorous statistical analysis of planar Gibbsian point 
process. Assumptions and results of this paper are by no means complete and will 
be improved in many points in future studies. So following comments may be 
useful. 

The assumption that O is bounded and convex in A3 is added in order to ease 
the proof  of Condition N3 and N4 and may not be essential. We restricted 
ourselves to soft-core potentials. However, as is easily seen, our analysis is also 
valid for hard-core potentials if the hard-core distance is the same for all para- 
meters (necessarily the case of the two-parameters model). If  the hard-core distance 
varies with the parameter, several problems may occur. The first is how to 
parametrize this moving hard-core distance. The next is the fact that two Gibbsian 
point processes with different hard-core distances are not mutually absolutely 
continuous as noted previously. The LAN condition and the relevant theory have 
still meanings if we define the likelihood dP , , , /dP , ,  ~ to be the Radon-Nikodym 
derivative of the absolutely continuous part  of P , , ,  with respect to P . . . .  see, 
Ibragimov and Has'minskii (1981). Nevertheless, as is usual in statistics, moving 
supports of probability measures may cause a special irregularity and need a separ- 
ate consideration. 

We do not know how restrictive the assumption A4 is. It  can be shown that 
p(z, c~) is strictly convex, that is, the surface y = p(z, ~) contain no segment. Also we 
are not aware of a variant of this assumption which is suitable for a three- 
parameters model. We should note that the process with a parameter  (z, c~, fl) on 
a domain G is formally equivalent to the process with the parameter  (z - 2 log fl, ~) 
on the domain fiG. 

If we restrict ourselves to the two-parameters model, the potential function 
~b need not to be differentiable. A possible natural generalization of our results to 
a mult i-parameter case may be, as in Gidas (1991), to introduce the parametrized 
local energies of the form 

Eo(x),=Oon+ ~ Oi I ~, ~k(rij) 1 , 
k = l  l < i < j < = n  

where 0 = (0o, 01 . . . . .  0,,) and {~bk} are fixed potential functions. It is likely that 
our arguments are also valid with appropriate modifications. 

We should note that the theory of Minlos and Pogosian also covers Gibbsian 
processes on lattice points and our results may have a discrete version. Recently 
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a Bayesian approach to the image restoration using Gibbsian processes on lattice 
points has been successfully applied, see Geman and Geman (1984). On this 
account, although it is unknown that a Bayesian estimation has a practical 
meaning in the problem of estimation of potential functions, it may be interest- 
ing to note that the Bayesian estimator as well as the maximum likelihood estim- 
ator is asymptotically efficient under the U L A N  condition, see Ibragimov and 
Has'minskii (1981, Theorem 2.1 and 2.2). 

Finally it is appropriate to state practical implications of our result. The initial 
motivation of the present study was to understand the MLE method of Ogata and 
Tanemura.  To be precise, the MLE used by Ogata and Tanemura  is not our MLE 
but the conditional MLE with the condition on number of points, that is, they 
modeled point patterns by canonical Gibbsian processes. Also the iterative proced- 
ure of Moyeed and Baddeley (1989) calculates the conditional MLE. However 
a direct study of the efficiency of conditional MLE seems to be impossible because 
we have less knowledge of canonical Gibbsian processes. Nevertheless we can show 
that under several assumptions efficiencies of two MLE's  are asymptotically 
equivalent (in the sense that they are both asymptotically normal and have the 
same asymptotic variance), see Mase (1991). Therefore the conditional MLE is also 
asymptotically efficient and the conditional inference of Ogata and Tanemura can 
be justified. 

Also our result, together with theorems of Jensen (1990), implies that the 
pseudo-likelihood estimator is inefficient. This fact is known in the lattice case, see 
e.g., Gidas (1991), but there seem no proofs in the continuous state space case. 
Jensen proved that the pseudo-likelihood estimator is asymptotically normal and 
showed its asymptotic variance explicitly. (By the way, he used a completely 
different framework from ours, that is, a strong-mixing type condition, and is very 
important  methodologically.) This variance is different from that of MLE. On the 
other hand, it is known that under the LAN condition MLE is BAN, that is, it has 
the smallest asymptotic variance in every asymptotically normal regular estimator, 
see Ibragimov and Has'minskii (1981, Chap. 2, Theorem 9.1). Therefore the 
pseudo-likelihood estimator cannot be asymptotically efficient. 
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