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Summary. Let X be a transient right process for which semipolar sets are polar. 
We characterize the measures which can arise as the distribution of X r  with 
T a non-randomized stopping time. 

1. Introduction 

Given a Markov  process X with initial distribution p and given a se~zond measure 
v, it is natural to ask when there exists a stopping time T such that the distribution 
of X r  is v. One may or may not allow the stopping time to be randomized. (A 
non-randomized stopping time is a stopping time of the natural filtration of (Xt), 
whereas a randomized stopping time is a stopping time of the natural filtration of 
((X, F)) where F is a random variable uniformly distributed in [0, 1] and indepen- 
dent of (X~). In each case, the filtration is assumed to have been completed in the 
usual way.) In this paper, we shall be interested in conditions under which T m a y  be 
taken to be non-randomized. 

Let us consider some examples to illustrate the issues involved. First suppose 
X is Brownian motion in 1R d starting from 0. Consider the probability measure v on 
]R d that has half of its mass at 0 and half of its mass uniformly distributed on 
A = {x ~ IRd: lJ x II = 1}. Then there is an obvious randomized stopping time R such 
that the distribution of XR is v: Namely, R = T(F) where 

0 if 0 _ < 7 < � 8 9  
T(7) - -  DA if �89 

and where DA = inf{t __> 0: XtEA}. 
If d = 1, then there is also an obvious non-randomized stopping time T such 

that the distribution of X r  is v: We may take T t o  be the first time X visits A w {0} 
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after visiting { -  1, �89 However, if d > 2, then there is no non-randomized stop- 
ping time T such that the distribution of Xr  is v: If T were such a time, then since 
{0} is polar when d > 2, we would have P( T = 0) = P (Xr  = 0) = �89 whereas, by the 
Blumenthal 0-1 law, P ( T  = 0 ) =  0 or 1. Now consider the probability measure 
v on ira that has mass Pn uniformly distributed on An = {x e IRa: [1 x II --- 2 -n } where 
p, > 0 and ~ p, -- 1. Once again, there is an obvious randomized stopping time 
R such that the distribution of XR is V. However, it is less obvious that there is 
a non-randomized stopping time T such that the distribution of Xr is v. See [FaS0, 
Example 2.10] for an elementary construction of a suitable T. It turns out that 
when X is Brownian motion in IR d starting from 0, if v is a probability measure on 
ira which is the distribution of XR for some randomized stopping time R and if 
v({0}) = 0, then v is the distribution of Xr  for some non-randomized stopping time 
T. It is instructive to compare this with what happens when X is uniform motion to 
the right in IR starting from 0. In this case, given a probability measure v on IR, if 
v lives on [0, oo); then v is the distribution of XR for some randomized stopping 
time R, but if v is the distribution of Xr  for some non-randomized stopping time T, 
then v is the unit point mass at x for some x > 0. Note that Brownian motion 
satisfies Hunt's hypothesis H that semipolar sets are polar, whereas uniform 
motion to the right does not. For  uniform motion to the right, the semipolar sets 
are precisely the countable subsets of IR, but only the empty set is polar. 

Skorokhod [Sk60, Sk65] was the first to consider the stopping distribution 
problem. He showed that when X is Brownian motion in IR starting from 0, if v is 
a probability measure on IR with mean 0 and finite variance, then v is the 
distribution of XR for some randomized stopping time R with E(R) < ov (and 
conversely). (As J.L. Doob observed in a postcard to P.A. Meyer, the stopping 
distribution problem for Brownian motion in IR is trivial unless some condition is 
imposed on the size of the stopping time: Any probability measure v on IR is 
expressible as the distribution off(X1)  for a suitable Borel function f :  IR ~ IR and 
hence as the distribution of Xr  where T = inf{t > 1 : Xt =f(X1)} .  This sort of 
complication does not arise in the transient case.) Rost [R70, R71, R73-1 showed 
how to use potential theory to extend Skorokhod's result to a general strong 
Markov process satisfying mild regularity conditions; say a right process. We shall 
now give the precise statement of one of Rost's results. 

Let X be a right process, as defined in [Sh88]. In particular, the state space 
E of X is assumed to be homeomorphic to a universally measurable sub- 
space of a compact metric space. As usual, we write (Pt) for the transition func- 
tion of X and U for the potential kernel of X. Thus Pt(x, dy)-~ Px(Xtedy  ), 
U(x, dy) = So Pt(x, dy)dt, and if # is a measure on E, then its potential #U is the 
measure on E given by # U ( d y ) =  ~E#(dx)U(x, dy). If T is a random time, then 
#Pr  denotes the measure on E which is the distribution of Xr  under 
Pu:#Pr(dx)  = Pu(Xr ~ dx). Note that in forming #Pr,  we discard any mass that 
Xr  puts at the cemetery point A. 

(1.1) Theorem. (Rost [R70]) Let # be a measure on E such that #U is a-finite. Let 
v be another measure on E. I f  #U >= vU, then there is a randomized stopping time 
R such that #PR = V (and conversely). 

The proof of the converse part is a simple application of the strong Markov 
property: Given such a time T, if f is any Borel function > 0 on E, 
then # U ( f )  = PU(~of(Xt)d t )  > P U ( ~  f (X t )d t )  = P~(So f (X t )d t )  = vU(f) .  We 
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should mention that we have stated Rost's theorem in slightly greater generality 
than he did, but no significant change in his proof is needed to establish (1.1). We 
remark that the assumption that #U is a-finite is a type of transience hypothesis: It 
implies that there is a Borel function f >  0 on E such that # U ( f )  < oe. Then # and 
v both live on F = { U f <  oe}, F is absorbing, and the restriction of X to F is 
transient in the usual sense; see for instance [G80]. Let us also remark that recently 
the second-named author [Fi91] has shown that in Theorem (1.1), the time R may 
be taken to be of the form R = T(F) where for 0 < ;~ _-< 1, T(7 ) -- inf{t  >__ 0; 
XteB(7)} and where B(7), 0 < 7 < 1, is a decreasing family of finely closed sets. 
Moreover an R of this form is PU-essentially unique and there is a simple explicit 
description of a suitable family B(7), 0 < 7 < 1. 

The stopping distribution problem with non-randomized stopping times has 
been studied by various authors, including Dubins [Du68], Root [Ro69], Baxter 
and Chacon [BC74], Rost [R76], Falkner [Fa80, Fa81, Fa83], and Paul Chacon 
[Ch85]. In [Ro69], [R76], and [Ch85], it was shown that under various special 
hypotheses on X, Tmay  be taken to be of the form T = inf {t > 0: (t, Xt) e B} where 
B is a suitable subset of [0, oo) x E. [Ro69] and [R76] considered the case where 
B is a barrier (i.e., where (t, x) ~ B and t < s imply (s, x) ~ B) and [Ch85] considered 
the case where B is a reverse barrier (i.e., where (t, x ) ~ B  and 0 < s < t imply 
(s, x) ~ B). In this paper, we do not try to construct a T of any special form. Our aim 
is simply to prove existence of T under hypotheses more general than had pre- 
viously been considered. 

Once again, let X be a right process as defined in [Sh88]. Let g e denote the 
a-algebra on E generated by { f : f  is q-excessive for some q > 0}. Then 
g _c ge ___ d~. where g = Borel(E) and d ~* is the universal completion of g. For  
a general right process, the excessive functions need not be nearly Borel and it is 
appropriate to replace the a-algebra of nearly Borel sets by de. We now state our 
main result. 

(1.2) Theorem. Let m be an excessive measure for X and assume that each E e- 
measurable semipolar set is m-polar. Let # be a measure on E such that #U is a-finite 
and #U ~ m. Let v be another measure on E. I f  

(1.3) #U > vU 

and 

(1.4) there exists a set C s E *  such that for each m-polar set Z ~ g  e 

we have v(Z)  = #(Z  c~ C) ,  

then there is a non-randomized stopping time T such that #Pr = v (and conversely). 

For the proof of the converse part, we have already seen the necessity of (1.3). 
To see the necessity of (1.4), suppose we have such a time T. Since T is non- 
randomized, we have PX(T = 0) = 0 or i for each x e E ,  by the Blumenthal 0 -1  
law. Let C = {x6E:  P X ( T =  0) = 1}. Then C~g* .  I f Z ~ g  e is m-polar, then Z is 
#U-polar (since #U ~ m) so Z is #-polar, so v ( Z ) =  # P r ( Z ) =  P u ( X r ~ Z ) =  
P" (Xr  e Z, T = O) = #(Z c~ C). 

If semipolars are #-polar, one can take m = #U in Theorem (1.2) and since 
m-polars and #-polars are then the same, this results in an apparent weakening of 
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the hypotheses of the theorem. However, in many situations there is a natural 
choice of the measure m; viz. Lebesgue measure for a L6vy process or Wiener 
measure for the infinite-dimensional Ornstein-Uhlenbeck process. These cases are 
discussed further below. 

Theorem (1.2) generalizes the main result of [Fa831 in two ways. First, X is not 
required to have a reference measure. Second, X is not required to have a standard 
dual process. Our proof of Theorem (1.2) does use duality but, at least when X 
is a Borel right process, there always exists a "left process"^X which is in weak 
duality with X with respect to a given excessive measure m. X is constructed from 
X by time-reversal. 

The hypothesis in Theorem (1.2) that #U ~ m is satisfied if and only if #(G) = 0 
for each ge-measurable, finely open, m-polar set G. (The forward implication is 
trivial and the reverse implication is easy; see for instance [Fig0, p. 257, bottom].) 

If X is a L6vy process, then its o--ideal of sets of potential zero is translation 
invariant so if it has a reference measure, then Lebesgue measure is a reference 
measure; see for instance [V70, p. 19]. However, there do exist nontrivial examples 
of L6vy processes, even symmetric ones, which do not have reference measures; see 
[Ha79, p. 340]. If X is a symmetric L~vy process and m is Lebesgue measure, then 
semipolar sets are m-polar even if m is not a reference measure; see for instance 
[FG88, (2.9)1. More generally, if m is Lebesgue measure and X is L6vy process 
satisfying the "sector condition", then semipolar sets are m-polar even if m is not 
a reference measure; see [Si771 or [Fi89]. 

Another example of a process to which Theorem (1.2) applies is the infinite- 
dimensional Ornstein-Uhlenbeck process. For  this process, E = {x~C[0,  11: 
x(0) = 0} and m is Wiener measure on E. The process (Xt) under px is equal in law 
to (e-U2(x + B(d - 1))) where B is the Brownian motion in E associated with 
the Gaussian measure m. B starts from 0, has continuous paths and stationary in- 
dependent increments, and the distribution of Bt is the image of m under the map 
x ~-~ x / t  x. The process X is symmetric with respect to m. (See [-M82] for details 
concerning the preceding assertions in this paragraph.) Because of this symmetry, 
semipolar sets are m-polar; see for instance [FG88, (2.9)1 again. Also, m is invariant 
and hence excessive for X. But, as we shall now explain, X does not have a reference 
measure. We are grateful to Ren+ Carmona and Bruce Driver for helpful dis- 
cussions concerning this point. We begin by recalling the basic facts about the 
reproducing kernel Hilbert space H of m. E is a separable Banach space with norm 
II x [l~ = sup {lx(t) l: 0 <_ t _< 1} and m is a Gaussian measure on E. No proper closed 
linear subspace o r e  carries m. For some c~ > 0, we have je exp(e Jl x H2)m(dx) < oe. 
(This holds for any Gaussian measure: see [Fe70]. ) The dual space E* ~ L2(m). Let 
H * be the closure of E * in L 2 (m) and define J :  H * -+ E by J ( y *) = je xy* (x) m (dx). 
The integral exists in the sense of Bochner, and J is one-to-one. By definition, 
H = J(H*), with the norm H J(Y*)IJu = II Y* nu,. H* may be viewed as the dual of 
H via the pairing 

~i. ( x*, J ( Y* ) )n  = ~ x* (x) y* (x)m (dx) . 
E 

In case x * s E * ,  we have 

u.(x* ,  J (Y* ) )n  = x * ( J ( y * ) ) .  

Let /3~(x) = x(t) for x ~E  and 0 _< t <_ 1, so that under m, (/~,)0s--t_=<l is Brownian 
motion in IR starting from 0. Suppose x*~E*.  Then x* is represented by 
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a real-valued Borel measure # on ] 0, 11. Integrating by parts, we get 

1 

x* = f f (t) dflt (stochastic integral) 
0 

where f ( t ) =  #]t ,  11 for 0_< t_< 1. It is well-known that for g~L2[0,  1], 
I1 g IIL~Lo, 11 = II ~o g(t) dflt []L2(m). It follows that g ~ S~ g(t) dflt is a linear isometry 
of L [0,11 onto H*. Suppose g s L 2 [ 0 , 1 ] .  Let y*=Solg(t)df i t  and let 
~(s )=~og( t )d t  for 0 < s < l .  Note that ~EE. It is easy to check that 
x*(J (y*) )  = ~o ~ ~(s)#(ds) = x*(~). Thus J(y*)  = ~ and H = {xsE:  x is absolutely 
continuous and x 'E L 2 [0, 11}. Now we proceed to the proof that X does not have 
a reference measure. Note that re (H)= 0 since Brownian paths have infinite 
variation. If x ~E\I-I, then there is a Borel measurable linear subspace L c_ E such 
that x r  H c_ L, and re(L) = 1: See for instance [Ca80, Proposition 11. Next, if 
F is a finite dimensional linear subspace of E such that F c~ H = {0}, then there is 
a Borel measurable linear subspace L _~ E such that F c~ L = {0}, H ___ L, and 
re(L) = 1. This follows by induction on the dimension of F. For suppose x ~ F and 
x 4 = 0. Then x ~ E\I-I so there is a Borel measurable linear subspace Lo ~ E such 
that xq~Lo, H ~_ Lo, and m(Lo) -- 1. Let F1 = F c~ Lo. Then dimF~ < d imF,  so by 
the inductive hypothesis, there is a Borel measurable linear subspace L~ _c E such 
that F~ c~Lz = {0}, H ___ LI ,  and re(L1) = 1. Then L = L o n L z  works for F. It 
follows that the same conclusion holds if the dimension of F is countably infinite. 
Hence dim(E/H) is uncountable because re(H) = 0. I f L  is a Borel measurable linear 
subspace of E such that re(L) = 1, then for each x s E, the potential U(x," ) lives on 
]0, o o [ ' x  + L. (Recall that (Xt) under P~ is equal in law to (e-t/Z(x + B(e t - 1))).) 
If in addition x, y ~ E are linearly independent and (span {x, y } ) ~  L = {0}, then 
U (x, ') and U (y,") are mutually singular because (10, oo [. x + L) c~ ( ] 0, oo [. y + L) 
=~.  Hence the family of measures U(x,.), x ~ E, includes uncountably many 
pairwise mutually singular measures. Thus X cannot have a reference measure. 
This argument appears to use the full axiom of choice but it can be rephrased to use 
only the principle of dependent choice. The key to this rephrasing is that if there 
were a reference measure, then we would have v{U(x , ' ) :  x E E }  = v{U(x, . ) :  
x E A} for some countable set A _ E. 

2. Tools 

In this section we collect some of the definitions and results which are used in our 
proof  of Theorem (1.2). For  the time being, we continue to assume that X is an 
arbitrary right process, with state space E. (However, we shall soon specialize to the 
case of a Borel right process.) Let # be an s-finite measure on E. (A measure is said 
to be a s-finite when it is the sum of countably many finite measures.) Let A s C e. 
Recall that A is #-polar when Pu(X teA  for some t > 0) = 0. It  is easy to see that 
A is #-polar if and only if A is #U-polar. If ~ and m are s-finite measures on E with 

~ m and ifA is m-polar, then A is ~-polar. Thus i fpU ~ m and A is m-polar, then 
A is p-polar. The following result is a refinement of Proposition 6.5 in [Hu57]. 

(2.1) Lemma.  Let v be a measure on E such that vU is c@nite. Suppose Z ~ g  e is 
v-polar and v (Z )=  0. Then there exist an excessive function f and a decreasin9 
sequence (G,) of ge-measurable finely open sets such that f =  + oo on ~ ,  G, ~_ Z, 
v ( f )  < oo, and v ( f )  + ~,, v( P ~ , f )  < oo. 
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For  a proof of (2.1), see [Fa83, Lemma 1]. Once again, let # be an s-finite 
measure on E and let Amg ~, Recall that A is thin when P~(TA > 0) = 1 for each 
xeE,  where TA = inf{t > 0; X~eA}. A is semipolar when A is the union of 
countably many thin g~-measurabte sets. Hunt  showed that if A is semipolar, then 
P"(Xt e A for uncountably many t) = 0. When A satisfies the latter condition, we 
shall say A is #-semipolar. Dellacherie showed that if A is #-semipolar, then 
A = B u C where B e g  ~ is semipolar and C e g  ~ is #-polar; see [De69a, De88]. He 
also showed that if A is not #-semipolar, then A carries a nonzero finite measure 
p which does not charge #-semipolar sets; see [De69b, De88]. 

We now specialize to the case where X is a Borel right process. That is, we 
suppose X is a right process whose state space E is homeomorphic to a Borel 
subset of a compact metric space and for each Borel set A __ E and each t > 0, 
x ~-~ Pt(x, A) is Borel measurable on E. In this case, each q-excessive function is 
nearly Borel, so each dg~-measurable set is nearly Borel. Hence for A e E ~, if A is 
#-polar (respectively, #-semipolar), then A ~ B for some Borel set B c E such that 
B is #-polar (respectively, #-semipolar). In this context, for an arbitrary set A __ E, 
we define A to be #-polar (respectively, f~-semipolar) when A _~ B for some Borel set 
B c__ E such that B is #-polar (respectively, #-semipolar). 

Now fix a measure m on E which is excessive for X. (Recall that then, in 
particular, m is o--finite.) Let ( W, ( Yt)~a, Q,,) be the associated Kuznetsov process, 
which exists because X is a Borel right process. There is quite a lot of notation and 
theory associated with the Kuznetsov process and we shall recall only some of it. 
For  the rest, we refer the reader to [Fi90] and to the papers cited there. Wis the set 
of paths w :IR ~ E u {A} that are E-valued and right-continuous on some open 
interval ] e(w),/3(w)[ __ IR, taking the value A outside this interval. (A is a point not 
belonging to E and is called the "cemetery point." The "dead path" [A]: t~--~ A 
satisfies ~([A]) = + oo and /3([A]) = - oe.) Y~(w) = w(t) for t~lR and we W. 
Under Q,,, (Y~) is stationary and after time c~, ( Yd is a strong Markov process with 
transition function (P~). We may and do assume that the sample space for X is 

(2 = {we W: e(w) = 0 and Y~+ (w) exists in E} ~ ([A]} 

and that X~ = Yt+ t f2 for t > O. Let I---b'(l?~,~), the copredictable projection of 
t?~, ~ .  Intuitively, It(w) is the conditional probability 

Q,,(YteEl Y~ = w(s) for each s > t ) ,  

for e e IR and w e W. One can choose a version of I with the following properties: 
(i) l is optional as well as copredictable; 

(ii) O < l < _ 1 ;  
(iii) Itocrs = lt+s for s, te]R, where o-~ is the shift operator on W defined by 

(~w)( t )  = w(s + t); 
(iv)~a, f l~_Ac_~e ,  fi~, and Yt+(w) exists in E for (t,w)eA, where 

A = {(t ,  w ) ~ I R  x W:l,(w) > 0}. 
Now for t ~ ]R, let 

{ ~+ i f t = c ~ a n d I ~ > 0 ,  

= Y~ otherwise. 
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The process Y is both optional and copredictable. (In contrast, Y is just optional.) 
For A e g, it is clear that A is m-polar if and only if Q,, (Yt s A for some t e IR) = 0, 
and A is m-semipolar if and only if Q,, ( Ytt ~ A for uncountably many t ~ IR) = 0. It 
can be shown that if A is m-polar, then Qm (Yt ~ A for some t ~ IR) = 0; the converse 
is clear. (In contrast, if A is m-polar, it does not follow that Qm (~+  eA for some 
t ~ IR) = 0. See [FG90] for a discussion of this point~) 

There exists a Borel moderate Markov process X = (fit, fix) which is in weak 
duality with X with respect to m. The sample space of X is 

6 -- {we = 0} {[A3}.  

For 0 < t < 0% we have 

(Note that -~0 is undefined.) For each x, theprobability measure fix is defined (at 
least initially) on the o--algebra ~ o  = a(Xt:0 < t < ~). Of course X and the 
objects derived from it depend on m, but this dependence is often suppressed in 
what follows. 

Let z = inf{t > 0: X~ 4 = Xo} and for each x, let U = inf{t > 0: J(t # x}. Let 
H a n d / i  be the sets of holding^ and coholding points respectively: H = {x s E: 
px(z > 0) = 1} a n d / i  = {xeE: W ( U  > 0) > 0}. (Note that X need not satisfy the 
Blumenthal 0-1 law.) It is easy to see that H and H are Borel sets. In the context of 
standard processes in strong duality, a point is holding if and only if it is coholding. 
In the present more general context, the family ( P ~ ) ~  is determined only up to an 
m-polar set so the following result is the best we can hope for. 

(2.2) Lemma. The symmetric difference of H and IYI is m-polar. 

Proof First let us show that / 4 \ H  is m-polar. We proceed by contradiction. 
Suppose/~\H is not m-polar. Then by the section theorem, there is a copredictable 
time T such that Qm( YT ~ H\H) > 0. By the definition of H, 

Qm(P rT('~r*> 0), Yr E/4 \H)  > 0 .  

(The ambiguity in this expression may be covectly resolved by recalling that YT is 
defined on Wand for each x, U is defined on f2.) By the moderate Markov property 
(in reverse time), 

Qm( YT(6 ) > 0, > 0 

where (O~w)(s) = w(t + s) for s < 0, A for s > 0. That is, 

Q,,(YTeI4\Hand there exists e > 0 such that YT-~ = YT for 0 < t _< e) > 0.  

Thus /~ \H  is not even m-semipolar. Hence by the second of the results of 
Dellacherie mentioned above, there is a finite measure p on E which does not 
charge m-semipolar sets but does charge H\H. In particular, p does not charge 
m-polar sets so by [Fi87, (5.22)], there is a Qm-essentially unique optional co- 
predictable homogeneous random measure ~c carried by A, such that 

(2.3) I I f (  t, x)p(dx)dt = ~ ~f(t,  ~(w))~c(w, dt)Qm(dw) 
R E  W ~  
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for each non-negative ~ | g-measurable function f on IR x E. (Here N = Borel 
(IR).) The right hand side of (2.3) is usually abbreviated as Q,,(~f(t ,  ~)K(dt)). 
Since p does not charge m-semipolar sets, ~ is diffuse; i.e., ~c(w, �9 ) is diffuse for Qm-a.e. 
w~ W. Let (p(x) = ln~(x), ~(x, w) = l{~'x(w)>o~, and let Z~(w) = q~(Yt(w))~(~(w), (~tw). 
We claim that Qm-a.s,, Zt = 0 for all but countably many t. First note that for 
Q,,-a.e. w, we have 

{teA(w): Yt(w)~ H ~} _~ {teA(w): ~:(Otw) = 0},  

where (Otw)(s) = w(~ + s)for s > 0, A for s < 0. (For if t ~ A(co)and ,(0,co) > 0 then 
l~(o~) is constant on an interval of the form It, t + e[ ,  and in this case there is 
a rational r in [t, t + e[ such that ,(0~co) > 0 and Y~(c0) = ~(co). Consequently 

Qm(zoOt > 0 and Yt~H ~ for some teA) 

< Q~,(r o 0,. > 0 and Y, ~ H ~ for some rational r s A) 

< ~ Qm(~o0, > 0, YZ,~H~,r~A)=O, 
p 

where the final equality follows from the simple Markov property.) Now for each w, 
there exist at most countably many t's where both z(O,w) = 0 and "~*(~)(O,w) > O. 
(Each such t is the right-hand endpoint of an interval of constancy of w.) This 
proves the claim. It follows that 

because ~c is diffuse. Hence 

0 

since ~c is copredictable. But it follows from the moderate Markov property (in 
reverse time) that for Q,,-a.e. w, for each t, 

~Z~(w) = ~ 0 ( f ~ ( w ) ) ~ ' ~ ( ~  ~ > 0) 

so ~(w)elFI\H implies PZt(w) > 0. Hence 

P(IYI\H) = Qm ~ lff\e(~)~c(dt) = O. 
0 

But this contradicts the fact that p charges /-)\H. Thus / i \ H  must be m-polar 
after all. 

The proof that H \/~ is m-polar is just the dual of the above argument. Since this 
fact is not needed for the proof of Theorem (1.2), we omit the details. [] 

An g*-measurable function f=> 0 on E is said to be coexcessive when it is 
excessive for X; i.e.a when Ptf<<_ffor t > 0 and t~tf~f pointwise on E as t + 0, 
where Pt(Y, dx) = PY(Xt~dx). A statement about points xeE is said to hold m- 
quasi-everywhere (abbreviated m-q.e.) when the set of points for which it does not 
hold is m-polar. 
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(2.4) Proposition. (a) I f  f is coexcessive, then there exists a BoreI coexcessive 
function g such that f =  g m-q.e. In particular, if f is coexcessive, then fo Y is 
optional and copredictable. 

(b) I f  ~ is an excessive measure and ~ < m, then there exists a coexcessive version 
fi of d~/dm; if fi' is another coexcessive version of d~/dm, then ~t = {t' m-q.e. 

Proof See [Fi90, (2.6)]. [] 

(2.5) Proposition. Suppose ~ is an excessive measure and ~ < m. Then there is 
a version (t of dr such that (t is Borel measurable and Qm-a.s., ~t o Y is right- 
continuous on A; if ~' is another such version of d~/dm, then fit = ~t' m-q.e. Moreover, 
there is a Borel m-polar set N, whose complement is absorbing for both X and X, such 
that ule\N is finite and finely continuous on E \ N .  Finally, if (t is a coexcessive version 
of d~/dm, then fi < ~ m-q.e, and {~ ~ ~} is m-semipolar. 

Proof See [Fi90, (2.7)-(2.10), (3.7)] and [Fi87, (4.15)]. [] 

The function a in (2.5) is called a fine version of d~/dm. (The case where X is 
uniform motion to the right on IR and m is Lebesgue measure is trivial but 
illustrative: dr may be taken to be increasing and ~ is its left-continuous version 
while ~7 is its right-continuous version.) 

As we have already remarked, if# is a o--finite measure on E, then #U < m if and 
only if # charges no ~e-measurable finely open m-polar set. When expressed in 
terms of fine densities, the domination principle assumes the following form. 

(2.6) Theorem. Let 2 be a measure on E such that 2 charges no m-polar set and 2U is 
a-finite. Let ~ be an excessive measure such that ~ < m. Let ~ and ~ denote fine 
versions of d(2U)/dm and d~/dm respectively. I f  gt < 6 2-a.e., then ,~U < ~. 

For a proof of Theorem (2.6), see [Fi90, (2.13)]. (It is worth remarking that 
sharper versions of (2.5) and (2.6) exist: See [FG90], and for an application see 
[Fi91].) The "classical" version of the dominatiol~ principle was expressed in terms 
of the coexcessive densities ~ and ~3 and required the stronger hypothesis that 
2 charges no m-semipolar set. In our application of (2.6), this hypothesis would be 
satisfied. For us, the importance of (2.6) is that it is expressed in terms of densities 
which are (almost) finely continuous. This enables us to avoid considering the 
cofine topology, which is fortunate since in the present setting, the cofine topology 
need not exist; see [SW73, w 

Suppose )~ is a measure on E such that 2 charges no m-polar set and 2U is 
o--finite. Let x be a version of the corresponding optional copredictable homogene- 
ous random measure carried by A, as in (2.3) (with p replaced by 2). We may and 
shall assume in addition that tc is perfect; see [Fi87, (5.23) and (5.27)]. Then 

a (x )  = ~sx(~c] - m ,  0 [ )  

defines a coexcessive version fi ofd(2U)/dm; see [Fi90, (3.7)]. (It is worth remarking 
that this fact depends heavily on the perfectness of x; note that each/5x lives on 
f2 which is a subset of W having Qm-measure zero.) The next result is a version of 
the switching identity. 
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(2.7) Theorem. Let 2 and ~c be as above. Let A be a BoreI subset of E, let 

TA = inf{t > 0: XtEA} 
and 

ir A = inf{t > 0: )~t~A} 

be the hittin9 and cohittin9 times of A, and let PA(X, dy) = Px(X(TA)edy) be the 
hittin9 kernel for A. Then 

= - o0, - 

defines a coexcessive version fiA of d(2Pa U)/dm. 

Proof Let ZA = inf{t > e: YteA}. Note that TA = zA[s Since 2U is excessive, we 
may consider the corresponding Kuznetsov measure Qxv on W. For  each Borel 
measurable function f__> 0 on E, we have 

(2.8) 2PAU(f) = Qzv(f( go), za < 0). 

This was shown in [FM86, (5.5)]. For  the reader's convenience, we shall give 
a proof here. By [GG87, p. 36], the Kuznetsov measure corresponding to a poten- 
tial has a particularly simple form, namely 

(2.9) Qzv(F)= ~ nZ(Foa-t)dt= S n~(F~ 
- - O 9  - - O 9  

for each N*-measurable function F __> 0 on W(where N* is the universal completion 
o fN  ~ = a{Yt: t~lR}). Now zAoat = zA - t, and Px lives on ~2 so 

Qzv(f(Yo), ZA < 0) = ~ PZ(f(Yt), t > zA)dt 
- - O 9  

= pZ f(Yt)l(t>~A }dt = pZ dt 
- - O 9  

= )~PAU(f), 

which completes the proof of (2.8). Next, for each t 6 ]R, we introduce the operation 
bt of birthing at time t: For w ~ W, 

(btw)(s) = { A(S) ifs>t,ifs<=t. 

Note that bt = a-t ~ Or. We claim that 

(2.10) Q~:( F) = Qm ( ~ F ~ bttc(dt) ) 

for each ff*-measurable function F > 0 on W. By a routine completion argument it 
suffices to consider g~ F. Let Zt = F~ Since Zt = F oa_t  o 0t, it 
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follows __from the s t rong M a r k o v  p roper ty  that  the opt ional  project ion of Z is 
~ = PYt(F ~ a-t). Hence 

Qm(~F~176  

= I I PX(F~ 
R E  

= f PZ(Fo o-_t) dt 

= Qzv(F) 

where the first step follows f rom the opt ional i ty  of ~c, the second from (2.3), and the 
last f rom (2.9). This completes  the p roof  of (2.10). Combin ing  (2.8) and (2.10), we 
obta in  

(2.11) 2PA U( f )  = Q,n( J- S ot f  ( Yo) l{~aob,<O} tC(dt) ) 

Recall that  )~t = Y-t[ f~. Let  )~t = Y- , [O and let^Ta = i n f { t  > 0: XteA} .  For  each 
t < 0 and each w e  W w i t h  Yo(w)eE, we have Oowef2 and we also have 

zA(btw) < 0 
A 

iff Y~(w)eA for some se] t ,  0[  iffXs(Oow)eA for some s e J 0 ,  - t [  

iff TA(Oow) < --t iff t < -- TA(Oow) . 

Hence it follows f rom (2.11) that  

2ea U ( f )  = Qm(f ( ro)s:] - oo, - 57Ao 0 0 [ ) .  

Since ~c is perfect, we have x(w, ] - o% t [-) = ~C(0oW, ] - o% t [ )  for each t < 0 and 
each w e W; see [Fi87, (5.23), (iv)]. Hence  

2PAU(U) = Q~(U( Yo)K(0o,] - o% - TAo 0ol-) �9 

Applying the simple M a r k o v  p roper ty  (in reverse time), we obtain  

2PaU ( f )  = Q,,( f  ( Yo)pr~ - oo , - Ta[ ) ) �9 

N o w  observe that  

/~A={TA on {27A#(}, 
on {~A = (}, 

where ~= --~[(] is the lifetime of X. But since tc is perfect, we have ~(w,] - ~, 
c~(w)[) = 0 for each w e  W; see [-Fi87, (5.23), (iii)]. Hence  ~c(w, ] - ~ ,  - TA(w) D 
= ~c(w, J - o% - T A ( w ) [ )  for each w e  W. Thus  

2PA U( f )  = Qm(f( Yo)/3r~ ~c ] - o% - 7~a [ ) )  

= Q m ( f (  Yo)fia(Yo)) 
= ~f(x)~ta(x)m(dx). 

E 
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Hence UA is version of d(2PA U)/dm. Since ~c is perfect, we have ~c(a~w, B) -- re(w, 
B + s) for each w e W, each s ~ IR, and each Borel set B ~ IR; see [Fi87, (.5.23), (ii)]. 
Using this and the simple Markov property of J~, plus the fact that 0, = 0o ~ a _ ,  we 
readily obtain 

P~UA(X) = ~ ( Q  -- CO, --(t + T~~ 001-). 

Now t +  i?Aot~ t = inf{s > t:3f~eA} $ i?a as t $  0. Hence UA is coexcessive. (Of 
course, we should point out that fiA is g*-measurable because ~c is N*-measurable. 
The fq*-measurability of Fc is part of the definition of perfectness of ~; see [Fi87, 
(5.23), (i)].) This completes the proof of the theorem. [] 

For earlier versions of the switching identity, see [B45], [Hu58, eqn. 18.3], 
[BG68, VI(1.16)], [A73, 4.5 and 4.6], and [GS84, (11.6)]. We remark that (2.7)was 
implicit in the proof of [Fi87, (6.27)]. 

3. Proof of the main Theorem 

In this section, we shall give the proof of Theorem (1.2). Assume for now that X is 
a Borel right process. Then all the results of Sect. 2 may be applied. 

Step 1. Consider the case where # charges no m-polar set. Let r be the set of all 
non-randomized stopping times T such that #Pr  U > vU. Then J -  + ~ since 0 s Y.  
Now the pointwise limit of any increasing sequence in Y belongs to J .  (For if(T,) 
is such a sequence and T is its limit, then for each Borel function f > 0 on E with 
# U ( f )  < ~ ,  we have #PT, U ( f )  = PU(~ , f (X t )d t )  J, PU(~ f(X~)dt)  = #PTU(f) ,  
by dominated convergence so, as #U is o--finite, #PT U > vU, whence Ts  Y.) From 
this and the fact that P~ is o-finite it follows that J -  has P&essentially maximal 
elements; let T be one of them. (Incidentally, the full axiom of choice is not needed 
for this. The principle of dependent choice is enough.) Let 2 = #PT. We claim that 
2 = v. For suppose not. Then we shall show that there is a non-randomized 
stopping time S such that 2Ps U > vU and Px(S > 0) > 0. Assume that this has 
been shown. We may suppose that S ( [A] )=0 .  Let T ' =  T+SoOT.  Then 
T ' ~ 3 -  because #PT,U = #PTPsU = 2PsU > vU. But T<__ T' and P"(T  < T') 
= Pu(S o 0T > 0, T < m) = Pu(px(r)(s > 0), T < oe) = P~(S > 0) > 0, which con- 
tradicts the maximality of T. 

Now let us show how to construct S under the assumption that 2 + v. Observe 
that 2 charges no m-polar set. (For let A be a Borel m-polar set. Since #U ~ m, A is 
#U-polar. Equivalently, A is #-polar. Hence )~(A)=PU(XT~A ) =P~(XT~A,  
T = 0)_<_ #(A)= 0.) Also, since 2U > vU, there is a randomized stopping time 
R such that 2PR = ~!, by (1.1). Let z, U, H, and /~  be as above (2.2). Let 

21 = l~\u2, 22 = 1H2 

v i=21PR,  v2=22PR.  

Then for i = 1, 2, 2i charges no m-polar set and 2~ U > v~ U. Moreover, either 
21 :~= ~1 or 22:4= V2. Thus we may reduce to the case where either 2(H) = 0 or 2 lives 
on H. 
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Case 1. Suppose 2 ( H ) =  0. Then  2 ( / 4 ) =  2(/~c~ H ) +  2 ( / ~ \ H ) =  0 since, by 
(2.2), H \ H  is m-polar.  Let  x be as above  (2.7) so tha t  

a(x) = ~x(~]  - ~ ,  o [ )  

defines a coexcessive version fi of d()~U)/dm. By (2.4)(b), there also exists a co- 
excessive version ~ of d(vU)/dm. Let V = {fi > ~}. We claim that  

(3.1) 2 ( v )  > 0 .  

For  suppose not. Then  ~ > fi 2-a.e. Let  ~ and g be fine versions of d(2U)/dm and 
d(vU)/dm respectively; see (2.5). Then  {fi + zT} and {~ + g} are m-semipolar.  But we 
are assuming that  m-semipolar  sets are m-polar.  Since 2 charges no m-polar  set, 
fi = ~ 2-a.e. and ~ = g 2-a.e. Hence g > ~ 2-a.e. so vU >= 2U by (2.6). But then 
2U = vU so 2 = v, which is a contradict ion.  This proves  (3.1). 

We shall now obta in  the desired s topping time S as the t ime at which X leaves 
a suitable Borel finely open set L. Let  N = {B,: n = 0, 1, 2 , . . . }  be a countable  base 
for the topo logy  of E. Fo r  each n, let A, = B~, let 2, = 2PA.  , let T, = TA., let 
ft, = P ( x ]  -- 0% -- 7~, [ )  which, by (2.7), is a coexcessive version of d(2,  U)/dm, and 
let t7, be a fine version of d(2,U)/dm. I t  follows readily f rom (2.5) that  there is 
a Borel m-polar  set N such that  E \ N  is absorbing  for X and such that  the 
restrictions to E \ N  of ~i, ~, ~i, (n = 0, 1, 2 , . . .  ) are finely cont inuous on E\N .  Note  
that  E \ N  is finely open. Let  q / b e  the topo logy  on E generated by ~ ,  E \ N ,  s ~, and 
{~,: n = 0, 1, 2, . . . } .  Since q/ is second countable,  any measure  on E has a 
q/-support .  (Fo r  the purposes  of the present  argument ,  this serves as a substitute 
for the fine support .  The latter need not  exist since X was not  assumed to 
have a reference measure.)  Let F be the q / - suppor t  of 2 and let 

G = F r~ (E\I~) c~ (E\N)  n {fi = ~} c~ {~, = a,  for each n} .  

Then  2 lives on G. (2 charges no m-polar  set. Hence 2 (N)  = 0. {ft, 4= ~in} is m- 
semipolar  and so, by hypothesis,  m-polar.  Hence ft, = ft, 2-a.e.) Since 2(V)  > 0, 
G c~ V +  ~. Fix z e G  c~ V. For  some sequence (n(k)) of na tura l  numbers ,  we have 
B,(k) ~. {z}~ Let Tk = 7~,(k). Then^~k $ U. But U =  0 /3~-a.s. because zq~H. Hence 
fi,(k)(Z) = P~(X] -- 0% -- ~k[) 1" P~(X] -- 0 % 0 [ )  = fi(z). But ft,(z) = a,(z) and 
fi(z) = fi(z) because z e  G. Hence (t,(k)(Z) "f (t(Z). NOW ~i(z) > ~(z) because z e  V n  G. 
Thus  there is an n (equal to n(k) for some k) such that  z e B ,  and ~i,(z) > ~(z). Let  

L = Bn n {(t,, > ~} n ( E \ N ) .  

Then  L i s ~ - o p e n  and L n F 4 ~ (since z e L  c~ F) so 2(L) > 0. Let  D = U ,  S = TD, 
and 2~ = TD. We claim that  

(3.2) 2PsU > vU . 

By (2.7), 2PsU = ffm where ff = f t ' (x]  - ~ ,  - S I - ) ,  so ff > ft,. Thus ff > b m-q.e. 
on L so (3.2) holds on subsets of L. Next,  for each Borel function f >  0 on E such 
that  f =  0 on L, we have 2PsU(f )  = 2(PDUf) = 2(Uf) >= vU(f) .  Thus  (3.2) holds 
on subsets of D too. This completes  the p roof  of (3.2). Finally, L is finely open so 
PZ(S > O) >= 2(L) > O. 

Case 2. Suppose 2 lives on H. Recall that  there is a randomized  s topping t ime 
R such that  2PR = V. F o r  each x, let v~ = exPR where ~x is the unit  point  mass  at x. 



314 N. Falkner and P.J. Fitzsimmons 

Then v = ~ 2(dx)vx and exU > vxU. Since 2U is a-finite, we have 2 U ( f )  < oo for 
some Borel function f >  0 on E. Then Uf< oe 2-a.e., so f(x)U(x, {x}) < oe for 
2-.a.e.x. Let 

Hi = {x~H: e~ 4= v~ and s~U({x}) < oo}. 

Then 2(H1) ~ 0 because 2 4= v. If x~H1, then PX(R > 0) > 0 so 

(3.3) oe > exU({x}) = P~ l{x}(X~)ds 

> PX( ~ l{x}(X~)ds ) = 

where in the third step we have used the fact that x is a holding point. For  x ~ H i ,  
let 

t x = s u p  t=>0:P~ 1{~} s =>v~ x 

and for x~H], let tx = 0. For xeH1, we have t~ > 0 by (3.3) and we also have 

P~( ~ l{~}( Xs)ds) = v~U({x}) . 
tx 

Let S = ~/x txo. Then PX(S > 0) = 2(Hi)  > 0. For each x, 

sxPsU({x}) >_ vxU({x}) 

and if A is a Borel subset of E\{x}, then 

e~PsU(A) > e~P~U(A) > exPAU(A) 

= ~U(A)  >= v~U(A). 

Thus sxPsU > v~U for each x. Hence 2PsU > vU. This completes Step 1. 
Step 2. Consider the case where v charges no m-polar set. We can choose 

a #-essentially largest Borel m-polar set Z. If S is a random time and S > 0 
PU-a.s. on {Xo e Z}, then laps charges no m-polar set. (For consider any Borel m- 
polar set N. Then N is #-polar, so PU(XsEN)= PU(XseN, S = O)< PU(XoeN, 
Xo • Z) = #(N\Z) = 0 where the last step follows from the maximality of Z.) We 
shall construct a non-randomized stopping time S such that #Ps U > vU and S > 0 
PU-a.s. on {Xo e Z}. Then by Step 1 (with # replaced by #Ps), there is a non- 
randomized stopping time T '  such that #PsPr' = v. But then #Pr  = v where 
T = S + T' o Os. 

Now let us construct S. Since Z is m-polar, it is v-polar. Also, by hypothesis, Z is 
v-null. Hence, by (2.1), there is an excessive function f and a decreasing sequence 
(G,) of finely open ge-measurable sets such that, letting Z* = ~ ,  G,, we have 
Z * ~ Z , f =  + oc o n Z * , a n d v ( f ) + ~ , v ( P ~ . f ) <  oo. L e t H o = E \ G o  and for 
n > 1, let H, = G,_~\G,. Then E = Z* w ( U , H , ) .  (We remark that this is a dis- 
joint union.) Let #, = #Pz .  and let v, = vPz. Then #, U > v, U. (For  consider any 
Borel function h > 0 on E. Let g = Pu, Uh. Then #,U(h) = #(9) and v,U(h) = fig). 
But #(g) > v(g) because g is excessive, #U > vU, and #U is a-finite; see for instance 
[Fa83, p. 45].) Now Tu. > TE\a, > 0 P"-a.s. on {Xo~Z} so #, charges no m-polar 
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set. Hence by Step 1, there is a non-randomized stopping time R, such that 
]AnPR. = V n. Let S, = TH, + R,  o OTH n. Then #Ps, = v,. Let S = inf S,. First, let us 

/I 

show that 

(3.4) #PsU > vU . 

Consider a Borel function h > 0 on E. If h = 0 outside H,, then Pn, Uh = Uh so 
I~PsU(h) > I~Ps, O(h) = v,U(h) = v(Pn Uh) = vU(h). Next, f <  oo v-a.e, and 
f =  oo on Z* so Z* is v-polar. Hence, if h = 0 outside Z*, then 
#PsU(h) > 0 = vU(h). Since Z* co U , H ,  = E, (3.4) holds. Now let us show that 
S > 0 P"-a.s. on {Xo eZ}. Let S', = So /x �9 �9 �9 A S,. Then S', $ S so f (Xs , , )  ~ f ( X s )  
PU-a.s. (Since f is excessive, fo  X is a.s. right continuous.) Hence 

PU(f ( Xs) ) <= lira inf PU(f  (Xs;,) ) 
n ~ o o  

____ liminf ~. PU(f(Xs~); S'. = Sk) 
n --* oo k = O 

k=O k=O 

k=O k=O 

<= v( f )  + ~ v(P~,f)  < oo . 
/ = 0  

But f = + oo on Z. Hence PU(Xs s Z) = 0 so Pu(S = 0, Xo ~ Z) -= 0 as desired. This 
completes Step 2. 

Step 3. In the general case, there is a trivial reduction to the setting of 
Step 2. For  we can choose a v-essentially largest Borel m-polar set M. Clearly 
the set C in (1.4) may be modified to be Borel measurable. Next, 
v(M n C c) = /x(M n C c n C) = 0 so we may and do assume that M ___ C. Then for 
each Borel m-polar set Z, v(Z) = v(Z n M)  = #(Z n M n C) = #(Z n M). Thus 
# and v agree on subsets of M and v charges no m-polar subset of E \ M  so we may 
finish by applying Step 2 to l~\~t# and 1E\MV in place of/x and v. 

Theorem (1.2) has now been completely proved in the case where X is a Borel 
right process. The reduction of the general case to this special case is essentially 
trivial but depends on a plethora of facts about the Ray-Knight  compactification. 
Accordingly, for the reader's convenience, we give the details. Suppose  X is 
a general right process. Let ( U q ) o < q < o o  be the resolvent for X. Let (E, U q) be 
a Ray-Knight  completion of (E, uq); see [Sh88__, p. 93]. (/~ is compact and metriz- 
able and (LTq)o<q<~=is a Ray resolvent on E.) Let (/~) be the corresponding 
Ray semigroup on E and let D be its set of non-branch points. Evidently the 
cemetery point A is a trap for (Uq). In what follows A will serve as cemetery for (US), 
so the convention that all functions and measures vanish at A remains in force. In 
p=articular, if we set/~ = D\{A} then f is a Borel subset o f /7  and for each xe/~, 
Pt(x,') lives on/~; see [Sh88, (9.11)]. Let (fit) be the restriction of (fit) to/~. Let 
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2 = Borel (/~) and let 2* be the universal completion of 2. We have E ___/~, E s •*, 
the trace of g*  on E is g*, and for each x e E, 

(3.5) /~(x, A) = Pt(x, A c~ E) 

for each A ~ 2 *  and each t > 0; see [S_h88, w especially (17.10), (17.11), and 
(17.16)]. (We remark that  the trace of g on E is gr, the Ray a-algebra on E. We 
have g ~_ &. This inclusion may be strict.) It follows from (3.5) that a function on 
E is q-excessive for (P0 if and only if it is the restriction to E of a function on /~  
which is q-excessive for (/~); see [Sh88, proof of (12.29)]. Hence 

(3.6) the trace of o ~ on E is ge , 

where ge is the a-algebra on /~ generated by { f : f  is  q-excessive for (fit), for 
some q > 0}. Now (~)  is a Borel right semigroup on E and may be realized by a 
Borel right process X on a canonical path space f2: 

is the set of paths c5:[0, ~[~/~w_{A} which are /7-valued and right- 
continuous into E on some interval [0, ~(05)[, taking the value A outside this 
interval; Jr = d~(t) for c ~  and t~ [0, oo[; 

see [Sh88, (9.13)]. Define (b on f2 by ~(6o) = (Xt(cO))o ~t< ~o. We may and do assume 
that ~:~2 ~ (2; see [Sh88, (18.1)]. Clearly 

(3.7) Xt ~ �9 = Xt for each t .  

Let ~ ' = a ( X ~ Z ( A ) : A ~ g  *, 0__<t<ov) and let . ~ ' = a ( J ( t - l ( A ) :  Ae~* ,  
0 < t < oo). It follows from (3.7) that 

(3.8) ~b is ~'/Y'-measurabIe. 

For each s-finite measure 2 on E, define )~on/~ by 2(A) = 2(A c~ E) for A ~ g * .  It 
follows readily from (3.5) and (3.7) that 

(3.9) /7~/?) = p~(~- l(F)) for each F e i f " .  

Let ~-~ be the P~-completion of .fi" and let o ~ -  be the/7~-completion of J ' .  It 
follows from (3.8) and (3.9) that 

(3.10) �9 is ~z/.~X'-measurable and fi~-(F) = PZ(q~-l(F)) for each F ~  ~-. 

Consider A s g  ~. Let A = A c ~ E .  Then A E g  ~ by (3.6). Let F = { X t ~ A  
for uncountably many t} and let F = _ { X ~ A  for uncountably many t}. Then 
/ T e f f r a n d  F = ~-~(/7) so by (3.10), P '(F) = P~(F). It follows that 

(3.11) A is ~,-semipolar for X if and only i[" A m  E is 2-semipolar for X .  

By a similar argument, 

(3.12) A is 2-polar for X if and only if A c~ E is 2-polar for X .  

Let m, #, v and C be as in Theorem (1.2). It follows from (3.i1) and (3.i2) that 
each o~-measurable semipolar set for X is N-polar and that for each rh-polar set 
Z e g  ~, we have ,7(Z) = v(Z c~ E) =/z(Z ~ E c~ C) = / i ( Z  c~ C). From (3.5), it follows 
that for each s-finite measure )~ on E, we have 2U = 2U. Hence flU > g~7. Thus the 
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hypotheses of  Theorem (1.2) hold with X, m, #, and v replaced by )~, ff~, fi, and ~7. 
Since X is a Borel right process, there is a non- randomized  s topping time T for 
)~ such that  fi/sf = ~. Fo r  0 < t < o%let j ~  = a ( X j l ( A ) : A s # * , O  < s < t) and let 
~ ;  = o-(Jf~-:t(A):A ~ g  *, 0 _< s -< t). I t  follows from (3.7) that  

(3.13) �9 is ~ ; / , ~ - m e a s u r a b l e  for  each t . 

Let  X U = { F e ~ u : P U ( F ) = O } ,  let & ' " = { F _ e ~ - u : P U ( F ) = 0 } ,  and for 
0 = t < 0% let fftu = i f ;  v ~zu and 2 ~  = J ;  v ~4 '~. It  follows f rom (3.10) and 
(3.1 3) that  

(3.14) q~ is 5;fut /~.measurable for each t ,  

N o w  Tis  an (gtu-)-stopping time. Let T = 27o ~. It  foll_ows from (3.14) t_hat Tis  
an (~-~)-stopping time. Consider  A e #*.  Then A e g * ,  ~Xf-eA} e ~-", and 
e - l ( { X f e A } )  = { X T e A } ,  so I.tPT(A) = Pt*(XTeA) = P u ( X e ~ A )  = filS~-(A) = 
~(A) = v(A).  

Thus #PT = v. This completes the p roof  of Theorem (1.2) for a general right 
process. 
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