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Summary Denote  by D(n, k) the m a x i m u m  distance between the distr ibution 
funct ion of  the k th- larges t  order  statistic in an iid sample of  size n, equally 
s tandardized in k, and of  its cor responding limiting extreme value distribution. 

Suppose tha t  the underlying distr ibution funct ion is ul t imately cont inuous  
and strictly increasing. It  is shown in the present  paper  that  D (n, k)  converges to 
zero for  any sequence k=k(n )  with lira k/n=O if and only if the underlying 

n---~ oo 

distr ibution is ul t imately a generalized Pare to  distribution. Thus,  gPds do not  
only yield the best rate of  joint  convergence of  extremes, but  they are also the 
only distr ibutions where there actually is convergence.  

Introduction and main result 

Let X 1 . . . . .  X,  be independent  and identically distr ibuted r a n d o m  variables ( - rvs) 
with c o m m o n  dis tr ibut ion funct ion ( =  d f ) F  and denote by X 1:. < . . -  < X,: ,  the 
corresponding order  statistics. 

It is wel l -known tha t  (X,: n -  bn)/a . converges in distr ibution to some nonde-  
generate limiting distr ibution G for  some choice of  constants  a n > 0, bnslR , if and 
only if ((X n_ i + 1:, - -  bn)/a,)~= 1 converges weakly to G (k) for any integer k, where G (k) 

k 

has k-dimensional  Lebesgue density g(k)(xl .... ,Xk)=G(Xk) I~ G'(xi)/G(xi) if 
i = l  

x 1 > " ' >  x k and zero elsewhere (Dwass (1966), Weissman (1975)). 
Moreover ,  it is wel l -known since Gnedenko  (1943) that  G must  be of  one of  the 

following types, where e > 0: G1, ~ (x) : = exp ( - x -  ~), x > 0, G2,, (x) : = exp ( - ( - x)~), 
x<=O, Ga(x ) :=exp( -e -X) ,  x~lR,  being the Fr6chet, (reversed) Weibull  and 
G umbe l  distribution. 
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Denote by W a generalized Pareto distribution (=-gPd), i.e. W ( x ) : = l  
+ log (G (x)) if 1/e < G (x) < 1, yielding 

Wl,~(x)  = 1 - x  -m, x >  1 

W2,~(x)-- 1 - ( - x ) ~ , x e  [ -  1,0], 

Wa (x) = 1 -e- :~ ,x>O.  

One of the significant properties ofgPds is the fact that they yield the best rate of 
joint convergence of the upper extremes, equally standardized, if the underlying 
d f F i s  ultimately continuous and strictly increasing in its upper tail. This is captured 
in the following Theorem, where we denote by ~k the Borel-a-algebra in I l  k. 

Theorem 1. Let F be continuous and strictly increasing in a left neighborhood of 
co(F)" = sup {x ~ I l  : F(x) < 1 }. There exist normin9 constants a, > O, b, ~ I l  and a 
positive constant C such that for any k~  {1 ..... n}, n~N,  

sup [P{((X,_i+I: .-b.)/a.))~= 1 ~B} --G(k)(B)I <= Ck/n 
B ~  k 

/f  and only / f  there exist c > O, de I l  such that F(x) = W(cx + d) for x near co (F), where 
W is the 9Pd pertaining to G. 

The/f-part of this result is due to Reiss (1981, Theorems 2.6 and 3.2) while the 
only/f-part has been proved in Falk (1989, Theorem 10). 

It is clear from this result that gPds play a central role in extreme value theory if 
the joint distribution of the k largest observations is considered; this is usually done 
in statistical applications and was the starting point in the paper by Pickands (1975), 
who first observed the importance of gPds. A rigorous approach based on 9Pds to 
the problem of estimating tails of probability distributions was carried out by Smith 
(1987). For a detailed description of properties ofgPds and of their particular role in 
extreme value theory we refer to Falk (1986, 1989) and to the recent monograph by 
Reiss (1989, Sects. I and 5). In particular it is shown there that the rate of joint 
convergence uniformly over all Borel sets of the k largest order statistics, i. e. the left 
hand side of the displayed formula in the preceding result, is determined by the 
distance of the underlying distribution F from the corresponding shifted gPd. 

Now the bound in Theorem 1 tends to zero as n tends to infinity if k=k(n )  
satisfies k/n-~,~ ~ 0 and hence, the problem suggests itself to characterize those dfsF 
such that the distance between the joint distribution of the k largest order statistics 
in a sample of size n, equally standardized in k, and its limit G (k) converges to zero for 
any sequence k = k(n) such that k/n-%~ oo O. 

This problem led to the following main result of the present paper. It reveals that 
gPds do not only yield the best rate of joint convergence of the upper k=k(n )  
extremes, but that they are also the only distributions where there actually is 
convergence for any choice of k satisfying the above conditions. 

Throughout the rest of this paper we suppose that Fis ultimately continuous and 
strictly increasing in its upper tail. By G(k ) we denote the k-th one-dimensional 

k - 1  

marginal distribution of G (k), i.e. G(k)(X)=G(x ) ~ (- log(G(x)))J/ j !  if 
a(x)~(O, 1). j=0 

Theorem 2. I f  there exist constants a, > O, b, ~ I l  sueh that 

sup [P { (X,_k+ 1:. -- b,)/a, <= t} -- G(k)(t)[ ~,_.~ 0 
t 
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for any sequence k = k (n) ~ { 1 ..... n}, n ~ N,  with k/n-%~ ~ O, then there exist c > O, 
d ~ IR, such that F(x) = W(cx + d)for x near co (F), where W is the 9Pd pertainin9 to G. 

The following consequence is obvious. 

Corollary. I f  there exist constants a, > O, b, ~ IR such that for any k ~ {1 ..... n}, n ~ N 

sup ]P {(X,_ k + 2:, -- b,)/a, <= t } - G(k)(t)] < 9 (k/n), 
t 

where 9 : IR--.IR satisfies lira 9(x) = 0, then the conclusion of  Theorem 2 holds. 
x--*O 

Remarks. (i) With the particular choice g (x )=  Cx the preceding result obviously 
yields the only if-part of Theorem 1. 

(ii) We do not know whether the smoothness assumptions on the upper tail o f F  
can be dropped in Theorem 2. 

Auxiliary results and proofs 

The following auxiliary result will be basic for the proof  of Theorem 2. By [x] we 
denote the integer part of x ~ IR. 

Lemma. Denote by D (n, k)  the left hand side of  the displayed formula in Theorem 2. 
Suppose that lim D(n ,k )=O if  k /n~ ,~oO.  Then, for any ~>0,  there exists e~>O 

such that D(n, [end < 6 as well as D(n, 2 [en/2]) < ~ if  n is large for any 0 < ~ < ~.  

Proof Negate the assertion, i.e. suppose that for any e 0 > 0 there exists e < e o such 
that for any n there exists m > n  with D(m, [em])>6. 

Choose ek$O and mkToO such that D(m k, [ekmk])>& Put for m e n  

k(m) : = [ek m] if m ~ [mk, mk+ 1 -- 1). 

Then, obviously k(m)/m~m_~ooO but clearly 

lira sup D (m, k (m)) > 
m ~ c o  

which is a contradiction to the assumptions of the lemma. The same arguments 
apply to 2 [en/2] in place of [en]. This yields the assertion. [] 

Proof of  Theorem 2. At first we prove the assertion for G2,1,(k). This is the easiest 
case, but it is also the easiest way to demonstrate the basic ideas of the proof. 

k 

First note that Gz,x,(k ) is the d f  of - ~ Yj, where Y1, Y2 .... are iid rvs with 
j = l  

common standard exponential distribution. Moreover, let v(i) i=  1,2, be ~ n - k + l : n ,  

independent replica of X,_ k + 1:,- 
With D(n, k)  as defined in the preceding lemma we obtain by Fubini's theorem 

for k < n  

sup P {  ~1 t i kXln--k+l:n (y( i )  __bn)/an<=t}__G2,1,(2k)(t) 

<2  sup IP {(X._k+ 1 : . --b.) /a.N t} -- G2,1,(k)(t )] 
t 

= 2 D ( n , k ) .  
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On the other  hand,  if 2k<n, 

sup [P{(X,_2k+ 1:, -b,)/a,<=t} - G2,1,(zg)[ = D ( n ,  2k )  
t 

and hence, 

sup P {  -~a C X ( i ) t  i ~ " k+ l : , - -b , )<= t} - -P{ (X , -zk+~ : , - -b , )<= t}  

<=2D(n, k) + D(n, 2 k ) .  (1) 

By the preceding l emma there exists e 0 > 0 such that  for any e < e o 

D(n, [en])< 1/4, D(n, 2[en/2])<l/4 

i fn  is large. Chooce  eE (0, ~0)- Then, with the part icular  choice k = k ( n )  = [en/2] we 
obtain  f rom (1) if n is large 

sup P { ~ 1 C Y ( i ) ~  i kZXn - [en/2] + 1 :,-b,)<=t}-P{(X,-z[~,/2]+l:,-b,)<= t } 

< 2D (n, [en/2]) + D (n, 2 [~n/2]) < 3/4. (2) 

F r o m  classical extreme value theory (e.g. 2.1, 2.2 in the b o o k  by G a l a m b o s  
(1987) or Theorem 2.3.2 in the b o o k  by de H a a n  (1975)), we conclude that  
b,~,~ooco(F)=:b<oo. Moreover ,  if e 0 is small enough,  cont inui ty and strict 
monoton ic i ty  of  F yield 

X,_[,~/z]:,--%_+ooF-l(1 - ~/2), Xn_2[n~/Z]:n--+n~o~F-l(1 -e)  

in probabil i ty,  and hence, (2) implies 

2 (F  -~ (1 - e / 2 ) -  b) = F -1 (1 - e ) - b  (3) 

which now holds for any e ~ (0, eo). 
F r o m  Theorem 2.3.2 and Corol lary  1.2.1, 5 by de H a a n  (1975) we know tha t  the 

funct ion u (e) : = F -  1 (1 - e) - b, e ~ (0, 1), satisfies u (te)/u (e)--% ~ oo t, t > 0. I terat ing 
(3) we obtain  that  for any e E (0, %) and m ~ N 

u(e) = 2mu(e/2 m) 

and thus, we deduce for any ~1, e2 e (0, eo) 

u(eO u((~/8~)~/2~") -~-+~1/~, 
u(e2) u(e2/2") 

i.e. u (e) = ce, 0 < e < eo, for  some c > 0. This completes  the p r o o f  of  the case G = G2,1" 

Observe now that  G2,c~,(k)  is the distr ibution of  - ~I~ , G~,~,(k ) the one of  
j = l  

Y~ , and G3,(k) the one of  - l o g  Yj . The general case G2,~,(k) as well as 
j = l  j 

G~,~,(k ) can then easily be dealt  with in complete  analogy to the preceding proof .  
Some extra remarks  might  be useful for  the final case G3,(g). Repeat ing the above 

arguments  we obtain  that  in this case there exist a > 0 and eo > 0 such that  

2 exp ( - F -  1 (1 - ~/2)/a) = exp ( - F -  1 (1 - e)) (4) 
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for any e~ (0, 50). F r o m  Theo rem 2.4.1 in the b o o k  by  de H a a n  (1975) we know tha t  
the funct ion v(e) : = F  -1 ( 1 - 5 ) ,  5e (0 ,  1), satisfies 

v (sx) - v (5) log (x) 

v(sy)-v(5) %~o log ( y ) '  

x, y > 0, y + 1. I te ra t ing  (4) and  t ak ing  logar i thms  we ob ta in  tha t  for 5 ~ (0, 5o) and  
m e n  

v (5) = - m log (2) + v (5/2")/a 

which implies  c o ( F ) =  oo. We ob ta in  fur ther  tha t  for 5, e 1, 52 e (0, 5o), 51 452 

V(5) --v(51) V(5/2m)--v(51/2 m) log (5/51) 

v ( e 2 ) -  v(51) v(52/2 m)_  v(51/2 m) "m-~o log (52/51)  ' 

i.e. v ( e )=  q -  c 2 log (5), e e (0, %), where q ,  c 2 are posi t ive constants .  This implies 
the assert ion.  [] 

Acknowledgement. I would like to thank the referee for useful comments which led to a more 
concise proof of Theorem 2. 
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