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Summary. The three dimensional polymer measure was first constructed by West- 
water in 1980 with a very complicated proof. We give an alternative construction 
for small coupling parameter which is based on the approach by Brydges-Fr6hlich- 
Sokal in quantum field theory and Bovier-Felder-Fr6hlich, using skeleton inequal- 
ities. The main new features are the proof of convergence which had been open in 
the Brydges-Fr6hlich-Sokal construction, and the construction of the measure on 
the space of paths with fixed time length. 

1 Introduction 

If T > 0, d ~ N, let CT be the set of continuous functions fi [0, T]  ~ IR d satisfying 
f(0)  = 0, and PT the. Wiener measure on Cr. Later on, we will deal only with the 
case d = 3. If 2 > 0, the polymer measure /~r on CT with coupling constant 2 is 
formally defined by 

(d/3r, x/dPr)(co) = e x p ( -  2Jo, r (CO))/ZT, 

where JO, T((D)=frdsfs r & 6(cos-  cot). 6 is the Dirac function and Zr, ~ is the 
appropriate norming factor in order that Pr, ~ becomes a probability measure. The 
difficulty is, of course, that Jo, T is not well defined. For  d -- 1, it can be expressed as 
Jo, r = �89  2dx where lr is the local time up to time T, i.e. the density of the 
sojourn measure A ~ f r  1A(cos)ds for which a continuous version is known to exist 
for almost all co. However, for d > 2, this is no longer possible. 

The only essential problem with the definition of Jo, r is the integration near the 
diagonal. If one leaves out a gap near it, then everything behaves nicely. If 
0 < e _< T, let J~, r = f~-" d s f r ~  dt3(cot - oos) which still is only a formal definition 
but which can be given a good sense for d =< 3, see [5] and the Proposition 2.1 
below. ~ 

^ 

One can then define P~,x by replacing Jo, r by J~, r. The problem is then 
to show that lim~_~oP~,z exists: For  d 7/2, Varadhan (with a slightly different 

/ 
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regularization) has shown in [6] that 

(1.1) l im( J~),v - -  E ( J ~ , 7 " ) )  = Y 
e ~ 0  

exists in Lz and that E(e -;.Y) < ~ for all 2 > 0. One can then prove that 

(1.2) lim f~-, ~ = fo ,  
~-}0 

where (dP ~ ffdPT) (~o) = e-  ZY /E (e- ~Y). This so called Varadhan renormalisation 
has been the starting point for many research papers on self-intersection properties. 
See e.g. [3, 9]. 

For d = 3 (1.1) is no longer true andthe  problem becomes much more difficult. 
Westwater proved in [7, 8] that lim~-~o P~-. ~ exists. His approach is based on cluster 
expansion techniques and is very complicated. There is, however, a much simpler 
approach by Bovier et al. [1] which is based on the approach in [2] on the 
~bd 4 quantum field model. Actually nothing like (1.2) is proved in [1]. It is shown 
there that the Laplace transform in time of certain transition densities remain 
bounded as e ~ 0 if 2 is small. (Also a different regularization is used). It is 
notoriously difficult to invert such statements about Laplace transforms and to get 
the desired results for each fixed T. In order to avoid discussions of this point, we 
altogether avoid the use of Laplace transforms, by using a direct recursion Ansatz. 
In this way, we get quite precise estimates e.g. of the two point functions. 

However, the main difficulty is to prove convergence as the regularization goes 
to 0. This had also been an open point in [1] and [2], which was also connected 
with the failure to prove rotational invariance of the quantum fields in [2]. We 
prove convergence here by bounding the derivative with respect to the regularisa- 
tion parameter e. The necessary cancellation of the divergencies here is much more 
subtle than in the proof of boundedness. I have actually been unable to prove the 
convergence of the two point functions at fixed time T. However, given the 
boundedness and tightness properties, only convergence of certain integrals over 
smooth test functions is needed. (The convergence of the Laplace transforms in 
T would also follow by an easy modification of our approach.) 

Despite of the above mentioned shortcomings, the approach in [1] is both 
ingenious and essentially simple. It is the aim of this paper to give a full proof of the 
convergence in (1.2) based on this method for small coupling parameter 2. We also 
give rather sharp estimates on decay properties of the one point functions at fixed 
time and on short time intervals, which are essential for proving tightness. 

(1.3) Theorem. L e t  d = 3. I f  To > O, then there exist 2o > 0 such that for 2 ~ [0, )~0], 
Pro,~ = lim~_~o P~o,a exists in the weak sense. 

For convenience, we will assume To = 1. 
Convergence is achieved by using a different "Schwinger Dyson equation" than 

that used in [1]. For this, the gap regularization is particularly well adapted. It 
might be difficult to handle with the lattice regularization used in [1]. 

The main shortcoming of the approach up to now is the restriction to small 2. 
There is some hope that a suitable extension of the method could prove the result 
for any 2 > 0. 

The method can probably be developed further to give more precise informa- 
tion on the polymer measures. An example of such results are in papers by 
Kusuoka [4] and more recently by Zhou [10] which are based on the Westwater 
approach. 
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The paper is organised as follows: In Sect. 2, we derive the basic inequalities, 
which are essentially the same as those used in [1]. We use these inequalities in 
Sect. 3 to prove some rather precise estimates for the so-called one point functions 
at fixed time. This implies tightness immediately. In Sect. 4, we derive our alterna- 
tive inequalities by differentiating with respect to e. This is used to prove conver- 
gence. Probably, one could use this different approach also to prove the estimates 
on the one-point functions of Sect. 3 directly. However, as remarked above, the 
required cancellation properties of the divergencies is much more delicate, and 
given the results of Sect. 3, only a relatively small additional information is needed. 

The situation in dimension 3 is somewhat simplified by the fact that it is the 
border case where a socalled mass renormalisation is necessary, i.e. where (1.1) does 
not work. In fact the really virulent divergency is only logarithmic. This allows at 
several places to use rather crude estimates. 

No knowledge of [1] or [2] is assumed. 

2 The basic inequalities 

For  fixed e, ^~ PT, ~ has a bounded density with respect to Wiener measure. Therefore 
P~-,x(cor e A) has a density with respect to Lebesgue measure, which we denote by 
p~r, z(x). PT denotes the transition density of the Wiener measure, i.e. 

1 
pT(X) -- tZ~)'%Z ~'3/a exp( - - Ix  [2/2T) . 

We introduce some notations: 

If f ( s l  . . . . .  s,) is a bounded measurable function, defined on 
t = < s~ = < . . .  = < s, = < T, we put by an abuse of notation: 

T T T 

It, r(f(s~ . . . .  , s,)) = f ds~ f dsz. . ,  f ds , f (s l , . . . ,  s,). 
t s 1 8 n -  1 

We will use sl . . . .  , s, exclusively in such expressions. Further pushing the abuse: 
If e.g. sl does not appear on the left hand side, then nevertheless the sl -integration 
is performed on the right hand side (giving of course just a factor (s2 - t)). We also 
write IT for IO, T. Let j"(s) = 1E~, ~)(s), e > 0. 

I f O < s < t < = T , O < = u < v < = T ; e , a > O , ~ O ~ C T ,  let 

t 

j~,a (o,)~ j , , , ; . , v ,  , -- f da d'cp,(o~ - o , )  . 
s (u v ( a + ~ ) )  A v 

E , a  We put J~,'2 = J~,t;~,t. We need also a joint continuous version of JO, T~ for the 
Brownian bridge, tied down at x e IR 3. To formulate this, we have to define the 
bridges for various T and x on a single probability space, Let Or, x: C1 ~ CT be 
defined by 
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- 1  P I ~ T  x is the law of the tied down Brownian motion. If a > 0, 0 < e < T, x e ]R 3, 

~o e C1, let 
T - e  T 

y~,  a tO)~ r, xt J = f ds f dt pa(C'r,x(CO)(S) -- ~r,x(CO)(t)). 
0 s+e 

g,a Obviously, Y~,~ depends continuously on (e, a, T, x) on e, a > O. If one considers 
the intersection local times of independent Brownian motions or bridges then no 
e-gap is needed. We will use this for a bridge and a Brownian motion. So we define 

a " C  W~,s; ~,y. 1 x Cs --* [0, oo) by 

T S 

W~-,s;x,y(~o, co') = f dt f ds po(r - co'(s) - y), (co, oJ ) eC1  • C s ,  
0 0 

C1 x Cs is equipped with the probability measure P1 x Ps. 

(2.1) Proposition. There exist versions o f  J~'~ Y~'" W a which are jointly s , t ;u , v ,  T,x~ T , S ; x , y  

continuous in all the parameters on e > 0, a __> 0. 

Especially, we claim that there exists a continuous limit as a ~ 0 (but not for 
e -~ 0). If a = 0, we just drop the index a. The proposition can be proved by the 
methods in [5]. We will give the proof for Y in an Appendix. The other cases are 
similar. 

It is better, not to normalise e x p ( - J ~ , r ) d P r  immediately to a probability 
measure, but only to a measure which remains bounded. This is achieved by so 
called counterterms. 

~c2(e) = Ii(j~(s2)j~(s3 - Sl)]IPs~P~-~P~-~ 111) 

where II II1 denotes the L~-norm with respect to Lebesgue measure. Remark that 
I[ P.P~Pt ]J 1 = ( 2 g )  - 3 (UV -~ Ut -~- v t ) -  3/2. The asymptotic behaviour of ~c2(e) for e ~ 0 
is then calculated as 

(2.2) K2 (e) ~ (2~)- 2 l log el �9 

If s < t, we define 

(2.3) f~ 'z  2 J ~ t -  2(t - s)Kl(e) 4- J,2(t - -  S)/s ) 

In order to not overburden the notation, we usually drop the dependence of f on 
2 and e if no confusion can arise, but this dependence should always be kept in 
mind. We will use e exclusively for the regularization parameter and 2 for the 
coupling constant. 

We define the measure G~ z on IR 3 by G ~ ( A ) =  E(exp( - - J~ :~ ) l~A) .  As 
exp(--Jo, T) is, for fixed e, 2 > 0, a positive and bounded random variable, G~ z has 
a density g~ ~ with respect to Lebesgue measure. 

We will derive two basic inequalities for pr(x)  - gT(X) for fixed e. We will derive 
them by somewhat cavalier looking calculations using the Dirac b-function. This, 
however, is only a notational convenience. We have to replace 5 by p,, letting 
a ~ 0, and using Proposition 2.l. 

More precisely, we make the following convention which is also in force in Sect. 
4: If we write A > B, where A, B are real valued expressions containing b-functions, 
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J, f etc., this means that 

liminf(A(a) - B(a) )  > O ,  
a - e 0  

where A ( a )  and B(a )  are obtained by replacing 6 by Pa and also J, f a r e  replaced by 
the corresponding quantities with fi replaced by p,. A -- B of course means that 
A > B and B >__ A. If A, B do not contain the g-function explicitly but possibly J, 
then the Proposition 2.1 guarantees that A ____ B has the usual meaning, at least if 
they are bounded. 

With this notation, we have (dropping e, 2 for convenience) 
gT(X) - ~  E ( e x p ( - -  fO, T ) b ( x  - -  O)T) ). Therefore 

pT(X) --  gT(X) = E(e-S . , rc~(x  --  C_OT))dv 

T - ,  d f~ T6(X --  COr))dv f E ( e - L ' ~ v  , 
0 

T 

f d t 6 ( c %  - osit) -}" ~ K 1 ( 8  ) - 2 2 / s  . 

( v + ~ )  A T 

d 
dv L,  r = - ,~ 

Therefore, with our/T-notat ion,  we have: 

pT(X)  --  gT(X) = } ; I T ( E ( e - f ~ , r j ~ ( s 2  --  Sl)b(f~sl -- (.Osz)b(X -- (.OT))) 

(2.4) + (--2tq (e) + 22~C2(e))Ir((ps,  * g r - s ~ ) ) "  

We now split the interaction .~,, T into the interaction on the time intervals [sl,  s2] 
and [s2, T]  and the interaction between these intervals: If 0 _< u _< v _< T, then 

(2.5) L, T = L,o + L, T + 2J,,v; ~, T. 

Without the third summand which takes care of the mutual interaction, we could 
just use the Markov property in the first summand on the right hand side of (2.4) 
and get a convenient splitting. We will expand the factor with the mutual interac- 
tion. Roughly, if we write 

e -zJ ........... 1 - -  "~Js l , s z ; sa ,  T + " " " 

and implement this into (2.4), then the 1-contribution gives a divergency (as ~ ~ 0) 
which cancels with the lc t-divergency and the ;~Jsl,~2; ~2, T-contribution cancels with 
the ~c2-divergency, and the rest stays bounded as ~ --~ 0. We will crucially use the 
fact that Ju,,; ~, r is positive. This gives us simple inequalities for the right hand side 
of (2.4) in terms of simple finite expansions. 

We first use e -~ > 1 - x for x _-> 0, and get 

E(e -Y" .~ f f ( v  - u ) 6 ( o .  - c % ) 6 ( x  --  COT)) 

(2.6) > E(e -S" , " -J~  - u ) 5 ( o .  - -  c % ) 5 ( x  --  COT)) 

T 

--  2 f dr1 f d t2 f f ( t2  - t l ) j ~ ( v  - u )E(e -J ' ,~162  - o.)5(r - ~ t l ) b ( x  - tOT)).  
u v 
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Now the first summand on the right hand side looks fine, but in the second, we are 
faced with the same problem. Therefore, we do the same trick again: For  
0 < u_< tl < v < t2 _-< T, we have 

(2.7) .~,v + f ~ , T =  f , , t l  + f l ,~  + f~,t2 + f ~ , r  + 2J.,,,;t~,~ + 2J~,t~;t2,T 

and therefore, by using just e-X < 1 for x > 0, we get 

E(e-L,o-L,~6((o .  - o)v)6(mt~ - o~t~)f(x - (DT)) 

(2.8) < E ( e -  L,, ,-  i,,,o- L,'~- Z~,~6(o~. - co~)6(c% - c% )6(x  - (DT) ) 

= ( p . ,  �9 

We introduce some abbreviations: 

q~l)(x) = j~(t)gt(x) 

q}Z)(x) = 1,(j '(se)j~(t  -- s,)9~, (x)g,2_s, ( x )g t -~(x ) )  
") 

= I r ( (p~  *9T-~)(X)qs~-~,(O)) -- tCl(e) Ir((p~, *gT-~ ) (X) )  

A (T2)(X) , (2) , = Ir ( (p~  q,~-,~ g T - ~ ) ( X ) ) - -  ~c2(e)IT((p~ *gT- ,~) (X) ) .  

We take the divergent ~cl-part into A(T x) in order to cancel the divergency in the first 
part, and similarly with the ~c2 -part in A(T 2), but  it will take some calculations to prove 
that this works. (2.4), (2.6) and (2.8) give us the first of our  basic inequalities: 

(2.9) pT(X) -- gT(X) > 2A(T1)(X) -- 22A(T2)(X) . 

The second, which gives an estimate from above is obtained in exactly the same way 
by using e -~ <= 1 - x + x2/2 for the last summand in (2.5) and e -~ > 1 - x for the 
last two summands in (2.7). This easily leads to 

pT(X) -- gT(X) < 2A(T1)(X) -- )o2A(v2)(x) + 23A(3)(x) (2.10) 

where 
A (T3)(X) = 31r((p~, * q(~)-~ * gr-~2)(X)) 

q(~) = Ir([(g~lg~,,-s~)* (gr-~,,g~2-~l)]gs3-~2)" 

Remark that A(T 3) is nonnegative. There is no counter term necessary to balance 
a further divergency, just because A(r 3) will turn out to be bounded. A consequence of 
(2.9) and (2.10) is 

IpT(x) -- aT(X)[ < &IA~T'(X)[ + 221A~T2)(X)[ + 23A(T3'(X) 

(2.12) p T ( O ) d T -  < 2 + 2 2 f [A(T2)(O)IdT 
0 0 0 0 

1 

+ f A 3,(O)dr. 
0 

Looking at the definition of q[1)(x) and q~2)(X), one  sees that if e is replaced by p, their 
appearance in A(T l) and A(T 2) resemble the counterterms ~q and ~c2. Of course, there 
are some differences which have to be taken care of. We want to apply a recursion 
argument in order to prove, with the help of (2.10)-(2.12), that p - g  remains 

(2.11) 

and 
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bounded. This is the main idea which is borrowed from [1] and [2]. In the next 
section, we will get a rather precise estimate. 

Already at this stage, one sees the difficulty with proving convergence as ~ ~ 0: 
Although the A~)(x) essentially stay bounded, as will be proved in the next section, 
they certainly will not convergence to 0. Also the inequalities will not become 
equalities in the e --* 0 limit. Therefore, it is not possible to prove convergence by just 
using (2.10)-(2.11). One could try to get a complete expansion, but the expansion will 
not convergence. The way out of these problems is to get alternative inequalities, 
essentially for g~ - g~ which become sharp as e~, e2 --' 0. This is done in Sect. 4. 

3 Reeursive estimates of g and proof of tightness 

We use c as a generic constant > 0, not necessarily the same at different occurrences. 
Also qS(x) is a generic polynom in x with nonnegative coefficients, which may also 
vary from formula to formula. We usually drop the dependence on e, 2 in our 
notation. 

(3.1) Proposition. There exist K > 0 and 20 > 0 such that for 0 < 2 < ).o and T <_ 1 
one has 

Ip (x) - g (x)l < 

We need some joint continuity and decay properties of g depending on T, x, ~. g can 
be expressed as 

g~*(x) = e + *r~l(~)- ~2r~2(~)El (e- ~r~.x)pr(x) 

where E1 refers to the expectation with respect to the Wiener measure on C1 and 
Y~, ~ was defined at the beginning of Sect. 2. By (2.2) it follows that El(exp(--2 Y), ~)) 
depends continuously on (~, T, x), 0 < e =< T and is, of course, bounded by 1. Then 

Ig)Z(x) - pT(x)l 
Ko(~,)~) = sup sup 

is finite and depends continuously on e > 0 because Pr decays faster at oe than P2r. 
Let 

= Ko( , v I r  ds 
I 0 

which also is continuous in e. ( v  denotes max). Remark that for T __< e, 9} 

= 1 + O \ ~ ] j  . Therefore, for T < e, the desired bound is trivially true. 

The main task is to prove that K(e, 2) remains bounded as e --* 0. We always keep 
e <_ T ___ 1. We start now with the estimation ofAP ~. Abbreviating f ~ - "  ds f r dt just 
as f we have 

A(~) r = f (p ,*  gr-t)(g,-~(O) -- p,_~(O)) + fg,_,(O)((p~ -- P J * g r - , )  

+ [ f P , - ~ ( O ) ( p ~ * g r - , ) - - ~ ( e ) i d t p t * g w - t  I 

= 11 + 12 -I- 13, say. 
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T t 

11 = f dt(p~*or-t) f du(g.(O) - p.(0)) 
g 

t 

p.(O)) ) p.(O)) 
1 

f du(o.(O) - < du(a.(O) - + f dul a.(O) - p.(0)l 
t 

< K(1 + tlogt[) 

and so, as g= < P= + K~spz= < c(1 + K)p2=: 

T T 

(3.2) [111 < K f dt(1 + ]logt[)(pt*gT-t) < O(K) f dr(1 + [logti)P2T 
0 

<= dp(K)T3/4pz r . 

Estimating Or-=(0) < [gt-=(0) - pt_=(0)] + pt-=(0) _-< (p(K)p2t-2=(O), we get 

1121 =< cdp(K) f p2t-2=(O)([pt -- P=l*gr-t) 

<c~(K) f t-3/2(p,+pA*p2T_2~+O(K ) f Pz,-~=(O)Ipt--P=I*P2T-2, 
{s < t /2}  {s > t /2} 

= L1 + L2, say .  

L I ~ ( 9 ( K ) {  f t-3/2p2T+ f t-3/2p2r-2t+s+ f t-3/2pZT_2t+s } 
s < t /2  s < t /2  s < t /2  

t < T / 2  t > T / 2  

<= #(K 2T + T-3/2 duupu <= O(K 2T " 

0 A 

As to L2, we remark that for s > t/2, we have 

(3.3) [P= - Pt[ <= c ] t -  s[t-Xpzt 

and therefore 

L2 =< q~(K) f 
{ s > t / 2 }  

So, we have 

(3.4) 

1131 < 

<_ 4(K)x/-Tp2T 

as e ___< T. Together with (3.2) and (3.4) this yields 

(3.5) IA~)I < ~(K)x/Tp2 T . 

1 
- - P 2 t * P 2 T - 2 t  < ~ b ( K ) x / T p 2 T  �9 
x / t - - s t  = 

2 T "  

T 1 

f dt(pt*gT-t) f ps(O)ds + tel(e) ) dtpt*gT-t ~ q~(K)x//Tp2T + CN//~P2T 
t 0 
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In  order to estimate A~r 2) and A(r 3), it is convenient  to formulate  the following simple 
result: 

(3.6) Lemma.  L e t  a ( u l , . . . ,  u , -1 )  and a(ui  . . . .  , u , -1 )  be continuous func t ions  
depending on u l ,  . .  �9  u , - 1  > 0 which satisfy  0 < a(ul  . . . . .  u , -1) ,  0 < a(ul  . . . . .  
u , -1 )  < ul + �9 �9 �9 + u , -1 .  Then 

Ir(a(s2  --  s l ,  s3 -- s2 . . . .  , s,  --  Sn-i)P~*P~(s2-sl ,s3-~2 ..... s . -  . . . . .  )*pr-s~) 

<= p T T 3 / 2 I T ( + a ( s 2  --  Sl ,S3 --  S2, . . . , T - - s , - i ) )  �9 
',~/ s~ 

Proof.  Let u = T -  s, + si.  Performing the integration on the left hand  side with 
respect to s~, leaving s2 - s~, s3 - s2, .  � 9  s, - s ,_ ~ and therefore u fixed, just gives 
a factor up,  = (2re)- 3/2u- i/2 exp( - I x  [2/2u) < (2re)- X2u-  ~/2 T3/2pr  - ~. Implement ing  
this and  convoluting with p ,  gives the desired bound. 

To  estimate A(T 2). let qt(x) = I,(j~(s2)j*(t  --  s i ) p ~ ( x ) p ~ - ~ ( x ) p t - ~ ( x ) ) ,  i.e. the q(2) 
with the q's replaced by the p's. I t  turns out that  the error by making  this replacement 

is bounded  as e ~ 0. I t  is impor tan t  here that  we have a v@-fac to r  in our recursion 
Ansatz. To  be precise, we make  the following splitting: 

A(r 2) = iT(Ps~ .(q~2)_~ _ qs2-s~)*gT-s2) + {IT(Pst * ~]s2-s~ * gT-s2)  - -  lC2(g)IT(Pst * g r - s , ) }  

= B ~ + B 2 ,  s a y .  

B~ can be es t imated in absolute  value by expressions of the form 

IT(p~, * (P~-2 ,  P ~ - ~  P ~ - ~ )  * ~2 T-2~4) where/~, is either p, or  Kv/-up2 ,  and where at  
least one of is the second possibility. Using the fact that  p,  <= cp2,,  we can est imate 
this by 

(3.7) ~) (K) I2T(P~*( ( s2  --  s l )aps2-s t (S3 --  s2)bPs3-s2(S4 --  S3)ePs4-s3)*P2T-s4)  

where a, b, c = 0 or  �89 and at least one is �89 p, ,p,~p,~ = (2rc)-3(uiu2 + u~u3 + 
U2U3) -3/2 x P a (  . . . .  2,u3) where a (u i ,  U2, U3) = (UlU2U3)(UlU 2 "~ UlU 3 71- U2U3) -1  

< u i  + u 2  + u 3 .  
Using (3.6), we can est imate (3.7) by 

qS(K)P2r T 3/2 

x I2T ((S2 -- Si)(S3 -- S2) + (S2 -- s l ) ( 2 r  -- s3) + (s3 -- s2 ) (2T- -  s3)) 3/2 

~) (K)P2T Z 3/2 , 

which is much  better  than  required. Remark ,  however,  that  if the ~ - sl factor is 
missing, then the integral is divergent.  We thus obta in  

(3.8) ]Bll <= ( 9 ( K ) T a / 2 p 2 T .  

Both parts  in B 2 a r e  divergent  for e ~ 0, and here we have to take into account  the 
cancellation. I t  suffices to use relatively crude a rguments  as the divergency is only 
a logar i thmical  one. The  somewha t  tr icky point  is that  ~ enters by a convolut ion,  
but  x2 just  stands as a factor. So we have to operate  the divergency ~ out  and "glue" 
the free ends in the convolu t ion  together.  (This kind of surgery is much  more  tr icky 
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in Sect. 4.) Coming to precise calculations, this procedure leads to the following 
splitting: 

(3.9) B2(x) = f fdydz l r ( (p~ , (y )  - p~(z))q~_~(z - Y)gT-~(X -- Z)) 

-- IT((ps~ *gT-~,)(X) ) dullq, l l t)  -= C l ( x ) -  Cz(x), say . 
Sl 

The effective cancellation has now been done within C2. This part is easily seen to 
be bounded: 

(3.10) C2 <= clr((p~ *9r-s~)llogs~ l) ==- 4)(K)T3/4P2r . 

However, we still have to check, that the surgery did do no harm, that is, we have to 
estimate C~. 
Let 

Z" = ((S 2 - -  S1 ) (S  3 - -  S2)  + (S 2 - -  S1 ) (S  4. - -  S3)  -I" (S 3 - -  $ 2 ) ( S  4 - -  $3 ) )  - 3 / 2  , 

= ( s ~  - s ~ ) ( s ~  - s ~ ) ( s ~  - s ~ ) r  ~ "  . 

Then 

(3.11) C1 <= ClT(l{sl+,<s4/2)*[psl+r -- Ps, l*gr-~,) 

+ clr(I{~I+r -- Ps, I * Q T - s 4 )  ~-- C 1 , 1  -}- C 1 , 2 ,  say . 

(3.12) [C1,11 _-< clr(l{~l<~4/2}z(P~+, + P~g)*gr-,,) 

< ~b(K)Ir(l(,, <,4/2}r(P2r-~, + Pzr-2s,+,~+,)) 

-< qS(K)Ir (1~ . . . . .  /2}r)P2r + qS(K)Ir (1{ . . . . .  /2} 1{s4 > r/2~*P2r- 2~, +~1 +~) �9 

Performing the integration over "c in the first summand for fixed s~, s4, with respect 
to s2, s3 gives a factor < c ( s , -  sl) -1 and Ir(l{~,<s2/2}(Sz- sl) -1) < cT. The 
second summand on the right hand side of (3.12) at x is 

/ 1 \ 
<= ~)(K)lr~l{~<~./2}l,s.> T/2}r ( T - -  (s4 -- sl)) 3/2) 

e - l x l2 /4T  

3 T/4 1 
' < 4)(K)Tp2r <- dp(K)e -Ix?/*r f dU,/ut/-,T_ u) - 

0 

and so 

(3.13) IC1,11 _-< dp(K)Tp2r. 

As to C1, 2 we use (3.3) and get 

(3.14) 1C1,21 < Ir(r(s4 - sl - a ) - -  ps4*gr-s4) <-_ r  "c(s4 -- Sl) Pzr 
s~ s4 /  

=<~b(K)/ ( 1 ) r  PaT <dp(K)Tp 2 T "  

(3.9)-(3.14) give B2 < ~b(K)T3/4P2r and together with (3.8), this proves 

(3.15) JA(r2)l <= (o(K)T3/4P2r. 
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�9 (3) 
As to A T , we simply estimate by gt < 4~(K)p2, and get 

A(3) r < cp(K)I2r(Ps, * [(Ps~-~lPs3-~2)*(Ps~-s,P~6-s~)]*Ps4-~3) = c~(K)I2r(zp~) 

where, with ui = si - si-1, 1 <_ i <_ 7 (So = O, s7 = 2T) 

= (2~)-~/~{(u~ + u~)(u~ + u6)u~ + u~u~(u~ + u~) + u~u~(u~ + u~)} - ~ "  

a = {ul + u7 + u4[u2u3(u5 + u6) + usu6(u2 + u 3 ) ] } d / 3  . 

We get ( 1 )  
I2r(zp~) <= cI2r (ul + uT) 3/2 r T3/2P2r 

2T 1 

< cT3/2p2r f dw f f f f du lduzdu3du ,  l(,~+,3+,~+,~<~} 

1 
1( . . . .  3}1( . . . .  ~t ( u 3 u 6 ) 3 / 2  [-w - -  /g 3 - /26] 3/2 

2T 1 
< cTa/2p2 r f dw <= cTa/2P2T, 

o ~ w ( 2 T -  w) 

and so we get 
�9 (3) (3.16) A T ~ d p ( K ) r 3 / 2 p 2  r . 

Combining (3.5), (3.15) and (3.16) yields for 2 __< 1: 

(3.17) Ko(e, 2) __< 2~b(K(e, 2)). 

In order to get a similar estimate for K itself, one uses the following estimate: 

1 )  gT(O))dT ) A(T1)(O)dT 1 1 (pr(O) -- < 2 + )2 f [A(2)(O)[dr+ 23 f A(r3)(O)dT 
o o o 

< 2[ ) A(rl)(O)dT + 2qS(K), by (3.15) and (3.16). (3.18) 
I o 

- f f  dsdvfp,,g~)(O) ) p.(O)du 
{s+v=<l} e 

1 

< f f  dsdv(p~,g~)(O) f dup.(O) 
(s+v<= 1} l-s-v 

< (a(K) f f  dsdv(s + v)-3/2(1 - s - v) -1/z = eft(K). 
{s+v<= 1} 

Therefore, together with (3.17) and (3.18), this yields K(e, 2 )<  2~(K(~, 2)). As 
K(1, 2) = 0 and K(e, 2) depends continuously on e > 0, as remarked at the begin- 
ning of this section, we immediately conclude that for small 2 > 0 K(e, 2) < p(2), 
where p(2) = inf{x > 0: x = 2 ~b(x)}, and for which obviously p(2) < c2 holds for 
small enough 2, i.e. we have proved the Proposition 3.1. 
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P r o o f  o f  t igh tness .  We already know from (3.1) that IE(exp(-J6 ,  t ) ) -  11 < cA. 
F o r 0 < t < t + h < l ,  wehave 

E(e-Yo., [co, _ co~+hl 4) < E(e-Yo. , -L,+,-J ,+~,~l~o t _ c&+ht 4) 

= I1 gt II1 II g l  - t - h  111 fl x [4gh(x)dx < ch 2 . 

This implies/~,;.(Icgt - cot+hi 4) < ch 2 for small 2 > 0, which proves tightness. 

4 Proof of convergence in Theorem 1.3 

As remarked at the end of Sect. 2, the procedure in Sect. 3 cannot be used to prove 
convergence directly. However, given the boundedness results of this section, it 
essentially suffices to have one-sided bounds of the derivative with respect to e of 
certain quantities. For this differentiation, the gap-regularization we use is much 
more convenient than the lattice regularization used in [1]. (However, I believe, 
that the procedure used here could be used in this context, too, and maybe also for 
the construction of the ~b~ quantum field, see [2].) 

The proof is quite involved, owing mainly to the fact that differentiation with 
respect to e leads to expressions, in which, although they look of the same type as 
those encountered in Sect. 2 and 3, the cancellation of the divergencies is much 
more delicate. 

We introduce an additional shorthand: i(~) is a generic nonnegative function of 
e > 0 which is integrable in e at 0. 

Let ~: [0, 1] x IR 3 ~ IR be bounded and infinitely often differentiable with all 
derivatives bounded, and for 0 < s < t < 1, let 7~,,t: f2 ~ (0, ~ )  be defined by 

(/ ) 7Js, t = exp O(u, cg(u))du . 

For short, we write 7 t =_ 7%, 1. 
Let p (e) = E (exp(-J~,  1)qJ). To prove the theorem, it suffices now to prove that 

l im,.o p(e)  exists for all choices of ~ and small enough L We already know from 
Proposition 3.i that p(e) remains bounded as e-~0. Convergence is therefore 
implied by a one sided bound of the form 

g 2  

(4.1) P(e2) -- P(~I) >= -- f i(e)de 
gl 

for 0 < el < e2- We write the left hand side as the integral over the derivative. 
Actually, we don't want to show that this derivative exists. All we need is a lower 

1 

bound for liminfa~o~p~(a) where p, is obtained by replacing J by j a  (with 

6 replaced by p,, differentiability is obvious). In fact, one easily gets 

__ (  liminf--  
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d d 
For notational convenience, we write ~ p(e) instead of liminfa-~O ~ p,(e) and use 

the 6 -p , -convent ion  of Sect. 2. 

, (, 
(4.2) ~ p ( e ) = 2  f dse(e-Y~ 2~/-~c:(g)- --~c2(e) p(e) 

o de 

J0,1= 7"s 
Jo,: + 2ao,,;s,~+~ + 2&,~+~;~+~,: - 2~c:(e) + O(e 3/4) 

where J~.l = fo,~ + s + 2Jo,s;s+~,a. 

(4.3) E(e-  Y~ - oo,+~) ~) >= E(e-'Tt.*6(o)~ - o),+~) gt)e ~':(~-~ 

- 2E(e-?~.16(og, - co,+~)(Jo,,;,,,+, + 4,,+~;,+~,~)t/')(1 + O(x//~)). 

In a similar way as in Sect. 3 there is a cancellation between the first summand on 
d 

the right hand side of (4.3) and the ~ ~c: summand in (4.2) and between the second 

d 
summand in (4.3) and the ~ x2 summand in (4.2). The argument is however subtler 

than there. Then main difficulty is that the factors which are relevant for the 
divergency in (4.3), namely a(a~,-  o9~+~) in the first summand and 8(o9~- a~+~) 
(Jo,,;,,,+~ +-/~,,+~;z+,,1), cannot readily be extracted from the expectation, the 
reason being that Jd,,  still contains the interaction between the time interval [0, s] 
and [s + e, 1]. This interaction gives a finite contribution which however is not 
going to 0 for e --+ 0.  Therefore, it would do no good to expand it as one would loose 

d 
all control over the cancellation with the ~ x~ summands in (4.2). It is therefore 

necessary to extract these divergencies, without doing much harm to the interac- 
tions on the whole path. This is a subtle procedure and some care is needed, 
otherwise all kind of uncancelled divergencies pop up. 

We start with proving the partial cancellation of the first summand on the right 
d 

hand side of (4.3) with the ~ tq summand in (4.2). 

E(e-'~8,:6(r_o, - o,+~) kg) = E(e Y~,~6(o~ - 6os+~)~O,s~+~,:(1 + O(e))) 

= p~(O)E(e -i~ .... -;~v~kgo,s(kg~+~,l o0~)(1 + O(e))) 

(4.4) = p~(O)E(e -i~ .... -zrs~(1 + O(e))) 

> p~(0)(1 + O(e)){E(e -& .... 71 ) -  2E(Y~e -fo .... 7/)} 

where Y~ = Y,~ = f fdudv  1{o<,<~_<~<1-~,~-,=<~}6(r - r and O~(r = ~o,_~. The 
justification of the second equality is by Proposition 3.1. Indeed for a fixed s, one 

~,a  ~,a  calculates E{exp[-2J~',~ - 2J~+~,1 - 2Jo,~;,+~,l] p~(co~ - co~+~)~o,,~,+~,:} by 
conditioning the Wiener measure on C: on the positions at s and at s + e which leads 
to a disintegration with a bridge on [0, s] and a Wiener path on Is + e, 1]. Proposi- 
tion 3.1 (with the W) then easily proves the desired equality. 
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If v -  u < e, then 

E ( 6 ( c o , -  o~v)e - L  .... ~ )  

< E(6(o). -- cG)e -&,"-y~ .... -as  ......... (1 + O ( x / e ) ) ~  ) 

(4.5) < p,_,(O)E(e -J~ . . . . .  (~ + O(x/~)) .  

We claim that  for r < 2e, we have 

(4.6) [E(e -]~ .... T ) -  E(e-Y~ < ce ~+~ 

for some 5 > 0. Probably,  the left hand  side of (4.6) can be bounded  by < ce, but this 
is not  impor tan t  for us. We postpone the proof  of (4.6) for the moment .  Using 
(4.4)-(4.6), we get for s < s < 1 - e 

E(e-"rS.~5(co~ -- r > &(O)p(e)(1 - O(e~+a)) 

- 2p~(O)ffdu dv l{.uo__<~, ~_.<=~}p~_.(O)p(e)(1 + O(x/~)).  

Remark  that  f f d u d v  l{ .~o__<. , . - .~}p.- . (0)= etq(e). Therefore, we get for the first 
summand  on the right hand side of (4.3) an estimate > p~(O)p(e)- fie), as p(e) 

d 
remains bounded,  p~(0) = ~ K1 (e), and so we see that  we have obtained the required 

cancellation of the first part,  and we get from (4.2) 

d - - 2  2 1 - ~  geP(e)> f dsE(e-&*a(~o,-eo,+~)EJo,,;,,,+~+ Ys,,+~;s+,,,]TJ)(l +O(x/~)) 
0 

d 
(4.7) - 22 dee tc2(e)p(e) - fie). 

Let  us now look at  the first s u m m a n d  on the right hand  side of (4.7) which should 
cancel with the second up to an integrable rest (integrable in e). In  a sense, this is 
much  more  delicate than  the cancellation of the loops which lead to (4.7). However ,  
the si tuation is much  simplified by the fact that  the divergencies are of  order  l/e, so 
not  much  cancellation is needed to get an integrable rest. 

The reader  m a y  find it instructive to look back at the derivat ion of (4.7) under  
d 

this viewpoint.  The original divergency of the first s u m m a n d  in (4.3) and ~ K1 is of 

order  e -  3/2, and it would have been easy to get a cancellation with a rest of order  
g-3/2 +~ for some 6 > 0, or even with ~ = 1/2. The difficulty there is to get this with 
6 > 1/2. 

1 - - 8  

(4.8) f dsE(e-~&*5(oo~ - cos+~)Jo.~;~..+,'P) 
0 

1 - -e  s s + s  

< f ds f du f dv : (v  - u)E(e - & , ' - & ' - L  .... a(co. - cov),~(ms - os+.) 
0 0 s 

• ~'o,.%:~'s+~,1)(1 + o(~)) 
1 - ~  s s + s  

= f ds f du f dvj~(v-u)llOo,,,,(ju,~p~,vpv:+~),O~+~,ll[l(l+O(~)) 
0 0 s 

where for 0 < s < t =< 1, O,,t(x) = E(exp( - Jo : -~ ) (TJ~ , ,  ~ G ) f ( x  - og,-A). 
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Obviously,  Os, t <= c g t - s ,  and using Propos i t ion  3.1, one calculates tha t  the right 

hand  side in (4.8) is bounded  above  by c/e. Therefore,  the term with O(x/g ) in (4.7) is 
harmless,  giving a s u m m a n d  of order  e -  1/2, which can be incorpora ted  in i(e). We 
also r emark  that  we can restrict the domain  of integrat ion in the first s u m m a n d  of 
(4.7), to keep s away  f rom the bounda ry  and u (in the integrat ion in Jo,s; s,s+~) close 
to s. More  precisely, for a rb i t ra ry  0 < a < fi < 1, we have: 

f d s E ( e - & ~ f i ( a ~ s - -  ~+~)Jo,s;s,~+~kg) 
0 

(4 .9)  f ds f du f dv i~ = E ( e -  ~ - o)s+~)6(o) ,  - -  o~v) ~ )  + i(e) 
~ S - -  g p $ 

which follows in exactly the same way as in (4.8). We now want  to keep any further 
interact ion at distance f rom the u, v, s, s + e in the above  expression. To  this end we 
replace fg, 1 by a quant i ty  where all the interactions with a shor t  t ime interval 
before s and behind s + g are dropped.  This will help to extract  the divergency out  
of  the expectat ion.  It  should perhaps  be r emarked  that  here the a rgument  is quite 
brute. As indicated before, we can proceed in such a way because not  much  
cancellat ion is needed. We assume fi > �89 > e and choose y > �89 with y </? .  Then  

J~,i  > ]o,s-~, + -~+~,,1 + 2J0 , s -&s+~ , l  - O(g~ci(e)) = J~, l  - O(eT~Cl(e)), say . 

R e m a r k  that  e~Cl(e) ~ e ~- 1/2, so this par t  can be incorpora ted  in the i(e) - par t  in 
(4.9). Therefore,  the expression on the left hand  side of (4.9) is 

1 - e  ~ s s + ~  

<= f ds f du f dvE(e-J*, '6(o~,  - ~os+~)6(o~,, - coo) 

x 7to,s_~,~Ps+,~,,1) + i(e) . 

Keeping  the posit ions at the times s - e ~ and s + ~ fixed, the divergency can be 
extracted easily. Proceeding in this way, to in tegrand in the above  expression is: 

(4.10) = f dx f d y E ( e -  )a,*a(OOs - ms+,)6(oo, ,  - c% ) 7%,s -~ ,  g 's+< i 6(x - cos-e,) 

x a ( y  - co ,+A) 

= fdx f d y E ( e - ) ~ " a ( x  - c o s - , , ) a ( y  - cos+,,) 7*o,s-~, 7',+~,, i )q  . . . . .  (y - x ) ,  

where q ...... = P2~,-~-(,-, ,)*(P,-,,Pv-sPs+~-,,).  

(4.11) q . . . . .  (x) -- p2~,(x)I]p,-,p~-sp~+~-vtli  + ~t,,~,~(x), where 

. . . . .  (x) = f d z  [ p2, , - , - (~  -.)(z) - p2~,(x)] P s - . ( x  - z)p~_ A x  - z)ps + ~_ ~(x - z) 

= ~ [ p ~ e - ~ - ~ - . ) + ~ ( ~ )  - p ~ , ( x ) ]  

with z = c [ ( s  - u ) (v  - s) + (s - u ) ( s  + e - v) + (v - s)(s + ~ - v)] -a/z, a = 
(s - u ) (v  - s)(s + e - v ) z  3/2. The first s u m m a n d  on the right hand  side of (4.11) 
now looks nice: if we implement  this into (4.10), the factor pze , (x )  "glues" the loose 
ends x, y in the expecta t ion together,  and the second factor  is our  counter term.  So 
we are essentially only left with proving  that  the contr ibut ion of ~ . . . . .  is negligible. 
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Proceeding in this way, we get for the left hand side of (4.9) the estimate 

<_ f dsE(e-S~.~POs_,,qJ,+~, l) f du f dvllp,-,p~_,p~+~-~[ll + R + i(e) 
8 a S - -  ~ s 

1 d 1 - e ~  ~ s  
< - - - -~ (e )  f dsE(e J~ + R + i(e), where 
= 2 de e 

1 - e  ~ s s + e  

R < f ds f du f d v f d x f d y E ( e - ) ~ . l ~ g o , ~ _ ~ + , ~  

x ~(x - c~s_, . )~(y  - O~s+,,))lc7 . . . . .  (y - x)l 

which by v Jo,~-~, + - Jo, 1 > Js+~, and (1.3a) is 

1 --E ~ S s + ~  

< c f ds f du f dvllc],,~,vllt = i(e). 

The last estimate follows from the same kind of arguments as in the bound for C1 in 
Sect. 3. In fact, from (3.3), we get I]~.,s, vltl < cz~-~e p and f~_~duf~+~dvz < c/e. 

Therefore, we get 

1-~ 1 d 1-~~ ~s 
f dsE(e-J~ - co~+~)Jo ~.~ ~+~7 ~) < - - - - x 2 ( e )  f dsE(e-S~.~P) + i(e) 
o . . . .  2 de ~ 

which by using the same kind of arguments again (splitting Jo, z into Jo,V s t and a rest) 
l d  

is < - - - -  ~c2(e)p(~) + i(e). The same estimate holds when Jo ~.~ ~+, is replaced by 
- 2 d e  ' ' ' 

d 
J~,s+,;~+~, ~. Implementing this into (4.7) gives de p(e) > - i (e )  which is the desired 

bound for (4.1). 
It only remains to prove (4.6) which had been left open. Differentiating 

E(exp( - Jo ,v )7  z) with respect to v yields for v > e: 

(4.12) ~ E ( e x p ( - f o . ~ ) ~ )  = 2 f dsE(6(m~- m ~ ) e x p ( - f o . ~ ) 7 ' )  
0 

+ ( - 2 t q  (e) + 2at~2(e))E(exp(-fo,~)71). 

Remark that this gives the very crude and insufficient bound 

(4.13) d E(exp(_fo,~)gz) < ee_~/2 

Indeed, for the second part on the right hand side of (4.12), this is clear and the first 
part is 

(4.14) <= c f dsE(f(OJs - co~)exp(--fo,~ -- ~,~)) 
0 

= c f ds l lg~l i~gv-A0)  = O ( e - ~ / z ) ,  
0 
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by Proposi t ion  3.1. To  get a slightly better bound,  we need some cancellation in 
(4.12). We split first the integral in the first summand  on the right hand side of (4.12) 
in the par t  where s =< v - e 3/4 and where s > v - e 3/4. By the same kind of estimate 
as in (4.14), we get for v > e3/4: 

V _ ~ 3 / 4  

(4.15) f dsE(j(o~s- o~v)Yo,v7') = O(e-3/s). 
o 

V--8  V--~  

f dsE(6(cos- c%)e-Y~ <__ f dsE(e-f~ + 0(el/4)) 
v - 83/4 t~ -- 83/4 

<= f dsE(e-i~ + 0(el/4)) 
o -- 83/4 

< E(e-&,o~t ') f dsp,_~(O) + 0(e-1/4), by (4.13) 
/J --8314 

= E(exp ( - Jo ,~ )T)~q(e )  + 0 (e -1 /4 ) .  

To  have an estimate in the other  direction, we perform the same kind of analysis as 
in Sect. 3. 

f dsE(6(cos- cov)exp(-Jo,~)T) 
-- 83/4 

V- -8  

> f dsE(exp(-]o,A~o,Ag.-AO)(1- 0(el/4)) 
1~--83/4 

V- -8  

- c f ds ] du f dt jS( t -  u)E(6(~s - oJv)b(oh- ~.) 
v - -  ,~314 0 s 

x e x p ( -  fo , ,  - J,,~ - ~ , ,  - f , , ) )  . 

The first summand  on the right hand side is, again by (4.14) and Proposi t ion  3.1 
> E ( e x p ( - J o ,  ~)T)  ~1 ( t ) -  0 (s-1/4) and the second is in absolute value 

V - - 8  ] V 

< f ds du fd t f f ( t -u) l[g~[[~ Ilgs-~gt-sgv-tllx = O( l loge l ) .  
v - e  3/* 0 s 

Therefore,  we get 
I ; - -8  

(4.16) f dsE(~(co~ - c%)exp(-fo,~)7') > E ( e x p ( - f o , ~ ) T ) t q ( ~ )  - 0 ( e -1 /4 ) .  
~) __ ~3/4 

(4.12), (4.14), (4.15) and (4.16) prove d E ( e x p ( _ j o , ~ ) T )  < E_3/s, which proves (4.6). 
g o  

Appendix. Proof of Proposition 2.1 

We restrict to the discussion of YT, ~, the other  cases being similar. 

(A1) Lemma.  IfO <= 7 < �89 m e N  then 

(a) f du~du2 . . .  dum lujl ~' 1 + ~" u~ < oo, where Ux . . . .  Um s IR3  
~ ) , ~  j = 1 s = 1 
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(b) 

Proof. If  a ~ IR a, then 

f (1 + la + ul) 4 - '  IRa 

s=~ 1'~-'+2' 
f duldu2.. ,  du= [I 1 + < oo 

IRa~ j = 1 Us ) 

I x -  al e dx 
du = f (1 + Ixl) 4 - '  IR 3 

< 2~ f (1 + lal) ~ + (1 + Ixl)~dx < c(~)(1 + lal) ~ 
IR~ (1 + Ix lP  -~ = " 

Therefore,  we get 

f duk lujl' 1--[ 1 + us 1 + us / 
IRa j = l  j = l  s = l  s = l  

__< c(~) 2 lujl' I-I 1 + us 1 + us 
j = l  j = i  s = l  s = l  

F r o m  this, (a) follows and (b) is similar. 
We now start  with the p roof  of (2.1) and use modif icat ions of a rguments  in 

Rosen [5J. 

1 - e / T  1 

Y~'" ~ f ds f dtpa/T(co(t) co(s) (t s )co (1 )+( t  s ) x / ~ )  T , x  ~ . . . .  . 
0 s + e / T  

We see that  it suffices to prove  the propos i t ion  for a fixed T, for simplicity, say for 
T = I ,  and for e_->8o for an arb i t ra ry  but  fixed ~o. Let A ~ = { ( s , t ) ~ [ 0 , 1 ] :  
0 < s, s + e < t < 1}. I f S  = (s, t )~A~, we write X s  = co(t) - co(s) - (t - s)co(1). We 
will consider rectangles of the form R = [s, t ]  • [u, v], where 
0 < s < t < u < v < l .  We define 6 ( R ) = m a x ( ( t - s ) , ( v - u ) ) ,  g ( R ) = u - t .  
Clearly, for any eo > 0 and bo > 0, we can cover  At with finitely m a n y  rectangles 
R satisfying 6(R) < 50, g(R) > eo/2. If  R is such a rectangle, we write 

y~ a R,x,y = f f  d s d t p , ( X s  + (t - s)x - y), x, y~]R3; e, a > 0 
A e n R  

I t  suffices to prove  that  a cont inuous  version of Y"" exists for rectangles with R , x , y  
g(R) _-> eo/2 and 6(R) arbi trar i ly small. All what  we have to prove  is the following 
result: 

(A.2) Lemma.  I f  n ~ N, eo > 0, then there exists 6o > 0 such that for  a rectangle 
R with 6(R) < 6o, g(R) > eo/2, there exists C > 0 with 

E r ~ , a  ~~',a' . + tY + I~ + la I ~ �9 L R,x,y -- Y~,x',r'q < C [ l x  - x'l n/4 - y'l "/4 -- e'l "/s -- a' 

Proof  We first keep e = e' and a = a'. A simple calculation gives 

Effe'a~, R,x,y - -  ~re, aR, x,,y,,,~, = (2~)-3" f dk_ f dsdt ( I  _ - sj)x' - y ' ] )  
IRa. (A, n R)" j = 1 

[ )1 (1.3) - e x p ( - i k j [ ( t j -  s j )x  - y])}  exp - a ~ tkjl2/2 - ~ Var 2 kjXs~ 
j = l  \ j = t  
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where _k = ( k l ,  �9 . . ,  kn), k i e ] R 3 ,  s_ = ( s l ,  �9 �9 �9 , Sn),t_ = ( t l  . . . . .  tn), Sj = (sj, tj). T h e  

above  expression is in absolute  value 

(A.4) < C(?, n)(lx -- x't "/4 + lY - Y'] "/4) f &_ f ds at 
T~. a" R n 

• Ikj[~exp - - v a r  ~ k~Xsj . 
j=~ 2 j= t  

R e m a r k  that  this bound  does not  depend on a. We split the integrat ion with respect 
to s_,_t according to the relative ordering of the s j, tj. It  suffices to consider the cases 

a <__ S 1 < S 2 < . . . < S n ~ b < c <= t n (1 )  < t g ( 2 )  < . . . < re(n) ~ C 

where rc is a pe rmuta t ion  of 1 . . . .  , n and R = [a, b] x [c, d]. We denote  by R,,~ the 
set of 2n-tuples with (s~, sa, �9 �9 �9 s,, t t ,  t2 . . . .  , t,) satisfying this condition. We 
assume 6(R) <__ �88 and distinguish two cases: 

(I) d - a < � 8 8  a n d ( I I )  d - a > � 8 8  

In  case (I), the Brownian  bridge looks  like the ord inary  Brownian  mo t ion  (at least if 
3(R) is small). In  case (II) the si tuat ion is like if one would have two independent  
Brownian  mot ions  (also if 6(R) is small, so g(R) is large). 

We first consider the case (I). 
We have 

j = l  j = t  j = l  

where f l ( t )= o3 ( t ) -  too(t). Substi tut ing tj for t~(j) and dropping  the dash after- 
wards, we have  

j =  1 ~ n 2 - 1  
~ k J X s j  ( s = ~ l ~ s ) ( f l ( ~ x ) - f l ( s n ) ) - [ - j = l ( s = ~ l k S ) ( f l ( s J + l ) - f l ( s j ) )  

+ k~,s~ ( N t j )  - ~ ( t j - 1 ) )  
j = 2  

w i t h a < s l < s z < . . . < s , < b < C < t l < t 2 < . . . < t , < d ,  f l i s a t h r e e d i m e n -  
sional process, but  the three componen t s  are independent .  We write one c o m p o n -  

x- 'z , -2  2j~j where 4o is the c o m p o n e n t  of ent of the above expression as z.,j=o 
fl(tl) -- fl(s,) and r is the c o m p o n e n t  of  fl(si+t) - fl(si) for 1 <_ i _< n - I and  of  
f l (h - ,+2)  - f l (h- ,+l )  for n _< i _< 2n - 2. If  {j is the componen t  of  fl(u) - fl(v), we 
write Aj for u - v. Then  

var  }-', 2 ~ J  = Y ' , 2 2 ( A j -  A2) - 2 2j2kAjAk.  
j = O  j j:~ k 

R e m a r k  tha t  Ao < 3/4 and dj  < 6(R) for j > 1. Then, one easily checks that  if 
1 

6(R ) < lO~n' one has for 0 < j < 2n - 2, Aj - A 2 > �89 + ~ j  +_ k A jAg. F r o m  this, 
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> ~ v  :2A The re fo re  one  o b t a i n s  b y  the  S c h w a r t z  i n e q u a l i t y  va r  ( ~  j 2j ~j) = ~/__, j,v. ~ J. 

( ~ i  ~ ])~H~j ( ~ : ~ )  f dsd_texp - ~ v a r  Z kjXs~ <= d u e x p  - 
R~, .  L j = I  m = l  0 

~ o~UOXp(-~ ~,~, ~)~o~ .~exp(-~ ~:~ ~ ~) 
~( ~ ) - ~ (  ~ )-~ __< 1 + 1 + k,~(~) . 

m = l  j = l  m = l  j = m  

C o m b i n i n g  this  wi th  (A.3) a n d  (A.4) gives 

E~-~,~ ~ , .  ~, ~ ~t R , x , y  - -  R , x ' , y '  ; 

~ C (~) ~ ( ~ X ~ X ~ ~ ~ ~ ~ y 
Y'I"/4)  ~ ~- - - j = l  m = l  

x 1 + k~u) 
j = m  

< C(n)(lx  - x'[ "/4 + lY - Y'I "/4) R f  " 

< C(n)(lx  - x'[ "/4 + [y - y,[,/4), b y  (A. l .a )  

~ )  ~ 

~ ) "  

The  e s t ima te  of  E ( I  7~'~ ~ e . a '  ~. is s imilar .  In  fact,  we j u s t  have  to  e s t i m a t e  R , x , y  - -  R , x , y /  

l e x p ( - a l k l  2) - e x p ( - a ' l k l 2 ) l  < [a - a'll/alkl 1/4 a n d  a r g u e  as before.  

Nex t ,  we e s t i m a t e  E(IT~ ' 'a r ~"'" " = , , - Y~,~,y) stil l  in the  case  (I) for  eo < ~ < e'. C lear ly ,  
Y~ > Y~'. If  D = A~\A~,, t hen  we have  

E t ~ , a  ~ e ' , a  n 

= ( 2 ~ )  - 3 "  f dk f dsdt  f i  e x p ( - i k j [ ( t j -  sj)x - y ] )  
N 3" (R  ~ D)"  j = 1 

1 xexpE aj~ kj2j2 ~Var(~k~Xs~)l 

I~ I I 11t ~ <__ C ( n ) Z I R c ~ D I  "/~ f dk_ dsd_texp - ( p / 2 ) v a r  ~ kjXsj  
11,2. 3" ~ j =  1 

w h e n  1/p + 1/q = 1, ]R c~ D] d e n o t i n g  the  L e b e s g u e  m e a s u r e  of  R n D 

< C ( n ) [ R ~ D [  "/q f dk_ 1 + k; < C ( n , p ) [ R n D [  "/q 
]p,?n m = 1 j = 1 

if 4/p > 3, i.e. if 1/q < 1/4 b y  (A.l .b) .  Therefore ,  we have  p r o v e d  (A.2) in  case  (I). 
E v e r y t h i n g  up  to  n o w  was  for  the  case  (I). The  a r g u m e n t s  in  case  (II) a re  

essen t ia l ly  the  s a m e  wi th  on ly  m i n o r  mod i f i ca t i ons .  W e  a g a i n  have  to  e s t i m a t e  
v a r [ ~ = l  k~Xsj] f rom b e l o w  on  a __< s~ < s2 < . . .  < s,  < b < c < tn,(1 ) ( t/r(2 ) ( 
. . .  < t~(,) < d. P u t t i n g  n o w  (1 - t~) = t~(,), (1 - t ; )  = t~(,-1) . . . . .  (1 - t ' )  = t~(1) 
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and  pu t t ing  fl'(t') = fl(1 - t ') ,  we have to look  at  

~__i (j=~mk~(J))(fl'(tJ)- fl'(tj-1))- ~=l (j=~ kJ)(fl(sJ)- fl(sJ-1)) " 

Arguing  now as in the case (I), one easily sees tha t  the covar iance  ma t r ix  
of a c o m p o n e n t  of (fl'(t[),fl'(t'z)- fl'(t'l) . . . . .  fl'(t;)- fl'(t;-i), fl(si), 
fl(s2) - fi(s~), . . . ,  fl(s,) - fi(s,_ 1)) domina te s  a d iagona l  mat r ix  with entries 3tl,1, 
� 8 9  t[)  . . . .  , � 8 9  � 8 9  s , - i ) ,  if 6(R) is small  enough.  Per forming  the 
in tegra t ion  of  e x p ( - � 8 9  kjXsj]) with respect  to  s and  _t gives an uppe r  
b o u n d  

The  rest of  the a rgumen t  is the same as before. 

Acknowledgement. I would like to thank an anonymous referee for pointing OUlL a number of 
inaccuracies. 
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