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Summary. Let X" be an h-Brownian motion in the unit ball D < R® with h har-
monic, such that the representing measure of 4 is not singular with respect to the
surface measure on 0D. If Y is a continuous strong Markov process in D with the
same killing distributions as X * then Yis a time change of X*. Similar results hold
in simply connected domains in C provided with either the Martin or the Euclidean
boundary.

1 Introduction

Question of recognizing two stochastic processes as a time change one of another is
a repeating theme in the theory of stochastic processes. The most general result in
the Markov process theory is the celebrated Blumenthal-Getoor-McKean theorem
(from now on referred to as BGM). Loosely speaking, the result is that two
processes with equal hitting distributions for compact sets have same geometrical
trajectories. They can only run with different speed. We state the theorem for
further reference in generality we will need (see [1], V-5.1).

Theorem 1.1 Let (X;, P,) and (Y;, Q,) be standard processes with the same locally
compact second countable state space (E, &) and cemetery point A. Let E, = E U {4}
and &, = & v {A}. Suppose that the hitting distribution of X and Y satisfy

Pg(x,-) = Qk(x, ") (1.1)

for all xe E and all compact subsets K of E . Then there exists a continuous additive
Sunctional A = (A,) of X, which is strictly increasing and finite on [0, {), such that
if © = (t,) is the right continuous inverse of A, then (X.,, P;) and (Y,, Q,) have same
joint distributions.

We will say that Y is a time change of X whenever the conclusion of the theorem
holds.

The BGM theorem has been generalized in several directions. Glover showed in
[5] that if X and Y are transient processes with identical hitting probabilities, then
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the conclusion of Theorem 1.1 still holds (see also [6] and [3]). In the other
direction, it was shown in [4] that the state space can be a Radon space and X,
Y right processes.

The strength of the BGM theorem is in the fact that the state space E and
processes X and Y are as general as they can be. On the other hand, knowing
nothing specific about X and ¥ seems to require information from all over the state
space: one needs to know that Pg(x, ) = Qg(x, - ) for all compact subsets of E ;. It is
conceivable that if the process X is specified (which automatically determines the
state space), one should be able to recognize Y as its time change by requiring
a seemingly weaker condition than (1.1). The casiest candidate to start with is
Brownian motion in some open connected subset of R%, d > 2. Since a subset of R?
comes equipped with its (Euclidean) boundary 4D, a natural question arises: Can
we recognize Brownian motion in D by knowing only how it hits the boundary?
For nice domains the answer is yes. Here is the precise statement (see [11]).

Theorem 1.2 Letr (X,, P,) be a Brownian motion in a bounded Lipschitz domain
D < R killed while exiting D, { the lifetime of X, and (Y,, Q,) a normal strong
Markov process in D with continuous paths up to its lifetime (. Assume that
Y7 exists and

Pu(X;_€C)=Qi(Y;_ €C) (1.2)

for all Borel subsets C of 8D and all xeD. Then Y is a time change of X.

Remark 1.1. Itis clear that the result is not valid if Brownian motion is replaced by
an arbitrary continuous Markov process. For example, let X" denote an
h-Brownian motion in D with minimal harmonic h representing the boundary
point z. Then X" exits D at z. Let Y be any other diffusion conditioned to exit D at
z. Obviously (1.2) is satisfied, yet X" and Y can be very different.

In this paper Theorem 1.2 is extended to a certain class of A-Brownian motions
in the unit ball. Minimal harmonic functions must be a priori ruled out due to the
remark above: The available information from the boundary is far from being
sufficient to say anything about the process inside. Therefore we restrict ourselves
to harmonic functions 4 such that the representing measure of 4 is not singular with
respect to the surface measure on éD. With this assumption a result similar to
Theorem 1.2 is proved. Moreover, the method we use shows that one can charac-
terize Brownian motion up to a time change by knowing the exit distributions only
on an arbitrary Borel subset of the boundary with positive surface measure.

The paper is organized as follows. In Sect. 2 we introduce the notation and give
a precise setting. Then we prove the main result for A-Brownian motion in the unit
ball. Methods and results given in this section are central for the paper. In
Sect. 3 we apply the Riemann mapping theorem to transfer results to a simply
connected domain in R? provided with the Martin boundary or the Euclidean
boundary. Theorem 3.2 is a generalization of Theorem 1.2 for planar simply
connected domains with much less regular boundaries than those of Lipschitz
domains.

2 Brownian motion in the unit ball

Let D be the unit ball in RY d =2, with the Euclidean boundary &D. Let
(Q,%,%,,X,,6,, P,) be a Brownian motion in D, killed while exiting D, with
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lifetime {. By p(t, x, y) we denote the transition density of (X,, P,). For a positive
harmonic function h, let (X*, P*) denote Doob’s h-transformed Brownian motion
in D (see [2]). The transition density of X* is given by

ph(ta X, y) = h(x)_lp(ta X, y)h(y) .

Let K(x, z) = (1 — |x|*)/|z — x|% x €D, ze D, denote the Poisson kernel. Without
loss of generality we shall assume that h(0) = 1. There is a unique probability
measure u on oD such that

h(x) = | K(x,z)u(dz), for all xeD . (2.1)
71

Let o denote the normalized surface measure on dD and let p = pg + u, be the
Lebesgue decomposition of p in the singular part u, and the absolutely continuous
part u, (with respect to o). The measure p, can be written as p,(dz) = g(z)o(dz)
where g is a nonnegative Borel function on 6D. Having in mind Remark 1.1, we will
assume that the harmonic function h satisfies the following hypothesis:

(H) The measure u is not singular with respect to the surface measure ¢. With
this hypothesis, the set {g-> 0} has strictly positive surface measure. Moreover,
o and p, are equivalent on {g>0}. Let ¥ be any Borel subset of
{g > 0} N supp(y,) with o(V)> 0 (here supp(y,) denotes the support of the
measure 1, ). Such set V exists since o({g > 0} » supp(u,)) > 0. Then u,(V) >0
and, in particular, u(¥) > 0. The set V" will remain fixed throughout this section.

Remark 2.1. Let o,(dz) denote the harmonic measure at xeD. Then
o(dz) = we(dz) where 0 denotes the origin. Since w,(dz) = K(x, z)a(dz), the hypo-
thesis (H) is equivalent to the hypothesis that u is not singular with respect to the
harmonic measure.

Let (2,9, %, Y., 0,, Q,) be a normal strong Markov process in D with continu-
ous paths up to its lifetime {. For a Borel subset B of D, let

Ty =inf{t > 0: X*eB}, Tp = inf{t > 0: ¥, e B} 2.2)
be the hitting times of B for X" and Y respectively. Let
Phf(x) = PLLA(X"(Ts))], Qsf(x) = Q:[f(Y(T5)] (2.3)

(f positive Borel function on D), be the hitting operators of B for X" and Y. For
weQ, let I'(w) denote the set of accumulation points of Y,(w) as ¢ 1 {(w). We
assume:

If F'(w)~ V & 0, then I'(w)is a singleton, Q, a.s. 2.4

This assumption justifies an expression like {weQ: Y7 (w)c A} for A < V. The
goal of this section is to prove the following theorem.

Theorem 2.1 Let (X*, P%) be an h-Brownian motion in D with h satisfying (H),
(Y, Qx) a continuous normal strong Markov process in D satisfying (2.4). Assume

PHX! ed)=0.(Y; eA) 2.3)
for all Borel subsets A of V and for all xe D. Then Y is a time change of X".

Before proving the theorem, we give an example.
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Example. Fix ze dD and let h be the function x — 1 + K(x, z) normalized so that
h(0) = 1. The corresponding h-process X " is a mixing of Brownian motion in D and
Brownian motion conditioned to exit D at z. Consequently, X" will exit D at z with
-positive probability, and z is the only such point. Suppose that 7 is an open subset
of oD such that z¢ V. If (Y;, Q,) satisfies (2.5), then it is a time change of X"
A curious thing is that by observing Y only on V, one can detect exactly the point
zedD at which Y exits D with positive probability.

The proof of the theorem follows the ideas from [11]. By using analytical
methods, we show that X* and Y have identical exit distributions from relatively
compact open balls in D. Then we quote a probabilistic result of Jksendal and
Stroock ([8]) to show that (1.1) holds. The BGM theorem finishes the proof. We
start off with several lemmas.

Lemma 2.1 Let K be a compact subset of D, v a probability measure on K,
L(u,x) = 1/|lu—x|% and g a strictly positive continuous function on K. Then
G: 8D — R defined by

G(x) = [ gu)(l — |u|*) L(u, x)v(du) (2.6)

is real analytic on the sphere 0D.

Proof. Tt is enough to show that G is real analytic on some open subset = of R*
containing @D and disjoint with K. Then its restriction to the real analytic manifold
aD will be also real analytic. Let £ = 5 x B(0, §) where § < dist(Z, K). Consider
Easa subset of C% Then L(u -} can be extended as a holomorphlc (complex)
function on &. Moreover, it is easﬂy seen that M (u, x, y) = g(u)(1 — u|>) Ly, x, ¥),
uek, (x, y)e&, is holomorphlc in £ for each ue K, and jointly continuous and
uniformly bounded on K xZ. Similarly, partial derivatives dM/0x;, OM/0y;
are Jomtly continuous and uniformly bounded on KxZ. Let G(x,y)=
[ xM(u, x, y)v(du). Since M(u, -, ") satisfies the Cauchy-Riemann equations, and
differentiation under the integral sign is permitted, the same holds for G. Hence,
G(x, y) is holomorphic on = x B(0, d). Since G(x) = RG(x, 0), G is real analytic on
B O

Let w,(dz) and »"(dz) denote harmonic and h-harmonic measure at x respect-
ively. Then
K(x, 2)
h(x)

(see [2] p. 119). Note that w"(4) >0 for every 4 = V with positive surface

measure. If ze D and 4, = B(z, 27") n 0D, then it is well known that

. 0(4,)

lim —— = K(x, z (2.8)
0 () (An) ( )

uniformly on compact subsets of D (here 0 denotes the origin).

ot(dz) = u(dz) 2.7)

Lemma 2.2 For every zesupp(u),

L O Ko 2)
b, - R

uniformly on compact subsets of D.

(2.9)
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Proof. Let zesupp(u). For every neN, let A,(x) = j 4,K(x, Ou(dl). Then h, is
harmonic and w”(4,) = h,(x)/h(x). Since h(0) = 1 and K(0,-) = 1, it follows that
% (4,) = u(4,), which is strictly positive for every neN. By continuity of the
Poisson kernel in the second variable, it follows that

) K Da@D)
L RV

pointwise for every xe D. But a pointwise limit of positive harmonic functions is
locally uniform. Since 4 is bounded away from zero on compact sets, it follows that

=K(x,2),

o @) _ 1 b0 _K(x2)
e @50) o B R(A) T HEY)

locally uniformly. O

A measurable function # on D is said to be harmonic for Y if for every compact
subset K of D and all xe D, Qgcu(x) = u(x).

Proof of Theorem 2.1. Let ze V and 4, = B(z, 27") n dD. Since ¥V is contained in
the support of g, Lemma 2.2, the assumption (2.5), and the well-known fact that
PY(X}_e4,) = o%(4,) imply that

QYr_ed) . oh4)  K(u2)
o (Fr ey~ 2 oh @) = h(Y

uniformly on compacts. A locally uniform limit of harmonic functions for Y is
again harmonic. Since x — Q,(Y7_ € 4,) is harmonic for Y (by the strong Markov
property), it follows from (2.10) that x — K(x, z)/h(x)} is also harmonic for ¥, and
this holds for every ze V. For xoeD let B = B(x,, r) denote a relatively compact
open ball in D with the boundary S(x,, r). Then for every xe B,

(2.10)

| K(y, )

K(x,z) | K(y,2)
S(x0.9) h(y)

h(x) _S(xo,r) h(y)

for all ze V. By Lemma 2.1 the functions z > {5, ., (K (1, 2)/h(y)) Pl (x, dy) and
Z2 > [ 5x0,n (K(¥, 2)/h(y))Q pe(x, dy) are real analytic on éD. By (2.11) they are
equal on the Borel set ¥ with ¢(V) > 0 and, by the standard result on (real)
analytic functions, they are equal on the whole boundary éD. Hence (2.11) is valid
for every ze 0D. The linear span of functions K(-, z), ze 0D, restricted to S(x,, r) is
dense in the space € (S(xo, r)) of all continuous functions on S(xy, 7). This can be
proved by uniformly approximating a continuous function on €(S(xq, 7)) by
a sequence of harmonic polynomials on R? (for an alternative proof see [11],
Lemma 3.2). Since 4 is bounded on S(x,, r) and also bounded away from zero, it
easily follows that the linear span of functions K (-, z)/h(*), z€ D, restricted to
S(xg,7) is also dense in %(S(xo, r)). Therefore, the measures P%(x,dy) and
Qx.(x, dy) are equal for every x€ B, i.e., X" and Y have identical exit distributions
from relatively compact open balls. By Theorem 2 of [8] it follows that (1.1) holds
for X" and Y (see also [11], Proposition 2.1). The BGM theorem finishes the
proof. [J

Pi(x,dy) =

Qg(x,dy)y, = (2.11)
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By using the same method one can prove a result similar to Theorem 2.1. We
retain the same notation, simplify conditions on Y and in addition assume that the
set V' is open.

Theorem 2.2 Let (X¥, P%) be an h-Brownian motion in D with h satisfying (H),
(Y;, Q) a continuous normal strong Markov process in D such that Yy =1lim,_¢Y,
exists in 0D. Let F: 8D — 0D be a homeomorphism. Assume

PIX{-eF7(4) = Qu(Y;_€4) (2.12)

for all Borel subsets A of 0D such that F ~'(4) < V and for all xe D. Then Y is a time
change of X", and, consequently, F is the identity on V.

Proof. Let us denote Q,(Y7_ €A) by @,(A4). Then x > &.(A) is harmonic for Y.
Hence, if B = B(x,, ) is a relatively compact open ball in D with the boundary
S(xg, r), then

§ @,(4)05(x, dy) = @.(4) (2.13)

S{xo,r)

for every x € B. By assumption (2.12), if F ~*(4) < V, this can be written as

[ ob(F7HA)Qpe(x, dy) = 0i(F 7 (4)), (2.14)

S(xa,7)

for every x e B. On the other hand, h-harmonicity of x — w’(F ~1(4)) yields

[ @h(F~Y(4))Ph(x, dy) = 0i(F ~1(4)) . (2.15)
S(xo,r)
From (2.14) and (2.15) it follows that
[ 0i(O)Ph(x,dy) = [ ok(C)Qp(x,dy) (2.16)
S(xo,r) S(xo0,7)

for every x & B and every Borel subset C of V. Ifze Vand 4, = B(z, 27") n 0D, then
wh(4,) > 0. Let C = 4, in (2.16) and divide the equation by w}(4,). By letting
n— oo and using Lemma 2.2, it follows

K(y,Z) K(y’
ko{x, dy) =
Ty PR = TS0

and this holds for all ze V. Now the same argument as in the proof of Theorem 2.1,
shows that ¥is a time change of X . Hence, 0, (Y7_ €4) = P2(X}_ e A)and (2.12)
reads

Qe (x, dy) (2.17)

PiXt_ed)=PiXt eF~1(4), (2.18)

for all Borel subsets A of 6D such that F ~'(4) = V and all xe D. Since (2.18) can be
written as

i & aud) =g 1

it follows easily that F(z) = z for all zesupp(i)n V=V. U

K (x, z)u(dz)
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3 Brownian motion in a simply connected domain

In this section we use the Riemann mapping theorem to transfer the result for the
unit disk to a simply connected domain. If the domain is provided with the Martin
boundary, the situation is essentially the same as for the disk. In the case of the
Euclidean boundary, the obtained result, though less complete, seems to be more
interesting. We begin with the Martin boundary case.

Let E be a simply connected domain in R? with at least two boundary points
and let D be the unit disk. We denote the Green function for E and D by Gg and G,
respectively. Let xo be a fixed point in E and for x, yc E let

GE (x> y)

Kg(x,y) = Goxory)

(3.1

be the Martin function (with respect to the base point xq). Then there exists
a compactification E, of E such that the Martin function extends to a continuous
function from E x E,; into (0, c0]. The Martin boundary of E is 3, E = Ej\ E. For
z e 0y E, the function x — Kgz(x, z) is harmonic in E. The boundary point z is called
minimal, if the function Kg(-, z) is minimal.

Let f: E— D map E conformally onto D. We assume that the point x¢€E is
chosen so that f(xq)=0. Being conformal, f preserves the Green function:
Gg(x, y) = Gp(f(x),f(»)). Thus, f also preserves the Martin function, and hence
extends to a homeomorphism of Ey and the Martin compactification of D. The
latter being homeomorphic to the Euclidean closure D, we have that f: Ey; — D is
a homeomorphism. Moreover, f takes minimal points to minimal points. Since dD
consists only of minimal points, the same is valid for Jy E.

Let h be a positive harmonic function in E such that h(x,) = 1. Then there is
a unique probability measure u on Borel subsets of d E such that

h(x) = I i Kg(x, 2)u(dz) . (32)

Let w,,(dz) denote the harmonic measure at x,. We assume that h satisfies
a condition analog to (H): (Hy) The measure 4 is not singular with respect to the
harmonic measure ,,.

Let g denote the density of the absolutely continuous part p, of p. Then there
exists a Borel subset W of dyE such that W < {g >0} n supp(y,) and
0y, (W) > 0. The function hof ~! is harmonic in D and its representing measure is
the image measure ji = pof ~ 1. Tt easily follows that hof ! satisfies the condition
(H). Moreover, if ¥V = f(W), then (V) > 0 and o(V) > 0.

Let (X!, P") be an h-Brownian motion in E with lifetime {. Then the limit
lim, s X7 = X} exists almost surely in the Martin topology, and X ¥ (- €0mE (see
[2]). Let X, f(X") and P, = Pf 1% for xeD. Since f'is 1-1, (X,, P.) is a strong
Markov process in D.

Lemma 3.1 (X,, P.) is a time change of hef ~1-Brownian motion in D.

Proof. Let & and & denote the cones of excessive functions for (X*, P%) and
(X,, P,) respectively. A simple use of Dynkin’s theorem (e.g. [10], p- 58) shows that
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F: & — & defined by F(u) = usf ~! maps & bijectively onto &. Excessive func-
tions for X* are of the form v/h where v is excessive for Brownian motion in E. The
latter are precisely positive superharmonic functions in E. Since conformal map-
ping preserves superharmonicity and harmonicity (e.g. [9], p. 6.19.), vof ™!
(hof - 1) is superharmonic (harmonic) in D. Hence, F(u) = vof~ Yhef =1 is an
hof ~'-superharmonic function in D. This shows that (X,,P,) and hof!-

Brownian motion have the same excessive functions. Now Hunt’s theorem and the
BGM theorem show that the lemma is true. O

Let (Y, O,) be a normal strong Markov process in E with continuous paths

up to its lifetime (. We shall need a condition analog to (2.4) for the process (1}, Q,.).
We assume

If M'(w) n W % O, then I'(w) is a singleton, Q, a.s. (3.3)

The set of accumulation points I is taken in the Martin topology. Let Y, =f(%;)
and 0, = Q -1y for xeD. Then ( Y,, 0.) is a strong Markov process in D with
continuous paths up to the lifetime T. Moreover, continuity of f on E,, gives that
condition (2.4) holds for ¥ on the Borel subset ¥ = f( W) of &D.

Theorem 3.1 Let (X!, P") be an h-Brownian motion on the Martin space Ey with
h satisfying (Hy,), let (Y;, Q) be a continuous strong Markov process in E satisfying
(3.3). Suppose

PI(X}_ ed)=Q.(Yr_e4) (3.4)

for all Borel subsets A of W and all xe E. Then Y is a time change of X.

Proof. Let X and Y be as above. Continuity of f on Ej, and the discussion
preceding the theorem imply that

P.(X,-ef(4)) = 0.(¥7_ ef(4)) (3.5)

for all Borel subsets A of W and all xeD. Now Lemma 3.1 and Theorem 2.1 give
that for all compact sets K < D and all xe D

Fx()?T(K)EB)=Q~x(YT(K)EB)a (3.6)

for all Borel subsets B of D. Since inf {t > 0: X,e K} = inf {t > 0: X!ef "*(K)} and
similarly for Y, we get

Px(X}TI“(f"(K))Ef—l(B)) = Q. (Y “(K))Ef_lB)) . (3.7

Hence, X" and Y have identical hitting distributions for all compact subsets of E.
Once again we use the BGM theorem to finish the proof. [

While the Martin space is appropriate for Brownian motion, it seems rather
unnatural to consider other Markov processes in that setting. In the sequel we
replace the Martin boundary of the domain with its Euclidean boundary ¢E and
consider only Brownian motion. Notation will remain the same.

The conformal mapping f: E — D extends automatically to a homeomorphism
from E,; to D. Since this may not be so in the Euclidean topology, we need some
kind of extension of fto the Euclidean boundary dE. We assume that E satisfies the
following extension condition:
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(E) There exists an open subset U of JE such that f can be continuously
extended to U and f(U) is open in éD.

The extension is denoted by the same letter £ We discuss later when (E) is
satisfied.

Theorem 3.2 Let E be a bounded simply connected domain in R? such that (E) holds.
Let (X,, P,) be a Brownian motion in E and (Y, Q,) a continuous normal strong
Markov process in E satisfying (2.4) for some open subset V < U. Assume

P (X;_€A)=0Q,(Yr_cA) (3.8)
Jor all Borel subsets A of V and for all xe E. Then Y is a time change of X.

Proof. Let (X,, P,)and (¥,, Q~x) be as above. The extension condition (E) makes it
possible to transfer equality (3.8) into D to obtain

P(X;_ ef(4)) = 0.(¥r- ef(4)) (3.9)

for all Borel subsets f(4) of /(7)) and all xe D. Now the proof follows word by word
the proof of Theorem 3.1. O

Now we come back to the condition (E). It is well known that if E is a Jordan
domain, then f can be extended to a homeomorphism from E onto D. This is, for
example, proved in [ 7]. We refer the reader to the same source for the unexplained
terminology about prime ends that follows. Suppose there is an open subset U of
OF such that: (1) two different points in U are principal points of different prime
ends, and (2) each point of U is a principal point of exactly one prime end. Then it
can be proved that f permits a continuous extension to U (see [7]). Instead of giving
a strict proof of that statement, we rather make some comments on above
conditions. The first condition guarantees that Brownian motion will hit U with
positive probability. The second condition says that “U does not have two sides”.

To see what can go wrong when the second condition is not satisfied, consider
the following example. Let S = {(x1, x;)eD: x; 2 0,x, =0}, S_ = {(xy, x;)eD:
x1 <0, x, =0} and let E = D\ S, be the unit disk slit along the positive x,-axis.
We construct the strong Markov process Y in E in the following way: if the process
starts at the point x € E with x, = 0, it behaves like a reflected Brownian motion in
the upper half-plane until it hits the boundary of E when it is killed. If Y starts at
x e E with x, < 0, it behaves like Brownian motion in E until it hits S _ (if not killed
before). After hitting S_, it acts as described above. Then for any subset 4 = S,
and every x€ E, it holds P,(X,_ € A) = Q.(Y7_ € A), but the statement of Theorem
3.2 is obviously false. Fortunately enough, we may wisely choose to observe the
process Y on any open subset of the circle and realize that it is not a time change of
Brownian motion.

The problem becomes more acute in domains such that for every open subset
U of the boundary, Brownian motion either never hits U, or it can approach
U from different sides. An example of such domain is the upper half-plane with
countably many segments deleted, one at each rational point of the x-axis. The
length of the segment at (m/n, 0) is 1/n. In this case, no conclusion can be derived
from Theorem 3.2 and it is not clear to us if the result is true.
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