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1 Introduction 

(1.1) Let (B~; t > 0 )  be a 1-dimensional Brownian motion, starting from 0. 
Define 

t 

A+=~dsl(B~>_O) and A~=~dsl (Bs-<O),  
0 0 

where, to save space, we denote by I(F) or I{F} the indicator of the set 

E L~vy ([15], 1939) showed that, for each t>0 ,  1 A+ (t) is arc sine distrib- 
uted, i.e.: t 

(1.a) - n ] ~ ( 1  - u )  ( 0 < u <  1). 

On his way to his result, L6vy proved that: for any t > 0, s > 0, 

(1.b) 1 A  + (t) (I~) A + (~(s)) ( A + (~c(s)) ) 
t ~ (s) - A + (~ (s)) + A -  (~ (s)) 
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where (z(s), s>O) denotes the right-continuous inverse of the local time 
(4, t > 0) of Brownian motion at 0. 

The identity (1.a) is an easy consequence of (1.b) since, by excursion 
theory, (A+(z(s)), s>O) and (A-(z(s)), s>O) are two independent stable (�89 
subordinators, which satisfy for every fixed s > 0, 

S 2 A + (z (s))(l=)AaW _ ('C (S)) (la-w) 
4 N 2 

where N is a standard, centered, reduced, gaussian variable, so that from 
(1.b), we obtain: 

1 A+ (t)(l~) N_ 2 (1.c) 
t N2++N 2 ' 

where N+ and N_ are two independent copies of N; since it is well known 
that the right-hand side of (1.c) is arc sine distributed, the identity (1.c) 
implies (1.a). 

(1.2) Barlow-Pitman-Yor [2] obtained the following reinforcement of(1.b): 
for every fixed t > 0, and s > 0, 

(1.d) _~-6 (A + (t), A-  (0)(1=) ~- (A + (z(s)), A -  (z(s))). 

To see that this is indeed a strenghtening of (1.b), remark that (1.d) is 
equivalent (by elementary algebraic manipulations) to: 

(1.d') - (A + (t), . 
t \ z~s~ z(s) 

The proof of (1.d) presented in [2] is done by replacing t on the left-hand 
side of (1.d) by T, an exponential time independent of B, and using excursion 
theory. A short summary of this approach is presented in Revuz-Yor ([25], 
Exercise 2.17, p. 449450). 

A remarkable feature of (1.d) is that the laws of the 2-dimensional func- 
tional: 

! 
F, --= F u (B) - @z (A + (u), A - (u)) 

taken at a fixed time u=t ,  where Bt=k0, a.s., and at time u=z(s), where 
Be(s) =0,  a.s., are the same. In order to understand better what lies behind 
this coincidence, Pitman-Yor [22] and Perman-Pitman-Yor [18] present 
some infinite dimensional identities (see, e.g., Theorem (1.1) of [22]) which, 
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again, strenghten (1.d); in particular, there exists a rearrangement of the 
trajectory of the pseudo-Brownian bridge (using the terminology in [22]): 

1 
(~11 Bu~';u< 1) 

from which the law of (Bt; t<g), where g - s u p { t < 1 :  B~=0}, is recovered 
(see [22], Theorem 1.3, and [18], Theorem 3.8). 

(1.3) Brownian excursion theory plays an essential part in the proofs given 
in [22] and [18], and, as a consequence, it seemed a quite difficult task 
to modify the arguments of [22] and [18] to prove the following variant 
of (1.d), due to the second author ([19, 20]): let #>0,  and t>0,  s>0 ;  then, 
the identity in law 

i s 1 (AS,  + (t), A s' - (t)) (law) ~ -  (A  ' +  ('cS(s)), A u' - ('cS(s))) (l.e) (~s)z 

where AS'+-(t)= i dsl(lBsl--~elR+), (k s, t>O) denotes the local time at 
o 

0 of ( IBt l -#4;  t>0), and (zU(s), s>0) is the right-continuous inverse of 
(4s; t>__0). 

As explained in [20] and [29], but only partly proven, both sides of 
(1.e) are distributed as" 

1 Z ' Z (1.0 8 ~/2 z. 

where, here, and in the sequel, Z a denotes a gamma variable with parameter 
a, i.e.: 

t a - 1  e - t  
P(Z, cdt)=dt - -  (t>0) 

r(a) 

and the two gamma variables featured in (1.f) are independent. 
The following extension of L6vy's arc sine law (1.a) is a consequence 

of the identity in law between the variables in (1.e) and (1.f): 

(law) 
(1.g) A~'- = Z1/z,1/2u, 

where Z,, b denotes a beta variable with parameters a and b, i.e. 

dt 
P(Z~'b~dt)=-n(a,~ b) t"- l(1--t)b-I  ( 0< t< l ) .  

(1.4) A few words of explanation may be in order concerning our interest 
in the variables AS'-+(t): it was found in [13] that the random variables 
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A"' -+ (z (1)) - ~ ds I([B~[-#~elR_+) play an important  role in the expres- 
0 

sions of the limits in law of the winding numbers of 3-dimensional Brownian 
motion around curves going to infinity in IR3; henceforth, it seemed natural 
to study the distributions of A"' +- (t), for fixed time t. We now remark that 
these random variables occur similarly as the limits in law for two families 
of natural quantities related to 1-dimensional Brownian motion (B,; t > 0): 
(a) let f :  IR ---, N be an integrable function, and define: 

' i Ft-F~(B)= S du f (B , )  , and ACt= dsl(lBsl>F~). 
0 0 

Then, denoting: f =  
+cO 

dx f ( x ) ,  it is not  difficult to prove: 
--cO 

1 (law) 1 
(1.h) -ACt , A{" + -  ~ du l(]B.[>-_f E.). 

t t-~~ 
0 

Indeed, using the scaling property of B, and the occupation time density 
formula, we have: 

- A ~  = 5 a u l  ]B.]__> d h f (  Bh 
t o " o 

i (law) 
= ~ du l(]B,l>Idxf(xl#~/V~) 

0 

and we obtain (1.h) by letting t ~ oe. 
We remark that, in the case f =  1, which occurs in particular when f 

is a probability density, the right-hand side of (1.h) is arc-sine distributed, 
since (] B, ] - #,; u > 0) is a Brownian motion. 

(b) The random variables A"' -+ (1) also occur as limits in law of the following 
random variables: 

-- E} =~ = ~- d s 1 exp (B~) > d u exp B. 
t 0 0 

which represents the fraction of time spent by the geometric Brownian 
motion {exp(Bs), s < t} above the ~th-power of its average; we now prove: 

i 

(1.i) 1 E~) ( , ,w) ,A{ ._=_Sdul ( IB ,  I<~y,) ' where 
t t~CO 

0 

~ = l - - g .  
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(Obviously, in the case e > l ,  the right-hand side of (1.i) is equal to 0.) 
To prove (1.i), we remark that: 

t ' - o d u l  B , > ~ l o g  dhexp(~tBh) 

and the right-hand side converges in taw, as t-+ co, towards: 

1 
d u I(B. > ~ S.), where S~ = sup B~. 

0 s<u 

(law) 
Now, using L6vy's equivalence: (IB.t,{u;u>O)= (S.-B~,S.;u>O), we 

obtain: 

1 (law) i S dul(B,>_aSu) = dul([B~[<@Y,), 
0 0 

which finishes the proof of (1.i). 

(1.5) The main objective of this paper is to give a simple proof of the 
identity in law (1.e), relying essentially on Brownian scaling arguments, 
and on the independence of the processes 

(AU'+(zU(s)), s>=O) and (A~'-(TF'(S)), s=>0). 

This will be done in the third section of this paper, by modifying and 
developing some of the arguments of Williams [28], which involve the pro- 
cess ~+-~inf{u: A~ + >t};  for the reader's convenience, such modifications 
will be first presented in the second section of the paper, in order to derive 
(1.d) independently of the arguments of Barlow-Pitman-Yor [2] and Pitman- 
Yor [22]. 

To keep this introduction reasonably short, we briefly recall here that 
Williams' proof of the arc sine law (1.a) relies upon the identity: 

(1.j) ~/-=t+A-(~+(t))=_t+A~-(d~+m), t>=O, 1 

and on the essential fact that the processes: 

(1.k) (A-(z(u)), u>_O) and (~+(o, t>=O)=-((A~+)-1(t), t~O) 
are independent. 

This approach is detailed in Karatzas-Shreve [10], but, strangely enough, 
perhaps due to its apparent asymmetry, it is not discussed in either [2] 
or [22], in relation with (1.d). 

1 For notational convenience, we shall write sometimes (A,-(u), u>0)  or ( A - ( z ( u ) ) ,  u>=O) 
for the process (A~I, u->0), and similarly for A +, and A n' • 
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In Sect. 4, we develop some studies related to the process 
(Xt = I Bt I - #  4; t > 0); in particular, we compare the law of (X ,  t < 1), condi- 

tionned by X I = 0 ,  to those o f ( ~ u X t @ t < l  ) and of ( ~ u  X,~,; t < l ) ,  
,V  - 1  - 

where g~ = sup {s < 1" Xs = 0}. 
The first result is obtained just as in the Brownian case (p=  1), but 

the second is quite different, and seems to necessitate some involved compu- 
tations. 

In Sect. 5, we show how the proof  of (1.d) can be modified to obtain, 
in a similar way as above, some multidimensional extension of the arc 
sine law for Walsh's Brownian motions and Bessel processes taking values 
in n rays in the plane; the original result, which is the identity (5.a) below, 
was also obtained in [2]. 

(1.6) Our incentive to develop thoroughly these various extensions of (1.d) 
has two origins: 

- the first origin is that, as explained in (1.3) above, we wanted to give 
a simple explanation of the identity in law between the left-hand side of 
(1.e), and (1.f); 
- the second origin is the result recently obtained by Watanabe [27] that 
the distributions featured in [2], for the time spent in R +  by a skew Bessel 
process, are essentially the only possible limits in law, as t--, o% of the 
quantities: 

_1 
A =_1 i d s  l (Xs>0) ,  

t t - - t  o 

where X is a generalized diffusion. To be precise, these distributions are 
the laws of the following ratios: 

pl/U T 
(1.1) pi/U T+ ql/~ T' ' 

where 0 < # < 1 ,  p + q = l ,  and T and T' are two independent, one-sided 
stable variables, with index #. (Lamperti showed that the variables in (1.1) 
have a simple enough density; see e.g., [22], p. 343.) 

2 Williams' proof of  the arc sine law and the identity (1.d) 

(2.1) To begin with, we show how, using (1.j) and scaling arguments, one 
deduces (1.b); this is also presented succinctly in [29], p. 104-105. 

We first remark that, since the process (A + (r(t)), t > 0) is the right-contin- 
uous inverse of ((~+, u > 0), we have, using the scaling property: 

( l a w )  1 

~+(1)- A+(~(1)) 
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Furthermore, from (1.j) and (1.k), we obtain by scaling: 

+(l~w) O~w) A-('c(1))_ "c(1) 
c~1 = 1 +(~'~+(~))(A- (r(1))) = 1 + ~ 7  (~(1)) - A + (r(1)) ' 

and, finally, again by scaling: 

+(law) 1 (law) A+('C(1)) 
A t -- 

which proves (1.b). 

(2.2) Bootstrapping on the previous arguments, we shall prove the identity 
(1.d), as a consequence of the following 

Proposition 2.1 Let F: C[0, 1] ~ IR+ be a measurable functional. Then, we 
have: 

(2.a) E[I(BI>O)F(B~;s<_I)]--E F ~ B s ~ ; s < = l  . 

Proof Let T be an lR+-valued random time, which is independent of B, 
and whose law is given by: P(Te d t)= h(t)d t, for some probability density 
h (e.g.: h(t)= exp( - t ) ,  but any probability density will do). Then, we have: 

E[I(B~ >0) F(B~; s<= 1)] 

=E[I(Br>O) F ( ~  BsT; S<=I)I 

�9 - [ )] = ~ dth(t) E I ( B , > 0 ) F  Bst;s<l 
0 

=E ~ dA + h(t) F Bst;s<l 
0 

=E ~ duh(c~+)F Bs~+;s<l 
0 

= ~ duE h(u~[)F Bs~;;s<l 
0 

=E ~ dvh(v) f Bs~;s<l  
0 

1 1 

(taking u = At +) 

(by scaling) 

(taking: v = u c~) 

(since h is a probability density). [] 
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Corollary 2.1.1 (i) Let f:  ~+ • ~ ( +  be a Borel function; then: 

(ii) The identity in law 

1 A +, (law) + 
~ (  1 A ; - ) =  (A (z(1)),A-(z(1))) 

holds; 

(iii) P(B1 >0[A + =a ,  4 ) = a .  

Proof (i) From (2.a), the left-hand side of (2.b)+ is equal to: 

E[ l ff. 1 ;h~_2 ̀1, 

[ E 
t l+A~-(~+(1))f\:~7(1) '  :~+(1) :J 

Using the same scaling arguments as in subsection (2.1), we find that the 
last written quantity is equal to the right-hand side of (2.b)+. 

(ii) Replacing B by - B  in (2.b)+, we also obtain: 

- [A- (*(1))etA+ A~I))] 

so that, adding (2.b)+ and (2.b)_, we obtain: 

E [ ( . / J :  
which is equivalent to (1.d). 

(iii) Making use jointly of (2.b)+ and (1.d), we obtain: 

[I(BI>O ) /A~-, A~-',q [ /A~ ,  A ; \ ]  
E[ A+ f t ~ ) J - = - E [ f ( A ~ l , , A ~ ( , , ) ] - - E [ f l ~ - - z  ~ )J, 

so that: P(BI >O[A;,G)=A 2. [] 

If we use, together with the identity (2.a), the well-known result: 

(2.c) (B~+(t), t>O) is a reflecting Brownian motion, and its local time is 

(�89 t>o). 
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(see, e.g.: Mc Kean [16], Karatzas-Shreve [-10], ...), we obtain the following 
description of the joint law of (A;-, ~a, Ba), which, as the reader may easily 
check, agrees with the formula given by Karatzas-Shreve ([10], p. 423). 

Corollary 2.1.2 We use the notation: A] = A +, if B1 > 0; A] = A i - , / f  B1 < 0. 
Then, we have for  every Borel function g: ]R+ ~IR+, and a+ , a_ >0: 

(2.d) Efg( IB, I a Al=a ] 
l \(A~t)ll2]I fl  2 -- +, fl 2 -j 

' [g(lB, l) f l_2]~+]  a++a - = ( a ~ _ ~ _ f ]  E 1 q- a_ - - E [ g ( I B l i )  f~ = 2 ~a~_ ] " 

Proof. a) Let f:  IR+ xlR+ ---,IR+, and g: IR+ ~IR+ be two Bore1 functions. 
Then, we have, from formula (2.a): 

I (B + A -  B1 

k~l \ d~+(l) / 

+A-(m(4t)) \-7~7+(-x) )g(B~<+ 
(2.e) =E[-  i 1 f ( ~ ;  A-(z(i)))g(B~+(,))] 

+ (ff~+ (1)) (A - (z (1))) 

1 T-)g(IBil)] (using (2.c)) 

(by scaling) 

where, for the last two equalities, 4A ('C(l)) (law) T- denotes a standard one- 
sided stable (1) variable, which is independent of the reflecting Brownian 
motion (B~+(,), t>0) in (2.e), and of the pair ([Bll, dl) in (2.0. To obtain 
the last equality, we have also used (2.c). 
b) By symmetry, we may now write: 

(2.g) E f (A i- gk(A])Z/2]] 

) ] [ % ( 1 ' )  ] 
- - E [ ( f ~ + ~ 2 ) , k 4 f 1 2 ,  4~ 2 g(lBll) +E  f 4 , ~2 g(]Bll) , 
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where B and/~ denote two independent 1-dimensional Brownian motions, 
and f and 7 their respective local times at 0. 

The identity (2.d) now follows easily from (2.g). [] 

3 Some extensions of the arc sine law to perturbed reflecting Brownian motion 

( 3 . 1 )  Some  nota t ion  

Throughout this section, # will denote a fixed positive real, and 
(X ,  = ]Bt [ - # g; t > 0) is the reflecting Brownian motion ([ B, [, t > 0) perturbed 
by subtracting # times the local time of B at 0. 

As announced in the Introduction, we are interested in the computation 
of the distribution of: 

t 

A"~, +%f I ds a (Xs> 0), 
0 

and, as above, the local time (4 u, t >0) of X at 0 will play an important 
role, together with its right continuous inverse (zU(s), s > 0). 

(3.2) The methodology of the proof of (1.e) which is adopted here is the 
same as that of (1.d), developed in Sect. 2 above. However, to make this 
methodology effective, we first need to describe some essential properties 
of the 2-dimensional process {A "'+ (z ~(s)), A" ' -  (z" (s)); s > 0}. 

Proposition 3.1 (i) The processes  (A u' + (z u (s)), s > O) and (A"' - (z ~ (s)), s => 0) 
are independent :  

(ii) F o r  every  2 > O, one has:  

(A u' -+ (z u (2 s)), s > 0)(l~w)(22 A u' + ( zu (s)), s => 0) 

(iii) For  every  s>0 ,  one has:  

A u" + (z u(s)) O~) 1 and 1 A u" _ (z u(s)) o~ )  1 
s 8 z l / 2  s 2 8Zl/2~. 

Proof .  (i) This independence result is a particular consequence of the more 
general statement made in Theorem 3.2 below. 
(ii) This point follows immediately from the scaling property of B. 

(iii) This is proven in Chapt. 9 of [29], Theorem 9.1 and Corollary 9.1.1; 
Theorem 9.1 is a Ray-Knight theorem for the local times of X considered 
up to time z2; a generalized version of this Ray-Knight theorem is presented 
in Theorem 3.3 below. [] 
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It should now be clear to the reader that the main identities of Sect. 2 
extend when B is replaced by X, ~ + by ~ '  +, z by z ~, and so on; in particular, 
we have: 

- the p-variant of (2.a): 

1 

- the #-variant o f  (2 .b)+" 

(3.b)+ E [ I ( X I > O I f (  A~'+'A~" [ A~'+('c"(1)) "+  A:;(~))] 

- the #-variant of (1.d)" for t>0 ,  and s>0 ,  

1 (A~'+, , -  (l~w) 1 . , 
(1.e) (~t,)-- ~- At" ) - ~-  (A" + (~"(s)), A"' -  (z"(s))), 

from which we deduce (1.f) and (1.g), thanks to Proposition 3.1. 

- the kt-variant of point (iii) in Corollary 2.1.1: 

(3.c) P(X  1 >0[A~ '+ =a ,  f~) = a. 

(3.3) We now complete the proof of Proposition 3.i by showing the more 
general 

Theorem 3.2 For t > O, define + ,,x. {Lt =(d~ , x>=O); t>_O} and {L; =(d~'-x; 

x_>O); t>=O} two continuous processes [as functions of t=O] taking their 
x ~ f ( x )  

values in the space Z- -Cc( IR . ,  IR+) of continuous functions f :  
with compact support. Then IR + ~ ~ +  

(i) the processes (L+t ; t >= O) and (L7 ; t > O) are independent, 
(ii) each of  them is an homogeneous Markov process; 

(iii) the process (L~+; t>0 )  has independent increments, and for each t >0,  
the distribution of the variable L+t is (D_ ~ the law of the square of a O-dimen- 
sional Bessel process starting from t. 

Proof 1) We first remark that (#tu; t>=0) is an additive functional of the 
2-dimensional Markov process {/3,-= (1B,I, ~); t > 0}; as a consequence, the 

process (/~t~f/~@ t_>_0) is also an homogeneous Markov process; we then 

remark that the two components of/~t, namely: ]B@ and d~r are related 

by: ]B,~l=pf , , ;  hence, the process (]B~f[; t>0 )  is itself an homogeneous 

Markov process; since - - p 4 , =  infX~, the r.v. IB~2[ is measurable with 

respect to the a-field generated by L~-. 
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The same arguments prove that (Lt--(L +, LT);t > 0)is an homogeneous 
Markov process. Moreover, since, for every t, IB@ is measurable with 

respect to o-(/_,7), it is obvious that L-  -(/-,7; t>0)  is, by itself, an homoge- 
neous Markov process�9 

2) We now proceed to the proof of the independence of the processes 
(L+; t__> 0) and (/-,7; t > 0); this will be obtained from a recurrence argument 
bearing upon the dimension k of the marginals (L, + . . . . .  L, +) and 
(LT,, ..., L[~) for tl < t2 < . . .  < tk, of the processes (L + ; t > 0) and (L[ ; t > 0): 

- first, we already know, for k =  1, by Theorem 9.1 in [29], that for a given 
tl >0,  L +, and L~ are independent; 
- next, we assume that, for tl < t 2 <  ... < tk_ l  <tk, the (k -1 )  dimensional 
marginals (L~ . . . .  , L+~_ ,) and (LT~ . . . .  , LT~_ ,) are independent. 

Then, we know, from the Markov property of the process (L~-(L +, LT); 
t>0),  that for any measurable F: N x s  : 

E[F(L+t~, Lt~)[a {L~; s< tk- ,}] = E[F(L+t~, L;~)[L+~_ ~, L~_ ,], 

so that, to finish the recurrence argument, it remains to prove that for 
two positive reals s<t, the pairs (L~ +, Lt +) and (LT, L;) are independent, 
or, equivalently, for F i (# ) - exp( - (# ,  (Pi)) and Gi([)-=exp(-(~,  Oi)), i=1,  
2, where {(Pi, 0i; i=  1, 2} are four continuous functions with compact support 

+co 

on IR+, and < f , f ) =  ~ dxE' f (x) ,  we have: 
0 

(3.d) 

E[F~(L +) G~(L;) F2(L +) G2 (LT)] =E[Fa(L +) F2 (L+)] E[Ga(L;) G2 (LT)]. 

The left-hand side of (3.d) is equal to: 

E[exp { - - (L  +, ~o,)--(LT, ~ ) - - ( L  +, q)2)--(LT, ~2)}] 

= E [exp { -- (L +, qh + ~~ -- (LT, 01 + ~2)} 

�9 EB~ (exp { -- (L+-~, q)2) -- (LT-~, ~/'2)})] 

(from the Markov property for (Lt, t > 0)) 

= E [ e x p ( - - ( C  +, (pa +(p2))] E [exp(--(LT, Oa +~2) )  

�9 Eo~(exp { - <L+_s, ~o2) - <LT-,, 0 2 > } ) ]  

from the independence 
with respect to a (L2). 

It is now clear that 
independence and the 
(Lt + ; t__> 0) if we show: 

(3.e) 

of L + and LT, and the fact that /3s is measurable 

the identity (3.d) will be proven, together with the 
homogeneity of the increments of the process 

E~s(exp { - (L+t-s, @2) - -  (L;-s, 02)}) 

= E [exp ( - (Lt+_ s, q)2))] EBs [exp ( -- (L7- s, ~/2))]. 
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In (3.e), the notation E~  refers to the family of distributions of the Markov 
process (I B~ I, ~; t > 0) starting from (a, ~) with, furthermore: 

a 

a=lB~21, and ~ = 4 2 = ~ .  

Since (~, t >= 0) is an additive functional of (I Bt l, t => 0), we have, in general: 

E~.r I, 4; t ~O)3 =E,[F(IB~],  4-1- r t ~0)3, 

where P, is now simply the distribution of (I Bt ], t > 0), starting from a (and, 
in (3.e), E refers to Po). 

Once this notation has been made precise, we remark that: 

(3.0 

where" 

E ~ [exp { - (Lt+_s, q)2 ) -  (L[_~, ~2)}]  
a , - -  

# 

= E , [ e x p {  /L5 '+ ~'- - .  , -s ,  e ~ ) - ( e ~ _ , .  ~,2)}3 

(3.g) L~' + - ~ ~,~+x. - teu,~-x, x _ O). =,~,,o ,x-_0);  L ? - = , ~  . . . .  

Here, (C~'Y; u>0)  denotes the local time at level y of the process (X ,=- fB ,  I 
-pEw; u >=0), while (z~'"; t_>0) is the right continuous im, erse of ((~'"; u=>0). 

It now follows from the Ray-Knight theorem stated as Theorem 3.3 
below that the right-hand side of (35) is equal to: 

E~ [exp { - (L~'__+s, ~01)}] E~ [exp { - (L~'_-~, 02)}] 

=E[exp{--<Lt*_, ,  q02)}] Ea [exp {-<L~'_-~, ~2)}] ,  

which proves (3.e). [] 

In order to complete the above proof, we state a Ray-Knight theorem 
which describes the law of the local times processes in (3.g); this theorem 
generalizes Theorem 9.1 in [29], with an analogous proof; hence, details 
will not be reproduced. 

Theorem 3.3 Let a >= O, and t > 0 be f ixed.  
Consider ([Btl, t >= O) a reflecting Brownian motion starting from a, and 

(~'..~; x~lR)  the family of  local times of  (X~=IB,  I - / ~ , ;  u>O), considered 

at time z~'o___inf{u: ~ ' " >  t}. Then: 
(i) the two processes I~" +-(,f~'x+~" - ~,"-~. = ,~,,, , x > 0) and L~" - = (@.~ , x > O) are inde- 

pendent; 
(ii) L~ '+ is, as a process in x>O,  a B E S Q  ~ that is: the square starting 

at t, o f  a O-dimensional Besset process; 
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(iii) L~'- is, as a process in x > O, an inhomogeneous Markov  process, which 
2_ 2_ 

is a B E S Q  ~ on the x-interval [0, a], and a B E S Q  ~ process on [a, oo[; 
both processes are absorbed at O. 

Important  remark 

Theorem 3.3 extends, for all # > 0 ,  the two main Ray-Knight theorems 
known for Brownian local times (#= 1) and, moreover, it allows to unify 
their statements, with the introduction of the stopping times z~'". To see 
this, we recall these two theorems (see, e.g., [25], Chapt. 11, Paragraph 2), 
by refering ourselves to particular cases considered in Theorem 3.3: 

e) if we take # =  1, and a = 0 ,  then L ~ + and LOt , - are two independent 
B E S Q  g processes indexed by xeN~+ ; 

fi) if we take /2=1, t=0 ,  and a>0 ,  then: %l'a---inf{t: IBtl-4=a} is the 
first hitting time of a by the 1-dimensional Brownian motion {] B t [ -- 4; t > 0} 
and, from (iii) above, L" 6- is, as a process in x > 0, an inhomogeneous Mar- 
kov process which is a BESQ~ on the x-interval [0, a], and a B E S Q  ~ on 
[a, oo[. [] 

Independently of its interest for the proof of Theorem 3.2, we will use Theo- 
rem 3.3 in Sect. 4 for the proof of Theorem 4.7. 

We now present yet another Ray-Knight theorem from which we will 
deduce the distribution of T u'"-- inf{u; lB, [ - # f,, = a}, at least for a > 0. 

Theorem 3.4 Let  a>O, and t > 0  be f ixed.  Consider (Bt; t>O) a standard 

Brownian motion, and (E;~;]; xe lR)  the family  o f  local times o f  (X,=-IBul 

- # f , ;  u >O), considered at time ~tu'"-inf{u: ~u'a> t}. Then: 
= ~.~,,, - x. x > 0) are inde- (/u,x+a. x >O) and I~ ' -_~v~,o , (i) the two processes L"; + - t-~r,, , 

pendent; 
(ii) L"t "+ is, as a process in x >_O, a BESQ~ ; 

(iii) L]'- is, as a process in x >= O, an inhomogeneous Markov  process, which 
2 

is a B E S Q  2 on the x-interval [0, a], and a B E S Q 2 - ~  process absorbed at 

0 on [a, o0 [. 

From this, we deduce the: 

Corollary 3.4.1 Let  T "'~ =- inf{u: lB. [ - # ~ = a}. 
O) i f  a > O, then, 

E[exp 22(_~_ TU,,)] = +oo (sinh(2a)) 1/u d x  

o (sinh (# x + 2 a)) 1 + 1/u ' 
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which implies: 
P(T"'%dt) 

=_dtl/~t_3/2 a 
n>=O 

#-1 

where (c0, - ~(cr + 1)... (~ + n -  1), (~)o -= 1, and, 

exp(-- a 2 (2 n + 1)2/2 t) 

(law) a 

I B T u , ~ [ = a + # [ T . , ~  - -  _ _  Z1/.,1 
(ii) if a < O, T ~'" is distributed as the first hitting time of (-a/l~) by a standard 
Brownian motion. 

def Proof. (i) We remark that: v~'a=inf{u; ~"'">0} is precisely equal to T u'". 
We denote by II)~ the law of the square of a d-dimensional Bessel process 
(Z~,x>O) starting from z, and by To(__<oo ) its first hitting time of zero. 
Then, as a consequence of Theorem 3.4, we obtain: 

E[exp-2-~-~ T"'~]=}imE[exp-2~-2 ~"t'~] 

=}ira ~ l~t ~ [exp (_~z +~Z~ dx)] I!)~ [exp ( - ~ -  i Z~ dx) 
0 0 

Using time-reversal relations between Bessel processes (see, e.g. Getoor- 
Sharpe [7], and [25], Chapt. 11, Exercise 1.23), we have: 

Q~-2 /U[exp(_~  o ~r~ +z/u[ p (  2 L ' e x  - 2 2  ! Zxdx)] 

where Ly=sup{x; Zx=y}. Then, conditioning on Lr, and using e.g. [25], 
Chap. 11, Exercise 3.12, or Fitzsimmons-Pitman-Yor ([6]), together with 
Pitman-Yor [21], formula (2.m), p. 432, about squares of Bessel processes, 
we obtain: 

E[exp 2_~ Tu,al=limexp( 2 t~ F\~--]  

a 

Q~ [(2Z,O'/2"K,/:. (~ Z~,) exp (-2-~-2 ~o Z.dx)] 
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denoting by K~(z) the modified Bessel function of the third kind of index 
v (see Kent [11], and Getoor-Sharpe [7], tbr computations of Laplace trans- 
forms of first and last hitting times of Bessel processes in terms of modified 
Bessel functions; Lebedev [14] gives a very clear presentation of these func- 
tions; see, in particular, formulae (1.2.3) p. 3, (5.7.10) p. 10 and (5.10.25) 
p. 119 in [14]). 

Thus, we find: 

E 
4 2 

[ e x p -  2 Tu'al=ltimexp(-2 t) 

F ( + )  ! Q~ e x p t i ~ -  0 e-S lds 

where N is a centered, reduced, gaussian variable, independent of Z. The 
result follows, after some computations (see Pitman-Yor [21], formula (2.k) 
p. 432). 

/ 

The law of T "'a may also be obtained from Jeulin-Yor ~[6], Proposi- 
\ 

tion 4.4, with k(x)=h(x)-/z~+ who make a number of computations 

in relation with a resolution of the Skorokhod embedding problem involving 
the local time (4), taken at T "'a. 

(ii) It follows from the equality TU'a= z_~/u(B). 
In fact, from the inequality a=lBr~,o[-#dr,,,>-#dr .... we deduce: 

ru'~ > �9 - o/, (B). 
But, since X~_o/=[B~_a/,l-p4_o/=O-#(-a/#)=a, we have 

ru'"=~_~/u(B). [] 

4 Several results about the process (X t_= ] Bt I - # G; t > 0) 

(4.1) Towards a general principle? 

After reading Sects. 2 and 3 above, the reader may come very naturally 
to the ""conclusion" that, at least as far as the "arc-scenery" is concerned, 
identities in law valid for Brownian motion (such as (1.d), for instance) 
"always" extend to the process X, either literally, or with "little" change. 
The aim of this section is to show that there is no such "principle", and 
to present precisely how some of the well-known representations of the 
Brownian bridge have to be modified in the context of the "/z-process" 
X, conditionned by X 1 = 0. 
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(4.2) Some notation 

For short, we call (XUt =- [Bt ] - # 4, t > 0) the #-process; 

- we shall write (p,(t), t<_ 1) for the #-bridge, i.e.: the #-process (X~; t <  i) 
conditionned by: X~ = 0; 
- we shall also consider the pseudo-#-bridge." 

. ~f 1 " 1) pu ( t ) - - ~  XU(tz~), t<_<_ . 

Now we remark that, in the case # = 1, (Xt, t > 0) is a 1-dimensional Brow- 
nian motion, and the (#---)1-bridge is simply the Brownian bridge, which 
we shall denote by (p(t); t < l ) ;  (2t;t<=l) denotes the local time at 0 of 
(p(t); t <  1). 

- finally, it is also natural to introduce the #-process of the Brownian bridge; 
def  

precisely" (q~, (t) = [p (t)] - #,~,; t < 1). 

(4.3) An absolute continuity relationship 

Another fairly straightforward extension of the results valid in the Brownian 
case (/2 = 1) is the following 

Proposition 4.1 For every measurable functional F: C([0, 1]; IR)~IR+,  we 
have: 

n 1 + #  
_ E 1 (4.a) E [ F ( p ~ ( t ) ; t < _ l ) ] = ~ ( ~ - )  [~tF(pf*,(t);t<=l)]. 

Proof It suffices to follow the steps of the proof for the particular case 
/2=1, given in [4]; again, as for Proposition 2.1, the scaling property is 
essential. A unification of these various consequences of the scaling property 
will be presented in [30]. [] 

i 
It is easy to show that the local time at 0 of (p,* (t), t_< 1) is ~ , ~ .  Hence, 

we deduce from (4.a), with the help of the identity (1.e), the following 

Corollary 4.1.1 Let f:  [0, I] x 1R+ ~ 1R+ be a Borel function; then, we have: 

(4.b) E f dtl(pu(t)NO),21 =]/ 2 \  2 ]E[f(A~,-,E~)#~], 

where (2tu; t=< 1) denotes the local time at 0 of Pu" 
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The absolute continuity relationship (4.a), considered for # =  1, may also 
be used to obtain the following results concerning the processes qv. 

Proposition 4.2 Let v > O. Define A;- (q~) =_ J d s 1 (q~ (s) <= 0), t < 1, and let 
(~(q~), t=< 1) be the local time of q~ at O. o 

Then, if v and # are related by: 1 = 1 + 1 ,  we have: 
v # 

(4.c) E [ f  (A l (qv), El (q~))] = ] / ~  ( 1 2 ~ )  E [ f  ( A ~'-, f~) Y~] 

for every Borelfunctionf:  [0, 1] x N+ --*IR+. 

Comparing relations (4.b) and (4.c), we obtain the following 

1 1 
Corollary 4.2.1 I f #  and v are related by." ~- = 1 + - ,  then: 

v # 

(4.d) 
(law) 1 2~) 

(A;(q~);fl(qv)) = (So dtl(pu(t)<=O); " 

In the particular case # =  1, v =�89 the identity in law (4.d) follows from 
a more general result obtained by Pitman-Yor [23] : 

(4.e) 
the processes of local times, in the space variable xeN~, taken at time 
1, of the Brownian bridge (p( t ) ; t<l)  and of  the process (qu2(t) 
-- I P (t) l - �89 At; t =< 1) are identically distributed. 

The identities in law (4.d) and (4.e) have led us naturally to the following 

1 1 
Theorem 4.3 Let v>0,  # > 0  be such that: - =  1 +--.  

v # 
The processes (f~'(q,); xelR) and (f~'(p,); x e N )  of local times are identi- 

cally distributed. 
In other words, for every bounded Borel function f :  I R O N + ,  the law 
1 1 

of ~ dsf(lB~l--vE~), given Ba=0,  is equal to the law of ~ d s f ( l B ~ l - # ~ ) ,  
0 0 

given }B1L- y f  1 =0. 

Before we prove this theorem, we present another interesting identity in 
law which follows from Theorem 4.3, and we identify the common distribu- 
tion. 
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Proposition 4.4 
1 1 

t f  p and v are related by: --= 1 + ~ ,  then: 
v l ~ 

(law) 
sup pu(t) = sup q~(t)=-S,; 

0=<t=<l 0~t - -<l  

furthermore, if N is a centered reduced gaussian variable, which is independent 
of S~, one has: 

(law) 1 - -  Z 1 , 1 i v  
exp(2[ N [S~)- 1 = (Z~,1/2~) 

Z1,1/~ 

where, on the right-hand side, the two beta variables are independent. 
In a more complete and explicit form, we have: 

, ,  [ sinh(s) \ +  
P(IN[ supq~(t)< IN[ 216as)=lsinh(x + vs)) as. 

Here is now a 

Proof of Theorem 4.3 We will show that for every Borel function f: IR ~ I R + ,  
we have: 

(4. 0 E [exp(-- ~f(x) (~ (Pu) dx)] = E [ e x p ( - S f ( x )  E[(q~) dx)]. 

Using the absolute continuity relationship (4.a) considered for a general 
# and for/~ = 1, it is equivalent to show: 

(4.g) 

1 +#2 E exp - -~ [  S f  ~ ( X " )  dx 

E 1 exp 1 dx~] 
/1 

The main ingredients of our proof of (4.g) are: 

i) the scaling property of the square of a Bessel process; 

ii) the Ray-Knight theorem which describes the process of the local times 
of the v-process considered up to time %, as an inhomogeneous Markov 
process (Le Gall-Yor [12], and Biane-Yor [3]); 

iii) yet another Ray-Knight theorem: Theorem 9.1 in Chapt. 9 of [29] for 
the local times of the/~-process considered up to time z~; 
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iv) some facts about Bessel processes found in [25], Chapt. 11, Exercises 
1.23 and 3.12 which will help us to compute explicit expressions (e.g." see 
the proof of Corollary 3.4.1). 

qoo q-o9 

47 ( x )  d~. We denote: r~ '+-= 5 4U'( Xu) dx; "c~=- ~ +~ ~ 
0 0 

(Beware: r~ depends on v!) 
Then, we are able to prove the following: 

a) The variables and are independent. More precisely, 
[e~ ~ [e~ ~ 

_ # +  1 ] p [ ~ ,  + e d u ]  IP[v~' - ~ d v ]  
2 

b) Let f + : N +  ~ P , +  be the two Borel functions defined by f+(x)=f(x) 
and f_ ( x ) = f ( - x ) .  Then, we obtain: 

E 4~ X~))-lexp - f+ o v 0 ~ z \G (x )] (4, (x))  

( o 2 )i2 =u, 

+oo 
+ ~ g ] .  

and, 

E [(~o (X~))-i 
[ 

= E  

exp - ! f_ 47x(X~) (~o (x~))2 d x 

~i ~ ~; ] 
(co (xv))~ - " ,  (~o~2~))2 = v 

[(Eo (X~))_ ~ t rF _v]E[exp(_ i~ f_(x)42~(XU)dx)~_=v] .  

To compute the above four conditional expectations which involve f+ and 
f_ ,  we first compute the associated Laplace transforms in the variables 
on which we condition (we use (ii) and (iii) above to transform the expres- 
sions in terms of Bessel processes). 
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It now follows, after conditioning with respect to m~" + and ~ ' - ,  that 
for every Borel function ip: IR+ xlR+ --->IR+ we have: 

(4.h) 

[ 1+# E O('c{'+'r{'-)exp - ~ l S f  2,}(XU)dxt] 
2 ' \p'c~l i] 

\ ( t~  (XV))2 ' (fo~v))2)exp(-~-~l'f(~)4~'(X~)dx ] 

1 
from which we deduce (4.g) by taking O (s, t) - V ~ s  

t" + 
[] 

(4.4) About another proof of the arc sine law 

1 

4.4.1 In the case p = 1, one may show that A; =- S d s I(B s < 0) is arc-sine 
1 0 

distributed by first proving that: a -=-  S du 1 (p(u)__< 0) is uniformly distrib- 
0 

uted on [0, 1], and then by using the identity: 

(law) 
(4.i) A~ = a - . g + ~ ( 1 - - g ) ,  

where g = s u p { s < l :  Bs=0} is also arc-sine distributed, e = l ( B ~ < 0 ) ,  and 
(a-,  g, e) are independent. 

(45) followsimmediatelyfromthefactthat:@(t)=_~gBtg;t<l)isa 

Brownian bridge, which is independent of a{g; Bg+,,, u_>_0}. 
Furthermore, the fact that a -  is uniformly distributed on [0, I] follows 

easily from the absolute continuity relationship (4.a), from which we deduce: 

E [ f ( a - ) ] = ~ / ~ E I ~ f ( A ~ l ) ) ) ] -  

4.4.2 From the previous subsection, the question arises naturally whether 
the process: 

1 ~u(t)=~XU(tg~), t ~  1, where g ~ = s u p { t <  1: XU(t)=O}, 

is independent from a{g~; XU(g~+u), u>=O}, and also whether nu and p, 
have the same distribution. 
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To discuss these questions which, as we shall see, have an affirmative 
answer only in the case/~ = 1, we shall use again, in an essential way, the 
scaling property of Brownian motion, which will allow us to present the 
following expression Iu in several different, but equivalent, forms: 

Iu= ~ dsh(s)E k(g~U) F XU(vg2);v<__l , 
o \Vg  

where h: I R + ~ I R + ,  k: E0, I ~ N . +  are two Borel functions, 
F: C([0, 1 ] ; N ) ~ N +  is a measurable functional, and gf is the last zero 
of X" before time s. 

Decomposing the above time integral with respect to the excursions 
of X u away from 0, we obtain: 

(4j) 

Iu=E ~ dsh(s)k(zU._)F ~XU(vz~_) ;v<=l  

-E-- [,>ok(Z,_)F(~X~ (vz._);v<l) ~ ] 
o 

To simplify notation, we now introduce 

/ 1 u u 1) (u > 0) (w._); v_< 

which is a previsible process with respect to the filtration ( ~ . ,  u > 0). The 

key to the next developments is the following 

Lemma 4.5 For every N+-valued process (0.; u > 0), which is previsible with 
respect to the filtration ( ~ ;  u=>O), and every Borel function h: IR+ ~IR+, 
one hasJ 

[ . > o ~ . (  u~oU-ds ~u ~o ~h(s+v~)  

where (0 u (x), x > O) is given by: 

1 1 
[sin t F-  1 exp - d t. 

0 
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Remark 4.6 1. In the particular case # =  1, 0, is a constant; precisely, 01(x) 
= ] / / z .  A posteriori, we may say that the independence of gl and ;% appears 

as a consequence of the constancy of the function 01; of course, there are 
more direct and well-known proofs of this result, and of the identity in 
law between rq and p (see, for example, [25], Exercise 2.30, p. 231). 

2. In the language of the general theory of random processes, the identity 
obtained in Lemma 4.5 is equivalent to the following property: 

if h: IR+ --+P,.+ is a Borel function, and if we denote H ( x ) =  ~dsh(s), then 
0 

the ( ~ r '  t > 0) dual predictable projection of ( ~ / - / ( z ~ -  ~u_), t > 0) is: 
tt=_<t 

Indeed, the identity of Lemma 4.5 is also true with (h(s+r,"_), s>0)  being 
replaced, on both sides of the equality by h(s). This is easily seen by taking 
h(s)=exp(-ps) for every p>0 .  [] 

We postpone the proof of the Lemma, and, for the moment, we apply 
it to ~ = ~o in (4.j) in order to relate the laws of re, and Pu*, or p,. 

Thus, we obtain, by scaling: 

I=~2! ~EdUds [k(u2.c~)F{XU(v'c~).v<l)h(s+u2.c~)Ov(U_2s B2(.c~))] ]//~1 ' -  

Making the change of variables y=u 2 r~ in the integral in (du), we obtain: 

I,= [.I dyds rh(s+y),, 

where: i(p*) = inf p~* (s). Thus, we obtain: 
s_<l 

(4.k) 
i 'eth(t) dyk(y) 

o 2 y(l~-y) 
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On the other hand, from the definition of I , ,  we obtain, by scaling: 

+ o o  

(4.1) Iu= ~ dsh(s) E[k(sg~) F(nu(v); v <  1)]. 
0 

Now, comparing (4.k) and (4.1), we obtain: 

(4.m) 

(4.n) 

E [k (g~) F (~u (v); v =< 1)] 

0 Y i2(p *) F(p* (v); v<- l) 
o 2 

- i  d,k(,t 
o ~  = 

where c, - (1 + #) , and the equality (4.n) follows from (4.m) and (4.a). 

Below, we shall exploit formula (4.n) to describe the law of g~ and 
to relate the laws of ~, and p,. 

But, first, we give a proof  of Lemma 4.5 which, from well-known argu- 
ments relating discontinuous additive functional-martingales of a "nice" 
Markov process to its L6vy system (see, e.g., Meyer [17]) may be seen 
as a consequence of the following partial determination of the infinitesimal 
generator A of the two-dimensional Markov process ([B~,I, ztu; t >__ 0). 

Theorem 4.7 Let f:  ]R+ ~IR be a C 1 function (of the variable z), with 
suitable integrability conditions. Then, f, considered as a function of two 
variables (a, z), belongs to the domain of A, and: 

+o~ a(@) ds 
Af(a,  z) = ~ f ' ( z  + s) O~ 

o 

Proof of Theorem 4.7 We proceed as for the generator of the generalized 
Watanabe process ( IB@; t>0)  (see Carmona-Petit-Yor [5], Sect.(4.2)). 

Then, we obtain that: 

the semi-group (Pt)t>__ o of the Markov process (I B@; ztu)t_>_ o is given by 

Pt f (a; z)= Ea[f (JB,r,~[; z +z~'~)] 

where zt"' a is the inverse of the local time at level a of the/~-process obtained 
from a Brownian motion starting at a. 
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Inthe.arti u,arcasewh  e ,a wededu e  om heo 
rem 3.3 that: 

22 
Ptf(a; z)=exp(--~z)Ea[eXp(-~:ut'a)] 

= exp ( -  ~--~2 z) II~t~ [exp ( -  ~ i~ Y~ d x)] 

"{ll~~ ~Yxdx)] 

22 ,, Y~dx \ ) 22 + ~~ [1 (To > a, exp (-- ~- o~ .~-2/U(exp(-~i~ 

With the calculations made in the proof of Corollary 3.4.1, we have: 

P, f (a; z)=exp(-@z) exp(-2t/2) 

S e-~s:-ldsQ{ exp Y, du+~s~s)); o 2 o 
then, from usual computations on Bessel processes (see Pitman-Yor [21], 
formula (2.k), p. 432), we obtain: 

Ptf(a; z)=exp (-222 z)exp(-22) 

�9 E ~ e-Ss: ldsexp ),t ~sssh(a2)-iNch(a2)l; 
o 

Hence, 

Af(a,z)=limexp(----z~Ea[t~o \ 2 ] \ t ] 

= -- 2 exp -- z 

E{ +~~ - ds {l -} ~/~-I-ig exp(--2a')')} �9 ~ e  Ss2,-1 

= - 2 2 e x p ( - @ z ) E [ l { 1 - t ~ + i N e x p ( - 2 a 2 }  -~] ~ - iN 
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where N is a standard gaussian variable which is independent of Z1/2,. 
Then, we develop the term inside the expectation as a series, and we invert 

1 22 
the functions ~ exp(--2an2) considered as Laplace transforms in ~ - .  The 

theorem follows, for every function f(a, z)=f(z) with suitable integrability 
conditions, for example, for every quickly decreasing function. [] 

We now discuss shortly the identity (4.n). 

Proposit ion 4.8 1) The law of g~ is: 

(4.0) 

(4.p) 

dy E[Ou(lY~yi2(pu))] (y~]O, 1D 

-- + 

dy 

(2#y) sinh[z # +  1 ] / / i - - y ]  
 V-UI 

2) Conditionally on g~ =y, the law of (rc,(v); v=< 1) is given by: 

(4.q) E IF (~u (v); v _-< 1) I g~ = Y] = 

3) Conditionally upon i(rcu)=- inf ~zu(v), g~ and (z~u(v); v_-< 1) are indepen- 
dent. v < 1 

Remark 4.9 We hope to develop, in another paper, some further study 
of zc u, and deeper understanding of the formulae found in Lemma 4.5 
through Proposition 4.8. 

5 Application to Walsh's  processes 

We now present some variants for Walsh's Brownian motions and Bessel 
processes of the results obtained in the previous sections; we recall (see 
[1], [2], [26]) that these Markov processes (X,  t>0),  which take values 

in E = s Ix, the union of n rays in the plane, are defined as follows: let 
i = 1  

(Pi; 1 __< i < n) be a probability on { 1, 2, ..., n}. Consider n rays (Ii) l -~ i _<, meet- 



Some extensions of the arc sine law 27 

ing at the origin. Suppose (X,),>_o starts at the origin, that its radial part 
is a Bessel process of dimension 6=2(1--7),  with 6e]0, 2[, and that, when 
(Xt) reaches the origin, it chooses, at least, heuristically, the i th ray If with 
probability Pi. This process (Xt)t>=o may be constructed rigorously using 
excursion theory: the characteristic (It6) measure of its excursions away 

from the origin is given by: ~. p~n~, where n~, the characteristic measure 
i = 1  

of excursions in Iz, is obtained in a canonical way from the measure of 
excursions of a 6-dimensional Bessel process (see [2] for more details). In 
particular, when n=2 ,  and 6=1,  (X,)~>__o is the so-called skew Brownian 
motion, with P (X t > O) = p ~ - p and P (Xt < 0) = P2 - 1 - p. (See Walsh [26].) 

Let (4; t>0 )  be the Markovian local time at 0 of (X,, t>0),  or, of its 
radial part (]Xt], t > 0); (4; t > 0) is defined up to a multiplicative constant, 
which we choose such that (%; u > 0), the right continuous inverse of (4; t__> 0) 
be a standard stable subordinator of index 7, i.e." 

E[exp(--2%)]=exp(--u2Y),  for every u>0 ,  2 > 0 .  

We now define the multidimensional process of times spent in the n rays: 

A~= dsl(Xs~I~); l<i<=n; t>=O . 

We recall the main result of [2] 

Proposition 5.1 Let (T1, Tz, ..., T,) be n independent one-sided stable variables 
of  index 7. We have, for any fixed t > 0 :  

(+ ) A~; 1 < i<n o~W) (p~/, T~; 1 <=i<n). 

We now give a short proof of (5.a), following the method developed above 
in Sect. 2 for Brownian motion, and in Sect. 3 for the (local time) perturbed 
reflecting Brownian motion. This proof hinges on the following 

Proposition 5.2 Let F: C(~O, 13; E ) ~  ~+ be a measurable functional, Then: 

(5.b) E[I(XI~I i )F(X, , ;  u< l )]=E[~a F ( ~ ;  s=<l)] 

where (~; t > 0) is the right-continuous inverse of (Ai ; u >= 0). 



28 Ph. Carmona et al. 

To finish the p roof  of  Propos i t ion  5.1, we use the same arguments  as in 

Pa rag raph  t.4. We have:  u = ~ A~, for u > 0. Hence :  
j = l  

(5.c) ~ =  t +  ~ A~ = t +  Y' (A~)(~~ 
j=~i j4:i 

As a consequence of  excursion theory,  the n processes 

{(A~)(t); (A~2)(t); ... ; (A~)(t); t =>0} 

are independent ,  and fur thermore,  ( i (A~) ( t ) ;  t > 0 ) i s  a s t andard  one-sided 

stable process of  index 7. We then deduce f rom (5.b) and (5.c) that, for 
every Borel funct ion f :  IR~ --* IR+ : 

E [1 (X~ 1 1 (5.d) 
t 

The identi ty in law (5.a) follows. 
We also deduce from (5.d), just  as in the last s ta tement  of  Coro l la ry  

2.1.1: 

(5.e) P(XleIIIAil = a ;  A j (j=# i); f 0 - - a .  
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