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Summary. Consider estimating the mean vector 0 from data N,(O, a2I) with l~ 
norm loss, q > 1, when 0 is known to lie in an n-dimensional 1 v ball, p e (0, oe ). For  
large n, the ratio of minimax linear risk to minimax risk can be arbitrarily large if 
p < q. Obvious exceptions aside, the limiting ratio equals 1 only if p = q = 2. Our  
arguments are mostly indirect, involving a reduction to a univariate Bayes mini- 
max problem. When p < q, simple non-linear co-ordinatewise threshold rules are 
asymptotically minimax at small signal-to-noise ratios, and within a bounded 
factor of asymptotic minimaxity in general. We also give asymptotic evaluations of 
the minimax linear risk. Our  results are basic to a theory of estimation in Besov 
spaces using wavelet bases (to appear elsewhere). 
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1 Introduction 

Suppose we observe y = (yi)~'= 1 with Yi = Oi + zi, zi i.i.d. N(0, O-2), with 0 = (0~)7= 1 
an unknown element of the convex set O. Sacks and Strawderman (1982) showed 
that, in some cases, the minimax linear estimator of a linear functional L(O) could 
be improved on by a nonlinear estimator. Specifically, they showed that for 
squared error loss, the ratio RL/RN of minimax risk among linear estimates to 
minimax risk among all estimates exceeded 1 + e for some (unknown) e > 0 
depending on the problem. This raised the possibility that nonlinear estimators 
could dramatically improve on linear estimators in some cases. 

However, Ibragimov and Hasminskii (1984) established a certain limitation on 
this possibility by showing that there is a positive finite constant bounding the ratio 
RL/RN for any problem where O is symmetric and convex. Donoho,  et al. (1990) 
have shown that the Ibragimov-Hasminski i  constant is not larger than 5/4. 
Moreover, Donoho  and Liu (1991) have shown that even if O is convex but 

* * 5/4-provided inhomogeneous linear etimators are al- asymmetric, still RL/R N < 
lowed. It follows that for estimating a single linear functional, minimax linear 
estimates cannot be dramatically improved on in the worst case. 
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Some results for  ~2 error 

For the problem of estimating the whole object 0, with squared /z-loss 
I[ 0 - 0 H 2 = ~ ( 0 i -  0i) 2, one could ask again whether linear estimates are nearly 
minimax. Pinsker (1980) discovered that if O is an ellipsoid, then R ~ / R }  -~ 1 as 
n --* oe. Donoho, et al. (1990) showed that if O is an /v-body with p __> 2 then 
RL/RN <= 5/4, nonasymptotically. Thus there are again certain limits on the extent 
to which nonlinear estimates can improve on linear ones in the worst case. 

However, these limits are less universal in the case of estimating the whole 
object than they are in the case of estimating a single linear functional. In this paper 
we show that there are cases where the ratio RL /RN may be arbitrarily large. We 
begin by highlighting some conclusions for the case of ~z-error, and give later 
a systematic description of more general results for ~q-error. Let Op,, denote the 
standard n-dimensional unit ball of Iv, i.e. Op,, = {0:~] [0~[ v __< 1}. 

Theorem 1 Let  naZ(n) = constant and 0 = Ov, n. Then as n ~ oo 

R~ {loo p > 2  - - ~  = (1) 
R} p < 2 .  

This reflects the phenomenon that in some function estimation problems of a linear 
nature, the optimal rate of convergence over certain convex function classes is not 
attained by any linear estimate (Kernel, Spline, ... ). Compare also Sects. 7-9 in 
Donoho, et al. (1990), and the discussion below. 

Our technique sheds some light on this phenomenon of Pinsker's. It shows 

Theorem 2 Let  p be f ixed,  and set 0 = Or,, .  Suppose that we can choose 0 .2 = 0"2(/'/) 
in such a way that RL /RN --* 1. There are 3 possibilities: 

a. R*/n0. 2 ~ 1 (Classical case). 
b. p = 2 (Pinsker's case). 
c. R~/n0. 2 ~ 0 (trivial case). 

In words, if the minimax linear estimator is nearly minimax, then: either (case a) the 
raw data y is nearly minimax, or (case c) the trivial estimator 0 is nearly minimax, 
or else we are in the case p = 2 covered by Pinsker (1980). Put differently, Pinsker's 
phenomenon happens among Ip constraints only if p = 2. 

Theorems 1 and 2 show that improvement on minimax linear estimation is 
possible without showing how (or by how much). A heuristic argument suggests 
that a non-linear estimator that is near optimal has the form 

0z.~ = sgn(y/)([ Yi [ -- 20.) + (2) 

where 2 = 2(n, 0., p). Consider, for example, the case p = 1 and 0. = cn -1/z. Then, 
on average [0~l 5 n-1, Therefore most of the coordinates 0i are of order n-1 in 
magnitude. But for Theorem 1, 0. = 0(n-1/2) .  The nonlinear estimator with 
2 = 5 . o  will estimate most coordinates as 0 and so will be wrong in most 
coordinates by only Op(n-1), and the case of the few others by only Ov(n-1/2). As 
the minimax linear estimator is wrong in every coordinate by Or(n-z/a) ,  the result 
(1) for p < 2 might not be surprising. 

In fact, for an appropriate choice of 2, the estimator (2) is asymptotically 
minimax, and the improvement RN/RL can be calculated. 
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Theorem 3 Assume  0 < p < 2, ntTP--~ Go and o'21ogno'P---~ 0. Le t  2 2=  21ogna  p. 
Then 

n 

R* = sup Eo~.(Oi, z - 0) 2 .(1 + o(1)) (3) 
0 ~ O p , .  1 

= (2a21ognaP)l-P/2(1 + 0(1)) as na p --* ~ . (4) 

RL/RN* * = (1 + naZ)- lnaP(21ognaP)  -~+p/2 as n a P ~ o o  . (5) 

Suppose  for example  that  a = n -1/2. Then  no v = n 1-p/2, R* = 1/2 and 

R*  ~ ((2 - p) log n/n) 1 -p/2 

The es t imator  0~ s) in (2) can be said to use soft thresholding, since it is cont inuous  in 
y. An al ternative hard threshold es t imator  is 

O(~)i = y ~ I  {lY~ I > A}. (6) 

Corol lary 4 Resul ts  (3), (4) hold also for  hard threshold estimators so long as 
22 = 2 1 o g n a  p + ctlog(21ognaP) for  same ~ > p - 1. 

General conclusions for  lq loss funct ions  

2 Our  general s i tuat ion has, as before, y ,.. N,(O, a I), but  with es t imators  evaluated 
according to/q-loss  II 0 - 0 IIq q = ~ ]  IOi - Oil q. We need convexity of the loss func- 
tion, and so require that  q => 1. Thus  the class of possible ' shapes '  (p, q) for 
pa rame te r  space and loss function is given by S = (0, oe ~ x [1, ~ ). In  applications,  
interest usually centers on p or q = 1, 2, or oo, but  for the theory it is instructive to 
s tudy also in termediate  cases. This is especially true here as we do not  explicitly 
allow q = oo. Fo r  q = ~ ,  see Koros te lev  (1991) and D o n o h o  (1994). 

In  addition, it is natural ,  and impor t an t  for the applicat ions in D o n o h o  and 
Johns tone  (1992b), to allow balls of a rb i t ra ry  radius: O p , , ( r ) =  {O:Y, lOil p < rp}. 
Consider  therefore the min imax  risk 

n 

R }  = R},q(a;  O , , , ( r ) )  = inf sup EoY', [Oi - Oil q �9 (7) 
0 O,,.(r) 1 

The subscript  ' N '  indicates that  non-l inear  procedures  O(y) are allowed in the 
infimum. Of  course Ooo,n(r) is the hypercube  {0:10d _-< r Vi}. 

Our  object is to s tudy the asympto t ic  behavior  of R* as n, the number  of  
unknown  parameters ,  increases. We regard the noise level a = a(n) and ball radius 
r -- r(n) as known functions of  n. This f r amework  accommoda te s  a c o m m o n  feature 
of statistical practice: as the amoun t  of da ta  increases (here thought  of as a decreas- 
ing noise level a per parameter) ,  so too does the n u m b e r  of pa ramete r s  that  one 
m a y  contempla te  estimating. 

If  there were no pr ior  constraints,  O -- R n, then the unmodif ied raw data  would 
^ 

give a min imax  es t imator  O(y)=  y. The unconst ra ined min imax  risk equals 
Eo[ Y - -  OI q = naqcq, where Cq = EIZI  q = 2q/27z-a/2f f ( (q -k- 1)/2), and Z ~ N(0, 1). 

Asymptot ical ly,  R*  depends on the size of Op, n(r ) th rough the dimension-  
normal ized radius tin = n-1/P(r/ f f ) .  This m a y  be interpreted as the m a x i m u m  scalar 
mult iple in s tandard  deviat ion units of the vector  (1 . . . .  ,1) that  lies within Op, n(r). 
Alternatively, it is the average signal to noise ratio measured  in the /p-norm: 
(n-1 Y, I 0i/a I') 1/" <= n- l/~(r/G). 
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The asymptotics of R* depend on a standard univariate Gaussian location 
problem in which X ~ N(#, 1) and we estimate # with loss function 16(x) - #[q. 
Write 6F(X) for the Bayes estimator corresponding to a prior distribution F(d#),  
and p q ( f ) =  inf~(x)fEu[~(x ) - # l q F ( d # )  for the Bayes risk. Let ~'p01) denote 
the class of probability measures F(d#)  satisfying the moment condition 
fl #[PF(d#) _-< ~P (for p = oe, the support condition supp F ~ [ - tl, q]). An impor- 
tant role is played by the largest Bayes risk over ~-p 

pp, q(tl) = sup pq(F) . (8) 

A distribution F,,q = Fp, q(rl) maximising (8) will be called least favorable .  Usually 
the least favorable distribution Fp, q(t/) cannot be described analytically, but when 
t/, ~ 0, it is sometimes possible to find an asymptot ica l ly  least favorable  sequence of 
simple structure Fp, q,. ~ ~p(t/.) such that pq(Fp, q, .) ~ pp, q(tl.). We use v u to denote 
Dirac measure at the point # and ON(y) to denote an asymptotically minimax rule, 
not necessarily unique. 

Theorem 5 L e t  (p, q)~ (0, oo ] x [1, oo ) and set tl, = n-1/p(r /a) .  I f  ei ther (i)p >_>_ q or 
(ii) 0 < p < q and ( r  p --*0, then 

R ~  ~ nGqpp, q(rl.) 

In  specific instances, more  can be said: 

1. tl. ~ oo. R }  ,,~ naqcq, 

2. rl. ~ rl~(O, oo). R }  ~ naqpp, q(rl) 

3a. tl. --+ O, p > q. R *  ~ naqrl q, 

as n ~ oo. (9) 

ON(y) = y. 

ON, ~(y) = a~ . ,  . (a-  ~Y3. 

ON(y) = o. 

The two point  distributions F .  = ( v_ , .  + v , . ) / 2  are asymptot ica l ly  least favor-  
able. 

3b. rl. ~ O, p < q. L e t  22 = 21ogn(a / r )  p = 2log t/Z p. 

R *  ~ naqrlP.(21ogtl]P) (q-p)/2, ON, i(y) = sgn(yi)( lyi l  - 2.a)+ (10) 

(2(a/r) 2 log n(a/r)P) (q-p). 

The three point  distributions b~. = (1 - e)Vo + e(v u + v_u)/2 are asymptot ica l ly  least 
favorable ,  where e = e., # = #. ~ (2 log a21)1/2 are de termined f r o m  the equations 

e# v = tl p and dp(a. + #) = eO(a.)  (11) 

where a. = a(tl.) "~ o~ but a 2 = o(logt/~-P). 

When p = oo, the minimax risk over a hypercube separates into the product of 
n univariate minimax problems: R} = naqp~,q(1,  rl.), rl. = r/tr. (see e.g. Donoho, 
et al. (1990)), and Theorem 5 follows from asymptotics for p~,q (Theorem 15). 

For  p < oe, the proof of Theorem 5 is the subject of Sect. 2 through 5. For  
p < q, the asymptotically minimax estimators given in (10) are the same as in (2) 
except that now the choice of the threshold parameter is specified: it is noteworthy 
that this does not depend on the loss function. Another sequence of asymptotically 
minimax estimators in this case would, of course, be the Bayes estimators corre- 
sponding to an asymptotically least favorable sequence of distributions. In a sense 
made more precise in Sect. 4, these Bayes estimators approximately have the form 
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6;.(x) = # , sgn (x ) I { l x [  > #, + a,}, where an = O(#n) and #2 ~ 22 ,,~ 21ogt/~-p. It 
follows that ON, i(Y)= agL(a- lY i )  has approximately the same zero set as the 
simpler threshold rule ON, i(y). Hard threshold rules of the form (6) are also 
asymptotically minimax in the setting (3b) of Theorem 5, so long as 22 is chosen 
equal to 21ogmr p + c~log(21ogntr p) for ~ > p -  1. Note that all of these asymp- 
totically minimax estimators act co-ordinatewise: the estimate of 0i depends only 
on y~. 

The threshold estimators of the previous section have a more general asymp- 
totic near optimality property that holds whenever (9) is valid. 

Theorem 6 Let  (p,q)~(0, ~ ]  x [1, oo). There exist constants As(p,q), 
Ah(p,q)~(1,  oo) such that if  either (i) p > q or (ii) O < p < q and 
(a /r) 2 log n(cr /r) p ~ O, then 

inf sup EollO~ s) - O[lg < As(p, q)g*(a,  Op,,(r))(1 + o(1)) 
,~ Op,.(r) 

and the correspondin9 property holds for 0(~ h) (with bound Ah(p, q)). 

The theorem is proved in Sect. 6, where definitions of A(p, q) are given in terms of 
a univariate Bayes minimax estimation problem. In fact As(p, 2) and Ah(p, 2) are 
both smaller than 2.22 for all p > 2 and computational experiments indicate that 
As(l, 2) ~ 1.6. 

We turn now to the minimax linear risk R~ = R*,q(a; Op, n(r)), obtained by 
restricting attention to estimators that are linear in the data y. Because of the 
symmetry of O, this effectively means estimators of the form O(y) = ay for a ~ [0, 1], 
or equivalently, of the form y/(1 + b) for b e [0, oo ]. 

Call a set O loss-convex if the set {(0~); 0EO} is convex (cf. the notion of 
q-convexity in Lindenstrauss and Tzafiri (1979)). Clearly Op,, is loss-convex exactly 
when p > q. If p < q then the loss-convexification of Op,,, namely the smallest 
loss-convex set containing Op,,, is Oq,,. The size of the loss-convexification of 
Op,, turns out to determine minimax linear risk, and so in analogy with t/, we 
define #, = n -  lip v q(r/a). Finally, we use OL(y) to denote an asymptotically mini- 
max linear rule, again not necessarily unique. 

Theorem 7 Let  (p, q) e S = (0, oe ] x [1, oe ). The limitin9 behavior of  R* depends on 
that o f # ,  = n -  1/p ~ q(r/a) as follows. 

1. #, ~ ~ .  R* "~ n tTqcq ,  O~L,i(Y) = Yi. 
2. #, ~ q ~ ( 0 ,  ~) .  R* '-~ no-qcp, q(q). OL, i(Y) = a,(tl)yi. 

(a) I f  p < q or p = q < 2, then 

~cl /x r 1 a,(~l) = l {q  > cl} q = 1 
cp, q(r/) = ~Cq[1 + b,(t/)] -(q-l) b,(q) = c)/(q-1)rl-q' q > 1 

where (1 + b,(t/)) -~ = a,(r/) and 1/q' + 1/q = 1. 
(b) I f  p > q or p = q > 2, then 

cp, q(~l) = inf (1 + b)-qg(bPnP), 
b>0 

where s(7) is the least concave majorant of  s(7) = E I Z  + y1/Plq on [0, ~) .  (When 
p = ~ ,  replace g(bP~l p) by E I Z  -4- bt/Iq.) l fb , (r l )  attains the minimum in Cp, q(rl), then 
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OL,~(y) = y~/(1 + b,(r/)). 

3. fl, ~ O. RE ~ naqfl~ = rqn (1-q/p)+, OL, i(y) = 0 . 

The proof appears in Sect. 7. In the special case of squared error loss, q = 2, we 
have the explicit evaluation 

R~ = n~20~./(1 + 02.). (12) 

In conjunction with Theorem 5, this establishes Theorems 1 and 3. 
The following corollary describes the possible limiting behaviors for R L / R N ,  

and incidentally includes Theorem 2. Note that by passing to subsequences, we 
may always assume that q, converges. 

Corollary 8 Suppose  (p, q) e S and ~1, -* ~I e [0, oo ]. Then 

1 i f  (i)~In ---r oo, (ii)tln --+ O, p > q, or (iii)p = q = 2 

lim R~- = e(1, oo) i f r / n ~ t / E ( 0  , o o ) , p , q  not both equal to 2. 
R* 

oo i f  tl, ~ O, p < q and (o-/r) 2 log n(~/r )  p --+ Go. 

Thus, among lp ball constraints and lq losses, exac t  asymptotic optimality of linear 
estimators occurs in "non-trivial" cases only for Euclidean norm constraints and 
squared error loss. If O is loss-convex, the inefficiency of linear estimates is always 
bounded. If O is not loss-convex, and is asymptotically 'small' (~/, ~ 0), then the 
inefficiency becomes infinite at a rate which can be explicitly read off from 
Theorems 5 and 7. 

In summary, if O is large (t/, ~ oo), then the prior information conferred by 
restriction to O is weak and the raw data is nearly minimax. On the other hand, if 
O is small (r/, ~ 0), then prior information is strong, but it is the shape of O that is 
decisive: if O is loss convex, then the trivial zero estimator is near minimax, whereas 
in the non loss convex cases, threshold rules successfully capture the few non-zero 
parameters and are near minimax. In the intermediate O cases (t/, ~ t / >  0), one 
might say that prior information is partially decisive: linear rules are rate optimal, 
but not efficient, except for the isolated (but important!) case of Hilbertian norms 
on parameter space and loss function. 

Discussion and remarks  

1. Constraints on the lp norm of 0 arise in various scientific contexts. Hypercube 
constraints (a < 0i _-< b) correspond to a priori pointwise bounds; 12 constraints to 
energy bounds, and 11 constraints to bounds on distribution of total mass. As 
p ~ 0, the I v balls become cusp-like: only a small number of components can be 
significantly non-zero. Formally 

lim Op, n((ne) l/p) = On, o(~) = {0: n - j  ~ I { 0 ~  =4= 0} _<_ ~}. 
p~0  

Donoho et al. (1992) use methods of this paper and the latter "nearly-black" 
condition to study behavior of non-linear estimation rules such as maximum 
entropy. 

2. Some important earlier works exhibit function classes over which non-linear 
estimators have dramatically better worst-case performance than the best linear 
estimators in global norms. Nemirovskii et al. (1985) show that non-parametric 
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M-estimates (including constrained least squares) achieve faster rates of mean- 
squared error convergence than best linear over function classes described by 
monotonicity or total-variation constraints for which p = 1, or more generally, 
over norm-bounded sets in Sobolev spaces Wv ~ for 1 < p < 2. For related results 
see van de Geer (1990) and Birg6, Massart (1991). 

Our assumptions of highly symmetric parameter spaces and Gaussian white 
noise are very restrictive. However this symmetry permits reduction to simple 
one-dimensional estimation problems and avoids the appeal to approximation 
theoretic properties of function classes that is useful in treating problems of more 
direct practical relevance (see, for example, Ibragimov and Hasminskii (1990), van 
de Geer (1990) and Donoho (1990).) Indeed, the basic dichotomy between p < q 
and p > q, as expressed in the loss-convexity condition, appears already in our very 
simple setting. 

3. However, the idealised considerations of this paper lead to a theory of 
estimation over a wide class of (Besov) function spaces. These include the familiar 
H61der and Hilbertian Sobolev spaces in addition to other classes of scientific 
relevance, such as bounded total variation and the "bump algebra". On these latter 
spaces, non-linear methods and local bandwidth adaptivity are essential for opti- 
mal minimax estimation. The connection comes via orthonormal bases of com- 
pactly supported wavelets (e.g. Meyer (1990), Daubechies (1988, 1992)), which 
permit an identification, in an appropriate sense, of estimation over Besov spaces 
with estimation over sequence spaces. The relevant least-favorable subsets in 
sequence space are given by cartesian products of/p-balls corresponding to the 
various resolution levels of the wavelet expansion. See especially Donoho, John- 
stone (1995a, 1995b, 1993) and Donoho et al. (1995, 1993). 

4. Johnstone (1994) describes analogues of the results of this paper for weak (or 
Marcinkiewicz) :p-balls O*,p(r) = {O:kl /PlO[(k)~  r, k = 1 , . . . ,  n} where 10l(1)> 
10l(2) �9 �9 �9 _-_ ]0]~,) are order statistics of 10i[. These sets arise naturally as approxima- 
tion spaces for non-linear estimation methods such as piecewise polynomials and 
free dyadic splines. 

5. An alternative approach to some of the results of this paper follows from the 
use of oracle inequalities - see Donoho and Johnstone (1993). 

Outline of the paper 

Section 2 introduces the main tool for evaluating R*, namely a related Bayes- 
minimax risk R* in which O is enlarged to a set of prior distributions satisfying the 
same moment constraint as members of O. Thus R* __< R~, but R~ can be reduced 
to the univariate minimax risk pv, q(t/) in (8). Minimax rules for pp, q(tl) do not have 
a simple explicit form, so Sect. 3 looks at how well they may be approximated by 
univariate forms of the soft and hard threshold estimators (2) and (6). In particular 
the minimax choice of threshold 2 is found as t/--. 0 and its corresponding risk 
evaluated (Proposition 13). Section 4 evaluates the small t/behaviour of pp, q, using 
two and three point approximately least favorable priors for lower bounds and the 
threshold results of Sect. 3 for upper bounds. This completes the evaluation of 
R* and Sect. 5 finishes the proof of Theorem 5 by establishing conditions under 
which the upper bound R} __< R~ is asymptotically an equality. The brief Sect. 6 
lifts the inefficiency bounds on univariate thresholds of Sect. 3 to the n-dimensional 
setting and establishes Theorem 6. Section 7 is devoted to linear minimax rules and 
Theorem 7, while the Appendix collects proof details. 
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2 A Bayes-minimax approximation 

A standard way to study the minimax risk R} is to use Bayes rules. By usual 
arguments based on the minimax theorem, R* = sup~n p(rc), where p(Tt) denotes 
the Bayes risk E~Eo II 0~ - 0 II ~, with 0 random, 0 ~ 7z; 0n denotes the Bayes es- 
timator corresponding to prior rc and lq loss, and II denotes the set of all priors 
supported on O. 

To obtain an approximation to R} with simpler structure, consider a Bayes- 
minimax problem in which 0 is a random variable that is only required to belong to 
0 on average. Define 

R*(a, O,, p(r)) = inf sup E~Eo II 0 - 0 II ~, for ~: E ~  l Oil p <= r p �9 (13) 
0 n 1 

Since degenerate prior distributions concentrated at points 0e  O,,p(r) trivially 
satisfy the moment constraint, the Bayes-minimax risk majorizes the non-linear 
minimax risk 

R* __< R* 

Further discussion of this Bayes-minimax approach is in Donoho, Johnstone 
(1995a) and Johnstone (1994). 

In this section, we give a simpler description of R* in terms of a univariate 
estimation problem. The moment constraint depends on rc only through its 
univariate marginal distributions rci. If 0 is a co-ordinatewise estimator, that is, one 
for which 0i depends only on y~, then the integrated risk E~Eo II 0 - 0 IE ~ depends on 
~z only through the marginals g~. In view of the permutation invariance of the 
problem, consider estimators 3"(y) = ( 3 ( y l ) , . . . ,  3(y,)) constructed from a single 
univariate estimator 3. From the co-ordinatewise nature of 3", and the i.i.d. 
structure of the errors {zi}, 

g,~Eo II 3" - 0 II ~ = ~ fEo, 13(y3 - 0zlq~dd03 
i 

= fEo,  16(yl) - 011q(Y',zc3(dO0 

= nEFoEo~[6(yl) - 01 [q (14) 

where Fdd01)= n - X ~ i ( d 0 1 )  is a univariate prior. The moment condition on 
rc can also be expressed in terms of F~, as Er.[011 p < n - l r  p, since 

E= ~ IO, l ~ = ~ f lOdP~z~(dO~) = n f l01 IPF~(dO0 . (15) 
i i 

Now define a univariate Bayes-minimax problem for data Yl ~ N(01, a 2) with pth 
moment constraint z: let o~p(z) denote the collection of distributions F on N sat- 
isfying fll~lPf(dp) <= r p, and set 

p(r, a) = pp,~(z, a) = inf sup {EvEo~[3(ya) - 011q:Fe~,(~)}.  (16) 
6 F 

The point is that the n-variate problem (13) is no harder than n copies of (16). 

Proposition 9 R*(a, O,,v(r)) = np(rn-x/p, a) . 

Proof Let (F ~ 3 ~ be a saddlepoint for the univariate problem (16): that is, 6 ~ is 
a minimax rule, F ~ is a least favorable prior distribution and 3 ~ is Bayes for F ~ Let 
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F ~ denote the n-fold cartesian product measure derived from F~ from (15) and 
(14), it satisfies the moment constraint for R*, and 

EFo, Eo 1160" - 0 [[~ = np(rn-  1/v, a) . 

We need to verify that (F ~ 6 ~ is a saddlepoint for R*,  which amounts to showing 

E=Eo[I 6~ - 01]g < EFo.Eoll 6~ - 011g. 
But (14) and (15) reduce this to the saddlepoint property of (F ~ 60). I 

Properties o f  p(a, z) 

The Bayes risk function, F ~ pq(F) is concave and weakly upper semicontinuous, 
and hence attains a maximum on the weakly compact set ~-p(t/). If Fa(d#)= 
F(a - ld# ) ,  then pq(Fa)<= aqpq(F) for a > 1. (see Appendix, Sect 8.1) If we set 
p(F, 6 ) =  EeEul6(x ) - # 1  q, the minimax theorem (e.g. Sion (1958, Theorem 4.2'), 
LeCam (1986, p. 16)) provides a minimax rule 6~ such that 

p(z, a) = sup p(F, 6~) = inf sup p(F, fi) = sup p ( F ) .  (17) 

Let F~ be a distribution maximizing p(F) over ~p(z). Since p(F~,6~) 
< p('c, a) = p(F~, re), it follows from the essential uniqueness of Bayes rules (see 

Appendix of Donoho and Johnstone 1992) that be = 6F. and hence that the pair 
(F,, 60 is a saddlepoint for p(F, 6). 

Proposition 10 The function p(z, a) is continuous, monotone increasing in z, concave 
in z p and converges to aqcq as z /a  ~ ~ .  I t  satisfies 

p(z, or) = a~p(z/a, 1), (invariance) 

p(az, o) < aqp(z, a), a > 1 . 

Proof. The invariance follows by a simple rescaling, and thus all remaining proper- 
ties may be derived by considering the reduced function p(z) = p(z, 1). The inequal- 
ity follows from the corresponding inequality for F,  noted above. Monotonicity is 
clear from the definition. For concavity, set t = z p, ~ ( t )  = {F: fl#lPdF < t}, and 
hence/5(t) = p (z) = sup { p (F): F ~ ~-p(t) }. Concavity (and hence continuity) fol- 
lows immediately, because (1 - e)F1 + e F 2 ~ ( ( 1  - e)tl + et2) whenever 
Fi ~ ~p( t i )  i = 1, 2. 

To show that p(z) : cq as z/~ ~ ,  we note that appropriately scaled zero mean 
Gaussian priors satisfy the moment constraints, so that lim~. ~ p (z) > l i m ~  ~ p (~,) 
where ~P~ denotes the N(0, ~z) distribution. Since the posterior is also Gaussian, 
6~o(x) = a2x/(a 2 + 1) for all q > 1, and a simple calculation using the formula (44) 
for linear rules in Sect. 7 shows that lim, p(q3,) = cq. | 

~2 IOSS and optimization of  Fisher information 

If I(G) = f (g ' ( x ) ) z /g (x )dx  denotes the Fisher information for a distribution with 
absolutely continuous density 9, and �9 the standard Gaussian cumulative, then 
Brown's (1971) identity states 

p2(V) = 1 -- I ( F ,  cb) . (18) 

Hence the Bayes-minimax risk pp, z(Z, 1 )  = 1 - -  lp(z) ,  where 

Ip(z) = inf{I(F �9 g~): F~  ~-p(z)}. (19) 
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Some additional properties of pp,2(z, 0.) flow from (18). For example, since the 
density of ~b �9 F must be strictly positive on the whole real line, an argument of 
Huber (1964, 1974) shows the solution to (19) is unique. Call this (unique) least 
favorable distribution Fv, ~. 

Recall the well-known inequality I(F)Var(F) > 1, with equality only at the 
Gaussian. This implies that for p = 2 we have 

I2('c) = (1 + "62) -1  (20) 

and that the solution F2,~ is the Gaussian distribution N(0, z2). Indeed, it may 
further be shown that Fp,~ is Gaussian only if p = 2 (For integer p, see Feldman 
(1991)). Further, P2,2(~)= z2( 1 + ~2)-1, which equals the minimax linear risk 
infa, bSUp{Eo(ax + b - # ) 2 :  10l _-_ z}. 

When p--* oo, we get Ion(z)= inf{I(~b,F): s u p p ( F ) ~ [ - z , z ] }  which has 
arisen before in the study of estimating a single bounded normal mean (Casella and 
Strawderman (1981), Bickel (1981); see Donoho et al. (1990) for further references 
and information). From the latter paper follows 

P2, 2('c)/Poo, 2("c) ~ #*" = 1.25 . 

3 Univariate threshold rules 

In this section, we study two families of threshold estimators that offer simple, 
near-optimal alternatives to the minimax-Bayes estimator in the univariate model 
y = # + z, z ~ N(0, 0 -2) in which # is known to satisfy E~ l# f  < I7 p. These threshold 
estimators are useful because explicit expressions for the minimax Bayes estimator 
are available only when p = q = 2. 

We consider both 'soft' and 'hard' threshold rules: 

6~')(y) = sgn(y)(lyl - 2)+, ,~(zh)(Y) = yI{IYl > 2} 2e(0, oo). 

The 'hard' threshold is a discontinuous estimator of the 'pretest' type. The 'soft' 
threshold is continuous, and goes also by the names of Hodges-Lehmann, limited 
translation, or fl-estimator. The latter terminology arises because g,~')(y) is the 
minimising value of # in (y - #)2 + 21#1. 

We shall be interested in how an optimally-chosen threshold rule performs in 
comparison with the Bayes-minimax rule. Define 

p,(r/, 0.) = infsup {EFEui6(z')(y) - #[q: EFI#I p < ~v} (21) 

with a corresponding quantity ph(tl, 0.) for the hard-threshold rules. The invariances 

ps(rl, a) = ~rqp,(rl/a, 1), ph(tl, a) = 0.qph(tl/a, 1) (22) 

again ensure that it suffices to assume 0. = 1. As shown in Proposition I0 for p(~/, 1), 
the functions ps(t/, t) and ph(rl, 1) are continuous, monotonic in t/and concave in r/p. 

To measure how much is lost relative to Bayes-minimax estimators, define 
As(p, q) (and Ah(p, q)) by 

As(p, q) = sup PAt/' 0.) ~,~ p(~,~)  > 1 .  
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Theorem 11 For (p, q)e(0,  Go) • [1, oo), As(p, q) < oo and Ah(p, q) < co. 

For  the proof, it suffices to consider limiting behavior  as q ~ 0 and Go, since 
p(q, 1) > 0, Ps(q, 1) and Ph(~/, 1) are all cont inuous and positive on (0, oo). In fact we 
will show more, namely that  optimally chosen threshold rules are asymptotically 
Bayes minimax in these limiting cases: 

ps( , 1) ph( , 1) 
Theorem 12 ~ a n d  p(~/,1) ~ l a s ~ t ~ 0 a n d  oo. 

The limits as q -~ oo are trivial since both threshold families include 6(x) = x which 
has risk equal  to cq. Thus Ps(~/, 1) and Ph07, 1) =< cq = lira p(~/, 1). (Proposi t ion 10). 

For  the limit as ~ /~  0, we compute  upper  bounds for threshold rules in this 
section. [Of  course, these also provide bounds for p(~/, 1).3 In the next section, 
separate arguments are used to provide lower bounds (Theorem 15) for p(q, 1) that  
agree asymptotical ly with the upper bounds and so complete the proof  of Theorem 
12 and so of Theorem 11. 

When q __< p, upper  bounds  are straightforward. Choosing d = 0 (i,e. 2 = oo ) 
gives the upper  bound  pq(F)<__ Evl#[ q = [F[~. If q __<p, and F~o~-v(~/) , then 
JFlq < [F[p ~ rl, and 

max {ps(t/, 1), ph(tl, 1)} =< sup E r l # l ~ -  < t/q . (23) 

When  q > p, the least favorable F in ffp(t/) have the form F~,g = (1 - e )Vo  
+ e(v, + v_u)/2 where # ..~ (2log t/-P) z/2 and ~ ~ (t//#) p (cf. Proposi t ion  16). The  

minimax thresholds then are of order  ).(t/) ~ (2 log t/-P)l/2. 
We first establish some nota t ion for risk functions of estimators in the case 

a = 1. Write x for an N(#,  1) variate and r(b, #) = Eu[6(x) - #[q. Explicit formulas 
for the risk functions of the thresholds fi~) and ~(h) are given in the Appendix. 
(Sect. 8.2) We note  here only that  both  risk functions are symmetric about  # = 0, 
and that  r ( ~  s), #) increases monotonical ly  on [0, ~ ) to a bounded  limit 1 + 22, 
whereas the risk of b(z h) rises from # = 0 roughly like # ~ #2 to a maximum at 
2 - 0(2) (as 2 ~ ~ )  before decreasing (sharply) to cq as #--+ oo. 

The average risk of an est imator 6 under pr ior  F will be written 
r(6, F) = fr(6,  #)F(d#), and the worst  average risk over ffp(~/) is 

f(fi, ~/) = sup {r(6, F): F~ffp(~/)} . 

Thus p~(t/, 1) = infaf(6~ ~), q) and similarly for ph(tl, 1). 

Proposition 13 Suppose that p < q and let 2 = 2(q) be chosen such that 

(a) for soft thresholds, 22 = 21og~ -p + e for  [el < Co, 

(b) for hard thresholds 2 z = 2log t/-p + alog(21ogq-P) for ~ > p - 1. Then 

~(3a, t/) ~ ~v2q-P, 

p~(t/, 1), Ph(q, 1) < qP(21ogtl-P)q-P(1 + o(1)) as tl ~ O . 

Remarks. 1. An heuristic argument  for the choice of 2 goes as follows. The 
est imator  0z is clearly related to the problem of deciding whether  ] 0~] is larger than 
2a. The parameter  space constraint  limits the number  of 0r that can equal 2a to at 
most  n~, where ne(2a)P = 1. Thus  we consider a univariate hypothesis testing 
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problem with Y,,~ N(O, a), with Ho: 0 = 0 and Hi :  0 = ha and assign prior  prob- 
abilities 7r(Ho) = 1 - e and n (Ht )  = e. The est imator 04 is related to the decision 
rule q~(y) = I{[y[ > ha}. Let P~ denote  the joint  distribution of 0 and Y. Let us 
choose 2 to minimise the maximum of  the two error  probabilities of the decision 
rule 4), namely eo = P~(Ho, lYt > ha), and el = P~(H1, lY] < ha). Since e0(2) is 
decreasing and e I (4) is increasing, the minimax choice of 2 is found by equating the 
two; i.e. approximately  by solving (1 - e)(1 - ~)(2) = e/2. Since 2 will turn out  to 
be large, we may use the s tandard approximat ion  1 - ~(2) ~ 4)(2)/2, and solve the 
equat ion 4)(2) = 2e/2. If p = 1, the constraint  ne2a = 1, combined with the defini- 
t ion rl-~ = na implies that  42 ~ 2 log ~/-~ + 2 log x / ~ "  For  general p, the equa- 
tion for 2 becomes approximately  

e 2p21-P = I,]p21-P/2 4 ) ( 4 )  = 

where we have used the constraints e2 p = n - l a  -p = t/p. This has solution 42 
21ogr/-p + (p - 1)log(2 logq -p + c) + log(Tz/2) ~ 21ogt/-p. 

2. The optimal hard thresholds are slightly larger than the corresponding 
optimal soft cutoffs. One reason for this is seen by considering behavior  of the risk 
functions near # = 0 in the squared error  case q = 2. Indeed for fixed 4, r(cS~ ), 0) = 
2[;~4)(2) + ~(2)]  >> 42-3q~(2)= r(6(z ~, 0). The risk of the hard threshold is larger 
because of the discontinuity at 4, and can only be reduced by increasing 4. 

Proof. We give only an outline, spelling out  the extra details needed in Lemma 14 
either r ( f x ,  #) or r(6~ ~), #). Since r(#) is increasing on [0, oo) below. Let r(#) denote ~h) 

(for 6(~ ~)) and on [0,/~o(2)] (for 6~h), with #o(2) T ), it follows that for sufficiently small 
r/, the relevant extreme points of ~+( r / )  are two point  distributions 
F = (1 - e)v~o + ev~, for which (1 - e)a~ + ea~ = ~/P. For  such distributions, 

r(6~, F)  = (1 - e)r(ao) + er(al).  

The first term turns out  to be negligible, regardless of the choice of e and ao (see 
Lemma 14(a)), so we study the function 

s(u)  = r(~)  v__> ~ .  

A simpler approximat ion  to r(#) which is adequate for calculation (see Lemma 
14(b)) is given by the risk function r+ (#) = Eu[6] (X) - l~ [q of the one sided rules 
6~' + ( x ) =  ( x -  2)+ and ~]' + = x l { x  > 2} in the soft and hard threshold cases 
respectively. 

In the case of soft thresholds, choose 2 so that [2 z - 21og~ -p] < Co for some 
Co > 0. By comparing coefficients of 2 q in/~P+ l~/-Ps'+ (#), it turns out  that  s'+ (#) has 
a zero at approximately  #pq = 2 + ~ - l ( p / q )  = 2 + zpq, say. Calculation shows 
that  

s(2 + zpq) ~ r/P2 ~-p as ~/-* 0 .  (24) 

For  hard thresholds, one finds that the zero of s+(#) occurs at approximately  
ppq = 2 - (21og2eol )  1/2 with Co = (q - p )x / /~ ,  and (24) remains true for s(#pq). 

To complete the outline for Proposi t ion 13, we now collect the steps required to 
show that  (24) maximises s(#). The proof  is derived by detailed calculus and 
analysis from the risk formulas (60) and (62) in the Appendix. Details are left to the 
determined reader. 
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Lemma 14 Suppose that p < q and that 2 = 2(1/) is chosen as in Proposition 13. 

(a) The risk function # ~ r(<5z, #) is increasing in #~  [0, oo) (resp for # in a f ixed 
neighborhood of  zero for sufficiently large L) I f  p < q and 0 < ao < q, and 2 = ~.(q) as 
specified in Proposition 13, then r(8z, ao) < r(8~, tl) ~ r(8x, O) = o(t/P2q-P). Indeed 
r(8(~ '), O) ~ 2r(q + 1),~-q-~q~(,t), while r(8(~ h), O) ~ 22q- lq~(2). 

(b) Let  8(#) = r ( # ) -  r+(#). On [0, oe), 0 < 8(#)__< 8(0) = r+(O) = r(O)/2 
= o ( r l p 2 ~ - ~ ) .  

(c) For sufficiently large do > [zpq[ (resp. sufficiently small cl > 0 and large 
c2 > O) and sufficiently small tl, s(#) has a unique global maximum on [tl, oe ), which is 
contained in 1-2 - do, 2 + do] (resp 1-2 - (21og2c~- 1) l/z, 2 - (21og2c21)1/2]). 

(d) s(#) ~ ttP2 q-p uniformly in [2 - do, 2 + do], (resp in [2 - (21og2c~-a) 1/2, 
2 - (2 log 2c~- ~)x/z]). 

4 Asymptotics for pp, q(q) for small q 

This section is devoted to obtaining the exact rates (and constants) at which the 
univariate Bayes-minimax risk pp, q(t/) decays as ~/~ 0. A basic dichotomy emerges: 
when p > q, the asymptotically least favorable distributions put all their mass at 
_+ t /and pp, q(q) decays like ~q. This rate is independent of the particular value of 

p > q. When p < q, the priors may have fewer moments than the order of the loss 
function. In this case, the asymptotically least favorable distributions are "nearly 
black", and put most mass at 0, with a vanishing fraction of mass at two large 
values _+ #(t/) defined following Proposition 16 below. In addition, pp, q(t/) has 
a slower rate of convergence. 

Theorem 15 As 11 --> 0 

rl q q <= p <= co 

pp, q(t/) ~ rlP(21ogrl_P)(q_p)/2 0 < p < q . 

Proof. Upper Bounds. The Bayes risk pq(F) is the minimal value of Ev[d(x) - #[q 
over all estimators d. When p > q, choosing d = 0 and arguing as for (23) gives 
pp, q(~/) < ~/~. 

For  0 < p < q, we use the bounds derived for threshold rules in the previous 
section. Indeed, from the minimax theorem, and choosing 2 as in Proposition 13, 
we obtain 

Pv, q(q) = sup inf R(6, F) < sup R(8~, F)  = rlP(21ogtl-v)(q-v)/2(1 + o(1)). 

Lower bounds. It suffices to evaluate p~(F) for distributions F approximately least 
favorable for ~'p(~). As ~ ~ 0, discrete priors supported on two or three points are 
enough. 

Consider first two point priors F, = (v. + v_,)/2.  By symmetry, de( - x) = 
- dr(x), and if we write dr(x) = rl%n(x), then 

p~(F,) = Evldv(x) - # la = u~ f l 1 - %. (x ) l  q O(x - rl)dx . 

By minimising the posterior risk, the Bayes rule is found to be 

~ t / t a n h q x / ( q -  1) q > 1 
de(x) = In  sign(x) q = 1 
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f rom which it follows that  pq(F , )~  qq for q _>_ 1. Since ]Fn] v = r/ for all p, this 
asympto t ic  lower bound for pp, q(r/) establishes the theorem for p >__ q. 

When  0 < p < q, we employ  three point  priors put t ing most  mass  at zero and  
a small fraction vanishing at  co.  

Proposit ion 16 Let F~,. = (1 - ~)Vo + e(v. + v_u)/2. Fix a > O, and for all suffi- 
ciently small s, define # = #(e) by 

(o(a + #) = e~(a) (25) 

Then 

pq(F~,~) ~ s#q~(a) as s--+ 0 .  (26) 

Before proving Propos i t ion  16, we use it to complete  the p roof  of Theorem 15. 
Clearly [F~,.[g = ~#P, while f rom (25) it follows that  # ( e ) ~  (21oge-1)  1/2. If we 
connect  ~/and s by the relat ion t/P = s#P, then F~,. belongs to ~e(r / )  and  so f rom 
(26) 

pp, q(q) > pq(F~,u) ~ e#P.#q-P~P(a) ..~ qP(21og~l-P)(q-P)/2~b(a) as ~7 ~ 0 .  (27) 

The  lower bound  needed for Theo rem 15 follows by  taking a large. 

Proof  o f  Proposition 16. Let dr(x) denote the Bayes rule for es t imat ion of z f rom 
data  x ~ N(z, 1) and prior  distr ibution F.,.(dz). Since the poster ior  distr ibution of 
z given x is concentrated on {0, + #}, we m a y  write d r ( x ) =  p%~(x), where 
[eq,,(x)] _-< 1 and  in addi t ion eq.~(x) is an odd function of x. Thus  the Bayes risk 

pq(F~,u) = 2(1 - s)g q ? [eq,~(x)lq~(x)dx + euqft 1 - eq,~(x)lq4(x - # )dx .  
0 

We complete  the p roof  by showing, separately for q > 1 and q = 1, that  as e ~ 0, 

f l%~(x)lO4o(x)dx = o(~), and (28) 
0 

eq,,(# + z) ~ I {z > a} . (29) 

First, for q = 1, dF(x) is the poster ior  median,  and thus for positive x, 
eq,,(x) = I { x  >= Xo}, where Xo solves p(#[x)  = 1/2. Thus, Xo solves 

s4 (x  - #) = 2(1 - e)qS(x) + s~b(x + # ) .  

Substi tut ing definition (25)for s, we find that  Xo = a + # + # - ~  log 2(1 - e) + o(1). 
The integral in (28) is thus bounded  by 
gS(Xo) < ~(a + I~) < 40(a + #)/(a + #) = o(e) f rom definition (25). Relat ion (29) is 
immedia te  f rom the form of x0. 

For  q >  1, de(x) is the minimiser  of a - + N [ l a - # l q l x ] .  If  x > 0 ,  then 
0 < de(x) < #, and differentiation shows that  de(x) is the solution of the equat ion 

s(#  - a)q-lp+ = 2(1 -- s )a~- lpo  + ~(# + a)q-~p_ (30) 

where p_+ = qS(x -T- #) and Po -= qS(x). 
Using (25) one verifies that  for x > 0 and # large, e(# + a) ~- lp_ < ea q- lpo and 

hence that  dr(x) �9 [d,/2, ~(x), d,, Ax)], where d~, ~(x) is the solution in a of the simpler 
equat ion 

e(# - a )q - lp+  = 2(1 - 6)aO-lpo . 
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Using (25), po/ep+ = dp(x)/edp(x - #) = e -u(~-u-"), and thus 

da,~(x) = #[1 + 2P(1 - c~)Pe-"P~-"-")] -~, fl = i /(q - 1). (31) 

Substituting z = x - # - a and using (25), the integral in (28) is bounded above by 

cO(a) i [1 + e-U~z]-qe-Zu-za-~/2dz  = o(e) , 
- - 0 0  

-consider separately positive and negative z. Finally, (29) follows from (31). | 

5 Asymptotic sharpness of Bayes-minimax bound 

This section shows that the bound R} < R* of Sect. 2 is often asymptotically an 
equality: nothing is lost by replacing the n-variate problem by n univariate prob- 
lems. 

Theorem 17 I f  either (i)p > q, or (ii)O < p < q and (if/r) 2 logn(~r/r) p n O ,  then 

R*(a; O, , , (r))  = R*(a; O,.,(r))(1 + o(1)). (32) 

Proof. The approach is to show that certain nearly least favorable priors on Op,,(r) 
can be approximated by i.i.d priors. Recall from Proposition 9 that R* = naqp(th). 
Let F,  be a sequence of prior distributions on # ~ R ~, to be chosen so that 

r,(F,)  = p(F,)/p(tl ,)  

is close to 1. Denote by P,  the prior on 0 which makes Oja, i = 1 , . . . ,  n, i.i.d. F,. 
The i.i.d, structure implies that 

p(P,)  = naqp(F,) . 

Thus r , ( F , ) =  p (P , ) /R~  also. Now let re. be the conditional distribution of P,  
def 

restricted to O, = Op,,(r): thus ~,(A) = P,(A[O ~ 0,) .  Clearly, 

R} > p(~.) r . (F . ) ,  (33) 
R~ = p(e.)  

and the idea is to show that p(rc.)/p(P~) > 1 + o(1) for the sequence {F.}. 
Given a prior ~(dO) and estimator 0(x), we denote the integrated risk of 0 over 

the joint distribution of (0, x) by ~.10 - 0lq: of course for fixed n, the minimum over 
0 is p(rc), which is attained by the Bayes rule 0.. From the definition of rc~, we obtain 

p(P.)  < 8e.16~. - 0l q (34) 

- -  ~p.  {10~~ - o1410.}P.(O.) + ~,,~176 - 014, o g }  (35) 

<= p(zt.)P.(O.) + 246p.{10~.1 q + 1014; 0 ; , } .  (36) 

The argument now splits into cases according as t/.-~ t/~(0, oo ] or t/. ~ 0. [Of 
course, by passing to subsequences, we may assume that such a limit exists.] In the 
latter case, the manner in which the approximately least favorable distributions F.  
converge to 0 depends on whether O is loss-convex. What remains to be shown 
follows the same pattern in each situation: Choose F.  so that (i) r .(F.) is close to 1, 
(ii) P.(O. ) - - ,  1 and (iii) that the final term in (36) is negligible relative to p(P.). 
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Case (a). Assume first that  q. ~ r/s (0, oo]. Choose e, > 0 and a sequence of distri- 
butions F(k)(d#)~ ~ p ( q  - s) such that  p ( F ( k ) ) ~  P(~l -- e) and suppF(k) c [ -- k, k]. 
Now fix k and let F .  = V(k) for all n. Now P . {  O s O . }  = P . { n - l  ~"~ I #il p < 1"1 v} --+ 1 
since EI#V < ( r / -  e) p < r/P = lira r/~. Since supp F(k) c [ -- k, k], 

~p. {10=.1 q + 10V; og} __< 2nG~k~P(O~.) = o ( p ( P . ) ) ,  

since p ( P . ) =  n~p(F(k)) .  Thus p(Tr.)/p(P.)  > l + o(1), and r(F.)  = r(F(k)) 
~p(F(k)) /p(q) ,  The proof  is completed by taking e small and k large. 

Case (b). Now assume that r/. ~ 0 and p > q. The priors F , .  = (v.. + v_, . ) /2  are 
asymptotically least favorable (Sect. 4), so r . ( F , . ) ~  1. In addition, P .  is already 
supported on Op,.(r) so re. = P .  and the equivalence (32) follows immediately 
from (36). 

Case (c). Finally, if p < q, and r/. -~ 0, we use the symmetric three point  priors 
F , , .  studied in Proposi t ion 16. Fix 6, a > 0, and define e = e. implicitly by the 
relation 

e# p = (1 - ~5)~/~ = (1 - 6 ) n - ~ ( r / a )  p . (37) 

(# = #(e, a) is already defined by Eq. (25)). Let F .  = F,n,u . F rom Proposi t ion 16 
and (27), 

p(F . )  ~ s[.tq(P(a) ~ (1 -- 6)t/~(21og r t J )  (q-p)/z ~(a)  , (38) 

while from Theorem 15, p.,q(~/) ~ rlP(21ogtl-P) (q-p)/2. Thus r(F. )  ~ (1 - 6)~(a) .  
Let N.  ~ Binomial (n, s) count  the number  of non-zero #i: (37) implies that  
E N .  = ne = (1 - fi)(r/a)"# -p. Thus 

o = ( ~  Iml p < (r/a) p} = ( N .  < (r/o)Vl ~-v  = E N . / ( 1  - 6 ) } .  (39) 

In view of (37), E N .  = ne ~ ~ iff ktv(a/r) v ~ O. But (tr/r)21 z2 ~ 2(a/r)  z log e-  z 
2(o/r)  z log n(o/r)  p ~ 0 by the hypothesis of case (ii) of the theorem. Now apply 
Chebychev's  inequality to get 

P.(O~.) = P ( ( N .  - E N . ) / E N .  > 8/(1 - 6)} < 6-2(1 - 6)2fl/e ~ 0 .  

Similarly, E p . ] N .  - E N .  l I E N .  ~ O. 
The BaTes est imator may  be bounded  (Sect. 8.3) in terms of the posterior  

moment:  
lO,~,,l ~ < 2qE,~.(lOlqlx) 

< 2qaql~qE,~.(N.[x) < 2qa~tdEN. / (1  - 6 ) ,  

since the posterior  is concentra ted on 69. (cf. (39)). Thus, 

ge.[-10~.l q + 10l q, o~]  __< 2 q + l f f q l . t q g e , , { E N n  + N . ,  69~.} 

while from (38) 

p(P . )  ~ na%#q~(a)  = a q # q ~ ( a ) E N .  . 

Asymptotic  neglibility of the ratio of these two least expressions follows from that  
of P.(O~,) and E e . I N  -- E N . I / E N . .  In (36), therefore, p(P . )  < p(~.)(1 + o(1)). The  
proof  is completed by taking 6 small and a large. | 
Remark .  In case (ii), the condit ion that (a/r)  2 log n(a/r)  p ~ 0 cannot  be completely 
removed. For  example, in a very low signal to noise case such as r = 1, 
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a = n ", a > 0, then R* ~ 1 (Theorem 7, Part 3). However, q, = n -~/p-" and from 
Theorem 15, R * ~ n l + ~ ( l o g n )  ~q-p)/2 ~> 1, whereas R* ~ 1. 

6 Threshold rules over lp halls 

We use the Bayes-minimax approach and the univariate threshold results of the 
previous section to prove Theorem 6 on the asymptotic near-optimality of thresh- 
old rules. 

Define a Bayes minimax quantity analogous to R* except that attention is 
restricted to threshold rules: 

n 

R*(a; O,,,(r)) = inf sup {E,Eoll O(z s) - 0 II~a: E ~  10il' ~ rP}. (40) 

(with a similar definition of R* for hard thresholds). Just as was argued in Sect. 3, 

inf sup goll@ - Oil q < R* = np~(n-1/Pr, a) . (41) 
O e O p , ~ ( r )  

The proof is entirely analogous: if (F ~ 6 ~ is a saddlepoint for problem (21), 
then (F ~ 6 ~ is a saddlepoint for problem (40). Theorem 6 now follows from (41), 
the bounded inefficiency of ps(z, a) relative to p(r, a) (Theorem 11), and from 
Theorem 17: 

R*~(a, Ov, . (r))= np~(n-X/pr, a) 

<= A~(p, q)np(n- 1/Pr, a) 

= As(p, q)R*(a, O,,,(r)) 

<= As(p, q)R*(1 + o(1)). 

In fact, when t/~ ~ 0 under the conditions of Theorem 6, threshold rules are 
asymptotically efficient. Indeed, from Theorems 13 and 15, 

R* _ ps(n-llpr, a) ps(tln, 1) 
- - - ~ 1  a s t / . ~ 0 .  

R* p(n-1/Pr, a) p(tl,, 1) 

7 Linear minimax risk 

We now turn to the minimax risk amongst linear estimators of the form 
O(y) = Ay  + c for n x n matrix A, and n x 1 vector c. As noted earlier, the estimation 
problem is invariant under the action of the group G corresponding to permutation 
of indices. It follows then (using convexity of the loss functions lq, q > 1).that the 
minimax linear estimator is itself invariant: O(gy) = gO(y) for 9 ~ G. Thus 0 has the 
form Oabc, i(X ) = a x  i + b ( ~ j .  ix j) + c. A further convexity argument (Sect. 8.4) us- 
ing orthosymmetry of O = Op,,(r) shows that 0,oo(X) = ax has smaller maximum 
risk over Op .(r) than 0,be. Finally, 01a I d o m i n a t e s  0, for a negative, and 01 
dominates 0, 'for a > 1. Thus 

RE(v; Op,,(r)) = inf sup g o l [ a Y -  01[ q �9 (42) 
0 < a <_ 1 0 p , . ( r )  
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Convert ing to variables Xi = Yi/a and #, = OJa, and recalling that t/v = n-1  (r/a)p, 

n 

sup Eo F[ a Y - 0 II q = na ~ sup {n-1 ~ Eu , lax ,  - #,l q : n-~ ~ I#,[P _-< t/if}. (43) 
O~,.(r) 1 

The risk function in the univariate location problem that  appears on the right side 
of (43) can be expressed in terms of a single s tandard Gaussian deviate Z: 

rq(a, #) = Eu laX  - #Jq = aqEIZ + b#j q = aqs(bP[#[P) , (44) 

where b = a -1  _ 1 ~ [0, oo), and we have int roduced the function 

s(7 ) =  E I Z  + 71/pl q, 7~[-0, o(3). 

Since s(7) is increasing in 7, there is no harm in replacing the inequality in the 
supremum in (43) by equality. We obtain 

R* = naqinfaqsup { n - l ~ s ( 7 3 :  n -~ Z 7 ,  = bPt/P,Y~ > 0} (45) 
a 

= na q inf (1 + b)-qs*n(bPt/P). (46) 
b > 0  

Remark. The function s* implicitly defined in (46) is closely related to the concave 
majorant of s, the smallest concave function pointwise larger than s. The empirical 
distribution of a vector ( 7 ~ , - . . ,  7,) with 7,--> 0, n - t ~ 7 ,  = z belongs to the class 
if(t  ~ of probabil i ty measures supported on [0, nz] with mean equal to z. Thus 

s*(z) < g,(z) = sup s(7)F(dT) ,F~ f f (~  ") . (47) 

The extreme points of the convex set ff(~") are two point  distributions with mean z, 
so that 

g,(r) = sup {as(7a) + (1 - ~ ) s ( 7 2 ) :  ~71 '~  (1 - ~)~)2 = 17, 0 ~ ~ ~ 1, 0 < 7, < nz} 

which shows that  g, is indeed the concave majorant  of s on the interval [0, nz] (e.g. 
Rockafellar (1970) Corol lary  17.1.5). 

To  evaluate (45), we first study the convexity properties of s(7) = E ] Z  + 7 ~/Pl q, 
chiefly using sign change arguments.  Let  c = 7 alp and v denote an N(c, 1) variate, so 
that  s(7) = E~I vlq. Some calculus shows that 

q-  lp71-1/Ps'(7 ) = E~v[ vl~- 2, (48) 

and, more  importantly,  that 

clef 
q-  ~p2~2- X/Ps"(7) = F(e; p, q) (49) 

f ( q - -  1)E~clv[ q-2 - ( p -  1)E~vlv[ q-z q > 1 
(50) 

(2c~b(c) - (p - 1)[2~(c) - 1] q = 1 

A useful representat ion (Sect. 8.5) is 

eC~/2F(c) = 2 f 9(v)vq-3dp(v) sinhcvdv q > 1, (51) 
0 
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where g(v) = (q - p)v z - (q - 1)(q - 2) has at mos t  one sign change on [0, oc ). 
The  kernel  (c, v) ~ sinh cv is totally positive of order  2 on [0, oe), and so, according 
to the var ia t ion  diminishing p rope r ty  of totally posit ive kernels, F(c)  has no more  
sign changes than  9(v). By examining par t icular  cases, we are led to a par t i t ion of 
S according to the convexity behavior  of s(7). Formal ly  (Sect. 8.6), 

X = S c~ {p __< q ,p  < 2} = {(p,q): s is convex on [0, oc)} 

V = S c~ {p > q, p > 2} = {(p, q): s is concave on [0, oo)} 

X V =  S n {p > q , p  < 2} = {(p, q): s is convex on [0, 70], concave on [70, oe)} 

V X  = S c~ {p < q, p > 2} = {(p, q): s is concave on [0, Yo], convex on [70, oe)} 

In  the last two cases 7o = 7o(P, q) satisfies 0 < 7o < oo. 

We evaluate  R* in turn for the sets in the parti t ion.  First  on X u V X ,  where s is 
convex at least for large 7, we construct  lower bounds  using 'spikes'.  Fix 
0 = (r, 0 . . . . .  0), which corresponds  to/~ = ( r a -  1 , . . . ,  0), to obta in  f rom (45) the 
lower bound  

R~. > no-qinf(1 - n - 1 ) E o l  a X  I q + n -  l Er~- ~ l a X  - r(r-  ~ [ q (52) 
a 

= naqinf (1 - n-1)aqCq + 7 f f n ( 1  - a)Ot(a, a r - 1 ) ,  (53) 
a 

where we have in t roduced the abbrevia t ions  F/~= n - l ( r / a )  q and t(a, 7) 
= Ela(1 - a ) - l y Z  - 1[ q. No te  that  when q >_ p,O. = f/. = n -1/~p v q)ra-1.  Con-  

sider now the function 

f (a ;  tl) = aqcq + rlq(1 -- a) q, q >= 1,~/~(0, o(3). 

F o r  q > 1, f ( . ; q )  has unique minimizer  and min imum given by 

a . (q)  = (1 + bq~-q') -1, f ( a . ; t / )  = Cqa~-t(rl) 

where q ' =  q / ( q -  1) is the conjugate  exponent  to q, and bq = Ctq/(q-l). When  
q = 1 , f ( ' ,  ~) is linear and the corresponding values are 

a .  -- I {C 1 < ~} f ( a . ; q )  = cl  A r I . 

Some technical work  shows that  

inf(1 - n-1)aqcq + 0q,(1 -- a)qt(a, a r - t )  ~ f ( a . ( O , ) ,  f/,,) as n ~ oo. (54) 
a 

Combin ing  these results with the lower bound  in (53) yields 

{ naqcq r/, --, oe (a) 

R* > ( 1  + o ( 1 ) ) -  naqf(a.(q);~l)  0, ---, ~/ e (0, oo) (b) (55) 

rq 4, --+ 0. (c) 

Fo r  upper  bounds  on X w V X ,  make  various choices of a in (42). Fo r  a = 1, 

R* < sup Eol Y -  OI q = n~qcq , 
O~,.(r) 
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which is sharp when ~/, ~ oo (cf. (55a)), and so establishes Case 1 of Theo rem 7. The 
choice a = 0 gives 

after setting ~i = #f.  When  q > p, the function 7 ~ 7q/P is convex on [0, oo), so the 
least favorable  configurat ion of 7i is (nt/, p, 0 . . . . .  0) which implies that  

R* < r e : n -  1 (ntl~)q/p = r q, 

which is in turn sharp when ~/, ~ 0. (cf. (55c)). 
Consider  now the case 0, ~ t/e (0, co). When  q > p and p < 2 (i.e. (p, q) e X), 

s(7) is convex and # = ( r e -  1, 0 , . . . ,  0) is a least favorable  configuration.  Conse-  
quently, equality holds in (53). When  combined  with (54), this shows that  (55b) is 
sharp. 

When  q > p and p > 2 (i.e. (p, q)e VX), s(7) is concave near  0 but  convex for 
large 7. Fo r  fixed n, the configurat ion p = (re -a, 0 . . . .  ,0) is not  exactly least 
favorable,  bu t  it is asymptotically least favorable,  and so again (55b) is asymp-  
totically sharp (Sect. 8.7). This completes  the p roof  of T h e o r e m  7 for the sets X 
and VX. 

Let  us now assume that  s(~) is concave,  i.e. that  (p, q)e  V = S c~ {p > q, p > 2}. 
In this case, the vector  # = t / , ( 1 , . . . ,  1) is least favorable,  and f rom (45), (or, when 
p = oo, directly f rom (42)) we obta in  

R* = naqinf{w(b; q,): b > 0} ,  (56) 

where w(b; tt) = (1 + b)-~EIZ + bol q for Z ~ N(0, 1), and does not  depend on p. I t  
turns out  (Sect. 8.8) that  there is a unique min imax  linear es t imator  # ( x ) =  
x/(1 + b , ) ,  not  depending on p, where b ,  = b , (q , t / , ) e (0 ,  oo) if t/,E(0, oo). If 
t / , ~  ~ ,  then b , ( q , ) ~  ~s and R* ~ naqcq. On the other  hand,  if ~ 0 ,  then 
b ,  .-~ (q - 1)t/s -2 and R~ .-~ no-qt/, q. We believe that  b,(t/) decreases monotonica l ly  
f rom oo to 0 as t/ increases f rom 0 to oe, but have only verified this for loss 
functions with q = 1, 2 and 4. 

We pause to be more  explicit in the case q = 2. If  p < 2, then s(7) is convex, 
# = ( r a -  1, 0 , . . . ,  0) is least favorable  and there is equality in (52) and (53) which 
reduces to (12). If  p > 2 then s(7) is concave and  we arrive at (12) via (56). 

We turn finally to the exceptional  case in which s(v) is convex-concave,  i.e. when 
(p, q ) s X V  = S ~ {p > q, p < 2}. Consider  first the simple case in which t/, ~ 0. 
The  right side of(56) is still a valid lower bound  for R~,  and so f rom the discussion 
above,  we conclude that  R* > naqr/,q(1 + o(1)). On the other  hand,  a natural  upper  
bound  is obta ined f rom the es t imator  with a = 0: 

R* _-_ ncrq sup n-1 ~ 7q/p= nczqtlq , 
n-l~V i=rlg i = l  

since 7 ~ Yq/P is concave. This establishes tha t  R* ~ naq~l~ = n ~ -q/Pr q when ~, -~ 0. 
N o w  suppose that  ~/, -~ q ~ (0, ~ ). An upper  bound  is derived f rom (46) and 

(47): 

R* < naqinf(1 + b)-qg(bPtl~) (57) 
b 
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where the least concave majorant g has the form 

~cq + Ry Y < ~o 

~(~) = (s(~)  y >= ~o 
(58) 

where R = [S(7o) - s(0)]/7o and ~o = 7o(P, q)e(0, oo) is the solution to the equa- 
tion s'(2o) = [S(7o) - s(0)]/yo. As is shown in Donoho and Johnstone (1992, p. 32), 
the error involved in the upper bound (57) is O(naqn-1). Since this is negligible 
relative to the maximum value, the bound may be treated as an asymptotic 
equality. 

Again, it turns out (Sect. 8.9) that there is a unique value b.  = b.(p, q, rl,) 
optimizing the right side of (57). If the corresponding value of ~.( = b ~ ,  p) exceeds 
~0, then the least favorable configuration # ,  = ~ / , (1 , . . . ,  1) as in the concave case. 
However, if 7. < 7o, then the least favorable distribution (in (47)) has the form 
(1 - 8)Vo + eV~o, where e7o = y, .  It turns out that 7, < 7o exactly when 

tlp(S(yo) -- Cq) + [p(s(7o ) -- cq) - qs(7o)]~/p > 0 ,  (59) 

which occurs when r/is sufficiently large. Thus the set X V provides examples where 
the least favorable configuration is neither a spike nor uniformly grey. 

8 Appendix  

1 Properties of F ~ pq(F): Upper semi-continuity 

Set R(#,/2) = E,I/1(X) - /~ l  q and p(F,/1) = fR(#,/1)dF(#): since # ~ R(#, ~) is 
continuous, F ~ p(F,/1) is weakly continuous on o~p(r/) when the risk function is 
also bounded. Since the infimum defining pq(F) includes estimators with un- 
bounded risk function we define an increasing family of subclasses of estimators 
@,, = {/1:/1(x) = x for Ixl > m}, and let 

pqm(F) = inf p(F,/1). 
pe~ 

Since each estimator in @,, has bounded risk, F ~ pqm(F) is weakly upper semi- 
continuous (usc). Since pq,,(F) decreases as m/" oe it has a limit, fiq(F) say, and if 
we assume for the moment that pq(f) = fiq(F) then pq(F) is the decreasing limit of 
a family of usc functions and is hence also usc. 

To verify that pq(F)= pq(F), note first that trivially pq(F)<= fiq(F). For the 
reverse inequality, observe that for any est imator/ i  with finite integrated risk, 

f R(/1m, , ) d r  -+ f R(/1, #)dF, m -+ oo 

where /1,,E~,, is defined by /1~(x) = #(x)I{[x[ <= m} + xI{Ix[ > m} [because 
R(/1,,,#)--+R(/1, u) uniformly on compact intervals]. This establishes upper 
semicontinuity. Since pq(F) is the pointwise infimum of linear functions, it is 
concave, and o~p(t/) is weakly compact because of the moment condition. 

To verify that p~(F1 +c) <-_ (1 + c)qp(F), first let/IF denote the Bayes estimator 
oftz for prior F. Let q5 ~ (1 + c)#, and suppose that Y]8 ~ N(qS, 1). Define a ran- 
domized estimator qS(y,z) based on y and an independent variate 
Z ~ N(0, (2c + c2)/(1 + c)2): 

,~(y, z) = (1 + c)/1~((1 + c)-*y + z).  
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By construction, W =  (1 + c ) - I Y  + Z ~ N(#,  1), and so 

r (~ ,  ~)  = E ~ I~ (Y ,  z )  - r q 

= (1 + c)"Etf i~(W) - ttl" 

= (1  + c)~r(~, fi~). 

By averaging over M ~ F, we obtain, as required, 

pq(Ft +~) <= Er(qb, r  = (1 + c)qEr(M, fiF) = (1 + c)qpq(F). 

2 Risk functions for soft and hard threshold rules 

For  reference, we record explicit formulas for the risks of 6~ ~) and 6~h) when o- = 1. 
Write x for an N(g,  1) variate and r(6, #) = E ,  lg(x) - #l q. Then for ~ > 0 

r(rT, ~) = E~l(x - ,l)+ + (x + ~)_ - t,I ~ (60) 

- A,-tt 2--# f 
= f Iw + 21q~(w)dw + tt a f r + Iw-,~l"r 

--oo - ,q.-- g 2 - #  

(61) 

and 

0 r ( 6 ~  , p )  q ~ q - l [ ~ ( , ~ _ ~ )  r  )~ ~ ) ] > 0 ,  
@ 

so that the risk function increases monotonica l ly  on [0, ~ ) to a bounded  limit. For  
hard thresholds, 

- 2 - #  2-~t f 
r(6(~ n) ,# )  = f lwlqC(w)dw + ~ f r + Iwl%(w)dw, (62) 

- 03  - 2 - - #  2--1t 

but  is no longer monotonic :  indeed the risk function rises f rom # = 0 to a max- 
imum at 2 - 0(2) (as 2 z c~ ) before decreasing to cq as ~ z c~. 

For  squared error loss (q = 2) more  explicit expressions are available: 

r(6(~ ~), p) = 1 + 2 z + (#2 _ 22 _ 1)1-V(2 - #) - r  - 2 - #)]  - (2 - #)~b(2 + tO 

- (,~ + ~ ) r  - ~) 

r(6(~ h>, It) = 1 + (/z 2 - 1)[~(2 - ~t) - r  - ;t - / z ) ]  + (2 + #)~b(,~ + tz) 

+ (~ - ~ )~ (~  - ~). 

3 Moment  inequality 

Let F(dx) be a probabil i ty distribution on R and for q > 1, define #q(F), the q-mean 
of F, as any minimizer of f ix - #lqF(dx). We have the inequality 

I#~1 q < 2 q - I [ E I X I  q + Elpq - XI q] < 2qEIXI q �9 (63) 

Equat ion  (40) follows by taking for F the posterior distribution of 01 given x under 
the prior 7z,. [A refined version of (63) appears in Johnstone (1991)]. 
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4 Structure o f  the linear minimax rule 

Suppose  that  O ~ R r is or thosymmetr ic .  Let  6abc,~(X) = axi + bx~ + c, where 
x~ = ~4  * ,x j .  Let R(O, O) = E o ~ = l  [Oi - Oil q. Then  we show that  

sup R(O, Oaba) > sup R(O, 0~oo) �9 
0 0 

Proof. Consider  first a single componen t  and a fixed cons tant  d. Convexi ty  of the 
function y --* Ix + yl q implies 

2laX1 - 011 q < laX~ - 01 + d] ~ + ]aX~ - 01 - d l  q 

= [aX~ + d -  01[ q + [ a ( -  X~) + d + 0~[ q . 

Let r = (~rl . . . .  , %) belong to { _+ 1} v - ~e~. Since the componen t s  of X are 
independent ,  one can apply  this a rgument  condit ional ly on x' to obta in  

2ElaN1 - 011 ~ <= ~ E l a a l X l  + d - o101 2v b ~ a j X j l  q . 
o'l j >  2 

N o w  let o - '=  (cr2 . . . . .  Crp). Represent ing the r a n d o m  variables Xj  explicitly in 
terms of the const i tuent  errors/3j and exploiting symmet ry  leads to 

2PEIaX1 -- 01] q < ~ , ~  Ela(al01 +/31) --}- d - crl01 + b ~ (ajOj +/3j)lq 
al  a '  j>=2 

= ~ E~o[aX1 + d + bX'l - 6101 ]q 
ff 

= ~ e,,olO,a,a, 1 - ~r1011 ~ �9 
cr 

N o w  add over  i to get 

2"g(o, 0ooo) <= Y~ g(~o, 0 ~ )  

and so, u s ing /~  to denote  m a x i m u m  risk over  O, 

2Pg(Oaoo) < ~ ~q(O.bd) = 2P/~(O.ba). | 

5 Convexi ty  decompositions of  loss functions and parameter spaces 

We first note that  for 0 __< c < oo, the mapp ing  (p, q) ~ F(c; p, q) is cont inuous  on 
S. This is clear f rom (50), except possibly for q "~ 1. Tha t  continuity holds here also 
is evident f rom the representat ions 

(q - -  1)Eclvlq - z  = f 
d ~--v (v~-l)[~(v - c) + c~(v + c)]dv 

0 

= - f ~ - ~  ~ [~(~ - ~) + ~(~ + c)ld~ -~ 2~(c) 
0 

~ u  

and 
~o 

Ecvlvl q-2 = f v q - l [ r  - c) - r  + c)]dv-- ,  2q)(c) - 1 
0 

as q "~ 1. This cont inui ty implies that  we need only establish the sign behavior  of 
F(c; p, q) on the interior of S; in part icular,  we will assume that  q > 1 henceforth. 
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To  obta in  representat ion (51) combine  the following identities and (50): 

G v l v l  q -  2 = 2e-~2/2 f vq- l  O(v) s inhcvdv  , 
0 

cEc[vl ~-2 = 2e-C~/2 f vq -24) (v )ccoshcvdv ,  
0 

= 2e-C2/2 f E v q - i  _ (q  - 2)vq -3J~(v ) s inhcvdv  . 
0 

Tota l  positivity (of order  2) of sinh cv follows f rom the relat ion 

sinh cv ~ sinh cv 
1 

02 = ~ [sinh(2cv) - 2cv] > 0 . 

vsinh cv ~ sinh cv 

In turn, it follows that  the kernel  (c, v ) ~  vq-3r is TP2 and has the 
var ia t ion diminishing property .  We remark  that  sign changes are counted in the 
weak sense; whenever F(c) -- 0, it is assigned a sign in such a way as to minimise the 
total  numbe r  of sign changes (cf. Kar l in  (1968) or  Brown, et al. (1981)). 

6 To  classify the sign change behavior  of 9(v) for (p,q)e(O, oo)x(1 ,  ~ )  and 
v ~ [0, oo) we find the following cases f rom which the decompos i t ion  of S follows. 

a) p < q < 2. 9 has no sign changes and is non-negat ive,  so s(7) is convex. 
b) p > q > 2. 9 has no sign changes and is non-posit ive,  so s(7) is concave. 

In  the remaining cases, 9 has exactly one sign change, so the sign change behav ior  
of F(c) is determined by its limits at 0 and oo. F r o m  (50), one sees that  
F( oo ) = (q - p)c q- 1. To determine behavior  at 0, we note  that  for q > - 1 

2 q/2 ~[ 'q  "t- 1~ 
cq = ElZlq  = ~ l ~ - ~ - ) ,  and (q -1 )Cq_2  = cq . (64) 

Substi tuting the expansion sinh cv = cv + (cv)3/6 + . . .  into (51) yields 

eC2/2F(c) ~ c[(q - p)Cq - (q - 1)(q - 2 ) C q _ 2 ]  (65) 

C 3 
+ ~- [(q - p)Cq+2 -- (q -- 1)(q -- 2)cq] + o(c 3) 

I (2 - p)CqC p ~ 2 

Cq 3 
(q 2)~-c p = 2, q + 2. 

3 

(66) 

c) q > p , q > 2 .  Here  F ( o o ) > 0 .  If  p_<_2, then F ( 0 + ) > 0  so that  s(y) is 
convex on [0, oo). However ,  i f p  > 2, then F(0 + ) < 0, and so there exists a value 
?o = cg = cg(p, q) such that  s is concave on [0, 70] and convex on [7o, oo ). 

d) q < p, q < 2. N o w  F(  co ) < 0. If p > 2, then F(0 + ) < 0 also, so that  s(7) is 
concave on [0, oo). However ,  if p < 2, then F(0 + ) > 0 and there exists 7o such 
that  s is convex on [0, 70] and concave on [70, oo ). 
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7 Sharpness of  (55b) when q. ~ q e (0, ~ ); q > p > 2 

Combin ing  the equali ty (46) with the upper  bound  (47) we obta in  

R* =< r/aq(1 + b,)-qg,(b~tlP).  

Since q q = n - l ( r / a ) q ~ t l  and q > p, it follows that  r /a -~  ~ and hence 
= P P ~/,P = n - l ( r / a )P  --r 0. Let  9, b,~/,. Since s ( j  is concave for 7 < 70 and convex for 

7 --> 70, it follows that  g,(ff,) = (1 - 8,)s(7,) + ~,s(n~,) where e,, and 7, are deter- 
mined by the equat ions 

(1 - e . ) ? .  + e . n ~ .  = ~.  (67)  

s'(7.) = [s(n~.) - s(7.) l /[n~.  - 7.3 �9 (68) 

[ F o r  these equat ions  to be valid, we must  have 7. < 7., but  this is established 
below.] Our  goal is to show that  

~'.(~.) = (1 - ~.)s(7. ) + ~.s(n~.) ~ (1 - n-1)s(O) + n - l s ( n ~ . ) ,  (69) 

for this would imply that  # = ( r e -  1, 0 , . . . ,  0) is an asymptot ica l ly  least favorable  
configuration.  In  turn, this implies that  

R~ <-_ naq[(1 -- n -1 )Eo[a ,X]  q + n - l E ~ - ~ l a , X  - ra- l lq l (1  + o(1)) 

naqf(a.ffl), tl) 

as is shown following (52). 
To  establish (69), one sees f rom (67) that  it really suffices to show that  7,/7, ~ 0, 

since n~, = b~,(r/a) p ~ 0o and s(7 ) ~ 7 q/p as 7 ~ ~ .  This last relation, together  
with the approx ima t ion  s'(7)'-~ kv, q72/p-1 as 7 ~ 0  (c.f. (48) and an a rgumen t  
similar to (66)) recasts (68) as the equat ion  

klT~2-p)/p = (ny.){q-v)/p. 

Expressing n and n% in terms of a/r, this leads to the desired result 

7./Yn ~" k2(o/r) 2(q- p)/(p- 2) __4 0 .  

8 Minimax estimation in the concave case 

We verify that  b ~ w(b) has a unique m i n i m u m  on [0, oo). In t roducing  variables 
c = b t / a n d  v ~ N(e, 1), one can verify that  

d e f  
r(b) = q-~(1 + b)q+lw'(b) = E~k(v) k(v) = Ivlq-2{nv - (q - 1)}. (70) 

The function k(v) has at mos t  one (weak) sign change on ( -  ~ ,  ~ ) .  Since the 
Gauss ian  locat ion family is TP2, it follows that  w'(b) has at mos t  a single sign 
change. However ,  since r(0 + ) <  0 and r ( ~  - ) >  0, we deduce that  w(b) has 
exactly one m i n i m u m  b,(r/), located in the interior of [0, ~ ) .  

Consider  now the behavior  of b,(q) as t / ~  ~ .  To  study the asympto t ic  
behavior  of  equa t ion  (70), we note f rom the series sinh ev = cv + (cv)3/6 + . . .  that  

Ecvlv[ q-2 = 2e-C2/2 f vq-l~b(v)sinhcvdv 
0 

= e - C 2 / 2 [ C q  c q- Cq+2C3/6  + ' " "3 a n d  

E~clvl q-z  = e - c E / Z [ e q - 2  c q- CqC3/2 q- "" "1 �9 
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Substituting leading terms into (70) and using the identity (64) yields c,(r/) ~ t/-  1 
and hence b,(q) ~ 0 -2. Consequently w(b, (~) ,  t/) = (1 + q - 2 ) - q E I Z  + q - l l q  ~ cq 
as t / /~  oo. 

Turn  now to the contrary  case in which ~/--*0. N o w  for c large, 
Eck(v) ~ qc q-1 - (q - 1)c q-2, and the unique zero of the right side occurs at 
c ,  = (q - 1)t/-1. Thus, for small q, the unique min imum of w(b) is to be found at 
b.(t/) ,-~ (q - 1)t/-2, and w ( b . )  = (1 + (q - 1)~/-2)-qEIZ + (q - 1)t/-~ I q ,-~ qq. 

9 Convex-concave  case 

Put  7 = bPrl p: the right side of (57) becomes 

r(7) = (1 + t/-171/P)-qg(7), and 

def 
P(7) = p(1 + t/-lyl/P)q+lr '(7) = p(1 + q-17~/P)g'(7) - q t l - 1 7 1 / p - l s ( ~ ) .  

We now verify that p(7) has exactly one sign change on [0, oo) For  7 < ~'o, 
substitution from (58) yields 

P(7) p R  + p -  q R7 lip q (71) = -- _ Cq71/P -1  
tl q 

and in particular, p ( 0 ) =  -- oo and P' (V)> 0 on [0, 7o]. It follows from the 
discussion of the concave case (i.e., (p, q)~ V), that/)(7) has at most  one sign change 
on [70, oo), and if a sign change occurs, then it is from negative to positive. Put t ing 
these observations together with the analyticity of  s(7) on (0, oo), we conclude that  
P(7) has an isolated zero 7,  = 7,(P, q, t/)~(1, oo). This zero 7,  < 70 exactly when 
P(7o) > 0, and by writing R = [S(7o) - Cq]/7o into (71), one verifies that this occurs 
as described in (59). 
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