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Summary. Let X h be an h-Brownian motion in the unit ball D c R d with h har- 
monic, such that the representing measure of h is not singular with respect to the 
surface measure on 0D. If Y is a continuous strong Markov process in D with the 
same killing distributions as X h, then Yis a time change of X h. Similar results hold 
in simply connected domains in C provided with either the Martin or the Euclidean 
boundary. 

1 Introduction 

Question of recognizing two stochastic processes as a time change one of another is 
a repeating theme in the theory of stochastic processes. The most general result in 
the Markov process theory is the celebrated Blumenthal-Getoor-McKean theorem 
(from now on referred to as BGM). Loosely speaking, the result is that two 
processes with equal hitting distributions for compact sets have same geometrical 
trajectories. They can only run with different speed. We state the theorem for 
further reference in generality we will need (see [1], V-5.1). 

Theorem 1.1 Let (X~, Px) and (Yt, Qx) be standard processes with the same locally 
compact second countable state space (E, E) and cemetery point A. Let E A = E ~ { A } 
and g ~ = E v { A }. Suppose that the hitting distribution of X and Y satisfy 

Pr(x,  " )= QK(x, ") (1.1) 

for all x ~ E and all compact subsets K of E~. Then there exists a continuous additive 
functional A = (As) of X,  which is strictly increasing and finite on [0, (), such that 
if z = (%) is the right continuous inverse of A, then (X~t, Px) and (Yt, Qx) have same 
joint distributions. 

We will say that Y is a time change of X whenever the conclusion of the theorem 
holds. 

The BGM theorem has been generalized in several directions. Glover showed in 
[5] that if X and Y are transient processes with identical hitting probabilities, then 
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the conclusion of Theorem 1.1 still holds (see also 1-6] and [3]). In the other 
direction, it was shown in [4] that the state space can be a Radon space and X, 
Y right processes. 

The strength of the BGM theorem is in the fact that the state space E and 
processes X and Y are as general as they can be. On the other hand, knowing 
nothing specific about X and Yseems to require information from all over the state 
space: one needs to know that PK(x, ') -- Qr(x, ") for all compact subsets ofE~. It is 
conceivable that if the process X is specified (which automatically determines the 
state space), one should be able to recognize Y as its time change by requiring 
a seemingly weaker condition than (1.1). The easiest candidate to start with is 
Brownian motion in some open connected subset of R ~, d > 2. Since a subset of R d 
comes equipped with its (Euclidean) boundary ~D, a natural question arises: Can 
we recognize Brownian motion in D by knowing only how it hits the boundary? 
For nice domains the answer is yes. Here is the precise statement (see [113). 

Theorem 1.2 Let (X~, Ix) be a Brownian motion in a bounded Lipschitz domain 
D ~ R d, killed while exiting D, ( the lifetime of X, and (Yt, Qx) a normal stron 9 
Markov process in D with continuous paths up to its lifetime ~. Assume that 
YC- exists and 

Px(X~_ ~c) = Qx(Y~ ~c) (t.2) 

for all Borel subsets C of OD and all x ~ D. Then Y is a time change of X. 

Remark 1.1. It is clear that the result is not valid if Brownian motion is replaced by 
an arbitrary continuous Markov process. For  example, let X h denote an 
h-Brownian motion in D with minimal harmonic h representing the boundary 
point z. Then X h exits D at z. Let Ybe any other diffusion conditioned to exit D at 
z. Obviously (1.2) is satisfied, yet X h and Y can be very different. 

In this paper Theorem 1.2 is extended to a certain class of h-Brownian motions 
in the unit ball. Minimal harmonic functions must be a priori ruled out due to the 
remark above: The available information from the boundary is far from being 
sufficient to say anything about the process inside. Therefore we restrict ourselves 
to harmonic functions h such that the representing measure of h is not singular with 
respect to the surface measure on aD. With this assumption a result similar to 
Theorem 1.2 is proved. Moreover, the method we use shows that one can charac- 
terize Brownian motion up to a time change by knowing the exit distributions only 
on an arbitrary Borel subset of the boundary with positive surface measure. 

The paper is organized as follows. In Sect. 2 we introduce the notation and give 
a precise setting. Then we prove the main result for h-Brownian motion in the unit 
ball. Methods and results given in this section are central for the paper. In 
Sect. 3 we apply the Riemann mapping theorem to transfer results to a simply 
connected domain in R 2 provided with the Martin boundary or the Euclidean 
boundary. Theorem 3.2 is a generalization of Theorem 1.2 for planar simply 
connected domains with much less regular boundaries than those of Lipsehitz 
domains. 

2 Brownian motion in the unit ball 

Let D be the unit ball in R d,d__> 2, with the Euclidean boundary ~D. Let 
(f2, ~ ,  Yt,  X,, Or, Px) be a Brownian motion in D, killed while exiting D, with 
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lifetime f. By p(t, x, y) we denote the transition density of (Xt, Px)- For  a positive 
harmonic function h, let h h (X~, Px) denote Doob's h-transformed Brownian motion 
in D (see [2]). The transition density of X h is given by 

ph(t, x, y) = h(x)- l p(t, x, y)h(y) . 

Let K(x, z) = (1 - Ixl2)/Iz - xl d, x ~ D ,  z ~ D ,  denote the Poisson kernel. Without 
loss of generality we shall assume that h(0) = 1. There is a unique probability 
measure # on 0D such that 

h(x) = ~ K(x,z)#(dz), for all x ~ D  . (2.1) 
OD 

Let a denote the normalized surface measure on ~D and let # = #s + #~ be the 
Lebesgue decomposition of # in the singular part #s and the absolutely continuous 
part #, (with respect to a). The measure #, can be written as #a(dz) = g(z)a(dz) 
where g is a nonnegative Borel function on OD. Having in mind Remark 1.1, we will 
assume that the harmonic function h satisfies the following hypothesis: 

(H) The measure # is not singular with respect to the surface measure a. With 
this hypothesis, the set { g-> 0} has strictly positive surface measure. Moreover, 
a and #a are equivalent on { g > 0 } .  Let V be any Borel subset of 
{g > 0} c~ supp(#,) with a(V) > 0 (here supp(#~) denotes the support of the 
measure #~). Such set V exists since a({g > 0} ~ supp(#~)) > 0. Then #o(V) > 0 
and, in particular, #(V) > 0. The set V will remain fixed throughout this section. 

Remark 2.1. Let co~(dz) denote the harmonic measure at x s D .  Then 
a(dz) = coo (dz) where 0 denotes the origin. Since Cox(dz ) = K(x, z)a(dz), the hypo- 
thesis (H) is equivalent to the hypothesis that # is not singular with respect to the 
harmonic measure. 

Let (g2, ~, Nt, Yt, Or, Qx) be a normal strong Markov process in D with continu- 
ous paths up to its lifetime ~. For  a Borel subset B of D, let 

TB = inf{t > 0: X ~ c B } ,  T~ = inf{t > 0: Y~B} (2,2) 

be the hitting times of B for X h and Y respectively. Let 

Ph f (x)  = P~[f(Xh(TB))],  Qsf (x)  = Q~[f(Y(SPs)] (2.3) 

(fposi t ive Borel function on D), be the hitting operators of B for X h and Y. For  
co,g2, let F(co) denote the set of accumulation points of Yt(co) as t ]" f'(co). We 
assume: 

If F(co) c~ V 4: 0, then F(co) is a singleton, Q~ a.s. (2.4) 

This assumption justifies an expression like {co~t?: Y~ (co)~A} for A c V. The 
goal of this section is to prove the following theorem. 

Theorem 2.1 Let (Xht, ph) be an h-Brownian motion in D with h satisfying (H), 
(Y~, Q~) a continuous normal strong Markov process in D satisfying (2.4). Assume 

P~(X)_ ~ A ) =  Q~(Yf ~A) (2.5) 

for all Borel subsets A of V and Jbr all x 6 D. Then Y is a time change of X h. 

Before proving the theorem, we give an example. 
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Example. Fix z~OD and let h be the function x ~ 1 + K(x, z) normalized so that 
h(0) = 1. The corresponding h-process X h is a mixing of Brownian motion in D and 
Brownian motion conditioned to exit D at z. Consequently, X h will exit D at z with 
.positive probability, and z is the only such point. Suppose that Vis an open subset 
of c?D such that z~ V. If (Yt, Qx) satisfies (2.5), then it is a time change of X h. 
A curious thing is that by observing Y only on V, one can detect exactly the point 
z ~ 0D at which Y exits D with positive probability. 

The proof of the theorem follows the ideas from [11]. By using analytical 
methods, we show that X h and Y have identical exit distributions from relatively 
compact open balls in D. Then we quote a probabilistic result of Oksendal and 
Stroock ([8]) to show that (1.1) holds. The BGM theorem finishes the proof. We 
start off with several lemmas. 

Lemma 2.1 Let K be a compact subset of D, v a probability measure on K, 
L(u,x)  = 1 / l u -  xl d, and g a strictly positive continuous function on K. Then 
G: OD ~ R defined by 

G(x) = ~ ~(u)(1 - lul2)Z(u,  x)v(du) (2.6) 
K 

is real analytic on the sphere OD. 

Proof It is enough to show that G is real analytic on some open subset ~ of R e 
containing ~?D and disjoint with K. Then its restriction to the real analytic manifold 
•D will be also real analytic. Let ~ = ~ x B(0, 6) where 6 < dist(~, K). Consider 

as a subset of C a. Then L(u, .) can be extended as a holomorphic (complex) 
function on ~. Moreover, it is easily seen that M(u, x, y) = 9(u)(1 - lul2)Z(u, x, y), 
u ~ K, (x, y)e •, is holomorphic in 3 for each u ~ K, and jointly continuous and 
uniformly bounded on K xE.  Similarly, partial derivatives ~M/~xj ,  OM/@j 
are jointly continuous and uniformly bounded on K xS .  Let G(x,y)= 
~KM(u, x, y)v(du). Since M(u, . ,  .) satisfies the Cauchy-Riemann equations, and 
differentiation under the integral sign is permitted, the same holds for G. Hence, 
G(x, y) is holomorphic on ff x B(0, 6). Since G(x) = NG(x,  0), G is real analytic on 
E. [] 

Let cox(dz) and coh(dz) denote harmonic and h-harmonic measure at x respect- 
ively. Then 

co~(dz) - " ' h ~ )  z) #(dz) (2.7) 

(see [2] p. 119). Note that coh(A)> 0 for every A ~ V with positive surface 
measure. If zED and A, = B(z, 2-")  c~ 0D, then it is well known that 

lim cox(A,) _ K(x, z) (2.8) 
. ~  COo(A.) 

uniformly on compact subsets of D (here 0 denotes the origin). 

Lemma 2.2 For every z~supp(#),  

CO~(A.) K(x, z) (2.9) 
lim co~(A,) - h(x) 

n - ~ o o  

uniformly on compact subsets of D. 
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Proof Let zcsupp(#) .  For  every noN,  let hn(x)= ~,,K(x, ()~(dO. Then h, is 
harmonic and co~(An) = hn(x)/h(x). Since h(0) = 1 and K(0, .) = 1, it follows that 
o2~(A,) = #(A,), which is strictly positive for every noN.  By continuity of the 
Poisson kernel in the second variable, it follows that 

l im hn(x)  _ lim ~A K(X, ~)#(d~) = K ( x ,  z) , 
n-.~o u ( A . )  n ~  u ( A . )  

pointwise for every x cD. But a pointwise limit of positive harmonic functions is 
locally uniform. Since h is bounded away from zero on compact sets, it follows that 

co'(An) 1 hn(x) K(x, z) 
lim co~(An~) - lim h(x)#(An)- h(x) 

n --* Go n---~ oo 

locally uniformly. [] 

A measurable function u on D is said to be harmonic for Y if for every compact 
subset K of D and all xcD, QKou(x) = u(x). 

Proof of Theorem 2.1. Let z c V and An -- B(z, 2-")  c~ aD. Since V is contained in 
the support of #, Lemma 2.2, the assumption (2.5), and the well-known fact that 

h h Px(X~- cAn) = co~(An) imply that 

lim Qx(Y(- CAn) co~(A.) K(x,z) 
- l i m  ~ - (2.10) 

uniformly on compacts. A locally uniform limit of harmonic functions for Y is 
again harmonic. Since x ~ Qx( YC- c A,) is harmonic for Y(by the strong Markov 
property), it follows from (2.10) that x ~ K(x, z)/h(x) is also harmonic for Y, and 
this holds for every z c  V. For  xocD let B = B(xo, r) denote a relatively compact 
open ball in D with the boundary S(xo, r). Then for every xcB,  

K(h@y) z) P~c(x, K(x, z) K(y, z) 
d y ) =  h ( x ) =  ~ - - Q ~ o ( x ,  dy) (2.11) 

s(xo,r) s( . . . .  ) h(y) ' 

for all z c  V. By Lemma 2.1 the functions z ~ ~S(xo,,)(K(y, z)/h(y))Phno(x, dy) and 
z ~ ~s( . . . .  )(K(y, z)/h(y))QBc(x, dy) are real analytic on QD. By (2.11) they are 
equal on the Borel set V with cr(V) > 0 and, by the standard result on (real) 
analytic functions, they are equal on the whole boundary OD. Hence (2.11) is valid 
for every z c aD. The linear span of functions K(. ,  z), z c OD, restricted to S(xo, r) is 
dense in the space ~(S(xo, r)) of all continuous functions on S(xo, r). This can be 
proved by uniformly approximating a continuous function on ~(S(xo, r)) by 
a sequence of harmonic polynomials on R d (for an alternative proof see [11], 
Lemma 3.2). Since h is bounded on S(xo, r) and also bounded away from zero, it 
easily follows that the linear span of functions K(., z)/h('), z caD, restricted to 
S(xo, r) is also dense in cg(S(xo, r)). Therefore, the measures P~c(x, dy) and 
QBo(x, dy) are equal for every x c B, i.e., X h and Y have identical exit distributions 
from relatively compact open balls. By Theorem 2 of [8] it follows that (1.1) holds 
for X h and Y (see also [11], Proposition 2.1). The BGM theorem finishes the 
proof. [] 
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By using the same method  one can prove  a result similar to Theorem 2.t. We 
retain the same notat ion,  simplify condit ions on Y and in addit ion assume that  the 
set V is open. 

Theorem 2.2 Let (X~, P~) be an h-Brownian motion in D with h satisfying (H), 
( Yt, Qx) a continuous normal strong Markov process in D such that Y( = l im~EYt 
exists in 8D. Let F: ?D ~ OD be a homeomorphism. Assume 

h h P~(X~_ e F  - I(A)) = Qx(Y(_ cA)  (2.12) 

for all Borel subsets A of 3D such that F - I(A) c V and for all x ~ D. Then Y is a time 
change of X h, and, consequently, F is the identity on V. 

Proof Let us denote Q~(Y(_ eA)  by &~(A). Then x ~-~ oS~(A)is ha rmonic  for Y. 
Hence, if B = B (Xo, r) is a relatively compac t  open ball in D with the boundary  
S(xo, r), then 

dy)  = (2.13) 
S (xo, r) 

for every x6B .  By assumpt ion  (2.12), if F - ~ ( A )  c V, this can be writ ten as 

coh(F-~(A))QB~(x, dy) = o h ( F - ~ ( A ) ) ,  (2.14) 
S(xo, r) 

for every xeB .  On the other  hand,  h-harmonici ty  of x ~ ~h(F-~(A) )  yields 

coh(F-a(A))ph~(x, dy) = coh(F-~(A)).  (2.15) 
S(xo, r) 

F r o m  (2.14) and (2.15) it follows that  

(.,ox(C)PBe(X,h h dy) = ~ ~oh(C)QBo(X, dy) (2.16) 
S (xo , r) S (xo  , r) 

for every x e B and every Borel subset C of V. If z E V and A,, = B(z, 2 -  ~) c~ OD, then 
oh(A, )  > 0. Let  C = A, in (2.16) and divide the equat ion by coh(A,). By letting 
n -~ oo and using L e m m a  2.2, it follows 

K(y ,  Z)p~o(x, dy)--_ ~ K(Y'Z)QBo(x, dy) ,  (2.17) 
s~o,~) h(y) s(~o,~) h(y) - " 

and this holds for all z ~ V. N o w  the same a rgument  as in the p roof  of Theo rem 2.1, 
shows that  Y is a t ime change of X h. Hence, Q~ ( 11(_ ~ A) h h = P~(Xr EA) and (2.12) 
reads 

- 

P~(X c_ e F  I (A) ) ,  (2.18) 

for all Borel subsets A of 0D such that  F X(A) ~ V a n d  all xED. Since (2.18) can be 
writ ten as 

1 1 
! K(x, z)/~(dz) - h(X) F_!(A)K(x, z)kt(dz), 

h(x) 

it follows easily that  F(z) = z for all z ~ s u p p ( # )  c~ V =  V. [] 
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3 Brownian motion in a simply connected domain 

In this section we use the Riemann mapping theorem to transfer the result for the 
unit disk to a simply connected domain. If the domain is provided with the Martin 
boundary, the situation is essentially the same as for the disk. In the case of the 
Euclidean boundary, the obtained result, though less complete, seems to be more 
interesting. We begin with the Martin boundary case. 

Let E be a simply connected domain in R 2 with at least two boundary points 
and let D be the unit disk. We denote the Green function for E and D by GE and G, 
respectively. Let Xo be a fixed point in E and for x, y ~ E let 

G~(x, y) 
Ke(x, y) - - -  (3.1) 

GE (Xo, Y) 

be the Martin function (with respect to the base point Xo). Then there exists 
a compactification EM of E such that the Martin function extends to a continuous 
function from E x EM into (0, 0o]. The Martin boundary of E is OME = EM\E. For 
z ~ ~ME, the function x ~ KE(x, z) is harmonic in E. The boundary point z is called 
minimal, if the function KE (' ,  z) is minimal. 

Let f :  E ~ D map E conformally onto D. We assume that the point Xo e E is 
chosen so that f ( x o ) =  0. Being conformal, f preserves the Green function: 
GE(x, y) = Gv(f(x), f(y)) .  Thus, f also preserves the Martin function, and hence 
extends to a homeomorphism of/~M and the Martin compactification of D. The 
latter being homeomorphic to the Euclidean closure/),  we have that f : / ~u  ~ / )  is 
a homeomorphism. Moreover, f takes minimal points to minimal points. Since t?D 
consists only of minimal points, the same is valid for OM E. 

Let h be a positive harmonic function in E such that h(xo) = 1. Then there is 
a unique probability measure # on Borel subsets of OME such that 

h(x) = ~ K~(x,z)g(dz) .  (3.2) 
OME 

Let CO~o(dz ) denote the harmonic measure at x o. We assume that h satisfies 
a condition analog to (H): (HM) The measure # is not singular with respect to the 
harmonic measure COxo. 

Let 9 denote the density of the absolutely continuous part #a of #. Then there 
exists a Borel subset W of OME such that W ~ {9 > 0} c~ supp(#a) and 
O)xo(W) > 0. The function h o f -  1 is harmonic in D and its representing measure is 
the image measure ;t = # of  - 1. It easily follows that h of - 1 satisfies the condition 
(H). Moreover, if V = f ( W ) ,  then ~t(V) > 0 and a(V)  > O. 

Let (X h, ph) be an h-Brownian motion in E with lifetime (. Then the limit 
limt ~ X  h = X~_ exists almost surely in the Martin topology, and X~_ ~ ~?ME (see 
[2]). Let Xt = f ( X t  h) and/~x = P~-,(x) for x~D. Sincef is  1-1, ()~t, P~)is a strong 
Markov process in D. 

Lemma 3.1 ()~t,/~x) is a time change of hof- l-Brownian motion in D. 

Proof~ Let 5t and 5 ~ denote the cones of excessive functions for h h (X~, Px) and 
(Xt, Px) respectively. A simple use of Dynkin's theorem (e.g. [10], p. 58) shows that 
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F:  Y - 5~ defined by F(u) = uo f  -1 maps 5 r bijectively onto 5 ~. Excessive func- 
tions for X h are of the form v/h where v is excessive for Brownian motion in E. The 
latter are precisely positive superharmonic functions in E. Since conformal map- 
ping preserves superharmonicity and harmonicity (e.g. [9], p. 6.19.), vo f  -1 
(h of -1) is superharmonic (harmonic) in D. Hence, F ( u ) = v o f ~ l / h o f  -1 is an 
h of-l-superharmonic function in D. This shows that (Xt, P~) and h of -1- 
Brownian motion have the same excessive functions. Now Hunt's theorem and the 
BGM theorem show that the lemma is true. [] 

Let (Yt, Qx) be a normal strong Markov process in E with continuous paths 
up to its lifetime (. We shall need a condition analog to (2.4) for the process (Y~, Qx). 
We assume 

If F(o)) c~ W ,  0, then F(co) is a singleton, Qx a.s. (3.3) 

The set of accumulation points F is taken in the Martin topology. Let ~ = f ( Y J  
and (2x = Qs-'(~) for xsD.  Then ( ~ ,  (~) is a strong Markov process in D with 
continuous paths up to the lifetime ~. Moreover, continuity o f f  on /~u  gives that 
condition (2.4) holds for Y on the Borel subset V = f ( W )  of ~?D. 

Theorem 3.1 Let (X), P~) be an h-Brownian motion on the Martin space EM with 
h satisfying (HM), let (Ytt, Qx) be a continuous strong Markov process in E satisfying 
(3.3). Suppose 

h h P~(Xr 6A) = Q~(Y(_ ~A) (3.4) 

for all Borel subsets A of W and all x ~ E. Then Y is a time change of X. 

Proof. Let )~ and Y be as above. Continuity of f on EM, and the discussion 
preceding the theorem imply that 

Px(Xr ~f(A)) = Q~( Y~_ ~T(A)) (3.5) 

for all Borel subsets A of Wand  all xeD.  Now Lemma 3.1 and Theorem 2.1 give 
that for all compact sets K ~ D and all x e D 

-fix (J~T(K) e B) = Q2. (I?~(K) E B ) ,  (3.6) 

for all Borel subsets B of D. Since inf{t > 0: ) ~  K} = inf{t > 0: X ) ~ f - ~ ( K ) }  and 
similarly for Y, we get 

P,:(Xhr(f '(K))~f- I ( B ) )  = Qx (Y~(f-'(K)) 6 f  - 1U)). (3.7) 

Hence, X h and Y have identical hitting distributions for all compact subsets of E. 
Once again we use the BGM theorem to finish the proof. [] 

While the Martin space is appropriate for Brownian motion, it seems rather 
unnatural to consider other Markov processes in that setting. In the sequel we 
replace the Martin boundary of the domain with its Euclidean boundary 0E and 
consider only Brownian motion. Notation will remain the same. 

The conformal mapping f :  E -* D extends automatically to a homeomorphism 
from EM to/5. Since this may not be so in the Euclidean topology, we need some 
kind of extension of f to the Euclidean boundary OE. We assume that E satisfies the 
following extension condition: 
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(E) There exists an open subset U of dE such that f can be continuously 
extended to U a n d f ( U )  is open in 8D. 

The extension is denoted by the same letter f We discuss later when (E) is 
satisfied. 

Theorem 3.2 Let E be a bounded simply connected domain in R 2 such that (E) holds. 
Let (X,, P~) be a Brownian motion in E and (Yt, Qx) a continuous normal strong 
Markov process in E satisfying (2.4)for some open subset V c U. Assume 

P~(Xr e A ) =  Q:,(Y(_ ~A) (3.8) 

for all Borel subsets A of V and for all x ~ E. Then Y is a time change of X. 

Proof Let (X~, P~) and ( Y~, Q~) be as above. The extension condition (E) makes it 
possible to transfer equality (3.8) into D to obtain 

P~(X(_ ef(A)) = Qx( Y( -  ~f(A)) (3.9) 

for all B orel subsetsf(A) off(V)  and all x ~ D. Now the proof follows word by word 
the proof of Theorem 3.1. [] 

Now we come back to the condition (E). It is well known that if E is a Jordan 
domain, then f can be extended to a homeomorphism from/~ on to / ) .  This is, for 
example, proved in [7]. We refer the reader to the same source for the unexplained 
terminology about prime ends that follows. Suppose there is an open subset U of 
dE such that: (1) two different points in U are principal points of different prime 
ends, and (2) each point of U is a principal point of exactly one prime end. Then it 
can be proved thatfpermits  a continuous extension to U (see 1-7]). Instead of giving 
a strict proof of that statement, we rather make some comments on above 
conditions. The first condition guarantees that Brownian motion will hit U with 
positive probability. The second condition says that "U does not have two sides". 

To see what can go wrong when the second condition is not satisfied, consider 
the following example. Let S+ = {(xl, x2)~O: xl > O, x2 = 0}, S_ = {(xl, x2)~O: 
xl < 0, x2 = 0} and let E = D\S+ be the unit disk slit along the positive xl-axis. 
We construct the strong Markov process Y in E in the following way: if the process 
starts at the point x ~ E with x2 > 0, it behaves like a reflected Brownian motion in 
the upper half-plane until it hits the boundary of E when it is killed. If Y starts at 
x ~ E with x2 < 0, it behaves like Brownian motion in E until it hits S_ (if not killed 
before). After hitting S_,  it acts as described above. Then for any subset A c S +, 
and every x e E, it holds Px (X~_ e A) = Q~ ( Y~_ ~ A), but the statement of Theorem 
3.2 is obviously false. Fortunately enough, we may wisely choose to observe the 
process Y on any open subset of the circle and realize that it is not a time change of 
Brownian motion. 

The problem becomes more acute in domains such that for every open subset 
U of the boundary, Brownian motion either never hits U, or it can approach 
U from different sides. An example of such domain is the upper half-plane with 
countably many segments deleted, one at each rational point of the x-axis. The 
length of the segment at (re~n, 0) is 1In. In this case, no conclusion can be derived 
from Theorem 3.2 and it is not clear to us if the result is true. 
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