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1 Introduction 

Let (W(t), t > 0) be a standard Wiener process. For a < T define the incre- 
ments 

YT(t) = W(t  ~ - a ) -  W(t),  t ~ T -  a .  

These increments have been extensively studied, in particular the quantities 

M ( T ) =  sup IY(t)l, 
t<=T-a 

see, e.g., [3] and the references therein. 

We may consider M(T) as a norm of  the process YT. Looking at things that 
way, one may be tempted to try other norms, and one that immediately springs 
to mind is the square norm. This will be the subject of  the present paper. In 
fact, we will give a lower limit law for the integral 

T--a(T) 
f (W(t+a(Tl)-  W(t))2dt, 
0 

where a(T) will be some function tending to infinity. 
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This question has been studied by Li [4]. His methods rest on an inter- 
esting comparison theorem, and depends on an eigenvalue computation which 
unfortunately breaks down when a(T) < T/2. His theorem states as follows: 

T h e o r e m A I f 0  > fl-c~ > O and ~ > 0 then 

log log T ~T 
lim inf T2 f (w(t  + OT) - W ( r ) ) 2 d t  - ( p  - ~)2  

aT 4 
a.s .  

We use a different approach based on a very useful inequality by Anderson 
[1] which will close the gap left by Theorem A. Our theorem states as follows: 

Theorem 1 Suppose that 0 < p < 1 and that a(T) is a nondecreasing function 
with a(T) /T -+ p. Then 

log log T r - a ( r )  
l iminf T2 ~ f (W(t + a ( T ) ) -  W(t))2dt = ~(p) a.s., 

o 

where 

with 

,:,2( 
7(P) = V 0 c ~  1) 0 ,cot _l) 2 

m 0 , = - - m .  
P 

The same methods used in the proof of Theorem 1 can be used to prove 
the following theorem which we state without proof: 

Theorem 2 I f  a(T) is nondecreasing, T/a(T) is nondecreasing, and 

then 

T 
+ 0  

a(T) log log T 

log log T T-a(T) 2 
l iminf T2 f ( W ( t + a ( T ) ) -  W(t))2dt = ~ a.s., 

o 

2 P r o o f  o f  T h e o r e m  1 

The proof of the theorem rests on a good estimate for the probability 

P (W(t + a ( T ) ) -  W(t))Zdt < x . 

This will be provided by the following. 
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Lemma 1 I f  m is a nonnegative integer an 0 <_ 0 < 1 then 

( (m0f~ )) l imxlog P (W(t + 1 ) ) -  W(t))2dt < x 
x--+O 

2 

= ~  4(m + 1 ~  + (1 - 0)c~ ~mm - 1 

Once this lemma is proven, Theorem 1 follows by a rescaling argument along 
with an application of the Borel-42antelli lemma that seems to be well under- 
stood, so we will forgo that part of the proof. 

It remains to prove Lemma 1. To this end, consider 

m+O m 0 

f ( W ( t §  1 ) -  W(t))2dt = ~ f ( W ( t + i +  1 ) -  W(t§  
0 i=0 0 

m--1 1--0 

+ ~ f ( W ( i + O + t + l ) -  W( i+O+t ) )2d t .  
i=0  0 

Now, for 0 < t <_ 0, 

and f o r 0  -< t -< 1 - 0 ,  

W(i + O + t) = W(i + O ) - -  
1 - O - t  

1 - 0  
+ W(i + 1 ) 1 ~  ~ + l x ~ / ~ i  

where B i and/}i are independent sequences of independent Brownian bridges 
that are independent of Yi and IPi. 

This implies that 

m+O 

f (w(t + 1)- w(t))2dt 
0 

m 0 

: ~o f (~+1(,)- ~(,)+ ~ (.~+l (o)-"~ (o))) ~' 

m li0( ( t )  (t)))2 
+ E ?~+l(t) - L(t) + r  ~+~ ~ - ~  ~ dr. 

i=0  
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Now, Theorem 2 from Anderson [1] implies that (m,o ) 
P f ( w ( t +  l ) -  w(t))2clt < x 

0 

< P 0 Bi+l - B i  d t + ( 1 - O )  

• ~ f Bi§ - B i  dt < x . 
i=0 0 

On the other hand, if we let 

and 

then 

SO 

P 

0 2 

11 = o ~ f  (Bi+l (0)  -B i  ( 0 ) )  dt@(l - 0 )  
i=o 0 

i=0 0 

m 0 m--1 1--0 
I2 = ~ f ( Y i + l ( t )  - Yi(t))2dt + ~ f (Yi+1(t) - Yi(t))2dt, 

i=0 0 i=0 0 

m+O 
f (W(I@ 1 ) - -  W(t))2dt ~ (~1-~-v/~) 2 , 
0 

m+O ) 
f (W(t+ 1)-- W(t))2dt < x > P ( / 1  < x(1  - e ) 2 ) p ( / 2  < x e 2 ) .  
0 

The last probability can be estimated by 

+ 0 ) - -  W(i)l < 

P (I2 < xe 2) 

>_ p (Iw( i 

I v/(i + 0) - w ( i  + 1)1 < 2(~x/~7755 '  0 <_ z _< m 

= > (Cxg2)m+l 

with some constant C. This probability is negligible as compared to the main 
term which comes from Il. We have 

2 m 1 m--I 1 
I~ = 0 ~ f(Bz+~(t) - B~(t))2dt + (1 - 0) 2 ~ f(Bi+~(t) - B~(t))2dt. 

i=O 0 i=0 0 
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Let now 
Zi( t )  = Bi+l( t )  - B i ( t ) .  

The processes Z/(t) have correlation structure 

E ( Z i ( t ) Z j ( s )  ) = ( 2 0 i j  - c] l i_ j l , l  ) ( s  /~ t - s t ) ,  

where 6 is Kronecker's delta. Consider the (m + 1) x (m + 1) matrix A with 
entries 

Aij = 26ij - 61i_A,1. 

This matrix has eigenvalues 

2j = (2  sin ~ j  

with corresponding eigenvectors 

where 

If we let 

then 

and 

( j  = 1 . . . . .  m + 1) 

X j  = ( X j l  . . . . .  Xj ,  m+ 1 ) ,  

xjl -- ~ sin - -  
+ m + 2  

m + l  

Vt(t) = ~ x i l~ - l ( t ) ,  
i= l  

m + l  

v,2(t) _- z 2 ( o ,  
i=1 i=0 

E ( V I ( t ) V j ( s ) )  = 6tj21(s /~ t - s t ) .  

This means that the processes 

gl( t )  = , ~ / 2  vl(t) 

are independent Brownian bridges. Carrying out the same analysis for/}i, we 
get (replacing m by m - 1) eigenvalues ,~t and independent Brownian bridges 
U1. With these, 

m + l  1 in 1 

12 = 02 ~ 2l f u Z ( t ) d t  + (1 - 0)2~-~21 f O ~ ( t ) d t  . 
l - I  0 l=1 0 

Now, by Anderson and Darling [2]: 

Lemma 2 

( )  ) 4 ( ~ x )  P B Z ( t ) d t  < x = exp - (1 + o ( 1 ) )  
\ 0  ~ 

a s  x ---~ O. 
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In addition, we need the following simple fact: 

Lemma 3 I f  X and Y are independent nonneyative random variables with 

and 

lira x log P (X < x) = -A 
x--+0 

then 

and 

l i m x l o g P ( Y  < x) = - B ,  
x---+0 

l i m x l o g P ( X  + Y < x)  = - ( x / A  q- ~ / B ) 2  . 
x---+0 

For the proof, first observe that for s > 0 and x small enough: 

P ( X  < x)>_ exp ( - A ( 1  + s))  

P ( Y < x )  > e x p ( - B ( l + s ) )  . 

P ( X +  Y <x)  > P (X  

= > exp ( (v~+ x v~)2(1 +~)) " 

Thus 

On the other hand, again for x small enough, 

P ( X <  x ) <  exp ( - A ( 1  - ~)) 

P ( Y < x ) = <  e x p ( - x B - ( 1 - s ) )  . 

and 

Thus, if we choose M > l/e, 

M--1 (fl~. 
P ( X + Y < x )  < ~ P  < - -  

k=O 

vq+ J 
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These inequalities, together with the fact that e can be arbitrarily chosen, prove 
the lemma. 

By repeated application of the last two lemmas, we have 

1 / ~+l ,~2 

/ 

7~ 7C 
= 1 0 c o t - -  + ( 1 - -  0)cot  1 

8 4(m + 2) 4(m + 1) 

This finally proves Lemma 1. 
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