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Summary. We examine local geometric properties of level sets of the Brownian 
sheet, and in particular, we identify the asymptot ic  distribution of the area 
of sets which correspond to excursions of the sheet high above a given level 
in the neighborhood of a particular r andom point. It  is equal to the area of 
certain individual connected components  of the r andom set {(s, t): B(t)> b(s)}, 
where B is a standard Brownian mot ion and b is (essentially) a Bessel process 
of dimension 3. This limit distribution is studied and, in particular, explicit for- 
mulas are given for the probabil i ty that  a point belongs to a specific connected 
component,  and for the expected area of a component  given the height of the 
excursion of B (t)-- b (s) in this component.  These formulas are evaluated numeri- 
cally and compared  with the results from direct simulations of B and b. 

Mathematics Subject Classifications (1991): 60G60, 60G15 

1 Introduction 

This paper  is motivated by the author 's  previous study [1] of level sets and 
excursions of a standard Brownian sheet { W(s, t), s > 0, t > 0}. The sample paths 
of the Brownian sheet are functions of two variables, so when we speak of 
an excursion of W above the level e, we mean the restriction of W to a single 
connected component  of the set {(s, t): W(s, t )>e}.  We call these components  
bubbles. 

The focus of [-1] was on the distribution and size of clusters of bubbles 
of {W>e} ,  e > 0 ,  in a neighborhood of the point (S, to), where t o > 0  is fixed 
and S--  inf{s_>_ 0: W(s, to) = e}. For  simplicity, let us take t o = e = 1. In particular, 
bounds on the height and width of bubbles that intersected certain curves were 
given [1, Theorems 3.9 and 3.11]. Here, we want to look at some properties 
of a single bubble. In particular, we will examine its area. 

* The research of this author was partially supported by grants DMS-9103962 from the Nation- 
al Science Foundation and DAAL03-92-6-0323 from the Army Research Office 
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The key to the results of [1] was the following local decomposition of the 
Brownian sheet in the neighborhood of (S, 1): 

(1) W ( S -  u, 1 + v/S)= 1 + B (v)-- b (u)-x(u, v/S), 

where B=(B(v), v>0} is a standard Brownian motion started at the origin, 
b={b(u), u>0} is a Bessel process of dimension 3 (or Bessel (3) process, for 
short) also started at the origin and independent of B, and, conditioned on 
S=s, x={x(u, v), s>u>O, v>0} is a standard Brownian sheet (see [1, (15) and 
Lemma 2.4]). In the neighborhood of (S, 1), x is of smaller magnitude than 

B or b. Indeed, B(v) and b(u) are on the order of 1/~ and V ~ respectively, 
while x(u, v) is on the order of ~/-~. 

In view of (1), it is natural to expect that for small u and v, the set {(u, v): 
W(S-u, i + v/S)> 1} would be well-approximated by the set 

(2) {(u, v): B(v)- b(u) > 0}, 

and that in particular, the bubbles themselves should be well-approximated 
by the connected components of the latter. Using the structure of the components 
of the set (2), we show in Sect. 5 that the area of bubbles corresponding to 
excursions of W high above level 1 does indeed converge in distribution as 
the bubbles approach (S, 1) to the area of a component of the set (2). 

It is then natural to study the limiting process 

(3) {B(v)-b(u), u=0 ,  v__>0} 

and in particular the area of its excursions. This is analogous in spirit to studying 
an excursion of Brownian motion. While the excursion theory of the standard 
Brownian motion is well developed, we are not aware of any studies of these 
components for non-trivial planar processes, and processes of the form (3) are 
of particular interest, since such processes provide in fact local approximations 
to solutions of hyperbolic stochastic partial differential equations (spde's). 

Indeed, a typical hyperbolic partial differential equation in IR 2 can be trans- 
formed by a change of variables to the case where the second-order part of 
the differential operator is 02/0 s 0 t. Therefore the basic hyperbolic spde to con- 
sider is 

02 
(4) ~? s ~ ~(s, t )=f  (s, t, {(s, t)) r(ds, dt)+ g(s, t, {(s, t)), 

where ~ is given on the coordinate axes, Y is a non-atomic random measure, 
and f and g are smooth functions. Let T=(U, V) be a (deterministic or random) 
point in IR 2. How does the solution ~ of (4) behave in the neighborhood of 
T, say in the region D = {(s, t): s => U, t > V}. Of course, this depends on T, but 
in general ~ will satisfy an equation similar to (4). If T is random, the right-hand 
side of (4) may change slightly due to conditioning, so that in general, ~ will 
coincide in D with the solution ~ of the equation 

(5) Osat((s ' t )=X(ds 'd t )  inD, 

;(s,V)=r r162 s>U, t>v, 
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where X is some random measure. Now the solution to (5) can be decomposed 
into two parts, one of which accounts for the boundary condition and the 
other for the driving noise, that is, ~ = (~ + ~2, where ~1 satisfies 

9 2 

(6) # s 0 t  ~ t ( s ' t ) = 0  inD, 

~(s,V)=~(s,V), r s>U, t>__v, 

and ~z satisfies 

0 2 

(7) Osc~t ~2(s, t)=X(ds, dt) in D, 

~2(s, v)=0, ~2(u,t)=o, s>U, t>=v. 

The point of this is that typically, the dominant term in the neighborhood 
of T is ~1, which is the solution to a homogeneous wave equation with random 
boundary condition, and it is well-known that the solution to (6) is given by 

;l(s, t)=r v)+r t), 

which is of the same form as (3). For hyperbolic equations in which the differen- 
tial operator does not have the reduced form of Eq. (4), the same type of local 
decomposition involving the sum of two single-parameter processes is possible. 

In order to understand the structure of components of the set (3), and thereby 
describe the approximate local structure of excursions of solutions to hyperbolic 
spde's, it is necessary to have a convenient way of recognizing whether two 
distinct points belong to the same component of this set (obviously, plotting 
the set is one way, but it is not helpful for calculations!). This is achieved 
by Algorithm A of Sect. 2, which can be applied to any pair of processes X 1 
and X2. 

In Sect. 3, we then focus on the special case of importance for the Brownian 
sheet, namely when X1 is a Brownian motion B and X2 is a Bessel (3) process 
b, and we address the following question: what is the probability that a point 
in IR2+ belongs to a particular connected component of {B>b}={(s, t): B(t) 
>b(s)}? We establish an explicit formula for this probability. Then a simple 
integration over the point gives us the expected area of the component. We 
actually compute the conditional expected area, given (essentially) the height 
of the excursion. The formula is of the following type: 

E {area of bubble[height} = ~, p,,  
n~N 

where p, is an integral over a particular simplex in 7+6(n-1)-dimensional  
Euclidean space, of functions f and g which are derived from probabilities con- 
cerning Bessel (3) processes. The computation of p, is achieved by using the 
Markov property of a particular four-parameter diffusion. The same methods  
would apply if B and b were more general diffusions, but we have no need 
for this added generality. 

In Sect. 4, we expand the functions f and g in series whose terms are explicitly 
derived from the standard Gaussian density. Since these series converge rapidly, 
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they can be evaluated numerically, as can the p, themselves. We have carried 
out this evaluation for Pl and P2. Since the p, converge to 0 exponentially, 
this is in fact a reasonable approximat ion to the expected area of the whole 
bubble. These calculations have been checked by a direct simulation of the 
processes b and B. These results are reported in Remark  4.4. 

As mentioned earlier, in Sect. 5 we use our results on the structure of compo-  
nents of the set (2) to prove that the area of bubbles which correspond to 
excursions of W high above level 1 near (S, 1) has approximately the same 
distribution as the area of a component  of the set (2). 

2 Structure of clusters 

In this section, we are going to study in detail the structure of components  
of the set {B > b} = {(s, t): B(t) > b (s)}. The particular distribution of these pro- 
cesses will not play any role until the next section, and in fact, Proposit ion 2.2 
applies to any pair of continuous single-parameter processes, and Proposit ion 2.4 
applies to any pair of diffusions. We use the notat ion B and b here so that 
specific notat ion can be set up for later use. 

The components  of {B>b} are not isolated; rather, they occur in clusters. 
In each region where such a cluster occurs, we can assume that b is making 
an excursion below some level H > 0. At the same time, B is necessarily positive, 
so it must  be making an excursion above some level L > 0 .  We are going to 
assume that  L > 0  and that B = L  at both  extremities of its excursion, since 
the case of excursion intervals from the origin can in fact be derived from 
this (see Remark  3.2). 

Fix 0 < L </-/. Suppose that I x - -  ]a  1 , a2[ is an excursion interval of b below 
the level H, and JL--]Cl, C2[ is an excursion interval of B above the level L. 
Let R' = I x • JL, and let 

_M= inf b(u), 3 3 =  sup B(v). 
al  "~ll ~ a 2  Cl ~ 1) ~c2  

Let _S and T be the (unique) times in ]al, a2[ and ]Cl, C2[ respectively such 
that 

b(S)= _M, B('T) = ML 

Fix two real numbers m and r~ such that L < _ m < r h < H .  We condition on the 
event {_M = _m, 33 = th}, and set 

a = sup {s e (a 1, S): b (s) = rh}, 

a'=inf{sE(_S, a2): b(s) =rh}, 

Io =]cr, a'[, 

"c=sup{te(Cl, T): B(t)= _m}, 

"c'--inf{te(T,, c2): B(t)=m}, 

Jo =]% ~'[. 

Let R o = t o X J  o. There will be many  components  of { W > I } ,  and of {B>b},  
in R', and also in R o. However, there is a distinguished component cs o of 
{B > b} n R', namely the one which contains (S, ~v), the point of R' at which 
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Fig. 1o A Brownian bubble 
surrounded by smaller 
components 

B ( t ) - b ( s )  is maximal (see Fig. 1). We call this distinguished component a Brow- 
nian bubble and will study it in some detail. In particular, we are interested 
in the expected area of ego: how much smaller is it than that of Ro, or than 
that of {B>b} c~Ro? A standard application of Fubini's theorem shows that 
this area will be easy to compute once we have the probability of the event 
F={(s ,  t)eCgo}. However, in order to compute P(F), it is necessary to have 
a convenient way to recognize whether or not a given cosf2 belongs to F. (Plotting 
the region cgo is one way, but it is not very convenient !). A more useful method 
is supplied by Algorithm A below. 

Notice that the pair of intervals I = I o and J = Jo have the following property. 

(P) The interval I is an excursion interval of  b below the maximum value rh 
of  B on J, J is an excursion interval of  B above the minimum value m_ of  b 
on I, and r ~ -  m_ > O. 

Remark 2.1 Observe that whenever two intervals I and J satisfy (P), any compo- 
nent of {B > b} that meets I x J is necessarily entirely contained in ! x J, for 
B < b on the boundary. In particular, cgo ~ Ro. 

Evidently, a point (s, t) belongs to cgo if and only if there exists a continuous 
curve from (s, t) to (S, T) contained in {B > b}. A priori, there is no restriction 
on the nature of this curve. Let us call (Io x {T})w({_S} x J o ) the  axes of cg 0. 
They are contained in cgo and they divide the rectangle R, and hence ego, into 
four quadrants. Any curve from (s, t) which reaches the axes of cgo can reach 
(_S, T) in one more step, so we can restrict our attention to paths which do 
not cross the axes, and therefore remain in one quadrant. 

Given points (Sl, t0  . . . .  , (s,, tn), let ((s 1, tl) . . . .  , (s,, tn)) be the polygonal 
curve which connects successive points. If the segments of this curve are alterna- 
tely vertical and horizontal, and if it is non-self-intersecting, we will call it a 
stepped path. The curvature number of a stepped path is the number of right- 
angles in it; e.g. the curvature number of the stepped path ((Sl, tl) . . . .  , (Sn, t,)) 
is n--2. 
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We are going to describe an algorithm which, given (s, t )eR, determines 
whether or not (s, t) belongs to Wo. When it does, the algorithm constructs 
a stepped path F * c  {B> b} of (nearly) minimal curvature number which con- 
nects (s, t) and (S, T). This will lead to a formula for the probability that these 
two points belong to the same connected component of {B > b} (which in turn 
will give us an estimate for the probability that they are in the same component 
of {W>l}) .  

The algorithm is most easily described in terms of the process 
Y(s, t )=B( t ) -b ( s ) .  This process takes on it maximum in cgo at (S, T). Fix (s, t) 
and suppose that Y(s, t)> 0. The algorithm is as follows: starting at (s, t), look 
at the horizontal segment through (s, t) which is contained in cd o, and go to 
the point (_$1, t) on this segment where Y achieves its maximum on this segment. 
Then look at the vertical segment through ($1, t) contained in cd o and move 
to the point (_$1, T1) where Y achieves its maximum on this vertical segment. 
Repeat these steps, looking alternatively at horizontal and vertical segments 
until either (_S, ~) is reached, or until you fail to find a new maximum value. 
In the first case, it is clear that (s, t) belongs to cd o, and we are going to show 
that in the second case, it does not. 

To do this, it is necessary to restate the procedure in terms of the processes 
b and B. This is done in the algorithm below, which outputs YES if the two 
points are in the same component of {B > b} and NO otherwise. 

Algorithm A. Let (s, t )eR o. 

Stage 0. I f  b(s)>=B(t), output NO and stop. Otherwise set 32o=B(t), _So=s , 
T o = t, Fo = {(s, t)} and go to stage 1. 

We define the stages by induction, starting with n = 1. 

Stage 2 n - 1 .  Let I ,  be the (open) excursion interval of b below ffl,_ 1 which 
contains S_,_ 1. Define M_ , and S_, by 

_M, = b (S,) = rain b (u), 
ueln 

and set F2,-1 = r2,_2 w ((_S,- 1, T,-1), (_S,, T,_ 1))- 
(a) IfS_,=S, then let F* =F2,_ 1 ~ <(S, 'Fn- 1), (_S, 'F)), output YES, and stop. 
(b) I f  S_,=S_,_ 1, output NO and stop. 
(c) Otherwise, go to stage 2 n. 

Stage 2 n. Let J, be the open excursion interval of B above M_ , which contains 
7".- 1. Define M ,  and T, by 

M, = B (T,) = max B (v), 
VeJn 

and set F2, = F2,- 1 u <(S,, L -  1), (S,, T,)). 
(a) I f  7~, = T,, then let F* = F2, w <(S_,, 7), (S, T)),  output YES, and stop. 
(b) I f  T, = T,_ 1, then output NO and stop. 
(c) Otherwise, go to stage 2 n + 1. 

Proposition 2.2 Consider 0 < L < H, R', R o, S and T as above. Assume M < ]ffl 
and let (s, t )eR o. Then Algorithm A outputs YES if (s, t) and (S, T) belong to 
the same connected component of {B > b}, and outputs NO otherwise. In particular, 
with probability one, it terminates in a finite number of stages. When it outputs 



The structure of a Brownian bubble 481 

YES, the number of stages is equal to the curvature number of the stepped path 
F*. This curvature number is at most one more than the minimal curvature number 
among all stepped paths in {B > b) from (s, t) to (S, T). 

Proof Let us first check that F , c  {B>b} for all n. At stage zero, either the 
algorithm terminates immediately or F 0 = {(s, t)} c {B > b}. 

Suppose by induction that we have constructed sequences _Me, ~Sr k, _Sk, ~ ,  
Ik, and Jk, k=0 ,  ..., n--1 and a stepped path F2,_ 2 with endpoints (s, t) and 
(-Sn-1, Tn-1) such that 

(8) - M  < m_ n _ l < - M  n _ 2 ~s . . . < - M  l < - M  o < ]~I  o < . . . < J ~ l  n _ 2 < J ~ l  n _ l <~ J~I ,  

I 1 = I z = . . . = I , _ 1 = I o ,  J l=J2=. . .=Jn_l=Jo and Fa,_z={B>b} 

where 

(9) 

Ik is an excursion interval of b below Mk- 1, 

Jk is an excursion interval of B above _Mk, 

_Mk=b(_Sk)=minb and ) ~ k = B ( ~ ) = m a x B .  
I k  J k  

At stage 2 n - l > l ,  I ,  is the excursion interval of b below J~ , - l ,  SO J~fn--2 
< ~ r  _ 1 < h~r implies I ,_  1 c I .  ~ I o. It follows that M < M,  < _M,_ 1. If u is be- 
tween _S,-1 and _S,, then ueI .  so b (u )<~r ,_ l  and B(T,_l )=) f l ,_ l>b(u ). Thus 
( (S , -1 ,  T,_ 1), (_S., T,_ 1 ) )~  {B > b}, which implies that F2,_ 1 :  {B > b}. A similar 
argument shows that F2, ~ {B> b}. 

Next we check that the algorithm terminates correctly. It returns NO in 
three cases. The first is trivial: if b(s)>B(t) at stage zero, then (s, t)r 
The second case is at stage 2 n - l ,  if _S,=_S,_ 1 while _S,+_S. Since _S and _S, 
are the minimum points of their respective excursions, evidently _S ~ I, .  Moreover, 
_M,=_M,_I, so, if we were to go on to the next stage, we would find that 
J . = J . - 1  - they are not disjoint, and they are both excursion intervals of B 
above the same level _M,_I - and hence that T , = T , _ I .  Evidently Tr But 
(s,t)EI, xJ,  and if T , = T , _ I  and S n=S_n_l, then I, and J, satisfy (P). Thus 
(s, t)eCdo implies ~ o C I ,  xJ, ,  a contradiction. It follows that (s, t) and (S, T) 
are in different components. The third case occurs at stage 2 n, when T, = T,_ 1. 
This is the same as the previous case - j u s t  interchange s and t. 

Observe that having reached stage 2 n - 1 ,  if the algorithm does go on to 
stage 2 n, then _S :#_S, ~_S,_ 1, so _M < _M. < _M,_ 1. Similarly, having reached stage 
2 n, if the algorithm does go on to stage 2 n + 1, then T=~ T, ~: T,_ 1, so M._ 1 
< ~ , < ~ r .  

The algorithm returns YES in two cases: at stage 2 n - 1  when _S,--__S and 
at stage 2n when T ,=  T. We will check the first; the second is similar. At stage 
2 n - -  1, F2n_ 1 ~ {B > b) and F2,_ 1 ends at (_S, T,_ 0, which is on the axes of cd o. 
These are contained in cg o, so we need only add on a segment of the axes 
to F,_ 1 to reach (S, T). Thus (s, t)~Cgo . 

We now check that the algorithm terminates with probability one. If it has 
not terminated by stage 2 n - 2 ,  we have constructed sequences -Mk, Mk, Ik 
and Jk as in (8)-(9). The intervals 

(10) Ik~--]Uk, U~[, Jk ~3 Vk, Vk'[ 
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increase strictly with k. By construction, b ( U n ) = M n _ l = b ( U  ") and B(V,)=_M, 
-= B (V'). Now if _M, < _M, _ 1, then either Un < _Sn < Un - a or U~_ 1 <-Sn < U~. Assume 
the former, since the latter case is similar. Then on [Un, U,_ ~], b goes from 
2~._ ~ down to _M n and back up to 2~/,_ 2- To do so, it has to cross the non-empty 
interval ]_M1, 3~o[. In particular, the number of upcrossings of ]_M 1, ~r0[ by 
b during I n is at least one larger than the number of upcrossings of this interval 
during In- ~. 

The same is true for B when Mn>Mn-~ .  At each stage, one of the two, 
M k or )~r k, must change, so that either b or B has to have at least n/2 upcrossings 
of ]_M1, M0[ in the respective intervals Io, Jo. Since both are continuous func- 
tions, the number of upcrossings of a non-empty interval must be finite, so 
the algorithm must terminate. This proves that the algorithm will decide correct- 
ly whether or not (s, t)~Cgo . 

It remains to show that the curvature number of F* is (nearly) minimal. 
Assume that (s, t)SCgo - so F* does in fact exist - and let F c { B > b }  be any 
stepped path from (s, t) to (_S, T). Let R1, R2, R3 . . . .  be the sequence of rectangles 
I~x{t},  11x J1, 12xJ~,  12xJz  . . . .  , I ,  xJn_~, I ,  x J ,  . . . . .  Notice that 
(s, t)~Ra c R 2 c  .... Let N be the largest n for which (_S, T) is not in the closure 
/~n of R,. Then F must cross the boundaries of R~, ..., RN (since R~ is a segment, 
R1--0R1; F will not exit R1 through an extremity). 

By construction, _M n < b < M,_  ~ on In, and b = )~n- ~ at the endpoints. Simi- 
larly, _Mn<B<Mn on J, and B=_M n at the endpoints. Consequently, if k is 
even, so that Rk is of the form In x J,, then B = M n < b on the horizontal portion 
/-nx ~Jn of the boundary;  thus this is in {B>b} c, and F cannot intersect it. 
Now F is a stepped path, made up of vertical and horizontal segments. If it 
must cross the boundary of Rk, k even, it must do so through one of the sides; 
this can only happen during a horizontal segment of E Similarly, for odd k, 
where Rk is of the form I ,+ t  xJn, the vertical portion of the boundary is in 
{B>b} c, since B < ) f l n = b  there. This time the path F cannot cross the sides, 
but must cross the top or bottom, which it must do during a vertical segment. 
Thus F must exit Rt vertically, cross 3R2 horizontally, 0R 3 vertically, ~R 4 
horizontally, and so on. The horizontal segments H ,  and H,~ crossing the bound- 
ary of Rzn and R2m are distinct when n < m ,  since Hn cannot cross the vertical 
portions of the boundary of Rzn+l .  Similarly, the vertical segments V, and 
V,, crossing the boundary of R2n+~ and Rzm + 1 are distinct when n < m .  Since 
F is a stepped path, it must make at least one right angle between each of 
these crossings. There are N crossings in addition to the vertical segment which 
leaves R~, so that the curvature number of F must be at least N. 

In fact, let F ~ be any path with minimal curvature number N ~ If the segment 
of F ~ containing (s, t) is horizontal, then there is at least 1 right-angle to exit 
R~, one additional right-angle to exit R2, ..., so N ~  If the segment of F ~ 
containing (s, t) is vertical, then no right angle is necessary to exit R1, there 
is at least one right-angle to exit R2, one additional right-angle to exit R 3 . . . . .  
so N~ > N - - 1 .  

When the algorithm terminates at stage K, the curvature number of F* 
is also K, since each stage except the first adds one right-angle to F*, and 
there is one additional right-angle added just before the algorithm outputs YES. 
If K = 2 n -  1, then _S,=S or, equivalently, _S~In and if K = 2 n  then T~Jn. Thus, 
when K = 2 n - - 1 ,  _SEIn but TCJ,-1,  hence (s, t ) ( E I n x J n _ l = R 2 , _ a .  It follows 
that N =  2 n--1 = K in this case. It is easy to see that if K = 2 n, we also have 
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N = K. In particular, if the segment of F ~ containing (s, t) is horizontal, then 
N ~  by the above, so the algorithm has indeed constructed a minimal 
path. Otherwise, it might be the case that N ~ = N - 1  = K - 1 ,  so the curvature 
number of F* could be one more than minimal. [] 

Remark 2.3 (a) There is one arbitrary aspect to Algorithm A, namely the way 
it starts: the first segment of F* is always horizontal. It could just as easily 
have been vertical. If (s, t) belongs to cg 0 but Algorithm A does not construct 
a path with minimal curvature number, then the vertical counterpart to it will. 
This follows from the last lines of the proof above. 
(b) All components of {B > b} are Brownian bubbles, i.e. are distinguished com- 
ponents for some choice of rationals H > L and excursion intervals I H and JL. 
To see this, assume B(t)>b(s),  and let (go be the component of {B>b} which 
contains (s, t). This component is bounded. Indeed, the excursion interval J '  
of B above 0 which contains t is finite, so the maximum H' of B on this interval 
is also finite. Now the first hit p of H' by b is finite, and clearly, (go c [0, p] x J'. 
Let (S, T) be the point in (go where Y achieves its maximum, let I o be the 
excursion interval of b below M = B ( T )  which contains _S, and let Jo be the 
excursion interval of B above _M = b(_S) which contains T. 

It is not difficult to see that the intervals Io, Jo and levels _M, 2~ satisfy 
(P). Choosing rationals H slightly larger than M and L slightly smaller than 
_M, and considering the excursion intervals IHDI  o and JLDJo, it is easy to 
see that (go is the distinguished component in R ' =  In X JL. 
(c) All components of {B > b} are obtained by enumerating rationals 0 < L < H, 
excursions IL of B above L, and excursions I n of b below H, such that 

L<M_ - m i n b < ~ I = _ m a x B < H .  
1I-7 IL 

If we move along a stepped path starting from (S, T), our successive directions 
of motion can be described by a sequence (i, DI, D2, ...), where ie{1, 2, 3, 4} 
indicates the initial direction (1 for right, 2 for up . . . .  ), and the Dke{right, left} 
indicate the direction of each turn. The following theorem indicates just how 
complex the component (go may be. 

Theorem 2.4 For any finite sequence of rights and lefts, there is a point (s, t) 
in cgo for which the stepped path from (S, T) to (s, t) with minimal curvature 
number has exactly that sequence of right and left turns. 

Proof Since this theorem is not used in the rest of the paper, we will not 
give a complete proof. Rather, we indicate how to construct a point (s, t) for 
which the minimal path F from (_S, T) to this point is described by the sequence 
(1, left, left, left, right). It will be clear from the continuity and nowhere-differen- 
tiability of the paths of b and B that a similar construction is possible for 
any n ~ N  and finite sequence (i, D1, D~ . . . .  , D,). For s>_S and t >  T,, set 

b*(s)= max b(u), B, ( t )=  min B(v). 
S<_ugt ~'<_v<t 

Let I~ c I0 be an open interval to the right of _S where b accomplishes an excur- 
sion below b*, and let M2, K 2 and _S 2 be such that 

M 2 = b (_S2)  = min b < max b = K2, 
I~ Ez 



484 R.C. Dalang and J.B. Walsh 

and let Jz be the excursion interval of B above m 2 which contains T. The 
first segment of F will be [_S, __$2] x {~}. (We are starting the construction of 
F from (.S, T), whereas the algorithm starts from the opposite endpoint (s, t). 
This is why we define m 2 and $2 before _M 1 and .$1 .) 

Since the first turn of F is to the left, we let t increase from T until the 
first time zl that B hits level ( / (2+ _Mz)/2. This level is in ]_M, ~t[,  so vleJo.  
The paths of B are continuous and nowhere differentiable, so there is ~1 > 0  
such that M 2 < B ( v ) < ~ / ~  2 for v e [ ' c l , r l + e l ] ,  and there is an open interval 
J ~ c ] r l ,  zt + e l i  on which B is accomplishing an excursion above B, .  Let L2,  
M2, T 2 be such that 

M2 = B (7"2) = max B > min B =_L 2 . 
J~ J~ 

The second segment of F will be {.$2} x IT, Tz]. We now let 12 c I0 be the excur- 
sion interval of b below M2 which contains _$2. 

Since the second turn of F is to the left, we let s decrease from _$2 until 
the first time o~ that b hits (M2+_L2)/2. Since this level is in ]_M2, 2~2[, 0 1 
belongs to 12. Now there is e z>0  such that [Ol --G2, 0-13 ci2 and-L2 < b ( u ) < M 2  
for u~[-o-1-82, o-1], and there is an open interval I ' ~ c ] o 1 - ~ 2 ,  a~[ on which 
b is accomplishing an excursion below b*. Let _M1,/(1 and _$1 be such that 

M_ I =b(_SO=minb<maxb=Kx, 
I i  I f  

and let J1 be the excursion interval of B above _M 1 which contains T 2. The 
third segment of F will be [51, .$2] x {T2}- 

Since the third turn of F is to the left, we let t decrease from T 2 until 
the first time z 2 that B hits level (/(1 + -M0/2. Since this level is in ]_M1, )~2[, 
% belongs to J2- Now there is e3>0  such that [~2-e.3, ~2]~J2 and _M 1 <B(v) 
< K  1 for v6[z2-e3,  %], and there is an open interval Js c ] z 2 - - c a ,  ~2E on which 
B is accomplishing an excursion above B. .  Let _L1, M I, T 1 be such that 

M1 = B(T1) = max  B > min  B =_L1. 
Ji Y~ 

The fourth segment of F will be {S1} x IT1, Z2]. Let 11 be the excursion interval 
of b below 3d I which contains _S 1 . 

Since the fourth turn is to the right, we let s decrease from _S t until the 
first time oo that b hits level ( M I + L 0 / 2 .  Since this level is in ]_M1, MI[ ,  oo~I1. 
Set s=o- o, t =  T1, and let Is, __$1] x {T1} be the fifth and last segment ofF. 

Starting from (_S, T), the successive turns of F are (1, left, left, left, right), 
and we claim that Algorithm A applied to (s, t) constructs the path F. Indeed, 
the points .$1, .$2, 7"1, T2, and the intervals 11, 12, -/1, and J2 are exactly those 
constructed by the algorithm. Moreover, the path F is a minimal path from 
(s, t) to (S, T). Details are left to the reader. []  

3 The expected area of a Brownian bubble 

In this section and in the remainder of the paper, we make explicit use of 
the fact that B is a Brownian motion and b is a Bessel (3) process independent 
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of B, though the reader will notice that the methods and proof of Proposition 3.6 
apply to all pairs of independent time-homogeneous diffusions. 

Let c~ 0 be a connected component of {B>b}. Since this component is 
bounded (see Remark 2.3(b)), there is a point (_S, T)~Cgo at which B ( t ) - b ( s )  
is maximal in <go, equal to M, say. Given M, we are interested in probabilistic 
properties of cgo; in particular, we are going to exhibit a formula for its expected 
area. Before doing this, let us examine the excursions of b and B which give 
rise to cgo. 

By Remark 2.3(b), there are rationals 0 < L < H  and a pair of excursions 
of b and B from H and L, respectively, for which cgo is the distinguished compo- 
nent. In particular, S (resp. T) is the minimum (resp. maximum) point of an 
excursion of b (resp. B) below AI=B(T)  (resp. above _M=b(_S)). Clearly, 
M = M -  _M. 

Since b and B are independent, b is independent of M and B is independent 
of _M. It follows that if we let Io=]O -, a'[- be the excursion interval of b below 
/1~ which contains _S, and let Jo---]z, z'[ be the excursion interval of B above 
M which contains T,, then given ~r and _M, these two intervals behave like 
ordinary excursion intervals of the two processes. 

Lemma 3.1 Given S_ = s_, T= t, M = rfi and M_ = m, the processes 

x ,  = { . ~ -  b(o-'- u), o < u  < o-'-s},  

X2 = {b(_s + u ) - m ,  O<_u<_a'-s_}, 

x ~  -- { B ( r  v ) -  _m, O < v < ~ ' - ~ ,  

X 4 =  { t f i -  B([-+ v), O<_v<_ r 

are all Bessel (3) processes killed at the f irst  hit of  N-m_. 

Proof X 2 and X4 are Bessel (3) processes by a result of Williams (see e.g. 
[8, Chap. XII, Theorem 4.5]), since they represent a Bessel (3) process and a 
Brownian motion started respectively from the bottom and the top of an excur- 
sion. The other two processes are obtained by reversing X 2 and X 4 from their 
lifetimes, so they are also Bessel (3) processes [8, Chap. VII, Proposi- 
tion 4.8]. [] 

Remark 3.2 (a) If we are observing the process {Y(s, t )=-B(t)-b(s) ,  (s, t)~N.2}, 
rather than the processes b and B, we cannot determine M and M in general. 
However, a, a', r and ~' can be determined, since for instance a '= inf -  
{s__>_S: Y(T,, s)=0}. In addition, probabilistic properties of c~ 0 only depend on 

'M, not on the particular values of M and _M (as long as M - - M  = M). Indeed, 
consider for instance c~ 0 c~ {(s, t): s>s ,  t>t-}, and observe that b(s_+u)<B(t+v)  
if and only if X 2(u) +X4(v )< M, and the distribution of these processes does 
not depend on M or _M by Lemma 3.1. 
(b) If we wanted to consider excursion intervals of b below L of the form [0, a 2 [  , 

we would only have to set _m=0 and s=0 .  The process X 1 would no longer 
be relevant and the entire component would be contained in [0, a'] x [z, r 

Let  Q(O, x; s, y) be the probability measure on Y2o=~(IR+,]R ) (equipped 
with its usual topology of uniform convergence on compact sets and Borel 
sigma-field) under which the canonical coordinate process Z has the following 
distribution: on [0, s], Z is a Bessel (3) process started at position x and condi- 
tioned to hit level y for the first time at time s; on [s, oo], Z is the constant 
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t - ! process Z - Y .  Fix 0<_m<rfi, 0<_S<ao, 0 < t < z  o, set m=rh--_m and consider 
the following probability measures on f2o: 

1 _ t R~,.-Q(O, r f i -x ;  u - s ,  m), 2 _ m), R~,.-  Q(0, x-_m; a o - U  , 

3 _ m) .  Ry.~-Q(O, y-m_ ; v - ~  m), 4 _ Ry.~- Q(0, r f i -y ;  ~o-V, 

Other measures on f2 o of interest to us are P0 ~, under which Z is a Brownian 
motion started at x and killed when it first hits 0, and Q~, under which Z 
is a Bessel (3) process started at x. Let r(a)=inf{u>=O: Z(u)=a}, and let (N,) 
be the canonical (completed) filtration on f2 o. The following lemma states the 
well-known relationships between these measures. 

Lemma 3.3 (a) Suppose O < x < a  and let Ae~r~ ) .  Then Q~{A} =(a/x) Po~ {A}. 
(b) Suppose O < x < a < c, 0 < s < t ,  and let Aefqr(,). Then 

P~{s+ T(c)Edt} 
Q(o, x; t, c){A, T(a)eds} =Po~{A, T(a)eds}  po~{T(c)edt} 

Proof The first part comes from the fact that a Bessel (3) is an h-transform 
of killed Brownian motion with the function h(x )=x  on [0, Go); since T(a)<  oo 
a.s. for a Bessel from x<a ,  and since z ( r ( a ) ) = a  on {r (a )<oo} ,  (a) follows 
from Doob's h-transform formula [2, Chap. 2.X]. The second part follows from 
the first by the strong Markov property, since the numerator  is just (x/c) 
Qd{A, r (a)eds ,  T(c)edt} and the denominator is (x/c) Qf {T(c)~dt}.  [] 

Lemma 3.4 Fix _s < s < a'o and -t <t  < zo; and define 

Z l ( u ) - Y I - b ( s - u ) ,  O<u<s-s_ ,  ) ( . 3 ( v ) ~ B ( t - v ) - M ,  0 ~ v < t - t - ,  

Z2(u)=--b(s+u)-M_, O < u < a ' o - s ,  Z4(v)=M--B([-+v),  O<v<z'o-- t .  

(a) GivenS_=s,T=t ,M=rf i ,  . . . .  =ao, Z =Zo, b ( s ) = x a n d B ( t ) = y ,  these 
processes are independent, and the distribution of Zi is R~x,s for i= 1, 2, and is 
Ry,tfor i=3 ,  4. 

(b) For i-- 1 . . . . .  4, let (Ni(u)) be the natural (completed) filtration of Z~ and 
let T be a stopping time relative to this filtration. Then the conditional distribution 
of ( z i ( r+ ' ) )  given N~(T) is R i where ~ I = S - - T ~  ~ 2 = s - [ - r ~  ~ a = t - - r  and zI(T) ,~,  
~ 4 = t  q- T. 

Proof We only consider the case i=  1, since the other three cases are similar. 
Given _S =_s, T= t, M = n~, _M = m, and a ' =  a~, the distribution of the process 

1 Xa defined in Lemma 3.1 is R,,,~a by definition. Now both (a) and (b) are conse- 
quences of the fact that for A sNl  (a;), 

R~,~(A) = Q~ {A' a' eda'o} 
QO {~'sdG} 

Indeed, Zl has the strong Markov property under Qo, and a standard calculation 
shows that R~,~b inherits this property from Qo, and that given b(s)=x,  the 
conditional distribution of Z~ is R x , s , 1  proving (a). A similar calculation establishes 
(b). [] 
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R e m a r k  3.5 We are effectively translating the origin to the point (s, t). The pro- 
cesses Z~ represent b and B going in the four directions from this point, modified 
to make them into Bessel processes. 

Let Z be the sigma-field generated by _S, T, M, _r_m, o-, a', z, and z'. We are 
going to determine a formula for the probability p that (s, t)egao given that 
S = s ,  T = t ,  M = r f i ,  M_ =m_, a = a o ,  a ' =  ' ' ' _ _ ao ,  Z = Z o ,  z =Zo, b ( s ) = x  and B ( t ) = y .  
By symmetry, we can confine ourselves to those (s, t) for which s >_s and t > 
Let 

p , - -  p , ( s, x ;  t, y ;  s_ , ~ m_ , rfi, ~'o , z'o ) 

be the conditional probability that Algorithm A terminates and outputs YES 
either at stage 2 n - 1  or at stage 2n, given Svo-{b(s), B(t)}. We will give an 
explicit formula for p, involving only the distribution of Brownian motion. Clear- 
ly, 

p =  ~ p , .  
n > l  

Let Z~, i-- 1 . . . .  ,4  be the processes defined in Lemma 3.4, set 

Z,(v)= inf Zi(U), x~(v)= sup Z,(u), 
O<u'<v  O < u < v  

i _ Z/,(oo) and )~ = Z~(oe) be the inf and sup over all time. Let Q~ | Q~ and let Z , -  
be the joint distribution of Zi and Zj, given that )~(O)=x, zj(O)=y. Define the 
hitting times S~ for the Z~ by 

Si(a)  = inf{u > O: Zi(u) = a},  

with the usual convention that the sup of the empty set is oe. 
Consider the sequence of random variables (_Mk) and (3~k) defined in (8)(9), 

and the Uk, Uk', Vk, Vi defined in (10). Let 

T i ( a ) =  fS,(M-a), i f  i =  1, 4, 

[ S i ( a - M _ )  if i=2,  3, 

and 

(~) _Z (a) = min {)~r_ Z* (T~ (a)), _M + Z2, (T: (a))}, 

Z ( a )  = max {_M +){7 (% (a)), M--)~4. (T4 (a))}. 

Observe that on the set where T~(Mr k_ ,), i=  1, 2 and T~(_Mk), i = 3, 4 are finite, 

(12) 

and 

r ~ -  rl ( ~&- O= s-- Uk, 

T~=- T~(MO=t-- V~, 

T~= T~(-~- 0 = U/,--s, 

T~- T4(_M0 = V;--t, 

03) M~ 0, ~ .=2(M. ) .  
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Finally, consider the densities 

f,~,s,w,,~a(u, u', x, y; ul , u2, _ml) dui du2 dm_ l 

= R~, u | R2,u , {u-- T 1 (y )edul ,  u'+ T 2 (y)edu2, _Z(y)ed _ml} 
and 

g~,/-,,~,~(v, v', y, x; vl ,  v2, rhl) dr1 dv 2 drn 1 

-Ry,~| s 4 { v - T s ( x ) e d v l ,  v '+T4(x)edv2 ,  Z(x)edrfil}. 

We will generally omit the subscripts on f and g in what follows. 

Proposition 3.6 Set fft_ t =b (s)= x, m_ o=rfio= B (t)= y, Uo= S=U'o, Vo=t=V'o and, 
for n > 1, let A ,  denote the set of  all ((uk, u'k, vk, vl, re_k, rfik), 1 <- k <- n -  1)eN 6~n- i), 
such that 

(14) m- < m - n - l ( ' "  < m- l < X < fflO < " " < f f ' ln-  l < if'l, 

S < ~ U n _  I < . . .  < u  I < S  < u ~ I  < . . .  < u ' n _  l < arO, 

t - <  l)n _ 1 < . . .  <131 < t < v'~ < . . .  < l)'n _ 1 < T, rO . 

Then Pl is equal to 

i a b x 
R . , ~ { Z . > r f i - y } +  dul  ~ du2 ~ d m _ l f ( s , s , x , y ; u l , u 2 ,  m_l) (15) 1 1 

_s s _m 

.R 3 {Z3 ) /~1 -- _T~}, y,t 

and, for n > 2, Pn iS equal tO the following integral: 

(16) 
n - 1  

An 

"g(Uk-1 ,  t ) k - 1 ,  m - k - l ,  m-k'~ Vk ,  V k ,  l~k  e r ~  . . . . . . . .  {X$ > /~ - - t / 7 /n -  1} 

g n  -- I tT~) m n  - 1 

+ I dun I du', I dm-nf(un-l 'U' ,- l 'rhn-2'rf in-1;un'u"'m-n) 
s uh -  I m_ 

�9 . . . . . . .  { ? , > _ m n - _ m  

Remark 3.7 (a) The fact that formula (16) is valid comes from the Markov 
property of the processes Xi, i-- 1, ..., 4. Since the path F constructed by Algor- 
ithm A will wind around itself in general, it is not obvious how a Markov 
property can be brought into play. The key idea is that the sequence R1 c R2 c . . .  
of rectangles constructed in the proof of Proposition 2.2 forms the "pas t"  for 
the 4-parameter diffusion 

Z = ( Z l ( U l )  . . . .  , z 4 ( u 4 ) ) ,  

and that once F leaves Rk, it never returns. So we will be using the Markov 
property for )~. 
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(b) If B and b were arbitrary time-homogeneous diffusions, the same formula 
would apply provided f and g were redefined using appropriate other measures 
rather than the measures R~,,. 

Proof of Proposition 3.6 We are given _S=s, T=t, a'=a'o, z'=Z'o, b(_s)= _m, B(t-) 
=rfi, b(s)=x and B(t)=y, such that _m<x<y<rf i .  For  n > l ,  we shall calculate 
the conditional probability that Algorithm A terminates successfully - i.e. it 
stops and outputs YES - at stage 2 n-- 1 or 2 n, given these values. By symmetry 
we may assume that _s < s and t-< t. 

Stages 1 and 2 are somewhat special since the algorithm cannot output NO 
at these times. It succeeds at stage 1 if b(u)<y for all u~]_s, s[, or equivalently 
if 7 ~ > n ~ - y ,  for in that case _si=_s. If it does not succeed at stage 1, Z, must 
hit r h - y  before s-s_, which means that Ta (y)< s - s .  The algorithm then termi- 
nates successfully at stage 2 if B(v)> _M1 for all v~ff, t[, or equivalently, if Z3. 
>_Z(y)-m.  So by Lemma 3.4(a), 

Pl = Rl,s @ R2,sQ R3y, t({zl > rfi-- Y} u { Tl (y)< s-- s, Z3, >_Z(y)--m}). 

But this can be written 

8--S X 
1 1 -- 1 2 R~,~{x,>m--y}+ [. ~ Rx,~| 

0 m_ 

3 3 --_m). " R y , t { ) ( , , > m _  l 

Formula (15) follows by the change of variables Ul~--~s-ua and the definition 
o f f  

The above derivation for n = 1 is somewhat informal. We now fix n > 2 and 
give a formal proof  in that case. We begin by a precise definition of the a-fields 
relative to which we shall use the multiparameter Markov property. We refer 
the reader to [73 for definitions relating to multiparameter processes that we 
use below. Define T ~ = T ~ = 0, and for n > 1, 

These two random variables are stopping points relative to the four-parameter 
filtration 

Y(u_)=~fi(uOv~C2(u2)v~C3(u3)v~4(u4), _~=(u~,u2, u3, u4), 

where N(u) is defined in Lemma 3.4. Associated to these stopping points are 
the a-fields ~, = o~(~,) and ~,~, = o~(~,)(these represent the information about 
the X, available at ~, and ~,). Since T~"< T~ "+1, i=1 ,  . . . ,4 ,  ~ , c ~ . ~ , + 1 ,  for 
all n. 

Applying Lemma 3.4(b) and (12), it is not difficult to see that the conditional 
distribution of (~(~, + _u)) given ~, is 

1 R 2 (17) RM . . . .  V . @  ~1 . . . .  V;~@ R 3  i V  1 @ R 4  
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Indeed,  since the Z~ are independent ,  )~ has the s t rong M a r k o v  p rope r ty  [3, 
T h e o r e m  3.3], and  

zl(T~")= r ~ - ~ n -  1, z2(T;)=~n-x--_m, 

Z3 ( Y ~ -  1) = m n _  1 - -  _t'n, x 4 ( T z ~ - l ) = l ~ - M n _ l  . 

Similarly, the condi t ional  d is t r ibut ion of ()~(Tn + ~i)) given ;,uf n is 

(18) 1 2 3 R 4 RM . . . .  v,,| ..... v , . |174 u_,,v~. 

N o w  fix n > 2 and  assume tha t  the a lgor i thm has cont inued  th rough  stage 2 n -  2. 
It  has then cons t ruc ted  a sequence ((Uk, U/~, Vk, Vk', M_ k, )fflk), 1 < k <n--1)  as in 
(8), (9) and  (10). In  part icular ,  this sequence belongs to A n a.s. By (12), the 
inequalities on Uk, Ui, Vk and V[ in (14) are equivalent  to 0 < Ti I < . . .  < T/"- 1 < 0% 
i = 1  . . . . .  4. 

A lgor i thm A will t e rmina te  successfully at stage 2 n - 1  if _s~In, which means  
1 - -- tha t  b (u )<Mn_~  for all ue]_s, Un- l [ ,  or  equivalent ly tha t  ) ~ . > m - M , _ ~ .  The  

a lgor i thm will end unsuccessfully if _M,= _M n_ 1, for then _s n =_s n_ 1- On the o ther  
hand,  if _M n < _M n_ 1, then the new m i n i m u m  _Mn mus t  be reached in the set 
I n - I , _ l ,  or equivalently,  either there is u satisfying T ~ - I < u < T ~  and Z~(u) 
=_Z0~n_ 1), or  there is u satisfying T~ -1 < u <  T2" and  7~2(u) =_Z( /~ ,_  0. In  part ic-  
ular, we do not  have to look  back  at previous  por t ions  of  the pa ths  of  Zl 
or  Za to determine whether  the a lgor i thm continues.  A lgor i thm A cont inues 
on to stage 2 n, when 

(19) T~<s--s_ and _Z(M n 1)<_Mn_I=_Z(Mn_2).  

Similarly, having a t ta ined stage 2 n, A lgor i thm A stops successfully if Za. 
> _M n -_m, and  it cont inues on if 

(20) T~<t-- t -  and Z(Mn)>Mn_I=Z(Mn_I). 

Again,  we do not  have to look  back  at previous  por t ions  of  the pa ths  of Za 
or Z4 to verify the second inequality.  

Put t ing (19) and  (20) together,  we see that  the condi t ion for cont inuing 
th rough  stage 2 n - 2  is tha t  there exist ((u k, u'k, Vk, V'k, re_k, rfik), 1 < k <_n--1) in 
A, such tha t  

( 2 1 )  S--Zll=Ul, Z ( f l ) = ~ _ n l ,  t--zl=vl, Z ( _ m l ) = / ~  1,  

s-- TlZ=U2, _Z(rfi0 = _m2, t - -  T3 z = l ) l ,  Z(_m2) = m 2 ,  

s - - T ? - I = u , _ I ,  _Z(rfi,_ 2) = _m,_ 1, t - -T ;  1 = V n _ l ,  Z (_ /~n -  1) = / ~ n  - 1 �9 

We also request  tha t  Tz k = s + u~ and k T2 =t  +vk, l <_k<__n-1. 



The structure of a Brownian bubble 491 

In order to compute p., we condition successively on ~., ~ . - 1 ,  ~.-1 . . . .  , ~ ,  
(~. If we use the Markov property on (21) and the conditional distributions 
(17) and (18), we see that p. is equal to 

I n - 1  

i I I i  1 2 R,.~ . . . .  ~_, | R ,~  . . . .  ~_, {uk-1- -  r ~ d u ~ ,  uk-1 + T~edu'k, Z(rh k_ 1)ad _ink} 
A .  k =  1 

�9 + T,~ ~dvk, Z(m_k)Edrfi ~ Rwu-1,vk-, | R~_~_ ,,vs 1 {vk- 1 - -  T2~dvk, Vk-- 1 
/ 

1 1 - - �9 R,~._~ . . . . .  { z . > m - m . - 1 }  

" n  -- 1 ~--n -- 1 

+ ~ ~ R~._ . . . . . .  |  
s_ 

R~._ . . . . ,  _ {Z3.>m.--m}_ _ ]_. I 

/ 

Now (16) follows from the definitions o f f  and g. [] 

Remark 3.8 A good approximation to p can be obtained from the sum of the 
first few terms of the series ~ p.. Indeed, there is 0 < c < 1 such that 

n~N 

(22) ~ Pk < c". 
k = n  

This comes from the following. Let F. be the event "Algorithm A stops at stage 
2 n -  1 or later". Then 

~Pk=P(F.)=P(F.-~aF.)  = ~ P(F.[f~2.-1)dP<-<-21,.22,.P(F. a), 
k = .  F n -  1 

where 2t, .  is the 1 z . .  RM._2__,v._ , | RM~_2,va_,-probablhty that )~1 has at least one 
downcrossing of [ r f i - M . _  , ,  r h -M, ,_  2] or that Z2 has at least one upcrossing 
of the interval [~ I . -2 ,  M._~] .  22.. is defined similarly relative to ;(3 and Z4. 
Clearly, 21,. is not greater than the Ry~,s| that Z1 has at least 
on downcrossing of I N - y ,  n~ -x ]  or that Z2 has at least one upcrossing of 
[x, y]. A similar inequality is valid for 22,., hence (22). 

4 Expressions for the densities and numerical results 

In this section, we complete the calculation of the expected area of <go. We 
will provide an exact explicit formula and will discuss the results of a numerical 
evaluation and of simulations. 

The densities of and g and the probabilities appearing in (16) can be written 
in terms of one function and its derivatives. Let I c l R +  be an interval with 
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endpoints a and c, and let xeI .  Let px be the probability measure on f2 o under 
which Z is a Brownian motion started at x. Let 

K(x, a, c, u)=-PX{T(c)<=u /x T(a)} 

and observe that when a < x < c, 

2 _(Pd~{T(c)<<_u, )~,(T(c))>a} if a < x  <c, 
K(x, a ,  c, 

u)='(P~{T(c)<u, z*(T(c))<a} if c <x  <a, 

since l c l R + .  Define 

8 8 
(a(x, a, c, u)=-~u K(X; a, c, u), ~o(x, a, c, u) - -~a O(x, a, c, u), 

and observe that if a < x < c, then 

(23) r a, c, u)du=PoX{r(c)edu, z . (  r(c)) > a} 

and - q~ (x, a, c, u) gives the joint density of (T (c),)~. (r(c))), whereas if c < x < a, 
then 

(24) 4)(x, a, c, u)du=Pd'{T(c)sdu,  z* ( T(c)) < a} 

and q~(x, a, c, u) gives the joint density of (T(c),)~*(T(c))). A closed form expres- 
sion is available for ~b: let 

p(u, x, y) - (2 n u)- i/2 e-(Y- x)2/(2,), 
and 

~(u, x, y) =- p(u, x, y), p(u, x, y)=- ~(u, x, y)= - ~ x  ~(U, x, y ). 

Then 

(25) ~ b ( x , a , c , u ) = -  ~ O(u, l c - x l , 2 n l c - a l )  
n~ --oo 

(see [6, Chap. 2, (8.25) and (8.26)]), and it follows that 

+oo 

~ ( x , a , c , u ) = s g n ( c - a )  S 2np(u,  lc - -x[ ,Znlc- -a[) .  
n =  - oo 

From these expressions, we can write the functions appearing in Proposition 3.6 
in closed form. 

Lemma 4.1 For m<m_ l <X<-<_y<rfi, O<s_<ux <u and O<-t-<-u'<-uz, the function 
f (u ,  u', x, y; ul,  u2, re_x) is equal to 

(26) (--dp(rfi--x, rh--m_ l, r•--y, u--u1) ~(x--m_, re_l--m_, y--m_, uz--u') 

Qt- r  / ~ - -  _W/l, f f / - -y ,  U - - U l )  ~ ( X - -  _m, m 1 --_w/, y--_m, u 2 - - u t ) )  

q~(r~7- y, 0, m, ul -_s) q~(y- _m, 0, m, a ; - u 2 )  

4 ( . 5 - x ,  0, m, u-_s) 4~(x-m, 0, m, ~ ; - u ' )  
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and 

(27) R~,u {Z~, > r f i _ y  } _ q~(nS-x, rfi--y, m, u--_s) 
~ ( r ~ - x ,  0, m, u - s )  ' 

(28) 3 3 qS(y-- _m, x-_m, m, v--t-) 
Ry,v{Z,>x--m}--  (o(y--m_, O, m, v--t-) 

Proof For A ~ ~1 (TI (y)), R~,u {A, T 1 (y)~ d ( u -  u 1)} is equal to 

Q,~-x {A, T(th-- y)~d(u-  ul)} Q'~-Y { T(m)ed(Ul -s)} 
Qm-X { T(m) ed(u-_s)} 

by Lemma 3.3(b), and the ratio in this expression is equal to 

r ~ - x  4~(n~-y, 0, m, us -_s) 
nS-y  ~b(rh-x, 0, m, u--_s) 

by Lemma 3.3(a) and (23), and similarly, for Ae(q2(T2(y)), 2 {A, T2(y)ed(u2 e x ~  u" 

- u ' ) }  is equal to 

x-m_ c~(y-m_, O, m, a'o-u2) 
Qx-~- {A, T(y-m_)ed(u 2-u')} - -  

y-_m ~b(x- _m, 0, m, a ; - u ' )  " 

Since _Z(y) is Ns (T1 (y))| ff2(T2(y))-measurable, (26) will follow once we compute 
the density 

Q,~-~ | QX-~ { u -  7"1 (y)edux, u' + T2(y)edu2, _Z(y)ed _ml}. 

Using (11), we have 

Z (y) = min { rh - Z* (T~ (y)), _m + Z z (T2 (y))}, 

and there are two ways for the minimum to be in d_mx: either )~* (Tx (y))< rh--_ml 
while Zz. (Tz (y)) e d(_m 1 - _r_m), or else )~* (T~ (y)) e d(rfi- _m 0 while )~2. (T z (y)) > _ms _ m. 
Since Zs and Z2 are independent, the above density is equal to 

Qm-X{T(rh-y)ed(u-uO, z*(T(rfi-y)) <N--ma} 

�9 QX-~_ { T(y-- _m) ~ d(u2 - u'), X, ( T ( y -  _m)) e d (m x - _m)} 

+ Q'~-X{T(rh-y)ed(u-ux), g*(T(rh--y))ed(rh--m_l) } 

�9 QX-~-{T(y-m_)ed(u2-u'), z,(T(y-m_))>m_ s-m_}. 

Applying Lemma 3.3(a) to transform the Q~-measures into PoX-measures and 
taking (23) and (24) into account, (26) follows�9 

Formula (27) follows from (23) by Lemma 3.3(a), since 

Qm- ~ { T(m)~d(u-- s), z .  ( T(m)) > rh-- y} 1 1 - 

R x , , { z . > m - - y } -  Q'~-~{T(m)~d(u-s_)} ' 

and the proof of (28) is similar. Details are left to the reader. [] 
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Remark 4.2 There is a similar expression for the function g, but it is simpler 
to notice the following relationship between f and g: 

g~_,g,,,,~6(v, v', y, x; vl ,  V 2 ,  /~1) 

=f,~,r,~,~a(v, v', t h + m - - y ,  rfi+ _m--x; vl, v2, m ~- _he/-- #/1) 

by definition of f and g, since 

R I , , _  3 2 _ 4 -R,n+_~_~,, and R~,,-R,~+~__~,,, 

provided }-and ~; are replaced in the definition of these measures by _s and 
a~, respectively, and since the symmetry with respect to (ffz+m)/2 transforms 
Z(x) into _Z(rfi + _m - x). 

Define a function f~ (u, x, y) by 

fl(u,  x, y )=  ~ (p(u, 0, x + 2 n y ) - - ~ ( u ,  O, - - x - - 2 n y ) )  
n67I 

= ~ 2 (x + 2 n y) exp ( -- (x + 2 n y)2/(2 u))/(2 n u3) ~. 
n67/ 

Theorem 4.3 The expected area of  cgo c~ {(s, t): s > s_, t > t-} given S_ = s_, T= t, M = rfi, 
M_ = m, a '=  a'o and ~' ' _ = Zo is expressed (explicitly) by the formula 

~6 ~6 m ra 
I ds i d t  f d x  ~ dyp~(x)  qt(Y) Z p.(s, x; t, y; s_, ~ m_, ff~, a'o, ~'o), 
s_ { m_ x n > l  

where p, is given in Proposition 3.6 (together with Lemma 4.1) and 

(29) 

(30) 

p~ (x) = --fl  (s--_s, x- -  _m, m) 
~(x-_m, 0, m, ~ ; - s )  

~(0, O, m, ~'o- S_) 

qt(y) = - - f l ( t - - ~  rfi--y, m) 
q~ ( rh -- y , O, m, ~'o -- t ) 

~(0, 0, m, r 

Proof  By Fubini's theorem, t he  expected area of <go ~ {(s, t): s >_s, t > t-} is the 
integral over the rectangle R=[_s, a ; ]  x [t, z~] of P{(s, t)~Cgo} (P denotes the 
conditional probability given the six variables in the statement of the theorem). 
Conditioning in addition with respect to the values of b(s) and B(t) and letting 
ps(x) and qt(Y) be the respective densities of b(s) and B(t), this is equal to 

ds dt  ~ d x  dy  p~(x) qt(Y) P{(s, t)SC~olb(s)=x, B(t)=y}. 
k (m<x__<y__<rn} 

By Lemma 3.1, the conditional probability ~is exactly ~ p, by definition of p,, 
n > l  

and so we only need to check that (29) and (30) are indeed expressions for 
the densities of b and B, more precisely for _m + X 2 ( s - s )  and r h - X 4 ( t -  t-) under 
RZ=,~ and 4 _ _ R,~,i, respectively. This will become clear once we compute the densities 
of X 2 ( s - s )  and X 4 ( t - t )  under R 2 s and R 4 respectively. - _ , _  t ~ , t ~  
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By definition of R2,_~ and the strong Markov property of QO, R~,~_{X2(s_s_ ) 
edx} is equal to 

Q~{T(m)ed(a'o-S)} 
(31) QO {X 2 (s-s_)edx, r(m)> s-s_} QO {r(m)6d(a'o -_s)} " 

By Lemma 3.3 and (23), the denominator is equal to 

lim Q" { T(m) ~ d (a'o -_s)} = m lim 1 r (a, 0, m, a~ -_s) 
a$O a$O a 

0 
= m ~ x  x r 0, m, a;--_s). 

Using (25), it is not difficult to see that this is equal to -mq~(0, 0, m, a~-s ) ,  
hence the denominator in (29). By (23), the second factor in the numerator 
of (31) is 

m P~{T~ed(a'o--S_)} = x  m~ r 0, m, a;--_s), 

and by [-5, (3.1)] the first factor is equal to 

lim x poa{X2(s_s)edx, T(m)>s--s_}, 
a,LO a 

which, by [-6, Chap. 2, (8.12)] is equal to xfz(s-s_, x, m). Formula (29) follows. 
The proof of (30) is similar and is left to the reader. [] 

Remark 4.4 The main interest of Theorem 4.3 is that it provides a formula 
for the expected area of Cgon {(s, t): s__>s, t_>t-} which is both exact and explicit. 
In addition, this formula is amenable to numerical integration, since the various 
series which enter into it converge very rapidly. We have carried out the compu- 
tation of 

(32) 
~6 ~6 m ,a 
S as ~ dt ~ dx ~ dy ps(X) qt(Y) p.(s, x; t, y; s, t,, m, rh, a'o, Z'o) 
s { m_ x I 

for n =  1, 2, using the Monte-Carlo method as follows (by Remark 3.8, Pl +P2 
is a good approximation of p!). First, consider the case n =  1. Using Proposi- 
tion 3.6, (32) can be rewritten as 

I ds I dt l dx l dy dul I du2 dm_l(ps(x) q,(y) 
S t m x s S m 

�9 (c~(rfi--x, rh--y, m, s--s)/((s--s)(a' o --s)(x--m) O(rfi--x, O, m, s--s)) 

- - f  (s, s, x, y; Ul, U2, ml) r  _vF/, -/~/1--m, m, t--t)/r , O, m, t--F)). 

The integral is then evaluated by picking a point (uz, s, u2; t; ml, x, y) at random 
according to the uniform distribution on the product of three simplices 

< ' < x < y < r ~ } ,  {s<u~<s<u'~<a~} x { t < t = % }  x {_m<m~= = 
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.3 

.2 

25 50 75 
Fig. 2. Distribution of the percentage of bubble area 

taking the average value of the function in parenthesis at these points, and 
multiplying by the product  of the volumes of the simplices. The case n = 2 is 
similar, but  the integral is  then 13-dimensional. The computat ions were carried 
out on a Sun Sparcstation using a p rogram written in C. The random number  
generator used was the standard r a n d o m ( )  function supplied with C-compilers. 
A point was chosen at random on a simplex by first picking the point at r andom 
uniformly in the corresponding hyper-rectangle, then ordering the components.  
The computat ion was done for m =  1, o - ; - s  = 1 and - c ; - F =  1 using k random 
points, with various values of k (between 100 and 10000) and initial seed for 
the random number  generator. Since the denominator  in formulas (26)-(28) 
and (29)(30) can be arbitrarily close to 0, we in fact fixed e > 0  and picked 
a point at r andom in the product  of three simplices 

_ _ ' - < , { m _ + ~ < _ m l < _ x < _ y < r f i _ ~ }  ' { s + e < - u l < = u i < = O o - e } x { t + e - t < - Z o - e } x  . . . .  

yielding an underestimate of the actual integral. Averaging out these results 
gave the following values for the average area a, of points with curvature number  
n for n = l ,  2: 

al =0.318, a2 = 0.060. 

Hence, a reasonable lower bound for the expected area of points with curvature 
number  __<2 would be 0.378. For  comparison, the expected area of {B 

- -  t >b} c~ ([_s, a ; ]  x [t, %]) was also computed, and found to be near 0.512. 
These numerical results have been checked by doing 1000 direct simulations 

on a NeXT station of the two processes B and b started at the bo t tom of 
an excursion (so each is a Bessel (3) process), constructing the bubble from 
these and determining the area of the set of points with a given curvature 
number. The approximate  Bessel (3) processes are constructed by taking the 
modulus of a three-dimensional r andom walk. The average area a, of points 
with curvature number  n is given below for n = 1, .. . ,  5. 

a 1 = 0.328, a2 = 0.099, a 3 = 0.018, a 4 = 0.0026, a 5 = 0.0003. 

An empirical approximat ion of the conditional density function of the random 
variable 

Z = 100 x area of ego/area of Ro, 

given m =  1, was obtained by counting the proport ion q1 of times the plotted 
area fell into the interval ]j/10, ( j+  1)/10]. The results are given in Fig. 2. 
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5 The asymptotic area of high local excursions 
of the Brownian sheet 

In this section, we use the results of the previous sections to determine the 
asymptotic distribution of the area of components of { W > 1} which correspond 
to high excursions that we encounter as we approach (S, 1) along certain curves, 
where { W(s, t), s > O, t > 0} is the standard Brownian sheet and (S, 1) is the point 
defined in the introduction. Consider the processes B, b and x that enter into 
the decomposition (1) of Wnear  (S, 1). 

We recall briefly the result of [-1, Sect. 3]. Fo r / ?>0 ,  let 

0B (s) = s (log (1/s)) - 2 (log log (1/s))- ~, 

fix ~c>0, and for n~N, let I ,=[e-",  ea-"]. In the proof of [1, Theorem 3.1] 
(see also [1, Remark 3.2], it was shown that i f /~<2,  then there are infinitely 
many s for which 1 - W ( S -  s, 1)= b (s) is unusually small while W ( S - s ,  1 + tpp (s)) 
is comparatively large. More precisely, let v, be the unique time in I ,  for which 
b(v,) = rain b. Then there are infinitely many n such that 

In 

(33)  W(S-v, , l+Op(e-")/S)>l+~cO~(e-") ~ and b(v,)<Oa(e-") ~. 

In view of (1), the components of { W > I }  which correspond to the highest 
excursions of W above 1 are those which intersect the vertical segment {S-v,}  
• [1, oo). Notice that the typical magnitude of b(v,) is ~/~,, so (33) describes 

a somewhat unusual event. 
Let Q, be the component of {(s, t): W ( S - s ,  l+ t /S )> l }  which contains 

(v,, ~,~(e-")). This component may be empty if for instance, W< 1 at this point, 
but according to the above, it will be non-empty for infinitely many n. 

In [1, Theorems 3.9 and 3.11], we gave bounds on the asymptotic height 
and width of Q,. Here, we want to go deeper into the study of functionals 
of Q, which are authentically two-dimensional. The most natural such functional 
is the area A, of Q,, and we are going to identify the asymptotic conditional 
distribution of A, given conditions (33). 

Let {c(u),u~lR} be a process such that c(0) is unifom on [0, 1] and 
(c(u)-c(O), u >0) and (c(-u)-c(O), u>O) are independent Bessel (3) processes 
independent of c(0). Let {/~(v), v>0} be a Brownian motion independent of 
c, and let A be the area of the component Q of {(u, v): B(v)-c(u)>O} which 
contains (0, 1). 

Theorem 5.1 As n ~ 0% the conditional distribution on (•, NOR)) of ~ (e-")- 2 A, 
given conditions (33) converges to the conditional distribution of A given 
~(1)-  c(O) > ~ .  

Remark 5.2 (a)Theorem 5.1 describes the following situation. An observer 
approaches the point (S, 1) along the curve t= l+O~(S-s ) .  He observes a 
sequence of excursions of W high above level 1, and chooses a subsequence by 
looking at both their height and the values of W along the line t =  1 used to 
define S. The theorem says that the conditional distribution of the area of these 
bubbles, suitably normalized, converges to that of the random variable A. 
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(b) The main idea in the proof of the theorem is that if the height of an excursion 
of W above 1 is large compared to the error term in the approximation (1), 
then this component is not very different from the components of {B > b} that 
we studied in the previous sections. Our particular method for selecting the 
component is not essential for the proof of this result or for the distribution 
of the limiting processes/3 and c, but different methods would lead to a different 
conditioning of the limit process and possibly to a different normalization factor. 

Lemma 5.3 Suppose (B.) and (c,) are sequences of continuous processes that con- 
verge in distribution to B and c respectively. Let A', be the area of the component 
Q'. of 

{(u, v): B. (v)-  c. (u) > 0) 

which contains (0, 1). Then A', converges weakly to A. 

Remark5.4 In general, if ~sC(IRxlR+,  IR), then even a small perturbation of 
can significantly change the components of R = {(u, v): ~ (u, v)> 0}. For  example, 

if ~(u, V)=~2(V)--~I(U), where ~2 (v )= [2 -v  I and ~l(u)=Ju[ for all v, uelR, then 
the component of R which contains (0, 1) is a triangle of area 4, whereas the 
component of {(u, v): ~(u, v )+l /n>O} which contains (0, 1) has infinite area, 
for all n e N .  In Lemma 5.3, the fact that the sample paths of /~ and c are 
very irregular is crucial. 

Proof of Lemma 5.3 By a theorem of Skorohod [4, Chap. 1, Theorem 2.7], 
we can assume that B,, c,, B and c are all defined on the same probability 
space, and that B , ( ' ) ~ B ( ' )  and c , ( . ) ~ c ( . )  uniformly on compact sets with 
probability one. We are going to prove that in this case, A',, ~ A  a.s., which 
will establish the lemma. 

Notice that if (u, v)e Q, then there e > 0 and a path F c Q, with extremities 
(0, 1) and (u, v), along w h i c h / ~ - c  > e. Therefore, for sufficiently large n , / 3 , -  c, > 0 
along this path, and so (u,v)~Q',. This implies that Qc l iminfQ ' , ,  so A 
<l im infA', a.s. 

We now show that 

(34) lim sup Q', c (Q w Qo), 

where Q0c{(u, v): B(v)-b(u)=O}.  Since the u-sections of this set are level sets 
of/~, hence have Lebesgue measure 0, this last set a.s. has zero two-dimensional 
Lebesgue measure, and so (34) will imply lim sup A' ,<A a.s., and the proof 
will be complete. 

To prove (34), we need the following fact. If b 1 and bz are two independent 
nondegenerate diffusions, and Ei is the set of local extremum values of bi, i = 1, 2, 
then P {El c~ E z + qS} = 0 (Since the local minimum and maximum of b l on each 
dyadic interval has a continuous distribution and b~ and b2 are independent, 
each local extremum value of bl will belong with probability 0 to the countable 
set of local extremum values of b2). In particular, the sets of local extremum 
values of/~ and c are a.s. disjoint. 

Assume that (Uo, Vo)eQ', for infinitely many n. In order to establish (34), 
it is sufficient to prove that if B(vo) -b  (u0)> 0, then (Uo, Vo)e Q. 
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In view of Remark 2.3(b) and by property (P) of Sect. 2, Q is inscribed in 
a rectangle R = [a, o-'] • [~, z'] with the following properties: 

c (a )=c(a ' )=  maxB(v) and /~(z)=/~(z')= min c(u), 
v e [ ~ , r ' ]  u~[~,a'] 

on [a, ~r'], c is accomplishing an excursion below level c(a) and on [z, z'], /~ 
is accomplishing an excursion above level /~(z). Assume to begin with that 
(Uo, Vo)(~R. By the fact mentioned above, c does not have a local maximum 
value at level c(a), nor does B have a local minimum value at level/~(z). Due 
to the continuity of/~ and c, there are e, e', t/, q' > 0 and e > 0 such that 

and 
c(,~-e)=c(a'+~')>c(a)+~, /~(~- ~) =/~(< + q') </?(~)- ~, 

rain c(u) = rain c(u), max /~(v) = max/~(v). 
ue[a-~,a'+#] ue[a,a'] v e [ ~ -  t/,~c' + tt'] ve[~,z'] 

Therefore, on the boundary of the rectangle [ a -  e, a' + e'] x [ z -  t/, z' + t/'], we 
have / ? - c < - ~ ,  and therefore (Uo, Vo) does not belong to Q', for sufficiently 
large n, a contradiction. 

It follows that (Uo, Vo) is in the interior of R. Assume that (Uo, Vo)q~Q. In 
this case, we apply Algorithm A with B replaced by /~ and b replaced by c. 
The algorithm will stop after k steps, say, and output NO. When this occurs, 
the algorithm has in fact constructed the rectangle/~ which circumscribes the 
component of {(u, v):/~ (v)-c  (u)> 0} which contains (Uo, V o),and which satisfies 
property (P) of Sect. 2. On the boundary of/~,  we have B--c  < 0, but if we 
extend /~ slightly as we did above and use the fact that the local extremum 
values of /~  and c are disjoint, then we obtain a larger rectangle containing 
(Uo, Vo) on the boundary of which / ~ - c < - e  for some ~>0.  Therefore, 
(U  0 , V t o)q~Q, for all sufficiently large n, a contradiction. It follows that (Uo, Vo)~Q, 
and the lemma is proved. [] 

Proof of Theorem 5.1 Define 

B',(t)=tp~(e-") -~ B(~p(e-")t), b'~(s)=~(e-") -~ b(e-"+~p(e-")s), 

and a.=e-"(e-1)/Op(e-"). Set s , = e  3(1-")/4. By [1, (17)-(18)], the component 
of 

(35) {(s, t): B(t)-b(s)+_E,>O, el-">_s>-e -", t_>0} 

which contains (v,, Op(v,)) is a superset/subset of Qn. Notice that components 
C of the set (35) are in one-to-one correspondence with components C' of the 
set 

(36) {(s, t): B',(t)-b'.(s)+e,/Op(e-")~>O, O<s<a,, 0<t},  

and the ratio of the area of C to that of C' is @~(e-n) 2. The component Q, 
corresponds to the component Q', of the set (36) which contains (v',, 1), where 
v', = (v, - e -")/Op (e- "). 

Notice that B', is a Brownian motion independent of b',, for all n, so distribu- 
tional properties are unchanged if we replace B', by/~. By the Markov property 
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and scaling, b' is a Bessel (3) process. The distribution of b',(0) is that of 
e -'/2 0p(e-") -~ b(1). In particular, b',(O)--* oo. 

For -v' ,<=u<a,,  let c,(u)=b'~(v',+u). In order to complete the proof, we 
only need to check that the conditional distribution of the process (c, (u)) given 

( 3 7 )  B(1)--c,(O)+_~/Op(e-')~>K and c,(O)<l 

converges to the conditional distribution of c given /~(1)-c(O)>x, since the 
conclusion of the theorem will then follow from Lemma 5.3 and the fact that 
e./O~ (e-")~ -~ 0. 

For this, let e be a random variable with the distribution of b(1) under 
Q 0, set d, = e-"/2 ~ (e -") - ~, c~, = d, e and T~ = inf { s > 0: b'~ (s) = 1 }. By the strong 
Markov property of b', and [8, Chap. XII, Corollary 4.4], the C(IR+,IR) 
x (C(IR+, IR) x N)-valued random variable 

((b'(T~ ~ -u) ,  O<u< T~), ((b'~(T~ ~ +u), u>0),  min b'~)) 
[ 0 ,  a n ]  

has the same conditional distribution given (37) as Z,  given 

/3(1) - 0  min 6+e~/0~(e-")�89 
[ O , a n  - a e  n - 1] 

where 

Z .=( ( l+~(u) ,  O=<u_-<G.-a), ((~(u), u_>O), min b')), 

and /~ are independent Bessel (3) processes started respectively at 0 and 1, 
independent of e, and for a e N + ,  aa= in f{u>0 :  g(u)=a}. Notice that c~,~ 0% 
so G,,- i ~ o% and a, - G~- 1 ~ d~ (e - 1 - a~) ~ oe in distribution, so 

Zn I{B(1)- min S+_ejOa(e- ' )~>x} ~ / J~{/~(l)-min~>~c} 
[0 ,~ . -  a ~  ~1 [O,~) 

in distribution, where Z=( ( l+g (u ) ,  u>0), ((/~(u), u>0),  min ~)). Let T 1 =sup{u 
[0, o0) 

=<0: c(u)= 1}. Then since min~ is uniform on [0, 1] by [8, Chap. VII, Corol- 
[0, oc) 

lary 3.4], the strong Markov property, [8, Chap. VII, Corollary 4.6J and [8, 
Chap. VI, Proposition 3.10] imply that Z has the same distribution as ((c(Ta -u) ,  
u>_O), (c(T 1 +u), u>O), c(0))), so the proof is complete. [] 

Remark 5.5 Fix ~c1>~c2>0. Similar but less involved arguments can be used 
to show that the limit of 0p(e- ' ) -2 times the expected area of Q, given that 

i q-  N, 1 I[lfl ( e  - n)�89 > W(S - -  Yn,  1 + O~ (e-')/S) > 1 + ~c2 0r (e -')e and b (v,) < 0~ (e -')~ 

is equal to the expected area of Q given that ~ca>/~(1)-c(0)>x 2. Indeed, it 
suffices to notice that the area of Q, is obtained by integrating over (s, t) the 
probability of {(s, t)eQ,}, and that this probability is bounded above/below 
by the probability of {(s, t)sQ~}, where Q~ is the component of {(s, t): B(t) 
-b (s )  +_ e, >0} which contains (v,, O~(e-')). Using scaling and the same argu- 
ments as in Lemma 5.3 gives the desired convergence. Details are left to the 
reader. 
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