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Summary. This paper considers random walks on the integers mod n sup- 
ported on k points and asks how long does it take for these walks to get close 
to uniformly distributed. If k is a constant, Greenhalgh showed that at least 
some constant times n 2/(k- 1) steps are necessary to make the distance of the 
random walk from the uniform distribution small; here we show that if n is 
prime, some constant times n 2/(k- 1) steps suffice to make this distance small 
for almost all choices of k points. The proof uses the Upper Bound Lemma of 
Diaconis and Shahshahani and some averaging techniques. This paper also 
explores some cases where k varies with n. In particular, if k = [_ (log n) a J, we 
find different kinds of results for different values of a, and these results 
disprove a conjecture of Aldous and Diaconis. 

M a t h e m a t i c s  Sub jec t  Classi f icat ion (1991):  60B 15, 60J15 

Introduction 

Consider a random walk on the integers rood n as follows. Pick certain points 
on the integers mod n; the random walk will be "supported" on these points. 
Let the walk start at 0. Pick one of the points which supports the walk at 
random (according to a specified probability distribution) and add it to the 
current position of the walk. (The first time you do this, you will be adding to 
0.) Repeat, picking the points independently of other picks but with the same 
probability distribution. How long does it take for this walk to get close to 
uniformly distributed on the integers mod n? If the certain points are - 1 (i.e. 
n - l ) ,  0, and 1, then it takes some constant times n 2 steps to get close to 
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uniform. (See [CDG].) Here we explore this question for most choices of 
k points to support the random walk where k is a fixed constant or is a power 
of log n. Note that our choices of the k points may vary with n even when 
k itself does not. Related questions have been explored by Greenhalgh in [Gr]  
and [Gr2] and by Dou in [Do],  and the question is posed by Diaconis in 
[Di]. 

We define the distance of a probability distribution P on a finite group 
G from the uniform distribution U to be 

I[P-UIL :=2s~a P ( s ) -  

= max lP ( A ) -  U(A) ]. 
A_~G 

This distance is the same as in [Di]. 
Let p ,m be the probability distribution of the sum of m i.i.d, random 

variables distributed as P. In other words, if P gives the probability distribu- 
tion of each step of the random walk, P ,m gives the probability distribution of 
the position of the random walk after m steps. 

In this paper we show 

Theorem 1 Suppose k is a fixed positive integer which is at least 2. Let 
k 

Pi, i= 1 . . . . .  k be such that p i>0  and ~i=1P~= 1. Given e>0,  

E[I[P*m-UJl]<~ 

for m= L 7n 2/(k-1) J for some constant 7 > 0  (which may depend on k and the 
values for p~ but not on n) and for sufficiently large primes n. We define 
ci :=(al ,  a2, �9 �9 �9 , ak), and we let 

Pi if a=ai for some i 
Pa(a)= 0 otherwise. 

The expectation is taken over a uniform choice of all possible ~ such that 
al, �9 �9 akeZ/nZ and such that all values of a~ . . . . .  ak are distinct. 

Note that if n is not prime, there is a non-zero probability that a random walk 
supported on k points will stay on a proper subgroup of Z/nZ. For instance, if 
k = 3 and n -- 3p where p is a large integer, then with probability approximately 
1/27, the values al ,  a2, and a3 will all be multiples of 3. 

Note that for k = 3, Theorem 1 says that after 7n steps for some constant 7, 
most walks supported on 3 points will be close to uniformly distributed. Since 
Greenhalgh's lower bound (to be described in a later section) is the same up to 
a constant multiple, most walks will take this number of steps (up to a con- 
stant multiple) to get close to uniformly distributed. There are, however, 
certain choices of 3 points which lead to a slow random walk (for example, 
- 1, 0, and 1). Theorem 2, however, provides an upper bound for how long it 
takes any random walk on Z/nZ supported on a constant k points to get close 
to uniformly distributed in the case where n is prime. 
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Theorem 2 Let e > 0 be given. Suppose Pi is as in Theorem 1. I f  n is prime and 
al . . . .  , ak are distinct elements of  Z/nZ,  then for some constant 7 >0, 

]l e , m _  U ]J < e 

regardless of the choice of  al,  �9 �9 �9 , ak if m = 7n 2. 

Thus, if al . . . .  , ak are in an "arc" about the origin (e.g. if k = 3, this arc could 
be - 1 ,  0, and 1), then this choice leads to the slowest (up to a constant 
multiple) walk possible for the choice of al . . . .  , ak. 

This paper also explores cases where the value k varies with n. In particu- 
lar, we shall show the following 2 theorems. 

Theorem 3 Suppose k=[_ (logn) a J for some constant a> 1. Suppose pi= 1/k 

f~  i = l , ' " , k "  Let e>O be given. I f  m = l  a l~  )] a - 1 1 o g k  ( 1 - e  , then 

II p , m _  u II--,1 as n--, oo for all choices of 5 where 5 and P a are as in Theorem 1. 

I f m  >__ a log n (1 + e), then for integers n, E [ I[ P * ' ~ -  g II ] ~ 0  as n ~  oo where 
a - 1  logk 

the expectation is taken over a uniform choice of  5 (as in Theorem 1). 

Theorem 4 I f  k=L (logn) a _] where a is a constant less than 1, then for any 
f ixed positive value b, the distance IIP*m--g][--+l as n ~ o v  when 
m = [  (log n) b J. 

Theorems 3 and 4 show that if k=[_ (logn) a J, the length of time it takes for 
random walks to typically get close to uniformly distributed will be substan- 
tially different depending on the value of a. 

Theorems 3 and 4 disprove a conjecture of Aldous and Diaconis [-AD]; 
their conjecture stated that for an arbitrary group G with n elements if 

[logn l+e)J, 
then E[  II p . m _  u II ] ~ 0  as n--,oo provided that k~oo  and logn / logk~oo .  
However, if a > 1, Theorem 3 shows that the conjecture is off by a factor of 
a / ( a -  1) while if a < 1, Theorem 4 shows that the conjecture is more substan- 
tially incorrect. Dou [Do] has also observed that k must be '"rather large" for 
the conjecture of Aldous and Diaconis to hold. He cited the fact that random 
walks on (Z/2Z) d require at least d points to even cover the group. However, 
our theorems show that even when there are much more than enough points 
to cover the group, a typical random walk still may converge slower than 
suggested by the conjecture of Aldous and Diaconis. 

Theorem 3 also shows that a "cutoff" phenomenon occurs for typical 
walks being considered. In a relatively short period of time, the distance of the 
typical walk from uniform goes from close to 1 to close to 0. Such phenomena 
are relatively common; see Diaconis [Di] for further examples where such 
phenomena appear. 
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Background and previous results 

In the case where k is fixed, Greenhalgh [Gr]  has shown the following lower 
bound. 

Theorem 5 Suppose Pi > O, i = 1 . . . . .  k, ~ =  1 Pi = 1. Then there exists a value 
f l ( P l  . . . .  pk)>0 and no(p1 . . . . .  Pk) such that for  all choices o f  5, 
m=[_f l (p l  . . . . .  pk)n2/(k 1) J, and n > n o ( p l  . . . .  ,Pk), 

ii p*"-gll_>_�88 
Theorem 5 nicely complements Theorem 1. Theorem 5 says that for all 
random walks supported on k points, at least some constant multiple of 
n2/(k - 1) steps are necessary for the random walk to get close to uniform. On 
the other hand, Theorem 1 says that if n is prime, some constant multiple 
times n 2/(k- 1) steps suffice to get most random walks supported on k points 
close to uniformly distributed. 

The case of Theorems 1 and 2 where pi = 1/k was proved in [Hi], and the 
proofs here are minor modifications of the proofs in [Hi]. 

Greenhalgh [Gr  2] has shown a result which is related to Theorem 1. This 
result is 

Theorem 6 For k f ixed,  k > 3, p prime, and m = a( p ) p 2/(k - 1) where a( p ) ~  oo as 
p--*oo, then Pr( I] p , m _  U II--,0)~ 1 as p--,oo where gl . . . . .  gk are chosen i.i.d. 
uniformly f rom G and 

1 
P ( g ) =  2 ~" 

i:gi=g 

Note that this theorem is essentially Theorem 1 in the case p~= 1/k for 
i-- 1 . . . . .  k; since few choices of gl, - �9 �9 gk in Greenhalgh's theorem have g~ = gj 
for some i #j ,  the change in the choice of points to support the random walk does 
not change the conclusion. The proof in this paper does show some things the 
proof in [Gr2] does not; namely this paper does prove the results when k = 2 and 
k = 3 and when pi # 1/k. Greenhalgh's proof does not readily adapt to such cases. 

Dou [-Do] has shown results for random walks supported on random 
points of an arbitrary set of finite groups provided that the size of the support 
grows sufficiently quickly. In particular, he has shown 

Theorem 7 Let  e > 0  be given. Suppose that G is any finite group with n elements. 
Let  al . . . .  , ak be chosen uniformly from G such that ai=t=aj if  i+j ,  and let 

1/k if  g = a i  for  some i 
Pa(g) = 0 otherwise. 

Then if  k>( logn)"  for  some constant a > 2  and 

a log n 
m > a _  21ogk  (l + e) , 

then E[- H P * " - U  H J ~ O  as n-~oo. 
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Note that the upper bound in Theorem 3 is close to the result of Dou except 
that the a - 2  term has been replaced by a - 1 .  

In some of our proofs, we shall use the Upper Bound Lemma of Diaconis 
and Shahshahani (described in [Di]) applied to the integers rood n. Let P be 
a probability distribution on the integers rood n. Define the Fourier transform 
of P by 

P ( j ) : =  ~, P(k)q ;k 
keZ/nZ 

where q := q (n ) :=e  2~i/n. 

The Upper Bound Lemma is 

Lemma 1 

i lP_Uii2<~ "-* =4  ~ IP(J)lZ 
.i=1 

Furthermore, it can be shown that Q ( j ) = ( P ( j ) )  m if Q = p . m .  See [Di]. This 
property enables bounds on H P * " - U  II to be determined from the Fourier 
transform of P. 

Fourier transforms and the Upper Bound Lemma can be generalized to 
deal with any finite group. See [Di] for the details. 

Results for fixed values of k 

Throughout  this section, k is assumed to be a constant integer greater than or 
equal to 2. Different values of k may change the value of"constants" introduc- 
ed in this section. Furthermore, we assume that the probabilities p ~ , . . . ,  Pk 
are positive, sum to 1, and are constant; changing the values of these probabil- 
ities also may change some the value of "constants." 

In this section, we shall prove Theorems 1 and 2. 
To prove Theorem 1, we shall prove a result on E [  II p , m  U I123. The 

following lemma relates this result to Theorem 1. 

Lemma2 I f  given e'>O, there exists a value 7>0  such that 
E [- H P*m _ U II 2 ] < e' for sufficiently large primes n and m = L ?n 2/(k- 2) j ,  then 
Theorem 1 holds. 

Proof Let e > 0  be given. Find values a > l  and E > 0  such that 

~ + ( 1 / a ) < e .  It is clear that such values exist. By the hypothesis of the 
lemma, there exists a value ? > 0 such that for sufficiently large primes n and 
m=h~nZ/~-*) j ,  EEli p ~ " - U  il 2] <~ '. 

Since the distance is non-negative, 

1 
P [ l I P ~ - U l l 2 > a e ' ] <  - 

a 
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and 

1 
PEIIP*m-UIl> ~ 3 <  -.  

a 

M. Hildebrand 

a given random walk on k points. 

L e m m a  3 

IIp*m-uJI2<_ - ~ ~ p~ +2 PilPi2 cos(2~(ai~ - ai2) j /n  ) m . 
1 <=i I <iz<=k 

This lemma can be readily proved from t h ~ U p p e r  Bound Lemma, the 

equality ] p ( j ) l Z = f i ( j ) p ( j ) ,  and the equality p,m ( j )= (p ( j ) )m.  �9 

The expression inside the absolute value sign varies with the choice of 
k points. To explore the range of values of this expression, we wish to explore 
the range of the possible values of cos(27~(ax -a~)j/n).  The following definition 
will help us to do so. Let 9,~(x)=xo where X o e ( - n / 2 ,  n/2] so that X - X o  
(modn). Note that cos(2zcx/n)=cos(2ng,(x)/n).  
The following lemma tells us about the probability that g,((a I --ai)j)/n falls in 
certain ranges for i=  2, 3 , . . . ,  k where al and j take on any fixed value. We 
shall design the ranges so that the probability that 

(g,((al  - a2)j)/n . . . . .  gn((ax - ak)j) /n) 

falls in any one k-1-dimensional  "cube" created from such ranges shall be 
small. 

L e m m a  4 Given m2, m3 . . . . .  mk, and e > O, 

P(mi(e/2) 1 / ( k  - 1 ) n ( k  - 2 ) / (k -1 ) /2  n 

<=g,,((al - a i ) j ) / n  

<=(mi+ 1)(e/2)l/(k-1)n (k 2)/(k-1)/2n, i = 2  . . . . .  k) 

< 1.1 (e/2) 
= 2 k - i n  

for large enough prime numbers n. 

Proof. The proof is fairly straightforward. 
Note that if n is odd and prime, O,( (a l -a~) j )  may take on any of the 

- n + l  n - 1  
values - - , . . . ,  - 2, - 1, 1, 2 , . . . ,  - -  that have not already been taken 

2 2 

Thus since I[ p , m  U [I =< 1, we conclude that 

E[ll P*m-gll]<~ +l-<~. 
a 

Hence Theorem 1 holds. �9 

The following lemma provides a bound on the square of the distance for 
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on by g , ( ( a ~ - a , ) j )  for i '<  i. Also note that different values of a~ correspond 
to different values of 9,((al-a~)j) .  Also note that the assumption that n is 
prime is crucial for this step; otherwise the lemma may not hold. 

On the interval 

[ rni(e/2) l/(k-1)n(k- Z)/(k-1) ,!mi+ 1)(e/2)l/(k-1)n(k- 2)/(k-1) ] 
2 2 ' 

there are at most 

(e/2) 1/ik- 1)n(k- 2) / (k -  1) 
14 

2 

values of g.( ( cq -- ai) j). 
Thus the probability in the lemma is less than or equal to 

(1 + ((e/2)1/(k- 1)n<g- 2)/(k- 1)/2)) k- 1 

( n - l ) . . .  ( n - k §  1) 

((e/2)l/(k-1)n(k-2)/(k-O/2) k-1 (1 +(2/(~/2)l/(k-On(k-2)/(k-1))) k-1 

n k- 1 (1 - ( I /n) ) (1  - ( 2 / n ) ) . . .  (1 - ( ( k -  1)/n)) ' 

Note that since 
(1 + (2/@/2)1/(k- 1)n<k- ~ ) / ( k -  1 ) ) )k  1 

(1 -(1/n))(1 - ( 2 / n ) ) . . .  (1 - ( ( k -  1)/n)) 

as n--,oe, the lemma follows by simple computation. �9 

Next we shall look further at the values of the expression inside the absolute 
value in Lemma 3. 

Lemma 5 Let 

Then 

and if 

 l=max(  1 / 
i = 1  il ~i 2 

- b l < (  ~ P ~ )  + 2  ~ Pi~p6cos(2~z(ai~-a~)J/n) <1 
i = 1  l<=il<i2<=k 

( ~ p2 )-{-2 2 PitPizCOS(27~(ail--ai2)J/n)>bl~ 
i = 1  1<=ii <i2~k 

then cos(2~r(al-al) j /n)>0.99 for i=2, 3 , . . . ,  k. 

Proof. The proof is a straightforward exercise. �9 

Note that there is a constant c1~(0, 1] such that if cos(2nk/n)>0.99, then 

(c~/2)(g~(k)) 2 
cos(2~zk/n) <_ 1 n2 
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(There is nothing particularly special about the value 0.99; similar constants 
can be found if 0.99 is replaced by other positive values less than 1.) Also note 
that if cos(27ck/n) > 0.99 and I m~l (e/2) 1/(k- 1)n(k- 2)/(k 1)/2 n < I g,((al - ai)j)/n], 
then cos(2rt(al - ai)j/n) < cos(2rcmi(e/2) 1/(k 1)n(k- 2)/(k- 1)/2n)" We shall use 
this bound in proving 

Lemma 6 There exists a value no such that if n is a prime number greater than 
no then for all al and j, 

E I (i~__iP2)+Rl<=i~<i2<=k pilpi2cOs(27c(ail-ai2)j/n) 'nl<= ~ 

where m = L Y n2/(k- 1) ] where y is a positive constant not depending on al and j. 

Proof. First observe from Lemmas 4 and 5 that 

E p{ +2  ~ pi~pi2cos(2rc(ail-ai2)j/n) 
i = 1  l<=il<i2<=k 

<b~'+ ~, ~ l - c a  min pqpi2 
m i ~ [ - { . -  1,•.1 i 1 r  2 

i = 2  . . . . .  k 

L (min(Imil, Im,+ 1 I))2(e/2)2/(k-1)'~ ~ 
x ~=~ 4 ~ a _  ~ j 

1.1 (~/2) 
= b ~ + 2  k-1 ~ 2 k - l n  

m~e[O,{.]  
i = 2  . . . . .  k 

where f ,  is the largest positive integer ( such that 

[., ['~(E/2)~/(k- ~)n(~- z)/~k ~) ) )>0.9 9 
c~ kzrc k 2~n 

and the argument of the cosine function is in the first quadrant. This inequal- 
ity results from splitting the case where cos(2rc(a~-ai ) j /n)>0.99 for all 
i=  2 . . . . .  k from the other cases. By Lemma 5, in the other cases the term 
whose expected value we are taking will be less than b~'.  Where 
cos(2rc(al -a~) j /n)>0.99 for all i = 2  . . . . .  k, we may assume that the term 
inside the absolute value sign is positive; otherwise we know its absolute value 
is less than b~. The remaining terms in the inequality come from the probabil- 
ity in Lemma 4 and the bound on cos(2~z(al-a~)j/n). 

Since c1<1, since pi<=l/k for some i, and since as n~oo,  
maxm,~to/,lm2(~/2) 2/(k- 1)/(4n2/(k- 1))--+(arccos 0.99/2~) 2 < 1, we have 

c~ m i n  Pi~Pl2 4n2/(k - 1) < 1 i~r z / = 2  
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for sufficiently large n and for all m~ in the range of the sum. Thus 

( )~,  m2(e/2)2/(k-~) 
0 < l - c ~  rain p~p~ <1 

it~i 2 i = 2  4tl2/(k- l )  - -  " 

Hence 

( (  )~',m~(e/2'E/(k-l')m ( ~rng(e/2,2/'~l)'~ 
1-q  min pi,Pi~ 4n2/(k_ l ) __<exp --mc 2 4n2/(k_ l) j 

il#i z i = 2  i = 2  

for some constant c2 > 0. 
Thus we may conclude 

E [  (~__~ p 2 ) + 2  ~ __<~1~<~=< k pqpi~cos(2rc(ah-a~)j/n)"1 

<b~'+ Y, 
m ~ [ 0 ,  l . ]  

i = 2  . . . . .  k 

=<b~'+ Z 
mi~ [0 ,  oe) 

i = 2  . . . . .  k 

~" ( ~ (g/2) 2/(k-1) ) 
1.1 2nn exp -mc2 m 2 

i = 2  4n2/(k-1) 

m (e/2) 2/(k _O'~ 
1.1~nneXp --mc2 _ i=2 ' 4n2/(k-1) J 

= b ~ + (  1.1e -~n)/(1--exp(--mcz(e/2)2/(k t)/4n2/(k-1)))k-1. 

For m = 1_ ~n 2/(k- ~) _] for some constant ~ > 0, the denominator is greater than 
0.7. Then 

~, pi~pi2 cos(2~(al -ai2)j/n) <=b'~+ 0.% 
l <=il <i2 <= k n 

g 
< 

n 

for sufficiently large n since bl is a constant less than 1. �9 

By using the Upper Bound Lemma, we may conclude that 
Ell]P*" U[12]<(e/4)<e if m is as in Lemma 6. Thus the hypothesis of 
Lemma 2 is satisfied, and we have proved Theorem 1. �9 

Proof of Theorem 2 

This proof is quite straightforward. 
Observe that (al - a2 ,  n)= 1. Also observe that 

- l+p2 - -< (  ~ P 2 ) +  2 ~ PilPi2COS(2rc(ai,-ai2)J/n ) 
i = i  l<=i1<i2<=k 

=< (1 -- 2pl p2) + 2plp2 cos (2re(a1 --aa)j/n). 
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Note that ( a l - a z ) j  runs through 1, 2 , . . . , n - 1  (modn) for 
j = 1, 2 , . . . ,  n -  1. Thus, by arguments identical (up to a constant) to argu- 
ments in the proof of the right side of (9) in [CDG], Theorem 2 holds. (The 
proof in ECDG] simply uses the Upper Bound Lemma to bound the simple 
random walk on Z/nZ.) �9 

Proof of Theorem 3 

First off, we shall prove the portion where 

m=  ( 1 - e  . 
a 1 logk 

We shall show that after this many steps, the random walk will, with probabil- 
ity approaching 1, be on a set which has probability approaching 0 on the 
uniform distribution on Z/nZ. Thus the distance from uniform will approach 
1. We shall use 

Lemma 7 There is a function f (n)  with f(n)-+O as n~oo such that with 
probability approachin 9 1 the proportion of the points picked more than once in 
the m trials is less than f (n). 

Proof The probability that the point chosen on the i-th trial is picked on one 
or more of the remaining m - 1  trials is less than m/k. Hence the expected 
number of trials which are duplicated elsewhere is less than 
(m2/k)<(logn) (z-a) for sufficiently large n. By Markov's inequality, the 
probability that the number of trials which are duplicated elsewhere is greater 
than (log n) ((2-a)+ 1)/2 will approach 0 as n~oo.  (Recall that a >  1.) So let 

(log n)((2-a)+ 1)/2 
f ( n ) -  

m 

Note that f (n )~O as n~oo and satisfies the condition of the lemma. �9 

After m steps of the random walk, there are 

([_ (logn)a j)[ (a/(a-1)>(logn/logk)(1-g)j 

choices to make. Since Z/nZ is abelian, rearranging the trials in the random 
walk will not change the final position of the walk. Thus each walk (except for 
those walks where the proportion of trials being duplicated is over f(n))  has 
at least (1 [ (a/ (a-  1))(log n/log k)(1 - e) J (1 - f ( n ) )  1) ! other walks with the 
same sum. 

So except for events with probability approaching 0, there are no more than 

(k(logn),j)L(a/(a 1)) ( logn/ logk) ( t  z)J 

([_ [_(a/(a- 1))(logn/logk)(1 -e )  J(1 - f (n ) )  J)! 

possible values. By Stirling's formula, this value can be shown to be n 1 -~+o(1), 
and hence this portion of Theorem 3 is true. �9 
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Next we shall show that if n is prime then as n-+ ~ ,  E [ I] P ' m -  U 1] ] -+0 if a > 1 
and 

a log n 
r e > a - 1  l o g k ( l + e ) "  

First, we shall establish relations between certain expected values. 

Lemma 8 I fE  E II P~m-  U ]12] -+0 as n ~  ~ ,  then E [ II p~m_ U II ]-+0 as n ~  ~ .  

Proof. The proof is similar to the proof of Lemma 2. �9 

It is slightly easier to deal with the case where each of the k values is picked 
i.i.d, from Z/nZ. In this case, we shall let P~ ( ( )=  [{i: ai = ~ } [/k. 

Lemma 9 I f  the expected value of [[ P~'m-U[[2-+0 as n-+~ where the ex- 
pected value is over all choices of ~t=(al . . . .  , ak) where a~ is i.i.d, uniform on 
Z/nZ, then the expected value of ]] P * ~ -  U ]I 2-+0 as n-~ oo where the expected 
value is over all choices of Yt = (al,  . �9 . , ak) where {t is uniform over all elements 
of (Z/nZ) k with ai ~ aj when i@j. 

Proof. The probability (al . . . .  , ak) will have a duplication when ai is i.i.d. 
uniform on Z/nZ is less than (kE/n)-+O as n-+ ~ .  Since the distance is always 
between 0 and 1, the result on expected values follows. �9 

With each of the k values picked i.i.d, from Z/nZ, note that kP~(j) is the sum of 
k mutually independent random variables with expected value 0 and length 1; 
the expected value results from the fact that ~ ,~Gp(s) - -0  when p is a non- 
trivial irreducible representation of degree 1. Thus, by Theorem A. 16 of [AS] 
(and symmetry considerations), we have 

P([ k/3a(j) [ > 2c(log n) (a+ 1)/2) 

< P(Re(kPa(j))  > c(log n) ("+ 1)/2) + P(Re(kPa(j))  < - c(log n) (a + 1)/2) 

+ P (Im(kfia(j)) > c(log n) (~+ 1~/2) + p (Im(kP~(j)) < - c(log n) (~+ 1)/2) 

<4exp(-c2( logn)~+ l /2[_ (logn)"J) 

< 1/n 2 

by appropriate choice of the constant c. Thus 

P ( ] / ~ ( j )  [ > 2c/(log n) (~- 1)/2) < 1/n 2 

and 

E[I~(j)I2((I+~)/( a 1 ) ) ( l ~ 1 7 6 1 7 6 1 7 6 1 7 6  
- ( l o g  n) 

~(2C) ((l +e)/(a-1))(l~176176 1 

Cl < _ _  
Z n l + e '  
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for sufficiently large n where cl and e' are positive constants. 
Thus 

as n--, oe if n is prime and 

E [  II P * ~ -  U H 2]_.0 

a log n 
m ~ ( l + e )  

a - 1  logk '  

By Lemmas 8 and 9, our proof of Theorem 3 is now complete. �9 

Note that, since any irreducible representation on any element of an 
abelian group has length 1 and since there are n irreducible representations 
(all with degree 1) of an abelian group of order n, Theorem 3 applies to any 
abelian group of order n and not just Z/nZ. 

Proof of Theorem 4 

The proof of Theorem 4 is relatively short. 
Let k=[_ (log n)" / with a <  1. Since we are performing a random walk on 

an abelian group, the position of the random walk after a certain number of 
steps depends only on the number of times we pick each of the k points, which 
"support" the walk. A given point, after (log n) b steps can be picked 
0, 1, 2 . . . .  , (logn) b times. So there are less than (1 +(log n)b) k values at this 
stage of the random walk. Note that 

(1 + (log r / )b)  k = e (c+b log log n)k 

N exp ((c + b log log n) (log n) ~) 

gl(c+b log log n) (log n)a/(log n) 

where c~O as n-~oo. Note that (c+bloglogn)(logn)~/(logn)-~O as n-~oo if 
a < 1. Thus after this many steps, the distance from uniform approaches 1. �9 

Problems for further study 

In the case where k=[_ (logn) a J, a > l ,  most walks showed a sharp cutoff 
where the distance from uniform rapidly goes from near 1 to near 0. If k = 2, 
such a cutoff does not exist. (See [CDG] for an example; here the distance 
from uniform does not depend on the 2 points chosen if n is prime.) It would 
be interesting to see more general circumstances where typical random walks 
do or do not have this cutoff. 

Another problem for further study is to get a clearer picture of the 
transition around a = 1 when k =[_(log n)aJ. What happens when a = 1 + o(1)? 

Dou's results involving "random random walks" on arbitrary finite groups 
were described earlier; Theorem 3 improved Dou's results for abelian groups. 
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Are there some finite g roups  for which D o u ' s  result  is the best  possible? If  not,  

can we always improve  the cons tan t  a/(a-2) in Dou ' s  result  to a/(a-1)? 
Subsequent  work  has found answers  to these 2 quest ions  and  will be descr ibed  

in [ D H ] .  
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