Probability
 Theory initiceref rats

(c) Springer-Verlag 1991

Percolation of Poisson sticks on the plane

Rahul Roy
Indian Statistical Institute, 7 S.J.S. Sansanwal Marg, New Delhi 110016, India

Received March 21, 1990; in revised form May 6, 1991

Abstract

Summary. We consider a percolation model on the plane which consists of 1-dimensional sticks placed at points of a Poisson process on \mathbb{R}^{2}; each stick having a random, but bounded length and a random direction. The critical probabilities are defined with respect to the occupied clusters and vacant clusters and they are shown to be equal. The equality is shown through a 'pivotal cell' argument, using a version of the Russo-Seymour-Welsh theorem which we obtain for this model.

1 Introduction

Consider a percolation model which consists of lines (called sticks hereafter) of random length and with random direction placed at points of a Poisson point process of intensity λ on a plane. The length and direction of sticks placed at different points are assumed to have an i.i.d. distribution. It can clearly be seen that, unless the sticks are placed in only one direction (i.e. the direction random variable has singleton support), the size of an 'occupied cluster' (i.e. a cluster of sticks forming a connected set) increases, in a stochastic sense, as λ increases. Also, if we look at the 'vacant cluster' (i.e. the cluster characterized by the absence of sticks), its size decreases in a stochastic sense as λ increases. This suggests a phase transition.

Domany and Kinzel [1] has obtained estimates of the critical density and scaling coefficients for this model through computer simulations. Hall [2] has shown that under suitable conditions, our model exhibits a sharp phase transition, i.e., there exists a λ_{C} finite positive, such that for $\lambda>\lambda_{C}$, the size of the occupied cluster is infinite with positive probability, and for $\lambda<\lambda_{C}$ the size of the occupied cluster is finite with probability 1 . We investigate this model and define various notions of the critical density λ_{c}. We show that under suitable conditions, these various notions are identical, in the sense that the critical densities are all equal. Moreover, we also introduce various definitions of λ_{c}^{*} (the critical density corresponding to the phase transition point for the vacant cluster) and show that not only are all the λ_{c}^{*} equal, they equal λ_{c}.

The argument presented here is different from that of Menshikov [5] for percolation of d-dimensional spheres in a d-dimensional space. Menshikov cle-
verly exploited the fact that the spheres have non-zero d-dimensional volume to show the equality of the critical densities via an approximation with a discrete percolation model. Unfortunately, we cannot use that technique here. Moreover, Menshikov's method cannot handle the vacant clusters. Our argument relies on a Russo-Seymour-Welsh argument (see Kesten [4]) and hence is restricted to 2 -dimensional spaces only. Our line of argument is similar to that used to prove equality of the critical parameters of site/bond percolation in 2-dimensions. We develop, for our model, a modified version of the 'pivotal site/bond' used in site/bond percolation models (Russo [7], Kesten [4]) and use it to construct an integral inequality which establishes the equality of the critical densities.

The RSW theorem and Russo's formula has been applied in discrete percolation models to obtain various scaling laws and power estimates, it is expected that the analogue of these theorems for our model can also be used for similar results.

2 The model and statement of results

Consider a Poisson process $\xi_{0}, \xi_{1}, \xi_{2}, \ldots$ of intensity λ on \mathbb{R}^{2}. Centered at each point ξ_{i} is a line (stick) $L\left(\xi_{i}\right)$ of a random length $2 \rho_{i}$ and a random direction θ_{i}. We assume that $\rho_{0}, \rho_{1}, \rho_{2}, \ldots$ and $\theta_{0}, \theta_{1}, \theta_{2}, \ldots$ are i.i.d. sequences of random variables and are independent of each other with each θ_{i} having support in $[0, \pi)$. Let ρ and θ be independent random variables having the same distribution as that of ρ_{i} and θ_{i} respectively.

We say that two points x and y in a region $A \subset \mathbb{R}^{2}$ have an occupied connec-
tion in $A\left(\right.$ denoted by $x \longrightarrow y$ in A) if there exist Poisson points $\xi_{i_{1}}, \xi_{i_{2}}, \ldots, \xi_{i_{n}}$ in A for some $0 \leqq i_{1}, i_{2}, \ldots, i_{n}$ and associated sticks $L\left(\xi_{i_{1}}\right), L\left(\xi_{i_{2}}\right), \ldots, L\left(\xi_{i_{n}}\right)$ such that there is a continuous curve joining x and y which lies in $\bigcup_{j} L\left(\xi_{i_{j}}\right)$. Such a continuous curve is called an occupied path joining x and y.

Without loss of generality, we assume that $\xi_{0}=0$, the origin, $\theta_{0}=0$, i.e., the stick $L\left(\xi_{0}\right)$ of length $2 \rho_{0}$ is centred at the origin and lies on the x-axis. We define the occupied cluster as

$$
\begin{equation*}
W(\mathbf{0})=\left\{x \in \mathbb{R}^{2}: \mathbf{0} \longrightarrow x\right\} . \tag{2.1}
\end{equation*}
$$

For any set A of \mathbb{R}^{2} let $|A|=\sup \{d(x, y): x, y \in A\}$, where $d(.,$.$) is the Euclidean$ distance.

The critical densities corresponding to occupied clusters are

$$
\begin{align*}
& \lambda_{H}:=\inf \left\{\lambda: P_{\lambda}\{|W(0)|=\infty\}>0\right\}, \tag{2.2}\\
& \lambda_{T}:=\inf \left\{\lambda: E_{\lambda}(|W(0)|)=\infty\right\} . \tag{2.3}
\end{align*}
$$

Clearly, if θ has a degenerate distribution, then no two sticks intersect with probability 1 and thus there will not be any percolation via sticks, i.e., $\lambda_{H}=\lambda_{T}$ $=\infty$.

If $\rho=1$ and θ non-degenerate, Hall [2] has shown that $\lambda_{H}<\infty$. Moreover, $\lambda_{H} \geqq \lambda_{H}$ (continuum), where λ_{H} (continuum) is the analogous critical density
obtained by having disks of radius 1 centred at $\xi_{i}\left(\lambda_{D}\right.$ of Roy [6]) instead of sticks. Again, Hall [2] has shown that λ_{H} (continuum) >0. Thus, we have,

$$
\begin{equation*}
0<\lambda_{H}<\infty . \tag{2.4}
\end{equation*}
$$

We shall assume the following:

$$
\begin{equation*}
0<\rho \leqq R \text { for some constant } R>0 \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\rho \text { has a uniform distribution in }[0, \pi) \text {. } \tag{2.6}
\end{equation*}
$$

Our theorem will also hold when (2.6) is replaced by

$$
\begin{equation*}
P\{\theta(\bmod \pi):|\theta-\alpha| \leqq \beta\} \geqq C(\alpha)>0 \tag{2.7}
\end{equation*}
$$

for any $\alpha, \beta \in[0, \pi)$ with some $C(\alpha)$ independent of β.
In addition to the above critical densities, we have critical densities defined via the vacant clusters as in (2.9) and (2.10) below.

Two points x and y in a region $A \subset \mathbb{R}^{2}$ are said to have a vacant connection
in A (denoted by $x \xrightarrow{v} \rightarrow y$ in A) if there exists a continuous curve γ with x and y as its two end points and such that $\gamma \cap L\left(\xi_{i}\right)=\emptyset$ for all $i \geqq 0$. Such a continuous curve is called a vacant path joining x and y. We note here that the endpoints x and y of γ need not be in γ. Thus either of x or y or both may be in $\bigcup_{i} L\left(\xi_{i}\right)$.

The vacant cluster is defined as

$$
\begin{equation*}
W^{*}(\mathbf{0})=\left\{x \in \mathbb{R}^{2}: \mathbf{0} \longrightarrow x\right\} . \tag{2.8}
\end{equation*}
$$

The critical densities corresponding to the vacant clusters are

$$
\begin{align*}
& \lambda_{H}^{*}:=\sup \left\{\lambda: P_{\lambda}\left\{\left|W^{*}(0)\right|=\infty\right\}>0\right\}, \tag{2.9}\\
& \lambda_{T}^{*}:=\sup \left\{\lambda: E_{\lambda}\left(\left|W^{*}(0)\right|=\infty\right)\right\} \tag{2.10}
\end{align*}
$$

In addition, two other critical densities are defined through crossing probabilities.

A $L-R$ occupied (respectively, vacant) crossing of a rectangle $\left[0, l_{1}\right] \times\left[0, l_{2}\right]$ is an occupied (respectively, vacant) path connecting the left edge $\{0\} \times\left[0, l_{2}\right]$ to the right edge $\left\{l_{1}\right\} \times\left[0, l_{2}\right]$ and which lies completely inside the rectangle. Similarly, we define the $T-B$ occupied/vacant crossing of a rectangle as an occupied/vacant path connecting the top and the bottom edges of the rectangle and which lies in the rectangle.

The crossing probabilities are defined by

$$
\begin{aligned}
& \sigma\left(\left(l_{1}, l_{2}\right), 1, \lambda\right):=P_{\lambda}\left\{\exists \text { an occupied } L-R \text { crossing of }\left[0, l_{1}\right] \times\left[0, l_{2}\right]\right\}, \\
& \sigma\left(\left(l_{1}, l_{2}\right), 2, \lambda\right):=P_{\lambda}\left\{\exists \text { an occupied } T-B \text { crossing of }\left[0, l_{1}\right] \times\left[0, l_{2}\right]\right\} .
\end{aligned}
$$

Similarly, $\sigma^{*}\left(\left(l_{1}, l_{2}\right), 1, \lambda\right)$ and $\sigma^{*}\left(\left(l_{1}, l_{2}\right), 2, \lambda\right)$ are defined by replacing occupied with vacant in the above definitions.

The critical densities are

$$
\begin{align*}
& \lambda_{S}:=\inf \left\{\lambda: \lim _{n} \sup _{n} \sigma((n, 3 n), 1, \lambda)>0\right\} \tag{2.11}\\
& \lambda_{S}^{*}:=\sup \left\{\lambda: \lim _{n} \sup _{n} \sigma^{*}((n, 3 n), 1, \lambda)>0\right\} . \tag{2.12}
\end{align*}
$$

We prove the following
Theorem 2.1 Under the assumptions (2.5) and (2.6) $\lambda_{H}=\lambda_{T}=\lambda_{S}=\lambda_{H}^{*}=\lambda_{T}^{*}=\lambda_{S}^{*}$.
Remark. As stated earlier the theorem holds when the assumption (2.6) is replaced by the assumption (2.7).

The pivotal argument and the RSW argument we employ are developed in the next two sections. In Sect. 5 we prove the theorem.

3 The FKG inequality and Russo's formula

We consider the space $\mathscr{S}=\{-1,1\}^{\mathbb{R}^{2} \times \mathbb{R}_{+} \times[0, \pi)}$ where $\mathbb{R}_{+}=(0, \infty)$ and let \mathscr{F} denote the Borel σ-field on \mathscr{P}. We equip \mathscr{F} with the probability measure arising from our model. In other words, for any open set $A \subset \mathbb{R}^{2} \times \mathbb{R}_{+} \times[0, \pi)$, the number of points (z, r, s) in $A\left(z \in \mathbb{R}^{2}, r \in \mathbb{R}_{+}, s \in[0, \pi)\right)$ with $\omega(z, r, s)=1$ has a Poisson distribution with mean $l_{2} \times \mu(A)$, where l_{λ} is the Lebesgue measure which assigns mass λ to the unit cube and μ is the probability measure on $\mathbb{R}_{+} \times[0, \pi)$ corresponding to the length and direction of the stick, and the number of points (z, r, s) in $A_{1}, A_{2}, \ldots, A_{k}$ with $\omega(z, r, s)=1$ are independent whenever $A_{1}, A_{2}, \ldots, A_{k}$ is a collection of disjoint sets in $\mathbb{R}^{2} \times \mathbb{R}_{+} \times[0, \pi)$. Pictorially, $\omega(z, r, s)=1$ corresponds to a stick centred at z of length $2 r$ and at an angle s w.r.t. the horizontal axis.

Let ω and ω^{\prime} be two configurations in this space \mathscr{S}. We say that $\omega \leq \omega^{\prime}$ if $\omega^{\prime}(z, r, s)=1$ whenever $\omega(z, r, s)=1$, for any $z \in \mathbb{R}^{2}, r \in \mathbb{R}_{+}, s \in[0, \pi)$. A function $f: \mathscr{S} \rightarrow \mathbb{R}$ is said to be increasing (respectively, decreasing) if for every $\omega \leq \omega^{\prime}$, $f(\omega) \leqq f\left(\omega^{\prime}\right)$ (respectively, $f(\omega) \geqq f\left(\omega^{\prime}\right)$). An event $A \in \mathscr{F}$ is increasing (decreasing) if 1_{A} is increasing (decreasing).
$F K G$ inequality
If A and B are both increasing events or both decreasing events then $P(A \cap B)$ $\geqq P(A) P(B)$.

Proof. Let $\left\{a_{n}\right\}$ be a sequence decreasing to zero and such that a_{n} is an integer multiple of a_{n+1} for each $n \geqq 1$. Consider the lattice $\mathbf{L}=\left(a_{n} \mathbf{Z}\right)^{2} \times\left(a_{n} \mathbf{Z}\right) \times[0, \pi)$. For any $k=\left(k_{1}, k_{2}\right) \in \mathbf{Z}^{2}$ and $l, m \in \mathbf{Z}_{+}$let $C(k, l, m)$ denote the cell $\left\{(z, r, s):\left(k_{i}\right.\right.$ $\left.-1) a_{n}<z_{i} \leqq k_{i} a_{n},(l-1) a_{n}<r \leqq l a_{n},(m-1) a_{n}<s \leqq(m-1) a_{n}\right\}$ for $i=1,2$. Clearly, $C(k, l, m)$'s are disjoint for disjoint (k, l, m) and $\bigcup_{k, l, m} C(k, l, m)=\mathbb{R}^{2} \times \mathbb{R}_{+} \times[0, \pi)$.

Given a cell C in \mathbf{L}_{n}, let $N_{n}(C)(\omega)=\#\{(z, r, s) \in C: \omega(z, r, s)=1\}$. Let \mathscr{F}_{n} be the σ-field generated by $\left\{N_{n}(C), C\right.$ a cell in $\left.\mathbf{L}_{n}\right\}$. Since the vertex set of the lattice \mathbf{L}_{n} is contained in the vertex set of the lattice $\mathbf{L}_{n+1},\left\{E\left(1_{A} \mid \mathscr{F}_{n}\right)\right\}_{n \geqq 1}$ is
a martingale for any $A \in \mathscr{F}$. So, by the martingale convergence theorem, $E\left(1_{A} \mid \mathscr{F}_{n}\right) \rightarrow 1_{A}$ w.p. 1 as $n \rightarrow \infty$.

Now let $C=C(k, l, m)$ and suppose A is an increasing event in \mathscr{F}. We then have, for $\omega \leq \omega^{\prime}, N_{n}(C)(\omega) \leqq N_{n}(C)\left(\omega^{\prime}\right)$. Also, given $N_{n}(C)(\omega)=j$, the conditional distribution of the j points in C has the probability measure $v \times \mu_{l, m}$, where v is the uniform distribution on the cell $\left(\left(k_{1}-1\right) a_{n}, k_{1} a_{n}\right] \times\left(\left(k_{2}-1\right) a_{n}, k_{2} a_{n}\right]$ and $\mu_{l, m}$ is the conditional distribution of μ given that $(l-1) a_{n}<r \leqq l a_{n}$ and ($m-1$) $a_{n}<s \leqq m a_{n}$. Thus, $E\left(1_{A} \mid \mathscr{F}_{n}\right)$ is a.s. increasing.

For two increasing events or two decreasing events A and B on a lattice with a partial order we have $E\left(E\left(1_{A} \mid \mathscr{F}_{n}\right) E\left(1_{B} \mid \mathscr{F}_{n}\right)\right) \geqq E\left(E\left(1_{A} \mid \mathscr{F}_{n}\right)\right) E\left(E\left(1_{B} \mid \mathscr{F}_{n}\right)\right)$ $\geqq E\left(1_{A}\right) E\left(1_{B}\right)$ (see Kemperman [3]). Thus, the dominated convergence theorem yields $E\left(1_{A} 1_{B}\right) \geqq E\left(1_{A}\right) E\left(1_{B}\right)$.

Now we introduce the notion of a 'pivotal cell' and prove a version of the Russo's formula.

Let \mathbf{L} be a lattice on \mathbb{R}^{2}. Given a configuration ω of the Poisson model and a cell C of \mathbf{L} let ω_{C} denote the configuration which agrees with ω outside C in the model and for which there is no Poisson point situated inside C. Given an event A and a configuration ω, a cell C in \mathbf{L} is said to be pivotal for (ω, A) if $\omega \in A$ and $\omega_{C} \notin A$. This definition of pivotal is different from Russo's definition (see Kesten [4]) in that, for a cell to be pivotal for an event, in this definition, the event must occur.

Suppose $\lambda_{1} \leqq \lambda \leqq \lambda_{2}$, where λ_{1} and λ_{2} are fixed positive reals. Let a be such that $a^{2}<1 / \lambda_{2}$ and R is an integer multiple of a. Consider the lattice $\mathbf{L}=(a \mathbf{Z})$ $\times(a \mathbf{Z})$. Let $C_{1}, C_{2}, \ldots, C_{N}$ be an enumeration of the cells of the lattice \mathbf{L} which lie in the rectangle $\left[-2 R, l_{1}+2 R\right] \times\left[-2 R, l_{2}+2 R\right]$ for some $l_{1}, l_{2}>0$ and integer multiples of a.

Consider a Poisson model which consists of the union of various Poisson processes on disjoint regions each with the same i.i.d. distributions of the attached stick random variable. In particular, for every $1 \leqq i \leqq N$, let $\lambda(i) \in\left[\lambda_{1}, \lambda_{2}\right]$ be the intensity of the Poisson process on the cell C_{i} and let λ be the intensity of the process outside the rectangle $\left[-2 R, l_{1}+2 R\right] \times\left[-2 R, l_{2}+2 R\right]$. Let E be an increasing event which depends on the configuration in the rectangle $\left[0, l_{1}\right] \times\left[0, l_{2}\right]$.

Russo's formula

$$
\begin{aligned}
& \lambda(i) \frac{d}{d \lambda(i)} P_{\lambda}(E) \\
& \quad=\left(E\left(\# \text { of Poisson points in } C_{i} \mid C_{i} \text { is pivotal for } E\right)-\left|C_{i}\right|\right) P\left\{C_{i} \text { is pivotal for } E\right\} .
\end{aligned}
$$

Proof. Fix a cell C_{i} in the lattice L. Define $A_{k}=\{\exists$ exactly k Poisson points in $\left.C_{i}\right\}$. Clearly,

$$
\begin{equation*}
\frac{d}{d \lambda(i)} P_{\lambda}(E)=\frac{d}{d \lambda(i)}\left(\sum_{0 \leqq k<\infty} P_{\lambda}\left(E \mid A_{k} \text { occurs }\right) P_{\lambda}\left(A_{k} \text { occurs }\right)\right. \tag{3.1}
\end{equation*}
$$

Given the Poisson points and their associated sticks inside the cell C_{i}, the outcome of the event E depends on the Poisson points situated outside C_{i}. Also,
given that there are k Poisson points in the cell C_{i}, the conditional distribution of the position of the points inside C_{i} is uniform on C_{i} and hence is independent of $\lambda()$. Thus, $P_{\lambda}\left(E \mid A_{k}\right.$ occurs) does not depend on $\lambda()$. The summation in (3.1) being absolutely convergent, we have,

$$
\begin{aligned}
& \frac{d}{d \lambda(0)}\left(\sum _ { 0 \leq k < \infty } P _ { i } \left(E \mid A_{k} \text { occurs) } P_{\lambda}\left\{A_{k} \text { occurs }\right\}\right.\right. \\
& =\sum_{0 \leq k<\infty} P_{\lambda}\left(E \mid A_{k} \text { occurs } \frac{d}{d \lambda(i)} P_{i}\left\{A_{k} \text { occurs }\right\}\right. \\
& =\sum_{i \leq k<\infty} P_{\lambda}\left(E \mid A_{k} \text { occurs }\right)\left(| C _ { i } | \left[\frac{1}{k!}\left(-\lambda() C_{i}\right)^{k} \exp \left(-\lambda(i) C_{i}\right)\right.\right. \\
& \left.\left.\quad+\frac{1}{(0-1)!}\left(\lambda(i) C_{i}\right)^{k-1} \exp \left(-\lambda(i) C_{i}\right)\right]\right) \\
& \quad-\left|C_{i}\right| \exp \left(-\lambda(i) C_{i}\right) P_{2}\left(E \mid \text { there is no Poisson point in } C_{i}\right) \\
& =\left|C_{i}\right| \sum_{0 \leq k<\infty} \frac{1}{k!}\left(\lambda(i) C_{i}\right)^{k} \exp \left(-\lambda(i) C_{i}\right) \\
& \quad \times\left\{P_{\lambda}\left(E \mid A_{k+1} \text { occurs }\right)-P_{\lambda}\left(E \mid A_{k} \text { occurs }\right)\right\} .
\end{aligned}
$$

Let $J=J(\omega)=J\left(\alpha ; E, C_{i}\right)$ be defined as follows:

$$
J(\omega)= \begin{cases}1 & \text { if } C_{i} \text { is pivotal for }(\omega, E) \\ 0 & \text { if } C_{i} \text { is not pivotal for }(\omega, E) .\end{cases}
$$

Then from the previous calculations we obtain,

$$
\begin{aligned}
\frac{d}{d \lambda(t)} P_{\lambda}(E)= & \left|C_{i}\right| \sum_{0 \leqq k<\infty} \frac{1}{k!}\left(\lambda(i) C_{i}\right)^{k} \exp \left(-\lambda(i) C_{i}\right) \\
& \times\left\{E_{\lambda}\left(1_{E} J \mid A_{k+1} \text { occurs }\right)-E_{\lambda}\left(1_{E} J \mid A_{k} \text { occurs }\right)\right. \\
& \left.+E_{\lambda}\left(1_{B}(1-J) \mid A_{k+1} \text { occurs }\right)-E_{\lambda}\left(1_{E}(1-J) \mid A_{k} \text { occurs }\right)\right\}
\end{aligned}
$$

Now $1_{x}(-D)=1$ only if E occurs and C_{i} is not pivotal for (ω, E) and E is increasing so, $E_{k}\left(1_{E}(1-J) \mid A_{k+1}\right.$ occurs $)=E_{\lambda}\left(1_{E}(1-J) \mid A_{k}\right.$ occurs $)$. From this and the previous calculations, we have after some computation,

$$
\begin{aligned}
\frac{d}{d \lambda(i)} P_{\lambda}(E)= & P_{\lambda}\left\{C_{i} \text { is pivotal for } E\right\} \times \\
& \left(\frac{1}{\lambda(i)} E_{\lambda}\left(\# \text { of Poisson points in } C_{i} \mid C_{i} \text { is pivotal for } E\right\}-\left|C_{i}\right|\right)
\end{aligned}
$$

If E ocurs and C_{5} is pivotal for E then there must be at least one Poisson point in C_{5}. Thus, we have the following;
Corollary $\left.3 . \frac{d}{d \lambda(i)} P_{1}(E) \geq\left(\frac{1}{\lambda(1)}-\mid C_{i}\right)\right) p_{i}\left\{C_{i}\right.$ s protal for $\left.E\right\}$.

4 Some preliminary results

We first state the RSW theorem and a lemma which gives probabilistic bounds on the size of a cluster when the crossing probabilities are small.
RSW Lemma. Let $\delta_{1}, \delta_{2}>0$ be such that $\sigma^{*}\left(\left(l_{1}, l_{2}\right), 1, \lambda\right) \geqq \delta_{1}$ and $\sigma^{*}\left(\left(l_{3}, l_{2}\right), 2, \lambda\right)$ $\geqq \delta_{2}$ for some $l_{1}, l_{2} \geqq 4 R$ and $2 R<l_{3}<3 l_{1} / 2$. For any integer $k \geqq 1$, we have $\sigma^{*}\left(\left(k l_{1}, l_{2}\right), 1, \lambda\right) \geqq K_{k}(\lambda) f_{k}\left(\delta_{1}, \delta_{2}\right)$, where $K_{k}(\lambda)>0$ is a constant independent of δ_{1} and δ_{2} and $f_{k}\left(\delta_{1}, \delta_{2}\right)$ is independent of λ.
Lemma 4.1 There exists a constant $\kappa>0$ such that
(i) if for some $N>R, \sigma((N, 3 N), 1, \lambda) \leqq \kappa$, then $P_{i}\{|W(\mathbf{0})|>a\} \leqq C_{1} \exp \left(-C_{2} a\right)$ for all $a>0$ and for some positive constants C_{1}, C_{2} which depend on λ only,
(ii) if for some $N>R, \sigma^{*}((N, 3 N), 1, \lambda) \leqq \kappa$, then $P_{\lambda}\left\{\left|W^{*}(0)\right|>a\right\} \leqq C_{3} \exp \left(-C_{4} a\right)$ for all $a>0$ and for some positive constants C_{3}, C_{4} which depend on λ only.

The proof of this follows, after minor adjustments, from the analogous theorem for continuum percolation (Theorem 2.3, Roy [6]), while the proof of Lemma 4.1 is essentially the same as that of Theorem 5.1 of Kesten [4]. As such we omit these proofs.

We now show that

$$
\begin{equation*}
\lambda_{S} \leqq \lambda_{T} \leqq \lambda_{H}^{*} \leqq \lambda_{T}^{*}=\lambda_{S}^{*}=\lambda_{H} \tag{4.1}
\end{equation*}
$$

First, Lemma 4.1 yields

$$
\begin{gather*}
\lambda_{S} \leqq \lambda_{T} \tag{4.2}\\
\lambda_{T}^{*} \leqq \lambda_{S}^{*} \tag{4.3}
\end{gather*}
$$

((4.2) has also been shown by a different method in Zuev and Sidorenko [8])

$$
\begin{equation*}
\lambda_{H}^{*} \leqq \lambda_{T}^{*} \tag{4.4}
\end{equation*}
$$

follows trivially from the definitions of λ_{H}^{*} and λ_{T}^{*}. While

$$
\begin{equation*}
\lambda_{S}^{*} \leqq \lambda_{H} \tag{4.5}
\end{equation*}
$$

is obtained by an RSW argument. Indeed, for $\lambda<\lambda_{S}^{*}$, we can construct infinitely many vacant circuits surrounding the origin 0 w.p. 1 , thereby showing that $\lambda \leqq \lambda_{H}$. Finally to complete the proof of (4.1) we need to show

$$
\begin{align*}
& \lambda_{T} \leqq \lambda_{H}^{*} \tag{4.6}\\
& \lambda_{H} \leqq \lambda_{T}^{*} \tag{4.7}
\end{align*}
$$

To prove (4.7) we observe that for $\lambda>\lambda_{T}^{*}, E_{\lambda}\left\{\left|W^{*}(0)\right|<\infty\right\}$. Thus, if $S(i)$ $=\{(x, y):|x| \leqq 2 R,|y-i 4 R| \leqq 2 R\}$ and $W^{*}(S(i))=\bigcup_{x \in S(i)} W^{*}(x)$, then, by the FKG lemma,

$$
\begin{equation*}
\sum_{k \geqq 1} 3^{k} P_{\lambda}\left\{\left|W^{*}(S(0))\right|>3^{k}\right\}<\infty \tag{4.8}
\end{equation*}
$$

But,

$$
\begin{aligned}
P_{\lambda} & \left\{\exists \text { a vacant } L-R \text { crossing of }\left[0,3^{k}\right] \times\left[0,3^{k+1}\right]\right\} \\
& \leqq P_{\lambda}\left(\bigcup_{0 \leqq i \leqq 3^{k+1 / 4 R}}\left\{\left|W^{*}(S(i))\right| \geqq 3^{k}\right\}\right) \\
& \leqq\left(3^{k+1} / 4 R\right) P_{\lambda}\left\{\left|W^{*}(S(0))\right| \geqq 3^{k}\right\} .
\end{aligned}
$$

Hence, for $\lambda>\lambda_{T}^{*}$, by (4.8) and the Borel-Cantelli lemma,

$$
\begin{equation*}
P_{\lambda}\left\{\exists \text { a vacant } L-R \text { crossing of }\left[0,3^{k}\right] \times\left[0,3^{k+1}\right] \text { i.o. }\right\}=0 \tag{4.9}
\end{equation*}
$$

By the Jordan curve theorem, either there is a vacant $L-R$ crossing or an occupied $T-B$ crossing of $\left[0,3^{k}\right] \times\left[0,3^{k+1}\right]$. Thus,
(4.10) $\quad P_{\lambda}\left\{\exists\right.$ an occupied $T-B$ crossing of $\left[0,3^{k}\right] \times\left[0,3^{k+1}\right]$ for all large $\left.k\right\}=1$.

By translation invariance, (4.8) is equivalent to
(4.11) $\quad P_{\lambda}\left\{\exists\right.$ an occupied $L-R$ crossing of $\left[0,3^{k+1}\right] \times\left[0,3^{k}\right]$ for all large $\left.k\right\}=1$.

Now a $L-R$ crossing of $\left[0,3^{k+1}\right] \times\left[0,3^{k}\right]$ must intersect a $T-B$ crossing of $\left[0,3^{k+1}\right] \times\left[0,3^{k+2}\right]$. Continuing in this fashion for all k, we have a criss-cross of $L-R$ and $T-B$ crossings which extend all the way to infinity. Thus
(4.12) $\quad P_{\lambda}\{\exists$ an occupied infinite region in the first quadrant $\}=1$.

Dividing up the quadrant into countably many cells and using translation invariance, we have

$$
\begin{equation*}
P_{\lambda}\{|W(S(0))|=\infty\}>0 . \tag{4.13}
\end{equation*}
$$

Another translation invariance argument now yields

$$
\begin{equation*}
\left.P_{\lambda}\{\mid W(\mathbf{0})\}=\infty\right\}>0 . \tag{4.14}
\end{equation*}
$$

Thus, if $\lambda>\lambda_{T}^{*}$, then $\lambda \geqq \lambda_{H}$, i.e., $\lambda_{H} \leqq \lambda_{T}^{*}$ as required.
In the argument to show (4.7) if we change occupied to vacant and vice versa then we see that $\lambda<\lambda_{T}$ implies $\lambda \leqq \lambda_{H}^{*}$, thus proving (4.6).
(4.2)-(4.7) yield (4.1).

5 Expected number of pivotal cells

In this section we show that, for a lattice \mathbf{L} of size η, and for fixed λ_{0}, λ_{1} with $\lambda_{0}<\lambda_{1}$.
Lemma 5.1 If there exist $\delta>0$ and a sequence $\left\{l_{n}\right\}_{n \geqq 1}$ with $l_{n} \uparrow \infty$ as $n \rightarrow \infty$, such that, for all $n \geqq 1$ and for all $\lambda \in\left[\lambda_{0}, \lambda_{1}\right]$,

$$
\begin{equation*}
\sigma\left(\left(l_{n}, 3 l_{n}\right), 1, \lambda\right)>\delta \quad \text { and } \quad \sigma^{*}\left(\left(l_{n}, 3 l_{n}\right), 2, \lambda\right)>\delta \tag{5.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\inf _{\lambda \in\left[\lambda_{0}, \lambda_{1}\right]} E_{\lambda}\left\{\# \text { of pivotal cells of } \mathbf{L} \text { for the event } E_{n}\right\} \rightarrow \infty \tag{5.2}
\end{equation*}
$$

as $n \rightarrow \infty$, where $E_{n}=\left\{\exists\right.$ a $L-R$ occupied crossing of $\left.\left[0, l_{n}\right] \times\left[0,3 l_{n}\right]\right\}$.
Let \mathbf{L}_{m} be a lattice of size a_{m} on \mathbb{R}^{2}. A cell C in this lattice is called vacant if $C \cap L\left(\xi_{i}\right)=\emptyset$ for all $i \geqq 1$ and it is called occupied if $C \cap L\left(\xi_{i}\right) \neq \emptyset$ for some $i \geqq 0$. A (vacant/occupied) \mathbf{L}_{m} path is a collection C_{1}, \ldots, C_{k} of (vacant/occupied) cells of \mathbf{L}_{m} such that consecutively numbered cells have an edge in common. A $L-R$ (vacant/occupied) \mathbf{L}_{m} crossing of a rectangle is a \mathbf{L}_{m} path (vacant/ occupied) which lies in the rectangle and the two end-cells of which lie, respective1 y , on the left and right edges of the rectangle.
Proof of Lemma 5.1. The proof of the theorem is broken into three steps.
Step 1. Construction of a pivotal cell.

Fig. 1. The event $A(S)$
Fix ε and η such that

$$
\begin{equation*}
0<16 \varepsilon<R, 0<10 \eta<\varepsilon \text { and } R / 32 \text { is an integer multiple of } \eta \text {. } \tag{5.3}
\end{equation*}
$$

Since we approximate by lattices of size a_{m} and eventually let a_{m} decrease to 0 , we take the sequence $\left\{a_{m}\right\}$ such that for all m,

$$
\begin{equation*}
2 a_{m}, 3 l_{n} \text { and } \eta \text { are all integer multiples of } 2 a_{m+1} \tag{5.4}
\end{equation*}
$$

We note here that the monotonicity properties of the crossing probabilities allow us to change the rectangles $\left[0, l_{n}\right] \times\left[0,3 l_{n}\right]$'s to slightly different rectangles whose sides satisfy the divisibility property (5.4) without violating (5.1). As our argument only needs that a sequence of growing rectangles whose larger side is $\leqq 3$ times the smaller side, the assumption (5.4) can be made without losing any generality.

For convenience in notation (unless we need to be specific) we denote l_{n} by l and E_{n} by E, D is the rectangle $\left[0, l_{n}\right] \times\left[0,3 l_{n}\right]$ and \mathbf{L} is the lattice of size a_{m}. The pivotal cells will be constructed in the lattice of size η. This lattice will be called the η-lattice and a cell in this lattice will be an η-cell.

Let S be a square on the η-lattice of size d, where $26 R \leqq d \leqq 30 R$, and which lies inside D. Let $A(S)=A_{m}(S)$ be the set of configurations ω such that
(i) there is no occupied $L-R$ crossing of D consisting of sticks formed by the Poisson process outside S,
(ii) there are two occupied paths p_{L} and p_{R} in S, consisting of sticks formed by the Poisson process outside S, with one end-point of each p_{L} and p_{R} lying on the left edge and right edge of D, respectively, and the other end-point of each p_{L} and p_{R} at a distance of atmost $R / 2$ from S,
(iii) there is a path b outside $\bigcup L(\xi)$ which lies in D and connects the bottom edge of D to some side of S,
(iv) there is a \mathbf{L}_{m} path t from the top edge of D to some side in S, which consists of cells C such that $C \cap L(\xi)=\emptyset$ for all $\xi \notin S$ (see Fig. 1).

Fig. 2. The cells C_{1} and C_{k} in the 'best case' for (5.5) to occur

Fig. 3. The cells C_{1} and C_{k} in the 'worst case' for (5.5) to occur
To construct a pivotal cell in S we observe that there exists $\alpha>0$ such that for any configuration $\omega \in A(S)$
(5.5) there are cells C_{1}, \ldots, C_{k} (not necessarily distinct) and indices $\beta_{1}, \ldots, \beta_{k} \in\left[0, \pi\right.$) (both depending on ω) such that if $\left\{L_{1}, \ldots, L_{k}\right\}$ is a collection of sticks centred in C_{1}, \ldots, C_{k} respectively each of length $\geqq R-\varepsilon$ and L_{i} having a direction $\theta_{i}(\bmod \pi)$ for any $\theta_{i} \in\left[\beta_{i}-\alpha, \beta_{i}+\alpha\right]$, then (a) $L_{1} \cap p_{L} \neq \emptyset, L_{k} \cap p_{R} \neq \emptyset,(b)$ consecutive L_{i}^{\prime} s have non-empty intersection and (c) no two L_{i} 's intersect unless they are consecutively numbered.
Indeed, if $A(S)$ occurs then (5.5) occurs; we note that having obtained C_{1} and C_{k}, finding the correct C_{2}, \ldots, C_{k-1} is easy. Also, for p_{L}, p_{R} as in Fig. 2 obtaining the subtending angle α^{\prime} is no problem. In case p_{L} or p_{R} is as in Fig. 3, then
also we can find a cell C adjacent to a side of S and at a distance $R / 2$ from the corner of S which subtends an angle $\alpha^{\prime \prime}$ (say). Note, here we use the fact that the path p_{L} or p_{R} goes beyond a distance $3 R / 4$ from the square. In case both p_{l} and p_{R} are at a distance $\leqq 3 R / 4$ from the left edge of the square S, then of course, C_{1} can be found easily. Similarly for the right edge. Moreover, Figs. 2, 3, are the 'best' and 'worst' respectively, for (5.5) to occur. Thus the minimum of these two subtending angles would be the value of α we would need for (5.5). A rigorous proof, based on this idea, can be written.

Clearly each of the cells C_{1}, \ldots, C_{k} above is pivotal for E. Thus,

$$
\begin{aligned}
& P_{\lambda}(\exists \text { a pivotal } \eta \text {-cell in } S \text { for the event } E \mid A(S) \text { occurs }) \\
& \quad \geqq P_{\lambda}((5.5) \text { occurs for } S) \\
& \quad \geqq C\left(\lambda_{0}, \lambda_{1}, \eta, R \varepsilon\right),
\end{aligned}
$$

where the constant $C\left(\lambda_{0}, \lambda_{1}, \eta, R \varepsilon\right)>0$.
Step 2. Location of the pivotal point.
Given a $L-R \mathbf{L}$ crossing r of D, let r_{i} be the lowest $L-R \mathbf{L}$ crossing of $[0, l] \times[0,3 l+20 R]\left(=\tilde{D}\right.$ say) which is at a distance of at least $4 i R+6 a_{m}$ above r.

Let $\Lambda\left(=A_{m}\right)$ denote the (random) lowest vacant $L-R \mathbf{L}$ crossing of the rectangle D and let A_{i} be as above.

Let $Q\left(=Q_{m}\right)$ be the event
$Q=\{\Lambda$ exists and the following hold
(i) \exists a vacant \mathbf{L} path t which lies above \mathbf{L}_{2} and connects the top edge of \bar{D} to A_{2},
(ii) for any point (x, y) in \mathbf{L} and a $R / 16$ neighborhood $N(x, y)$ of (x, y) there exists a vacant path b which lies below A and connects the bottom edge of S to $N(x, y)\}$.

Let $\left(t_{1}, t_{2}\right)$ be some point on $t \cap A_{2}$, where t is as in the event Q. By definition of Λ_{2}, there is a point $\left(\tilde{t}_{1}, \tilde{t}_{2}\right)$ on A which is at most at a distance of $8 R+16 a_{m}$ away from $\left(t_{1}, t_{2}\right)$. Since $16 a_{m} \leqq R / 2$, so $\left(9 \tilde{t}_{1}, \tilde{t}_{2}\right)$ is in the interior of the four squares $\left[t_{1}-9 R, t_{1}+9 R\right] \times\left[t_{2}-18 R, t_{2}\right], \quad\left[t_{1}-9 R, t_{1}+9 R\right] \times\left[t_{2}, t_{2}+18 R\right]$, $\left[t_{1}-18 R, t_{1}\right] \times\left[t_{2}-9 R, t_{2}+9 R\right]$ and $\left[t_{1}, t_{1}+18 R\right] \times\left[t_{2}-9 R, t_{2}+9 R\right]$. W.l.o.g. assume that $\left(\tilde{t}_{1}, \tilde{t}_{2}\right) \in\left(t_{1}-9 R, t_{1}+9 R\right) \times\left(t_{2}-18 R, t_{2}\right)$. Let \tilde{S} be a square with sides of length $24 R$ on the η-lattice and such that the square $\left[t_{1}-9 R, t_{1}+9 R\right]$ $\times\left[t_{2}-18 R, t_{2}\right]$ is contained in \widetilde{S} and its sides are at a distance of at least $2 R$ from the sides of \tilde{S}.

By our construction, there is a vacant \mathbf{L} path t^{\prime} (contained in t) such that t^{\prime} lies above Λ_{2} and connects the top edge of \tilde{D} to \tilde{S}. Also, since $\left(\tilde{t}_{1}, \tilde{t}_{2}\right)$ and $N\left(\tilde{t}_{1}, \tilde{t}_{2}\right)$ are both in the interior of \widetilde{S}, there is a vacant path b^{\prime} (contained in b) such that b^{\prime} lies below A and connects the bottom edge of D to \tilde{S}.

Now let S be a square with sides on the η-lattice of length $26 R$ and such that $\widetilde{S} \subseteq S$. The existence of vacant paths t^{\prime} and b^{\prime} guarantee that there are no $L-R$ crossing of D lying outside S.

Fix $\omega \in Q$. For a choice of S as above (i), (iii) and (iv) of the definition of $A(S)$ holds. Also, let $d_{L}(S)\left(d_{R}(S)\right)$ be the minimum distance from the square
S to a path from the left (right, respectively) edge of D which lies in D. If $d_{L}(S), d_{R}(S) \leqq R / 2$ then (ii) in the definition of $A(S)$ holds. Otherwise, let S_{1} be a square centred at the center of S, containing S, with sides on the η-lattice and such that either $R / 2-\eta \leqq d_{L}(S) \leqq R / 2$ or $R / 2-\eta \leqq d_{R}(S) \leqq R / 2$. Assume w.l.o.g. $R / 2-\eta \leqq d_{L}(S) \leqq R / 2$. If $d_{R}(S) \leqq R / 2$ then (ii) holds, otherwise, considering a larger square S_{2} (whose sides are at a distance of at least $R / 2 \sqrt{2}$ from each of the sides of S_{1}) we have both $d_{L}(S) \leqq R / 2$ and $d_{R}(S) \leqq R / 2$. Thus $\omega \in A\left(S_{2}\right)$. Hence if $\omega \in Q$ then $\omega \in A(S)$ for some square S on the η-lattice with sides $\leqq 30 R$.

Step 3. Expected number of pivotal cells.
From Step 1 and Step 2 we have

$$
\begin{aligned}
E_{\lambda} & \left\{\# \text { of pivotal cells for the event } E_{n}\right\} \\
& \geqq \frac{1}{K} \sum_{S} P_{\lambda}\left(\exists \text { a pivotal cell in } S \text { for the event } E_{n} \mid A(S) \text { occurs }\right) P_{2}(A(S) \text { occurs }) \\
& \geqq \frac{1}{K} C\left(\lambda_{0}, \lambda_{1}, \eta, R, \varepsilon\right) \sum_{S} P_{\lambda}(A(S) \text { occurs }),
\end{aligned}
$$

where, $K=(30 R)^{2} / \eta^{2} \geqq \#$ of squares S on the η-lattice which contain a fixed cell and \sum_{S} is over all squares S in D which lie on the η-lattice and have sides of length $\geqq 26 R$ and $\leqq 30 R$. Thus, to prove the lemma, it suffices to show,

$$
\inf _{\left.\lambda \in\left[\lambda_{0}, \lambda\right]\right]} \sum_{S} P_{\lambda}\left(A_{m}(S) \text { occurs }\right) \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty
$$

This can be obtained by constructing 'concentric squares' in D as in Chap. 7 of [4]. We provide a sketch of the argument here. Let Γ be the 'left most' vacant \mathbf{L}_{m} path from the top edge of S to A_{2}. We obtain vacant paths from Γ to Λ_{2} each of which lies in different annuli of these concentric squares. Each such vacant path provides a square S containing pivotal cells. Moreover, using the RSW lemma, we can provide a positive lower bound for the probability of the existence of these vacant paths. The number of such vacant paths will be of the order $O(n)$ for the event E_{n} as $n \rightarrow \infty$. Thus, we will have, $P_{\lambda}\left(A_{m}(S)\right.$ occurs $) \rightarrow \infty$ as $n \rightarrow \infty$.

6 The equality of the critical densities

In view of (4.1), to prove the equality of the critical densities defined in Sect. 2 we need to show

$$
\begin{equation*}
\lambda_{S}=\lambda_{S}^{*} \tag{6.1}
\end{equation*}
$$

We will prove this by contradiction.

Fig. 4. A $L-R$ vacant crossing of $[0, n] \times[0,(1+2 k) n]$ implies (a) a $L-R$ vacant crossing of $[0, n] \times[0,(1+k) n]$ or (b) a $L-R$ vacant crossing of $[0, n] \times[k n,(1+2 k) n]$ or (c) a $T-B$ vacant crossing of $[0, n] \times[k n,(1+k) n]$

Lemma 6.1 Suppose there exists λ_{0} and λ_{1} such that $\lambda_{S}<\lambda_{0}<\lambda_{1}<\lambda_{S}^{*}$, then there exists $\delta>0$ and a sequence $\left\{l_{n}\right\}_{n \geqq 1}$ with $l_{n} \uparrow \infty$ as $n \rightarrow \infty$, such that, for all $n \geqq 1$ and for any $\lambda \in\left[\lambda_{0}, \lambda_{1}\right]$,

$$
\begin{gather*}
\sigma\left(\left(l_{n}, 3 l_{n}\right), 1, \lambda\right)>\delta, \tag{6.2}\\
\sigma^{*}\left(\left(l_{n}, 3 l_{n}\right), 2, \lambda\right)>\delta \tag{6.3}
\end{gather*}
$$

Proof. First we note that,
(6.4) if for some $n, k>0$ and $\eta>0, \sigma^{*}((n,(1+2 k) n), 1, \lambda)>\eta$, then for any $t>0$, and for some $f(t, k, \eta)>0, \sigma^{*}((n,(1+2 t) n), 1, \lambda)>f(t, k \eta)$.
Indeed, from Fig. 4, we see that a $L-R$ vacant crossing of $[0, n] \times[0,(1+2 k) n]$ entails either a $L-R$ vacant crossing of $[0, n] \times[0,(1+k) n]$ or a $L-R$ vacant crossing of $[0, n] \times[k n,(1+2 k) n]$ or a $T-B$ vacant crossing of $[0, n] \times[k n,(1+k) n]$. By translation invariance and the FKG inequality we have, for each of these cases, $\sigma^{*}((n,(1+k) n), 1, \lambda)>1-(1-\eta)^{1 / 3}$.
(6.4) is obtained by the repeated use of this technique.

From (6.4), we have that for λ_{1}, as in Lemma 6.1, there exists $\eta>0$ and a sequence $\left\{l_{n}\right\}_{n \geq 1}$ with $l_{n} \uparrow \infty$ as $n \uparrow \infty$ and $5 l_{2 n-1}>4 l_{2 n}$ for all $n \geqq 1$, such that, $\sigma^{*}\left(\left(l_{2 n-1}, l_{2 n}\right), 1, \lambda_{1}\right)>\eta$ and $\sigma^{*}\left(\left(5 l_{2 n-1 / 4}, l_{2 n}\right), 2, \lambda_{1}\right)>\eta$. This yields on an application of the RSW lemma, that there exists $\delta_{1}>0$ and a sequence $\left\{l_{n}\right\}_{m \geqq}$, $l_{n} \uparrow \infty$ as $n \uparrow \infty$, such that,

$$
\begin{equation*}
\sigma^{*}\left(\left(l_{n}, 3 l_{n}\right), 2, \lambda_{1}\right)>\delta_{1} \quad \text { for all } n \tag{6.5}
\end{equation*}
$$

Now if

$$
\begin{equation*}
\lim _{n} \sup \sigma\left(\left(l_{n}, 3 l_{n}\right), 1, \lambda_{1}\right)=0 \tag{6.6}
\end{equation*}
$$

then, by Lemma 4.1, $E_{\lambda}(|W(0)|)<\infty$, which yields $\lambda_{1} \leqq \lambda_{T}$. But, by (4.1), $\lambda_{S}=\lambda_{T}$, so (6.6) cannot be true. In other words, there exists $\delta_{2}>0$ and a subsequence $\left\{l_{n}^{\prime}\right\}$ of $\left\{l_{n}\right\}$ such that

$$
\begin{equation*}
\sigma\left(\left(l_{n}^{\prime}, 3 l_{n}^{\prime}\right), 1, \lambda_{1}\right)>\delta_{2} \quad \text { for all } n \tag{6.7}
\end{equation*}
$$

and (6.5) holds for δ_{2} instead of δ_{1}.
If, for some subsequence $\left\{l_{n}^{\prime \prime}\right\}$ of $\left\{l_{n}^{\prime}\right\}$, there exists a constant $\delta_{3}>0$ such that $\sigma\left(\left(l_{n}^{\prime \prime}, 3 l_{n}^{\prime \prime}\right), 1, \lambda_{0}\right)>\delta_{3}$ and $\sigma^{*}\left(\left(l_{n}^{\prime \prime}, 3 l_{n}^{\prime \prime}\right), 2, \lambda_{0}\right)>\delta_{3}$, then the monotonicity properties of the crossing probabilities in λ imply the lemma for δ $=\min \left(\delta_{1}, \delta_{2}, \delta_{3}\right)$. Otherwise, for any subsequence $\left\{l_{n}^{\prime \prime}\right\}$ of $\left\{l_{n}^{\prime}\right\}, \sigma^{*}\left(\left(l_{n}^{\prime \prime}, 3 l_{n}^{\prime \prime}\right), 2, \lambda_{0}\right)$ $>\sigma^{*}\left(\left(l_{n}^{\prime \prime}, 3 l_{n}^{\prime \prime}\right), 2, \lambda_{1}\right)>\delta_{1}$, and $\lim \sup \sigma\left(\left(l_{n}^{\prime \prime}, 3 l_{n}^{\prime \prime}\right), 1, \lambda_{0}\right)=0$. Another application of
Lemma 4.1 yields $\lambda_{0} \leqq \lambda_{T}$, thereby providing a contradiction.
To complete the proof of (6.1), suppose $\lambda_{0}, \lambda_{1},\left\{l_{n}\right\}$ and δ are as in Lemma 6.1. We show that for any $\lambda \in\left(\lambda_{0}, \lambda_{1}\right)$,

$$
\begin{equation*}
\sigma\left(\left(l_{n}, 3 l_{n}\right), 1, \lambda\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{6.8}
\end{equation*}
$$

(6.8) clearly contradicts (6.2) and would thus prove (6.1).

To show (6.8) we use the pivotal formula. Let \mathbf{L} be a lattice of size η, where $0<\eta^{2}<\lambda_{1}^{-2}\left(0 ; \lambda_{H}=\lambda_{S}<\infty\right.$, so this is possible). Let $E_{n}=\{\exists$ a $L-R$ occupied crossing of $\left.\left[0, l_{n}\right] \times\left[0,3 l_{n}\right]\right\}$ and $N(n)=\#$ of pivotal cells in \mathbf{L} for $\left(\omega, E_{n}\right)$. Then, by Corollary 3.1 , for $0 \leqq t \leqq 1$ and $\lambda(t)=t \lambda_{1}+(1-t) \lambda_{0}$,

$$
\begin{equation*}
\frac{d}{d t} P_{\lambda(t)}\left(E_{n}\right) \geqq\left(\lambda_{1}-\lambda_{0}\right)\left(\frac{1}{\lambda_{1}}-\eta^{2}\right) E_{\lambda(t)}(N(n)) . \tag{6.9}
\end{equation*}
$$

By our choice of λ and $\left\{l_{n}\right\}$ satisfying Lemma 6.1, (6.9) yields

$$
\left(P_{\lambda(t)}\left(E_{n}\right)\right)^{-1} \frac{d}{d t} P_{\lambda(t)}\left(E_{n}\right) \geqq\left(\lambda_{1}-\lambda_{0}\right)\left(\frac{1}{\lambda_{1}}-\eta^{2}\right) E_{\lambda(t)}\left(N(n) \mid E_{n}\right) .
$$

This yields, on integrating,

$$
\begin{equation*}
P_{\lambda_{0}}\left(E_{n}\right) \leqq P_{\lambda_{1}}\left(E_{n}\right) \exp \left(-\alpha \int_{0}^{1} E_{\lambda(t)}\left(N(n) \mid E_{n}\right)\right) \tag{6.10}
\end{equation*}
$$

where $\alpha=\left(\lambda_{1}-\lambda_{0}\right)\left(\frac{1}{\lambda_{1}}-\eta^{2}\right)>0$.
(6.2) and (6.3) imply by Lemma 5.1 that $\inf _{\lambda \in\left[\lambda_{0}, \lambda_{1}\right]} E_{\lambda}(N(n)) \rightarrow \infty$ as $n \rightarrow \infty$. Also, $P_{\lambda}\left(E_{n}\right)=\sigma\left(\left(l_{n}, 3 l_{n}\right), 1, \lambda\right)>\delta$ for all $\lambda \in\left[\lambda_{0}, \lambda_{1}\right]$. Thus,

$$
\begin{equation*}
\inf _{\lambda \in\left[\lambda_{0}, \lambda_{1}\right]} E_{\lambda}\left(N(n) \mid E_{n}\right) \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty . \tag{6.11}
\end{equation*}
$$

(6.11) implies that the term on the right of (6.10) goes to 0 as $n \rightarrow \infty$. This shows that (6.8) holds, thereby proving Theorem 2.1.

References

1. Domany, E., Kinzel, W.: Equivalence of cellular automata to Ising models and directed percolation. Phys. Rev. Lett. 53, 311-314 (1984)
2. Hall, P.: On continuum percolation. Ann. Probab. 13, 1250-1266 (1985)
3. Kemperman, J.H.B.: On the FKG Inequality for measures on a partially ordered space. Proc. K. Ned. Akad. Wet. Ser. A, Math. Sci. 80, 313-331 (1977)
4. Kesten, H.: Percolation theory for mathematicians. Boston: Birkhäuser 1982
5. Menshikov, M.V.: Coincidence of critical points in percolation problems. Sov. Math., Dokl. 24, 856-859 (1986)
6. Roy, R.: Equality of the critical densities and dual critical densities for continuum percolation in \mathbb{R}^{2}. Ann. Probab. 18, 1563-1575 (1990)
7. Russo, L.: On the critical percolation probabilities. Z. Wahrscheinlichkeitstheor. Verw. Geb. 56, 229-237 (1981)
8. Zuev, S.A., Sidorenko, A.F.: Continuous models of percolation theory I, II. Theor. Math. Phys. 62, 76-86 and 253-262 (1985)
