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Summary. We consider a percolation model on the plane which consists of 
1-dimensional sticks placed at points of a Poisson process on lR2; each stick 
having a random, but bounded length and a random direction. The critical 
probabilities are defined with respect to the occupied clusters and vacant clusters 
and they are shown to be equal. The equality is shown through a 'pivotal 
cell' argument, using a version of the Russo-Seymour-Welsh theorem which 
we obtain for this model. 

1 Introduction 

Consider a percolation model which consists of lines (called sticks hereafter) 
of random length and with random direction placed at points of a Poisson 
point process of intensity 2 on a plane. The length and direction of sticks placed 
at different points are assumed to have an i.i.d, distribution. It can clearly be 
seen that, unless the sticks are placed in only one direction (i.e. the direction 
random variable has singleton support), the size of an 'occupied cluster' (i.e. 
a cluster of sticks forming a connected set) increases, in a stochastic sense, 
as 2 increases. Also, if we look at the 'vacant cluster' (i.e. the cluster characterized 
by the absence of sticks), its size decreases in a stochastic sense as 2 increases. 
This suggests a phase transition. 

Domany  and Kinzel [1] has obtained estimates of the critical density and 
scaling coefficients for this model through computer simulations. Hall [2] has 
shown that under suitable conditions, our model exhibits a sharp phase transi- 
tion, i.e., there exists a 2 c finite positive, such that for 2 > 2c, the size of the 
occupied cluster is infinite with positive probability, and for 2 < 2  c the size of 
the occupied cluster is finite with probability 1. We investigate this model and 
define various notions of the critical density 2o  We show that under suitable 
conditions, these various notions are identical, in the sense that the critical 
densities are all equal. Moreover, we also introduce various definitions of 2* 
(the critical density corresponding to the phase transition point for the vacant 
cluster) and show that not only are all the 2* equal, they equal 2o 

The argument presented here is different from that of Menshikov [5] for 
percolation of d-dimensional spheres in a d-dimensional space. Menshikov cle- 
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verly exploited the fact that the spheres have non-zero d-dimensional volume 
to show the equality of the critical densities via an approximation with a discrete 
percolation model. Unfortunately, we cannot use that technique here. Moreover, 
Menshikov's method cannot handle the vacant clusters. Our argument relies 
on a Russo-Seymour-Welsh argument (see Kesten [4]) and hence is restricted 
to 2-dimensional spaces only. Our line of argument is similar to that used to 
prove equality of the critical parameters of site/bond percolation in 2-dimen- 
sions. We develop, for our model, a modified version of the 'pivotal site/bond' 
used in site/bond percolation models (Russo I-7], Kesten [4J) and use it to 
construct an integral inequality which establishes the equality of the critical 
densities. 

The RSW theorem and Russo's formula has been applied in discrete percola- 
tion models to obtain various scaling laws and power estimates, it is expected 
that the analogue of these theorems for our model can also be used for similar 
results. 

2 The model and statement of results 

Consider a Poisson process 40, ~t, 42, .-- of intensity 2 on 11t 2. Centered at 
each point r is a line (stick) L(~) of a random length 2 Pi and a random direction 
0~. We assume that Po, Pl, P2 . . . .  and 0o, 01, 02 . . . .  are i.i.d, sequences of random 
variables and are independent of each other with each 0~ having support in 
[0, ~z). Let p and 0 be independent random variables having the same distribution 
as that of p~ and 0~ respectively. 

We say that two points x and y in a region A ~ 2  have an occupied connec- 

tion in A (denoted by x ~ y in A) if there exist Poisson points ~il, ~i . . . . . .  r 
in A for some 0 < i 1, i 2, ..., i, and associated sticks L(~il), L(r ) . . . . .  L(~i,) such 
that there is a continuous curve joining x and y which lies in U L(~i). Such 
a continuous curve is called an occupied path joining x and y. J 

Without loss of generality, we assume that 40=0, the origin, 00=0, i.e., the 
stick L(~o) of length 2po is centred at the origin and lies on the x-axis. We 
define the occupied cluster as 

(2.1) w(o)= {xea2: x}. 

For  any set A of JR 2 let IA[ = sup{d(x, y): x, yeA} ,  where d(., .) is the Euclidean 
distance. 

The critical densities corresponding to occupied clusters are 

(2.2) 2~,=inf {2: P~. {I W(0) I = oo } > 0}, 

(2.3) 2T .'=inf {2: Ex (I W(0)1) = oo }. 

Clearly, if 0 has a degenerate distribution, then no two sticks intersect with 
probability 1 and thus there will not be any percolation via sticks, i.e., 2n = 2r 

If p = 1 and 0 non-degenerate, Hall [2] has shown that 2n < oo. Moreover, 
2n>2n(cont inuum),  where 2n(continuum) is the analogous critical density 
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obtained by having disks of radius 1 centred at ~ (2 0 of Roy  [6]) instead 
of sticks. Again, Hall [2] has shown that 2H(continuurn)> 0. Thus, we have, 

(2.4) 0 < 2~/< co. 

We shall assume the following: 

(2.5) 0 < p < R for some constant R > 0, 

(2.6) p has a uniform distribution in 1-0, ~z). 

Our theorem will also hold when (2.6) is replaced by 

(2.7) P {0(mod rc): l0-c~l =</~} > C(c0 > 0 

for any e,/~e[0, r 0 with some C(e) independent of B. 
In addition to the above critical densities, we have critical densities defined 

via the vacant clusters as in (2.9) and (2.10) below. 
Two points x and y in a region A c ] R  2 are said to have a vacant connection 

in A (denoted by x ~ y in A) if there exists a continuous curve 7 with x 
and y as its two end points and such that 7c~L({~)=0 for all i>0 .  Such a 
continuous curve is called a vacant path joining x and y. We note here that 
the endpoints x and y of 7 need not be in 7. Thus either of x or y or both 
may be in Q) L(~/). 

i 
The vacant cluster is defined as 

(2.8) W*(0)= {x~lR2: 0 - - ~  x}. 

The critical densities corresponding to the vacant clusters are 

(2.9) 2~.'=sup {2: Pz{] W* (0)l = co} >0},  

(2.10) 2*,=sup {2: Ea(l W*(0)I = co)}. 

In addition, two other critical densities are defined through crossing probabil- 
ities. 

A L--R occupied (respectively, vacant) crossing of a rectangle [-0, 11] x [0, 12] 
is an occupied (respectively, vacant) path connecting the left edge {0} x [0,/2] 
to the right edge {ll} x [0, l;] and which ties completely inside the rectangle. 
Similarly, we define the T-- B occupied~vacant crossing of a rectangle as an occu- 
pied/vacant path connecting the top and the bot tom edges of the rectangle 
and which lies in the rectangle. 

The crossing probabilities are defined by 

cr((li, 12), 1, 2):=Pa {q an occupied L - R  crossing of [0 , / i ]  x [0,/2]}, 

0"(( l l ,  t2) , 2, 2):=P~ {3 an occupied T - B  crossing of[0,  l l ] •  [0, 12] } . 

Similarly, a*((ll, 12), 1, 2) and o-*((11, 12), 2, 2) are defined by replacing occupied 
with vacant in the above definitions. 
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The critical densities are 

(2.11) 2s:=inf{2: lim sup a((n, 3 n), 1, 2)>0} 
n 

(2.12) 2~ == sup {2 : lim sup a* ((n, 3 n), 1, 2) > 0}. 
n 

We prove the following 

Theorem 2.1 Under the assumptions (2.5) and (2.6) 2H = 2T =)~S = 2~ = 2} = 2~. 

Remark. As stated earlier the theorem holds when the assumption (2.6) is re- 
placed by the assumption (2.7). 

The pivotal argument and the RSW argument we employ are developed 
in the next two sections. In Sect. 5 we prove the theorem. 

3 The FKG inequality and Russo's formula 

We consider the space . 5 ~  1} a2•215176 where IR+=(0, 00) and let Y 
denote the Borel a-field on ~ We equip ~,~ with the probability measure arising 
from our model. In other words, for any open set A c I R 2 x l R +  • [0, re), the 
number of points (z, r, s) in A ( z s l R  2, r~lR+, s~[0, re)) with co(z, r , s ) = l  has a 
Poisson distribution with mean l;. x p(A), where Ix is the Lebesgue measure which 
assigns mass 2 to the unit cube and / ,  is the probability measure on IR+ x [0, re) 
corresponding to the length and direction of the stick, and the number of points 
(z,r, s) in A1, A 2 . . . .  ,A  k with co(z, r , s ) = l  are independent whenever 
A1, A2, . . . ,  A k is a collection of disjoint sets in IR 2 • • [-0, ~). Pictorially, 
co(z, r, s ) = l  corresponds to a stick centred at z of length 2r  and at an angle 
s w.r.t, the horizontal axis. 

Let co and co' be two configurations in this space 6<. We say that co_<co' 
if co'(z, r, s)= 1 whenever co(z, r, s)= 1, for any zelR 2, r~lR+, se[0,  re). A function 
f :  5P--+IR is said to be increasing (respectively, decreasing) if for every co_~co', 
f(co) <f(co')  (respectively, f(co)>f(co')). An event A e Y  is increasing (decreasing) 
if 1A is increasing (decreasing). 

F K G  inequality 

If A and B are both increasing events or both decreasing events then P(A c~B) 
>P(A)  P(B). 

Proof Let {a.} be a sequence decreasing to zero and such that a. is an integer 
multiple of an . l  for each n=>l. Consider the lattice L = ( a . Z )  z • 2 1 5  [0,~). 
For  any k = ( k  1, k2)eZ 2 and l, meZ+  let C(k, l, m) denote the cell {(z, r, s)" (k i 
- 1) an < zl <= kl an, ( I -  l) a n < r <= I an, (m - 1) a n < s ~ (m - 1) a.) for i = 1, 2. Clearly, 
C (k, l, m)'s are disjoint for disjoint (k, I, m) and U C (k, l, m ) = ~ 2  • JR+ • EO, ~). 

k,l,m 

Given a cell C in L,, let Nn(C)(co)= ~{(z, r, s)eC: co(z, r, s)= 1}. Let Y, be 
the a-field generated by {Nn(C), C a cell in L,}. Since the vertex set of the 
lattice L,  is contained in the vertex set of the lattice Ln+l, {E(1AlYn)},>t is 
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a martingale for any A ~ J  ~. So, by the martingale convergence theorem, 
E(1AI~n)-*IA w.p.1 as n ~ o o .  

Now let C=C(k, l, m) and suppose A is an increasing event in ~ We then 
have, for co_~ co', Nn (C) (co) < Nn (C) (co'). Also, given Nn (C) (co) =j,  the conditional 
distribution of the j points in C has the probability measure v x #g.m, where 
v is the uniform distribution on the cell ((k i -  1)an, ki an] x ((k2-1)an,  k2 an] 
and #~,m is the conditional distribution of # given that ( l - 1 ) a , < r N l a n  and 
( m -  1) a n < s N m an. Thus, E(1A [ Wn) is a.s. increasing. 

For  two increasing events or two decreasing events A and B on a lattice 
with a partial order we have E(E(1A[o~)E(lg]~))>=E(E(1A[~,))E(E(1B[~n) ) 
=>E(1A) E(1B) (see Kemperman [3]). Thus, the dominated convergence theorem 
yields E(1A 1B)>=E(1A)E(1B). [] 

NOW we introduce the notion of a 'pivotal cell' and prove a version of 
the Russo's formula. 

Let L be a lattice on IR 2. Given a configuration co of the Poisson model 
and a cell C of L let coc denote the configuration which agrees with co outside 
C in the model and for which there is no Poisson point situated inside C. 
Given an event A and a configuration co, a cell C in L is said to be pivotal 
for (co, A) if co~A and COcq~A. This definition of pivotal is different from Russo's 
definition (see Kesten [4]) in that, for a cell to be pivotal for an event, in 
this definition, the event must occur. 

Suppose 2~__<2__<22, where 21 and 22 are fixed positive reals. Let a be such 
that aZ< 1/22 and R is an integer multiple of a. Consider the lattice L = ( a  Z) 
x (aZ). Let C~, C2, ..., CN be an enumeration of the cells of the lattice L which 

lie in the rectangle [ - 2 R ,  l l + 2 R ] x [ - - 2 R  , 12+2R] for some l,, 12>0 and 
integer multiples of a. 

Consider a Poisson model which consists of the union of various Poisson 
processes on disjoint regions each with the same i.i.d, distributions of the 
attached stick random variable. In particular, for every 1 _< i < N, let 2(i)~ [21, 22] 
be the intensity of the Poisson process on the cell C~ and let 2 be the intensity 
of the process outside the rectangle [ - -2R,  l i+2R ] x [ - 2 R ,  l a + 2 R  ]. Let E 
be an increasing event which depends on the configuration in the rectangle 
[0, li] x [0, 12]. 

Russo's formula 

2(i) ~ P~(E) 
= (E (~  of Poisson points in CiJ Ci is pivotal for E)-- J Ci ]) P {Ci is pivotal for E}. 

Proof. Fix a cell Ci in the lattice L. Define Ak= {3 exactly k Poisson points 
in Ci}. Clearly, 

(3.1) d2(i) P~(E)= ( ~ P~(EIAkOCCUrs)P~.(AkOCCUrS ). 
0<k<oo 

Given the Poisson points and their associated sticks inside the cell C;, the out- 
come of the event E depends on the Poisson points situated outside C~. Also, 
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given that there are k Poisson points in the cell C~, the conditional distribution 
of the position of the points inside C~ is uniform on Cr and hence is independent 
of 2(0. Thus, P~(EtA~ occurs) does not depend on 2(0. The summation in (3A) 
being absolutely convergent, we have, 

d ~""[~( Z ~(E1A~ occurs) ~{A~occurs}) 

d = 2 Pa(\E1Ae~176 

~(E*A~ occurs) (,C~] [ ~  " ' "'" - -  ( - ~ (0 c , )  o x p  ( - -  x O) c , )  
1 ~./c< m ',, k " '  

- ] C,{ exp ( - 2 (i) C3 P~.(E I there is no Poisson point in C3 

IC~i ~ l (2(i)G)* exp(-2(i)C~) 
ONk<ee 

X {P~. (ElAn+ 1 occurs)-  ~ (EiA~ occurs)}. 

Let J=d(c~)= J(~o; E, C~) be defined as follows; 

Co J(r = if Ct is Fdvotal for (o), E) 
g C~is not pivotal for (e), E). 

Then ~)om tlhe previous calculations we obtain, 

1 (2(/)C~) g e x p ( - 2 ( 0 Q )  !ii~ P~(~)=ic~I E k7 

X {E~(t.~ J[A~+ 1 occurs)-  Ei(l~ J{A~ occurs) 

+ Ex (I ~ (1 - J) l Ak + 1 occurs) -.~ Ea (1E (1 - J ) t  A~ occurs)}. 

Now 1~(i - Y ) =  t only if E occurs and C~ is not pivc-taI for (~, E) and E 
is increasing so, Ea(lz(t -J) tA~+ i occurs)= E~(1E(1--J) i A~ occurs). From this 
and the previous calculations, we have after some computation, 

d 
-d-~i ~ P~(E) = P~ { C~ is pivotal for E} x 

(]@/)E~.(# ofPoissonpointsin C~IC~isplvotatfor E)-IC~I). El 

If E ocxx~xs and C~ is pivotal for E theri there must be at least one Poisson 
point in C~. Thus, we have the foliowing: 

\ 
\,tt~/ ! 
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4 Some preliminary results 

We first state the RSW theorem and a lemma which gives probabilistic bounds 
on the size of a cluster when the crossing probabilities are small. 

RSW Lemma. Let 61, 62>0  be such that a*((lj,/2), 1, 2)>61 and a*((13, 12), 2, 2) 
>62 for some 11, 12>4R and 2R <la <311/2. For any integer k > l, we have 
a*((kll,  12), 1, 2)>=Kk(2)fk(61, 62), where Kk(2)>0 is a constant independent of 
61 and 62 and fk(61, 62) is independent of 2. 

Lemma 4.1 There exists a constant ~ > 0 such that 
(i) if for some g >  e ,  a((g,  3N), 1, 2)<K, then P;.{IW(O)I>a} <=C1 e x p ( - C 2 a )  

for all a > 0 and for some positive constants C1, C2 which depend on 2 only, 
(ii) if for some N > R, a* ((N, 3 N), 1, 2) < K, then P~ {[ W* (0)] > a} < C3 exp ( -  C4 a) 
for all a> 0 and for some positive constants C3, C4 which depend on 2 only. 

The proof of this follows, after minor adjustments, from the analogous theo- 
rem for continuum percolation (Theorem 2.3, Roy [6]), while the proof of Lem- 
ma 4.1 is essentially the same as that of Theorem 5.1 of Kesten [4]. As such 
we omit these proofs. 

We now show that 

(4.1) 2s_-< 2T < 2h < 2* = 2~ = 2~. 

First, Lemma 4.1 yields 

(4.2) 2s ~/IT, 

(4.3) 2"G2~. 

((4.2) has also been shown by a different method in Zuev and Sidorenko [8]) 

(4.4) 2n = / 1  T 

follows trivially from the definitions of/1} and/1". While 

(4.5) /1~ </in 

is obtained by an RSW argument. Indeed, for/t  < 27, we can construct infinitely 
many vacant circuits surrounding the origin 0 w.p.1, thereby showing that/1 ____/1H. 
Finally to complete the proof of (4.1) we need to show 

(4.6) /iT </1", 

(4.7) /1n</1~.. 

To prove (4.7) we observe that for /1>/1", Ex{IW*(0)]< oo}. Thus, if S(i) 
= {(x, y): [x] < 2R, l Y -  i 4R] < 2R} and W* (S(i)) = U W* (x), then, by the F K G  

xeS(i)  lemma, 

(4.8) 

But, 

Y~ 3 ~ ~{I w*(s(o))[ >3  ~} < oo. 
k > l  

P~ {3 a vacant L-- R crossing of [0, 3 k] x [0, 3 k + 1]} 

<P~( ~) {IW*(S(i))l> 3k}) 
O<i<_3k+ l /4R 

< (3 k+ 1/4 R) P~o {[W* (S(O)) I > 3k}. 
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Hence, for 2 > 2~., by (4.8) and the Borel-Cantelli lemma, 

(4.9) Px {3 a vacant L -  R crossing of [0, 3 k] x [0, 3 k + 1] i.o.} = 0. 

By the Jordan curve theorem, either there is a vacant L - - R  crossing or an 
occupied T--B  crossing of [0, 3 k] x [0, 3 k+ 11. Thus, 

(4.10) P;. {~ an occupied T -  B crossing of [0, 3 k] x [0, 3 k + 1] for all large k} --- 1. 

By translation invariance, (4.8) is equivalent to 

(4.11) P~ {3 an occupied L -  R crossing of [-0, 3 k + 1] x [0, 3 k] for all large k} = 1. 

Now a L - - R  crossing of [-0,3 k+a] x [0,3 k] must intersect a T - B  crossing of 
[0, 3 ~+t] x [0, 3k+2]. Continuing in this fashion for all k, we have a criss-cross 
of L -  R and T-- B crossings which extend all the way to infinity. Thus 

(4.12) P~ {3 an occupied infinite region in the first quadrant} = 1. 

Dividing up the quadrant into countably many cells and using translation invar- 
iance, we have 

(4.13) P~{I W(S(0))I = Go} >0.  

Another translation invariance argument now yields 

(4.14) ~.{I W(0)} = ~ }  >0 .  

Thus, if 2 > 2*, then 2 _>__ 2~, i.e., .)m -< 2} as required. 
In the argument to show (4.7) if we change occupied to vacant and vice 

versa then we see that 2 < 2r implies 2 < 2*, thus proving (4.6). 
(4.2) (4.7) yield (4.1). 

5 Expected number of pivotal cells 

In this section we show that, for a lattice L of size t/, and for fixed 20, 21 
with 2o < 21. 

Lemma 5.1 I f  there exist 3 > 0  and a sequence {/,},>=1 with l,~oo as n ~  0% such 
that, for all n> 1 and for all 2~ [2o, 21], 

(5.1) cr((In, 31,),l,  2)>6 and cr*((l,,3ln),2,2)>8 
then 
(5.2) inf Ez { ~ of pivotal cells of L for the event E,} --+ o0 

),~[Ao,~l] 

as n -* oo, where E, = {3 a L-- R occupied crossing of [0, 1J x [0, 3 Inl}. 

Let L~ be a lattice of size a~ on IR 2. A cell C in this lattice is called vacant 
if C ~ L ( ~ ) = 0  for all i>1  and it is called occupied if Cc~L(~)4=O for some 
i> O. A (vacant~occupied) Lm path is a collection C~ . . . . .  Ck of (vacant/occupied) 
cells of Lm such that consecutively numbered cells have an edge in common. 
A L - - R  (vacant~occupied) Lm crossing of a rectangle is a Lm path (vacant/ 
occupied) which lies in the rectangle and the two end-cells of which lie, respective- 
ly, on the left and right edges of the rectangle. 

Proof of Lemma 5.1. The proof of the theorem is broken into three steps. 

Step 1. Construction of a pivotal cell. 
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< 

Fig. 1. The event A(S) 

Fix e and q such that 

(5 .3 )  O<16e<R,O<lOq<eandR/32isanintegermultipleofq. 

Since we approximate by lattices of size a,n and eventually let am decrease to 
0, we take the sequence {am} such that for all m, 

(5.4) 2 a m, 3 In and q are all integer multiples of 2 am+ 1- 

We note here that the monotonicity properties of the crossing probabilities 
allow us to change the rectangles [0, l,] x [0, 3/,]'s to slightly different rectangles 
whose sides satisfy the divisibility property (5.4) without violating (5.1). As our 
argument only needs that a sequence of growing rectangles whose larger side 
is < 3 times the smaller side, the assumption (5.4) can be made without losing 
any generality. 

For convenience in notation (unless we need to be specific) we denote I, 
by l and E, by E, D is the rectangle [0, 1,] x [0, 3 l,] and L is the lattice of 
size am. The pivotal cells will be constructed in the lattice of size q. This lattice 
will be called the q-lattice and a cell in this lattice will be an q-cell. 

Let S be a square on the q-lattice of size d, where 26R<_d<_30R, and which 
lies inside D. Let A (S)= Am (S) be the set of configurations co such that 
(i) there is no occupied L - R  crossing of D consisting of sticks formed by the 
Poisson process outside S, 
(ii) there are two occupied paths PL and PR in S, consisting of sticks formed 
by the Poisson process outside S, with one end-point of each PL and PR lying 
on the left edge and right edge of D, respectively, and the other end-point 
of each PL and PR at a distance of atmost R/2 from S, 
(iii) there is a path b outside U L(~) which lies in D and connects the bottom 

edge of D to some side of S, ~s  
(iv) there is a Lm path t from the top edge of D to some side in S, which 
consists of cells C such that Cc~L(~)=0 for all ~q~S (see Fig. 1). 
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Fig. 2. The cells C 1 and C~ in the 'best case' for (5.5) to occur 

2 

Fig. 3. The cells C~ and Ck in the 'worst case' for (5.5) to occur 

To construct a pivotal cell in S we observe that there exists e > 0 such that 
for any configuration oo~A(S) 

(5.5) there are cells C1 . . . . .  Ck (not necessarily distinct) and indices 
/~1, ...,/~kS [0, re) (both depending on co) such that if {L1, ..., Lk} is a collec- 
tion of sticks centred in C1 . . . . .  C k respectively each of length > R - e  
and Li having a direction 0 i (modr  0 for any O~[f l l -o~,  fli+c~], then (a) 
L 1 n PL 4 = O, Lk (~ PR 4 = O, (b) consecutive Li's have non-empty intersection 
and (c) no two L~'s intersect unless they are consecutively numbered. 

Indeed, if A(S)  occurs then (5.5) occurs; we note that having obtained C1 and 
Ck, finding the correct C2 . . . .  , Ck -  1 is easy. Also, for PL, PR as in Fig. 2 obtaining 
the subtending angle c~' is no problem. In case PL or PR is as in Fig. 3, then 
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also we can find a cell C adjacent to a side of S and at a distance R/2 from 
the corner of S which subtends an angle c('(say). Note, here we use the fact 
that the path PL or PR goes beyond a distance 3 R/4 from the square. In case 
both p~ and PR are at a distance < 3 R/4 from the left edge of the square S, 
then of course, Cl can be found easily. Similarly for the right edge. Moreover, 
Figs. 2, 3, are the 'best '  and 'worst '  respectively, for (5.5) to occur. Thus the 
minimum of these two subtending angles would be the value of c~ we would 
need for (5.5). A rigorous proof, based on this idea, can be written. 

Clearly each of the cells C~ . . . . .  C k above is pivotal for E. Thus, 

P~ (3 a pivotal q-cell in S for the event E ] A (S) occurs) 

> P~.((5.5) occurs for S) 

> C(20, 21, q, Re), 

where the constant C(20, 21, q, R e)> 0. 

Step 2. Location of the pivotal point. 

Given a L - R  L crossing r of D, let ri be the lowest L--R L crossing of 
[0,/] x [0, 3 / + 2 0 R ]  (= /5  say) which is at a distance of at least 4iR+6am above 
r.  

Let A (=Am) denote the (random) lowest vacant L--R L crossing of the 
rectangle D and let Ai be as above. 

Let Q (=  Q,,) be the event 

Q = {A exists and the following hold 

(i) 3 a vacant L path t which lies above L2 and connects the top edge of 
/3 to A2, 
(ii) for any point (x, y) in L and a R/16 neighborhood N(x, y) of (x, y) there 
exists a vacant path b which lies below A and connects the bottom edge of 
s to N(x, y)}. 

Let (tl, t2) be some point on topaz, where t is as in the event Q. By definition 
of A2, there is a point (~1, t'z) on A which is at most at a distance of 8 R +  16am 
away from (tl, t2). Since 16a,,<=R/2, so (9~1,)'2) is in the interior of the four 
squares [t l--9R,  t l + g R ] x [ t z - - 1 8 R ,  t2], [ t l --9R,  t l + g R ] x [ t 2 ,  t z+lSR] ,  
It 1 -- 18 R, ta] x It2 - 9 R, t 2 + 9 R] and It1, tl + 18 R] x l-t 2 - 9 R, t 2 + 9 R]. W.l.o.g. 
assume that (~1,) 'z)e( t l -gR,  t l + 9R)x  (t 2 - 1 8 R ,  t2). Let g be a square with 
sides of length 24R on the q-lattice and such that the square It 1 - 9 R ,  t l + 9R] 
x I t 2 - 1 8 R ,  t2] is contained in ~ and its sides are at a distance of at least 

2R from the sides of S. 
By our construction, there is a vacant L path t' (contained in t) such that 

t' lies above A z and connects the top edge o f /5  to S. Also, since (~1, t'2) and 
N(T~, ~2) are both in the interior of ~, there is a vacant path b' (contained 
in b) such that b' lies below A and connects the bot tom edge of D to S. 

Now let S be a square with sides on the q-lattice of length 26R and such 
that S___S. The existence of vacant paths t' and b' guarantee that there are 
no L- -R  crossing of D lying outside S. 

Fix cosQ. For  a choice of S as above (i), (iii) and (iv) of the definition of 
A(S) holds. Also, let dL(S ) (dR(S)) be the minimum distance from the square 
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S to a path from the left (right, respectively) edge of D which lies in D. If 
dL(S), dR(S)NR/2 then (ii) in the definition of A(S) holds. Otherwise, let $1 
be a square centred at the center of S, containing S, with sides on the t/-lattice 
and such that either R/2-~I<dL(S)<R/2 or R/2-~I<dR(S)<__R/2. Assume 
w.l.o.g. R/2 - tl < dL(S) <= R/2. If dR(S) <-- R/2 then (ii) holds, otherwise, considering 

a larger square S 2 (whose sides are at a distance of at least R/2~/2 from each 
of the sides of $1) we have both dL(S)<=R/2 and dn(S)<=R/2. Thus coeA(S2). 
Hence if co e Q then co e A(S) for some square S on the t/-lattice with sides < 30 R. 

Step 3. Expected number of pivotal cells. 

From Step 1 and Step 2 we have 

E:. { 4~ of pivotal cells for the event E,} 

> 1 y. P;.(3 a pivotal cell in S for the event E, ]A(S) occurs) P~ (A (S) occurs) 
=Ks 

> II C(2o, :.,, '1, R, ~) ~ ~ (A(S) occurs), 
= K  S 

where, K=(30R)2)12> #e of squares S on the H-lattice which contain a fixed 
cell and ~ is over all squares S in D which lie on the H-lattice and have sides 

s 
of length > 26R and < 30R. Thus, to prove the lemma, it suffices to show, 

inf 
;te[2o,:~I] S 

This can be obtained by constructing 'concentric squares' in D as in Chap. 7 
of [4]. We provide a sketch of the argument here. Let F be the 'left most '  
vacant L,, path from the top edge of S to A 2. We obtain vacant paths from 
F to A2 each of which lies in different annuli of these concentric squares. Each 
such vacant path provides a square S containing pivotal cells. Moreover, using 
the RSW lemma, we can provide a positive lower bound for the probability 
of the existence of these vacant paths. The number of such vacant paths will 
be of the order O(n) for the event E,  as n~Qo.  Thus, we will have, 
P;~(A,,(S) occurs) ~ oo as n-~ oo. [ ]  

6 The equality of the critical densities 

In view of (4.1), to prove the equality of the critical densities defined in Sect. 2 
we need to show 

(6.t) ~ = ; ~ .  

We will prove this by contradiction. 
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(l+2kln 

(l+k)n 

U / 
/ 

/ 

(a) (b) (c) 

Fig. 4. A L--R vacant crossing of [0, n] x [0, (l+2k)n] implies (a) a L - R  vacant crossing 
of [0, n]x [0, (1 +k)n] or (b) a L--R vacant crossing of [0, n] x [kn, (1 +2k)n] or (c) a T--B 

vacant crossing of [0, n]x [kn, (t +k) n] 

Lemma 6.1 Suppose there exists 20 and 21 such that 2 s < 2 o < 2 1  <2~, then there 
exists c~ > 0  and a sequence {/,},>__ 1 with l,'f oo as n ~ o% such that, for all n > i 
and for any 2e [20, 21], 

(6.2) a((1., 3 l.), 1, 2)>6, 

(6.3) a*((l., 3 t.), 2, 2)>6.  

Proof First we note that, 

(6.4) if for some n, k > 0  and t />0,  a*((n, (1 +2k)n) ,  1, 2)>t/, then for any t>0 ,  
and for somef( t ,  k, t/)> O, a*((n, (1 + 2  t)n), 1, 2)>f( t ,  kt/). 

Indeed, from Fig. 4, we see that a L -  R vacant crossing of [0, n ] x  [0, (1 + 2 k) n] 
entails either a L - R  vacant crossing of [0, n ]x  [0, (1 + k)n] or a L - R  vacant 
crossing of [0, n ] x [ k n , ( l + 2 k )  n] or a T--B vacant crossing of 
[0, n ] x  [kn, ( l+k )n ] .  By translation invariance and the F K G  inequality we 
have, for each of these cases, or* ((n, (1 + k)n), 1, 2)> 1 - ( 1  -t/)1/3. 

(6.4) is obtained by the repeated use of this technique. 
From (6.4), we have that for 21, as in Lemma 6.1, there exists t t > 0  and 

a sequence {/.}._>_1 with l.Too as n]'c~ and 512, , -1>4/2.  for all n > l ,  such that, 
0"*((/2n_ 1, I2.), 1, 21)>~  1 and a*((512n_l/4, Izn), 2, 21)>r / .  This yields on an appli- 
cation of the RSW lemma, that there exists 6 1 > 0  and a sequence {/.}m=>l, 
l.Too as nTo�9 such that, ! 

(6.5) a*((1., 31.), 2, 21)>61 for all n. 

Now if 

(6.6) tim sup a((l., 3 l.), 1, 21)= O, 
n 
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then, by Lemma 4.1, Ez(IW(0)I)< oo, which yields 21 _-<2r. But, by (4.1), 2S=2T, 
SO (6.6) cannot be true. In other words, there exists 32 > 0  and a subsequence 
{l',} of {/,} such that 

(6.7) a((l'., 3/;), 1, 2 1 ) > 6 2  for all n, 

and (6.5) holds for (~2 instead of 31. 
If, for some subsequence {/~'} of {/'.}, there exists a constant 63>0  such 

/ !  t t  ~l~ i t  i t  that a((l.,31.), 1,2o)>63 and o-((I. ,31.),2,)~o)>63, then the monotonicity 
properties of the crossing probabilities in 2 imply the lemma for 6 
=min(61, 32, 33). Otherwise, for any subsequence {/~'} of {/'.}, cr*((l~', 3 l~'), 2, 2o) 

~r i t  t !  t !  r  >o- ((l., 3 l.), 2, 21)>61, and lim sup o-((/., 3 l.), 1, 20)=0. Another application of 
n 

Lemma 4.1 yields 2o < 2r, thereby providing a contradiction. [] 

To complete the proof of (6.1), suppose 2o, 21, {/.} and 6 are as in Lemma 6.1. 
We show that for any 2~(2o, 20, 

(6.8) o-((I., 31.), 1, 2)--+ 0 as n --+ oo. 

(6.8) clearly contradicts (6.2) and would thus prove (6.1). 
To show (6.8) we use the pivotal formula. Let L be a lattice of size 0, where 

0 < q 2 < 2 ~  -2 (0; 2n=2s<O% so this is possible). Let E , = { 3  a L - R  occupied 
crossing of [0,/,] x [0, 3/,]} and N(n)= :~ of pivotal cells in L for (co, E,). Then, 
by Corollary 3.1, for 0_<t_< 1 and 2( t )=t21 +(1 - t )2o ,  

(6.9) 
1 2 

By our choice of 2 and {/,} satisfying Lemma 6.1, (6.9) yields 

1 2 

This yields, on integrating, 

(1 ) 
(6.10) P~o(E.) < P~I(E.) exp -- ~ S E~(o(N(n)]E.) , 

0 

/ 1  \ 
where ~ = ( 2 1 -  2 0 ) / ~ - ~ 2 / >  0. 

\)~1 / 
(6.2) and (6.3) imply by Lemma 5.1 that inf Ez(N(n)) ~ oo as n ~ oo. Also, 

.~e [)~o,21] 

P~(E,) = or((/,, 3 l,), 1, )0>6  for all 2~[2o, )~1]- Thus, 

(6.11) inf E~(N(n)lE,)-~oo as n ~ o o .  
.~e[~.o, 21] 

(6.11) implies that the term on the right of (6.10) goes to 0 as n--, oo. This 
shows that (6.8) holds, thereby proving Theorem 2.1. 
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