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1 Introduction 

Holomorphic functions of infinitely many complex variables have been dis- 
cussed by many authors, among others by Shigekawa [7], who first construc- 
ted them on the complex Wiener space using the techniques of the Malliavin 
calculus. He noticed several properties of his holomorphic functions (let us call 
them holomorphic Wiener functions), such as the It6-Wiener expansion in the 
LV-sense. In this paper, we will investigate some other properties of holomor- 
phic Wiener functions. 

We use Shigekawa's framework and notation [7]. Let (B, H, #, J) be an 
almost complex abstract Wiener space, i.e., B is a real separable Banach space, 
H is a real separable Hilbert space continuously and densely imbedded in B, 
# is a Gaussian measure satisfying 

f exp(xf~l(~0,  z))#(dz)=exp(-�88 [1 ~0115.), ~0~B* c H*, 
B 

and J : B~B,  the almost complex structure, is an isometric mapping such that 
j 2 =  - i d  and JIH'H~H is also isometric (see [7]). 

* Supported in part by the Grant-in-Aid for Science Research 03740120 Min. Education 
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In this paper, we will first show that from several viewpoints, we can 
endow each holomorphic function on (B, H,/~, J)  with an intrinsic and unique 
skeleton, i.e., a function defined on H which is considered to be the restriction 
of the original Wiener function. Note that, of course, since #(H) = 0, it makes 
no measure-theoretical sense to endow general Wiener functions with skele- 
tons. 

Let F : B ~ C  be L 1 +-holomorphic (for precise definition, see Definition 2.1 
below). Note however that F may not be continuous. Taking into account the 
mean value theorem for usual holomorphic functions on C" and the rotation 
invariance of the Gaussian measure #, we may guess that the skeleton of 
F should be 

F(h)=f F(z+h)#(dz), heH. 

On the other hand, if we can give an intrinsic meaning to a function F(c~z) for 
c~>0, which will be done for 0 < ~ <  1 and will be called the contraction 
operation, then the skeleton of F should be 

F(h) = lira F(ctz + h) in probability, heH. 
~-'*0 

As expected, we can show that these two are consistent (Theorem 2.8). 
Skeletons are expected to appear in the theory of large deviations as rate 

functions [1]. In infinite dimensional spaces, the theory of large deviations 
necessarily involves the topology of the spaces. Consequently, to investigate 
skeletons of Wiener functions, it is important to look at their fluctuations in 
small balls centered at each h~H. In this context, we will show that 

1 
lim f [F(z+h)-F(h)lZ#(dz)=O, h~H, (1) 
r~O ~ Br 

for each L2+-holomorphic function F, where Br denotes the centered I1" lIB- 
ball with radius r > 0 (Theorem 4.1). But there, we must require the norm I1" II~ of 
B to have some good property which is fitted to the almost complex structure J. 

In proving our theorems, we will make use of the rotation invariance of the 
Gaussian measure #. In fact, some results, such as the theorem of local Taylor 
expansion for holomorphic Wiener functions (Theorem 3.6), will be proved 
only by means of the rotation invariance. 

2 Mean value theorem and contraction operation 

First we define holomorphic functions on the almost complex abstract Wiener 
space (B, H, #, J). We will review [7] briefly. 

Let B* be the topological dual space of B and let B *r be its complexifica- 

tion, i.e., B*C:=B* O x / - ~ B * .  Defining 

B*(a, m:= {q~eB*ClJ*ep = x/Z~q~}, 

B*(~ - ~ / ~ l ( p  }, 
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we see that 

B,C = B,~I, o) �9 B *(~ t~. 

The Hilbert spaces H *c, H *(1' o) and H *~~ 17 are defined similarly. 
A function F : B--*C is called a holomorphic polynomial, if it is expressed in 

the form 

F(z)=f((~ol, z> . . . . .  <(p,, z>), 

where nCN,f:C"--,C is a polynomial with complex coefficients, and 
qh . . . . .  (p,eB,(l, o). The class of holomorphic polynomials is denoted by ~h. 

Definition 2.1 We define the space .3f~P(B, #) of LP-holomorphic Wiener func- 
tions as the LV(B, #)-closure Of Nh: 

~ P ( B , # ) : = ~  "(B'u), l < p < o o .  

Further we define the auxiliary spaces by 

~P+(B,#) := U ~er(B,#), l=<p<oo. 
p<p' 

Note that the above definition of 2CP(B, #) is equivalent to Shigekawa's 
definition (see [7, Proposition 4.2). 

Since the Cameron-Martin density (see Definition 2.5 below) has all 
moments, it is easy to see that, for each F ~  p + (B, #), the translated function 
F(z+h) with hel l  also belongs to ~P+(B,#).  Note that there are many 
LP-holomorphic functions which are not continuous with respect to any 
measurable norm (see [10]; on measurable norms, see [2, 3]). 

Since we are assuming the almost complex structure J, the measurable 
norm II " lIB is naturally required to have the following property. 

Assumption 2.2 (Rotation invariance of the norm) We assume that, for arbit- 
rary a, b6R, 

II (a + bd 

In particular, we assume 

izll~=ta+xf2-tbI ItzllB, z~B. 

IleJOz[IB=Ilzi[~, O~R, 

where eS~ is an abbreviation for (cos 0 + (sin O)J)z. 

Example 2.3 Let (W(R2), H(R2), pW) be the two-dimensional Wiener space, 
i.e., 

W(R 2) := {w = (w 1, w -~)~ C([0,  1] ~ R 2 )  I w(0) = 0ER 2 }, 

H(R 2) := {h =(h 1, h2)E W[ h(t) is absolutely continuous and 

dh/dt~L2([O, l i a R  2, dr)}, 

pw := the standard two-dimensional Wiener measure. 
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Then the abstract Wiener space (W(R2), H(Ra), pW) is naturally equipped 
with an almost complex structure J, by the identification R z ~ C. Namely, we 
define J :  W(R2) --+ PV(R 2) by 

J w : = ( - w Z ,  w l ) ,  w = (wl, w2)E W(R2). 

Under this almost complex structure J, the following measurable norms are 
typical examples of rotation invariant ones: 

[]w[[~ := max [w(t)[R2, 
O-_<t_--<l 

Ilwrl<~):= sup [w(t)-w(s)lre, 0<~<�89 
o_<~<~_<i I t - s [  ~ 

where ]-[R2 denotes the Euclid norm in R2; [(x, y)[~2 : = ~ 2 ,  

Lemma 2.4 (Mean value theorem) Let B~ be the centered "liB-ball with radius 
r>O, 

B~z={z~BI ]lzllB<r}. 

Then for each FEJtl(B, #) and each r>O, 

1 
yR ~ f F(z)~(dz)=f F(~).(dz). 
~ r ]  Br B 

Proof It is shown by Shigekawa [7, Theorem 4.1] that 

f f(z)l~(dz)= (Uof)(z)~(dO), ~-a.e. zeB, 
B 0 

where (UoF)(z):=F(el~ which is well-defined on account of the rotation 
invariance of ~. The distribution of UoF is therefore just the same as that of 
F for each 0eR. It then follows from Fubini's theorem and the rotation 
invariance of B~ that 

1 2 ~ o  p(B~) x f F(z)~(dz)= f ~(dz). f (U~F)(z)dO 
B Br 

1 2~ 
f dO f (UoF)(z)~(dz) 

~ 2~ 0 Br 

1 2~ 
f dO f f(z)#(dz) 

~ 2~ 0 B~ 

= f e(z)~(dz), 
B~ 

which completes the proof. [] 
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When F e ~ I ( B ,  #) is continuous in 11 'iiB, we have 

1 
F(0) =l im ~ f F(z)~(dz)= f F(z)~(dz). 

r ~ O  Br B 

Hence we present the following definition, which will be justified in the sequel. 

Definition 2.5 For each F e ~  1 + (B, #), we define its skeleton by 

F(h) := f F(z+h)#(dz)= f e2<h'~>-Ihl~"F(z)#(dz), hr 
B B 

Here note that the multiplier e 2<h" z>-Ihl~, is the Cameron-Martin density. 

Lemma 2.6 Let c~sR be such that 0 < e <  1, and F e a r ( B ,  #). I ra  sequence 
{F,}, F,e~h,  converges to e in ~V(B, #), then {F,(ez)} is also convergent in 
2/t~ #). The limit does not depend on the choice of approximating sequence 
{F,} of hoIomorphic polynomials. 

Proof Since each holomorphic Fourier-Hermite function is in fact a 
monomial ([4, 7] and expression (3) in the next section), we note that the 
Ornstein-Uhlenbeck semigroup { Tt}t _> o (for details see [9] 1) operates on G e~h 
as a family of contractions. Namely, 

(T~G)(z)=G(e-~/2z), zeB and r>0.  

Consequently, F,(ez)= T_ 2 log~F,(z). Thus it is clear that {F,(~z)} is conver- 
gent in LP(B, #), hence in ~~ #), and that the limit is T-a log~F(z), which 
does not depend on the choice of approximating sequence. [] 

By the above lemma, we may present the following definition of the 
contraction operation. 

Definition 2.7 Let eeR be such that 0<c~<1, and Fe~P+(B, #). Then we 
define 

F(~z) := T-2 logzf(z)e~P(B, #). 

Let us show first that Definitions 2.5 and 2.7 are consistent. 

Theorem 2.8 For any FeJt~P+(B, #), 

lim F(~z+h)=F(h) in HV+(B, #)for each hzH. 
~--* 0 

Proof For any GzLP(B, #), we have 

lira II T,G- f G(z)#(dz)[IL,=O, 
t--* oo B 

which proves the claim. [] 

1Our Tt here corresponds to Tt/2 in [93 
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3 Local Taylor expansion 

In this section, we will consider a localization of holomorphic Wiener func- 
tions. 

We recall the It6-Wiener expansion for L2-holomorphic Wiener functions. 
According to [4, 7], the Hilbert space ~2(B ,  #) is decomposed into an 
orthogonal infinite direct sum as follows: 

fff2(B, #)= + C(,,o), (2) 
n = 0  

where C(,. o) is the space of holomorphic n-fold Wiener integrals, i.e., the 
L2-closure of the space of all the finite linear combinations of holomorphic 
Fourier-Hermite functions of degree n. 

Recall that each holomorphic Fourier-Hermite function of degree n is 
expressed in the form 

K 

1~ ( ~Ok' z)mk' (3)  
k = l  

where {~pk}K=l is an orthonormal system of H *(1'~ while ml . . . . .  m K are 
K positive integers such that Y,k = 1 mk = n. Therefore we may call it a holomorphic 

monomial, and we may call the It6-Wiener expansion (2) the global Taylor 
expansion in the L2-sense. 

In this section, we will present a local version of this expansion. As before, 
let Br be the centered [l" ][B-ball with radius r>0 .  

Lemma 3.1 Let G1 and G2 be two holomorphic monomials of different degrees. 
T h e n  G1 [B, and GZIB. are  mutually orthogonal in L2(Br, #). 

Proof Assume G1 is of degree m and G2 is of degree n, where m + n. Then we 
obviously have 

UoG1 =e "/- 1re~ 

UoG2 = e "/- 1~~ G2, 

for 0eR. Since UoB~=B~ and the measure # is Uo-invariant, we have 

f G~ G2 d# = ~ Uo(G~ (~2) d# 
Br Br 

= ~ e'/-~m~176 
B. 

=e "/-~"-"~~ f GaG2d#, 
Br 

for arbitrary OsR. Thus we see that 

f Gl(~zd#=O. [] 
B~ 
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Remark 3.2 Since # is rotation invariant while the real part and the imaginary 
part of each hotomorphic function are harmonic, Lemma 3.1 is essentially 
a consequence of the following fact: Two homogeneous harmonic poly- 
nomials on R" of different degrees are mutually orthogonal with respect to the 
uniform measure on the sphere S"- ~ [8, p. 69]. 

In ~ 2 ( B ,  #), two holomorphic monomials of a same degree are mutually 
orthogonal, if they differ in one of the exponents mk in the expression (3). Now 
what about  ~2(Br ,  #)? To answer this question, we need a class of good 
measurable norms. 

First we introduce the notion of splittin 9 of our almost complex abstract 
Wiener space (see, for example, [7] for details). Suppose that q~eH *(l' o). Then 

t , decompose q~=4,+x/-L-14' ' where 4', 4' ~H ~ H .  Let H e be a two-dimen- 
sional subspace of H spanned by 4' and ~', let H~ be its orthogonal com- 
plement, and let B{ be the closure of H~ in B. Accordingly, # is split into 
# =  #~ | #~, where #e is a Gaussian measure on H~,_-_C, while #)  is also 
a Gaussian measure on B{. Now we have two almost complex abstract 
Wiener spaces (He, Ho, #e, J [ ~ )  and (B~, H~, #~, J IB~), and the following 
natural identification: 

(He O _L l • B~, H e @ He,  #~ | #e,  J lu~ @ J IBm)--- (B, H, #, J). 

Using this notation, we give a definition of the best fitted norms to the 
complex structure. 

Definition 3.3 The norm H" II a of B is said to be completely rotation Jnvariant,/f 
it is rotation invariant and there exists a complete orthonormal system { cpk ) of 
H *(1'~ such that for any rp :=q0k, 

[l(eS~ @ z2 [IB= II zl @ z2 [],, z l e H  e, ZESB~, OeR. 

Example 3.4 Let {~Ok} be a complete orthonormal system of H *(l' o). Put 

(~k ,1/2 /Iztl := ak[(Pk, Z)l 2)  , (4) 

where ak>O, Zkak<oD. Then H'[I is measurable and completely rotation 
invariant. In the case of the two-dimensional Wiener space with almost 
complex structure J defined in Example 2.3, the L2-norm 

Ilwll2 = f Iw(t)l~2dt 
0 

has the above expression (4) and hence is completely rotation invariant. (In 
proving this fact, use the trigonometric series expansion for each w.) 

Lemma 3.5 Let I[" lIB be completely rotation invariant. Then two holomorphic 
monomials of a same degree are mutually orthogonal in L2(Br, #), if they differ in 
one of the exponents m k in the expression (3). 
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Proof. Let G~ and G2 be hotomorphic monomials of degree n, expressed as 
follows: 

K K 

Gl(z)= [-I (~0k, z> "~, m~_>_0, Z mk=~, 
k = l  k = l  

K K 
, t ~ / Gz(z)= I-[ QPk, Z} ink, ink=0, ~ ink=n, 

k = l  k = l  

where mi 4 = m'~. Then 

G1 (z) Gz (z) = F 1 (z) F2 (z), 

where Fa and F 2 a r e  given by 

F~(z) := (qh, z>"l <~o~, z>"~, 
K 

Fdz):= 1--[ (~ok, z>m~<~k, z> m~. 
k = 2  

Putting ~o := ~o1, we have 

f G~(z)Gz(z)p(dz)=f u~(dz~)F~(z~) f F2(z2)~(dzz), (5) 
B,. H~ B~ (z ~ ) 

where B,(zl):= {z2eB~[zl @ zzEBr}, zxeH~. For 0eR, note that 

Fl(J~176 zieH~. 

Hereafter we identify H~ with C. Then since the complete rotation invari- 
ance of the norm implies B~(eS~ B,(zi), we have 

f ~Adzi)F~(z~) f F~(zz)p~(dzz) 
a r g  z~ e[O, O + q) Br(zl)  

= f #,~(dzi)Fi(eS~ f F2(z2)#$(dz2) 
a rg  za �9 [ 0 ,  r/) Br (eJazl) 

= f #~(dz~)e~-~("-~;~~ f F2(z2)#~(dzg) 
a r g  z~ e [ 0 ,  rl) Br(zt) 

= e  4-1(m~-m'O0 f #~(dzl)Fi(zi) f Fz(zz)#~(dz2). 
a rg  z~ e [ 0 ,  ~/) Br(zx) 

Consequently, putting q = 2~, we get 

f G~(z)G2(z)~(dz)=e ,/-~(ml-~'~)~ f G~(z)G~(z)~(dz) 
B~ Br 

for every 0, which shows this value should be equal to zero. [] 

We define the space of L~-holomorphic functions defined on B~ as follows. 
Definition 3.6 By ~V(B,, #), we denote the LP(B,, tO-closure of ~h]B : 

-LP (Br, I l) 
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and we define the auxiliary spaces by 

~162 := U WP'(B,,#), l < p < o o .  
p<p' 

We have thus defined LV-local holomorphic functions for each p 
(1 <p < co), but we will exclusively deal with the case p=2. The next theorem 
readily follows from Lemmas 3.1 and 3.5. 

Theorem 3.7 The Hilbert space YZ(Br, #) is decomposed into an infinite ortho- 
gonal direct sum 

9ef2(Br, 12)= + C(., o)(B,), (6) 
n ~ 0  

where C(,, o)(Br) is the L2(Br, #)-closure of all the finite linear combinations of 
holomorphic monomials of degree n. If, in addition, the given measurable norm is 
completely rotation invariant, each F6C(,,o)(B,) is orthogonaUy decomposed 
into an infinite linear combination of holomorphic monomials of degree n. 

By Shigekawa's uniqueness theorem 1-7, Theorem 4.3], a mapping 

W2(B, #)gF~-~ F]n ~jt~ 12) 

is injective, so ._~2(B, #) is continuously imbedded in ~f'Z(Br, t2). Of course, 
there exist many functions in Yf2(B. #) which cannot be extended to the 
whole space B as elements of W2(B, #). Since (6) is considered as a local 
Taylor expansion, we may say that ~2(Br, #) is the space of local L 2- 
holomorphic functions with radius of convergence at least r. 

To conclude this section, we present a corollary which is an immediate 
consequence of Theorem 3.7. 

Corollary 3.8 (i) For F~2/t~ #), 

f IF(z)[2#(dz) = ~ f tJ(n,o)F(z)[a#(dz), 
Br n = 0 B. 

where J(., o) is the orthogonal projection from YfZ(B, 12) onto C(., o). 
(ii) Suppose that the norm U �9 ILB is completely rotation invariant with respect 

to a CONS {Ok} oH*(1' o) and that FeC(., o) has an expression 

F=-  ~ akGk,  
k = 0  

where {ak}eI 2, while (Gk} is a sequence of holomorphic monomiaIs of degree 
n which are based on {~Pk}, normalized and mutuaUy orthogonat in Jf2(B, f2). 
Then we have 

f IF(z)i212(dz) = ~ lakl 2 f IGk(z)lZ#(dz). 
B~ k = 0 Br 
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Remark 3.9 It is clearly possible to give a local version of Corollary 3.8 as well 
as of the theorem in the next section. 

Remark 3.10 In [5], another type of localization of holomorphic Wiener 
functions is given in connection with SDEs with holomorphic coefficients. 

4 Topological aspects of skeletons 

In this section, we will consider the topological aspects of the skeletons of 
holomorphic Wiener functions. 

Let F e  o~/g ' 1 + (B, #). As we mentioned in Definition 2.5, the skeleton of F is 
the mean ofF(z  + h), which is equal to the local mean restricted to the centered 
ball Br of arbitrary radius r > 0 (Lemma 2.4). Here we will show that the 
fluctuation of F(z + h) around the skeleton F(h) in Br decreases as the radius 
r tends to zero. Namely, we will show the following theorem. 

Theorem 4.1 Let IIIIB be completely rotation invariant and let B~ be the 
centered [l " ll~-ball with radius r > O. Then for each F E ~  2 + (B, #), 

1 
lim f IF(z+h)-f(h)[2#(dz)=O, hcH. (7) 
r~O ~ B~ 

In particular, 

lim #(IF(z)- -F(h) l>el  IIz--hl/B<~)=0, ~>0. (8) 

Lemma 4.2 Let I1" lib be completely rotation invariant and let Br be the centered 
II " ll~-ball with radius r>0 .  Then for each FejF2(B, #), 

1 
#(Br) , f  IF(z)I2#(dz)<-/ tF(z)[2#(dz)" 

Proof. By Corollary 3.8(i), we have 

co 

= ~ - - ~ ) /  IJ(.,o)F(z)[ 2#(dz)' 

and hence it is sufficient to show that, for each n=0 ,  1 . . . . .  

1 
#(B,) , [  [J("" ~ IJ(., o)F(z)12#(dz). 

By Corollary 3.8(ii), we have only to show that 

1 
f I Gk (z) l z ~(dz) < f I Gk (z) l ~ # (dz) (9) 

#(Br) B~ 

for each holomorphic monomial Gk which appeared in Corollary 3.8(ii). Since 
Gk is a monomial, IGk(z)l 2 increases as IlZlIB increases, so (9) is intuitively 
obvious. For  a rigorous proof, see Appendix. [] 
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Before proving Theorem 4.1, it is important to notice that, if the norm is 
not rotation invariant, the assertion of Theorem 4.1 may be false. Indeed, by 
using the same method as in [11], we can construct a hotomorphic Wiener 
function F and a measurable norm H " L]~ without rotation invariance for which 
(8) does not hold. However we do not know whether "complete rotation 
invariance" is necessary or not. Indeed, if Lemma 4.2 holds for I1 ' lIB which is 
not completely rotation invariant but only rotation invariant, then Theorem 
4.1 would hold without complete rotation invariance of the norm. 

Proof of Theorem 4.1 We will show (7) for h = 0  only. For  arbitrary h~H, (7) 
and (8) are proved by using the Cameron-Mart in  density (cf. [11]). 
Take an arbitrary e > 0. Since 

f {F(z) - F(0)} #(dz) = O, 
B 

there exists a continuous holomorphic polynomial G such that 

f G(z)#(dz) = O, 
B 

f IF  (z) - F (0) - G(z)[ 2 # (dz) < �88 e. 
B 

Applying Lemma 4.2, we see that 

1 
f ]F(z)--F(O)12#(dz) 

# ( B r )  Br 

<=#(n,) 1 G(z)I2#(dz)+~B~ ) B~ f IF(z)--F(O)--G(z)t2g(dz) 

2 
<- f ]G(z)]Z#(dz)+ 2 f IF(z)--F(O)-G(z)12#(d z) 
- -  # ( B r )  Br B 

2 
< f IG(z)12#(dz)+�89 
- t t (B~) Br 

Since G is continuous and 

G(0)= f G(z)~(dz)=O, 
B 

there exists an ro > 0 such that for 0 < r < ro, 

2 
f IG(z) J2#(dz)<�89 

which implies 
1 

f [F(z)-F(O)[2#(dz)<e. [] 
#(Br) Br 

Acknowledgement, The author would like to thank the referees and the Editor for improving 
many English expressions in the manuscript. 



128 H. Sugita 

Appendix: Proof of Lemma 4.2 

Here we will present a rigorous proof for (9) to complete the proof of 
Lemma 4.2. 

Let II ' Irn be completely rotation invariant, and let {Ok} be the correspond- 
ing complete orthonormal system of H *(1' o), as in Definition 3.2. 

Lemma A1 Let cp be one of the q~k's. Then 

H(azOOze]ln, Zl6H~, zz6B~, 

is non-decreasing as a > 0 increases. 

Proof It is sufficient to show that 

II(az0 @ zz lIB_- > [Izl | zz IrB=:r, a >  1. 

Assume that this is not true for some a >  1. Then (azl) @ z2 must be an interior 
point of a ball B,. Note that O@zzeB,,  because ( -Z l )OZ2eBr  by the 
complete rotation invariance of HIIB and O| | z 2 + ( - z l ) @  
z2). Since Zl @ z2 can be expressed as a convex combination of 0 @ z2~Br and 
(azO @ z2, which is an interior point o f B ,  za @ z2 would be an interior point 
of Br. This is a contradiction. [] 

For  the moment, assume B to be of finite dimension; B ~ C N, and suppose that 
G has an expression 

K 

G(Zl,..., ZK)= 1--[ Z'~k' (Zl,.. . ,  ZK)6C K, 
k = l  

where K < N. Letting #(dza ... dzN) be the standard Gaussian measure on C N, 
we may ask whether 

1 
f [G(Zl, . . . ,  ZK)[Zp(dza... dZN) < f I G(zl , . . . ,  zK)lZ#(dza.., dZN). (10) 

#(B,) Br C n 

Here B, denotes a centered ball of radius r > 0 with respect to a completely 
rotation invariant norm. 

In the following lemma, we will state an assertion under the identification 
C N--- R 2N, but using the same symbols. 

Lemma A2 Let F'Re+N:=[0, ~ ) 2 N ~ R  be non-decreasing in the following 
sense: 

F(xl,...,x2N)<=F(yl . . . . .  Y2N), O<=x~ <yk, k = l , . . . , 2 N .  

Then putting B + := Br c~ Re+ x, r > O, we have 

1 
f F ( x l  X2N)kl(dxl ... dX2N). F(xl , .  . . ,  x 2 u ) p ( d x 1  . . .  dXzN)<=af_~+~ , . . . ,  

#(B+) B: 
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Proof. Define a funct ion p,(x), xeR2+ N, 0 < r <  0% by 

1 
&(x):=lz(B~_ ) 18+(x)g(x), 0 < r < o %  

p ~ (x) :-- g (x), 

where 

129 

g(x):=(2~z) ~ 'exp(- -k~ut  x2/2), x=(xl,...,x2N). 

Let 0 < r, and define x V y and x A y, x, yeR2+ ~v, by 

X V y : = ( x  1 V Y l ,  . . . ,  X2N V Y2N), 

X A y:=(X 1 A Yl, " " ,  X 2 N  A Y2N)" 

Thus  the Xk and Yk are the componen t s  of x and y, respectively. L e m m a  A1 
implies tha t  the indicator  function 1B+ has the p roper ty  

1B+(x A y)_>_ 1B;(y). 

On  the other  hand,  we readily see tha t  

9(x V y)9(x A y)=g(x)9(y ). 

Hence  it is easy to see that  

p~(x V y)pr(x A y)> poo(x)pr(y). 

Therefore  it follows f rom a version of the FKG- inequa l i t y  due to Pres ton  [6, 
T h e o r e m  3] tha t  

f F(x)pr(x)Ndx)< f F(x)poo(x)p(dx), 
R~ ~ R ~  

which completes  the proof.  [ ]  

By L e m m a  A2, it follows easily tha t  (10) holds. Finally, letting the dimen-  
sion N tend to infinity, we obta in  (9). Thus  the p roo f  of  L e m m a  4.2 is complete.  
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