
Probab. Th. Rel. Fields 87, 139-165 (1990) 

Probability 
Theory 
�9 Springer-Verlag 1990 

Max-infinitely divisible and 
max-stable sample continuous processes 

Evarist Gin~ 1.., Marjorie G. Hahn z,**, and Pirooz Vatan 3 
1 Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA 
2 Department of Mathematics, Tufts University, Medford, MA 02155, USA 
3 M.I.T. Branch, P.O. Box 21, Cambridge, MA 02139, USA 

Received May 22, 1989; in revised form May 7, 1990 

Summary. Conditions for a process ~ on a compact  metric space S to be simulta- 
neously max-infinitely divisible and sample continuous are obtained. Although 
they fall short of a complete characterization of such processes, these conditions 
yield complete descriptions of the sample continuous non-degenerate max-stable 
processes on S and of the infinitely divisible non-void random compact  subsets 
of a Banach space under the operation of convex hull of unions. 

0 Introduction 

Let S be a topological space, ~ be a stochastic process on S and ~-(S) be 
a function space over S. ~ is max-infinitely divisible (max-i.d.) in ~ ( S )  if 
has a version with all of its sample paths in ~-(S) and if for each h e n  there 
exist independent identically distributed processes ~,i with sample paths in Y(S)  
such that 

n 

n ~ N  

as proUaU l ty laws w ore ( 2  o, maxim  
" =  i = l  

are taken pointwise. If  Cni=a~ ' l (~ i -b , )  where ~i are i.i.d, with law ~(~) ,  a , > 0  
and b, are functions in ~-(S), then ~ is max-stable in o~(S). These processes 
arise as limits of pointwise maxima of i.i.d, r andom processes. (For an early 
example see Brown and Resnick [5] which considers the pointwise maxima 
of independent Brownian motions). If  S is a finite set, these are the max-i.d. 
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the hospitality of these institutions. 
** Partially supported by NSF grant no. DMS-872878 
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and max-stable random vectors on Nd which were studied by Balkema and 
Resnick [3], de Haan and Resnick [10] and Pickands [19]. The classical max- 
stable distributions in N go back to Fisher and Tippett [6] and Gnedenko 
[8]. For S countable and 9(S)=E~(S), the spectral representation of max-i.d. 
laws is obtained in Vatan [22], and that of max-stable laws in deHaan [9] 
and Vatan [22]. co and ~ ( N )  are also considered in Vatan [21] with the 
latter considered in deHaan [9] as well. Norberg [18] appears to be the first 
author to consider sample path properties when S is uncountable; he obtains 
the representation of max-i.d, laws in U(S), the space of non-negative, not neces- 
sarily finite upper semicontinuous functions on a locally compact space S. We 
borrow from Norberg's result and proof to obtain fairly complete results (Theo- 
rems 2.1 and 2.4) on the representation of max-i.d, laws in C(S), the space 
of continuous functions on a compact metric space. Our results give a complete 
characterization of only a subclass of such laws, those with a continuous vertex, 
but they contain a procedure to produce a large variety of max-i.d, sample 
continuous processes. Several examples and counterexamples in Sect. 2 give 
an idea of the scope of these results. 

The results on max-i.d, laws in C(S) are then applied to obtain in Theorem 
3.7 the spectral representation of all the non-degenerate max-stable laws in 
C(S) (non-degenerate in the sense that no one dimensional projections are degen- 
erate). In another application (Theorem 4.1), the representation of a.s. non-void 
infinitely divisible random compact subsets of a Banach space with respect to 
the operation of convex hull of unions is also obtained (see also Norberg [18]). 
Stable random sets in a restricted sense are also characterized in the finite 
dimensional case. It is somewhat surprising that incomplete results for the gener- 
al case do imply complete characterizations in these three important particular 
settings. 

There is a recognized duality between results for max-i.d, or max-stability 
on the one hand and those for infinite divisibility or stability for sums on the 
other. As shown by Norberg in great generality, upper semi-continuity appears 
to be a very natural sample path property for max-i.d, and max-stable processes. 
This is analogous to the fact that a natural space for the paths of stable (for 
sums) L6vy processes is D [0, 1]. In this latter case, deep studies of sample contin- 
uity have unearthed a wealth of interesting stable processes with sample continu- 
ous paths, such as certain random Fourier series (Marcus and Pisier [14]), 
even though no complete characterization of sample continuity for stable pro- 
cesses has been found. As shown in this article, the situation (and of course 
the methods of study) in the max-stable case is completely different and less 
complex, but it is possible to provide a complete characterization of sample 
continuity for max-stable processes. 

From a practical point of view, sample continuity of the max-stable limiting 
process is a pertinent question when considering max-domains of attraction 
and the appropriate space in which weak convergence is taking place. A typical 
motivating example in some of the initial studies of max-stability is the determi- 
nation of bank heights for a river by recording the levels along a stretch of 
the river on a number of different occasions. Since the level of the river is 
often a random continuous function, weak convergence results will provide the 
most information if the maxima can be normalized to converge weakly in the 
space of continuous functions, which of course requires the weak limit to be 
sample continuous. 
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1 Preliminaries and notation 

Our starting point is Norberg's representation of max-i.d, processes with upper 
semicontinuous non-negative sample paths ([18], Theorem 5.1). His result is 
based on Matheron's representation of random closed sets which are infinitely 
divisible with respect to unions ([153, Prop. 3.2.1) which in turn rests upon 
Choquet's Theorem characterizing alternating capacities of infinite order (e.g. 
[15], Theorem 2.2.1). (Matheron's representation can also be deduced from more 
general results on semigroups appearing in [4]). 

In what follows, S is a compact metric space and (U, v) is the space of 
non-negative not necessarily finite upper semicontinuous real functions on S, 
endowed with the vague topology (cf. [17, 18, 23]). Given a function heU,  
h ~ - co, U h = { f e  U:f,l= h , f >  h}.C(S) or simply C denotes the space of continu- 
ous functions on S, with the sup norm, and for hEU, h ~ - c o ,  we let C h 
= { f e C : f ~ = h , f > h } .  A measure on S will always mean a Borel measure. For  
functions f on S and sets A c S, we let f ( A ) =  supf(s). (This notation closely 

s e a  

follows that of [18].) Throughout the paper, maxima of functions is understood 
to mean pointwise maxima. 

13. Definition. A stochastic process ~ on a compact metric space S is max-i.d. 
in C(S) (max-i.d. in (U, v)) if it is sample continuous (has a version with sample 
paths in U) and for each nEN there exist i.i.d, sample continuous processes 
{,~ (i.i.d. (U, v)-valued processes {,,) such that 

n 

It will be understood, throughout the paper, that if a process ~ is sample 
continuous, then reference is always to a version of it with continuous sample 
paths. 

We state Norberg's Theorem here for the reader's convenience: 

1.2. Theorem (Norberg [18]). ~ is max-i.d, in (U, v) and ~ is not carried by 
{co} /f and only if there is a (unique) pair (h, v) satisfying 

(i) h: S --+ [0, col, h ~s co, is an upper semicontinuous function and 
(ii) v is a locally finite (finite on compact sets) measure on U h 

such that 

(1.1) 

(1.2) 

and 

h ( K ) = s u p [ x : P { ~ ( K ) > x } = l ] ,  K c S c l o s e d ,  

v (~Ol { f : f (Ki) > x'} ) = - l~ P (,~, { { (Ki) < xl} ), 

n~N ,  K i c S  closed , x i> h(Ki) , 

(1.3) 
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where {t/i } is the collection of atoms of the Poisson point process with mean 
measure v. 

h is called the vertex and v the max-L~vy measure of the max-i.d, process 
~. We refer to Resnick [20] and Karr [13] for the definition and properties 
of Poisson point processes. 

1.3. Remark. Obviously in Theorem 1.2, U can be replaced by the upper semicon- 
tinuous functions with values in [c, oo], c~lR, and then h takes values in [c, oo]. 
We are also interested in the possibility of taking c = -  oo. Norberg's proof 
shows that if ~ is upper semicontinuous and takes its values in ( -  o% oo), then 
there still exist h and v. In this case, h is upper semicontinuous and takes values 
in [ -  0% oo), whereas v is defined on the space of functions from S to [ -  o% oo] 
whose hypographs (=  hypo f =  {(s, x): - o o  < x =< f(s)}) are closed sets that con- 
tain the hypograph of h. These functions are upper semicontinuous but may 
take the values + oo and - oo (although v { f ( S ) =  oo} = - l o g  P{~(S)< oo} =0). 
But given a function h and a locally finite measure v with these properties 
then the corresponding max-i.d, process ~ may take the value - o o .  (The way 
to prove these observations is, as in Norberg's Theorem, to pass to hypographs 
and then apply Matheron's Theorem; the existence of h upper semicontinuous 
requires an easy extension of Matheron's Theorem ([16], Theor. 2.4).) 

An important sub-class of max-i.d, processes are the max-stable ones that 
will be considered in Sect. 3. 

1.4. Definition. A stochastic process ~ on a compact metric space S, such that 
~(t) is non-degenerate for all tslR, is max-stable in C(S) if ~ is sample continuous 
and for each n there exist continuous functions a,( t)>0,  b,(t), teS,  such that 
if ~i are i.i.d, copies of ~, 

(1.4) ( (+ ) )  ~ r  a21 ~i -bn  �9 
\ i =  1 / /  

It is well-known ([24, 25] ) that every nondegenerate max-stable distribution 
function on N is of the type of one and only one distribution in the parametric 
family 

(1.5) F v ( x ) = e x p { - ( l + T x ) - l / v } ,  7x>  - 1 ,  y E N  

where it is understood that if 7 > 0  (type I) then Fv(x)=0 for x < - 1 / 7 ,  that 
if 7 < 0  (type II) then Fv(x)=l for x > - 1 / 7 ,  and that if 7=0  (type III) then 
( l+Tx)  -a/v is an abuse of language for e -x, - o o  < x <  oo. This is a continuous 
parameterization: if 7k ~ 7 then F~k (x) -~ F~ (x), x ~IR, and in fact, since Fv is contin- 
uous, lIfvk-F~lk~0. Since the maxima in (1.4) are taken pointwise, if ~ is 
max-stable in C (S) (or, in general, if ~ is a max-stable process with non-degener- 
ate marginals), then for each t eS  the real random variable ~(t) is max-stable 
and non-degenerate. Therefore, there exist functions a(t)>0, b(t)~IR, t~S, such 
that for all x e N  

(1.6) P ((~ (t) -- b (t))/a (t) < x) = F v(,) (x). 
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The relationship between the functions an(t) and b,(t) of Definition (1.4) 
and the functions a(t), b(t) and 7(0 of (1.6) for a given ~(t) is easily seen to 
be: 

(1.7) 

(1.8) 

and 

an(t) = n 7(t) (for any value ofy(t)), 

b,(t) = (n ~(~ 1)(a(t)/7(t)- b(t)) for 7(t) :4= 0 

(1.9) b , ( t )=a( t ) logn  for 7(0=0.  

The continuity of a,(t) and b,(t), together with the sample continuity of ~, imply 
the continuity of V(t), a(t) and b(t) (Lemma 3.5). This continuity is essential 
in order to reduce the general case to the case of simple max-stable processes 
(i.e. those whose marginals have distribution �9 1,1 (x) = e-X-' I (x > 0), x E N.). The 
theory to be developed in Sect. 2 is suitable for handling the simple max-stable 
processes. Then, via the reduction, a complete characterization of all max-stable 
processes in C(S) is deduced in Theorem 3.7. 

In Sect. 4, the theory from the previous two sections will be applied to 
obtain representations of random compact sets which are i.d. or finite-dimension- 
al random compact sets which are stable for the operation of convex hulls 
of unions (see [18] for related results on max-i.d, random sets). The standard 
facts on random sets needed for this will be recalled at the beginning of Sect. 
4. 

2 Max-i.d. sample continuous processes 

Our first result gives a fairly general (although not a completely general) way 
of constructing max-i.d, sample continuous processes. 

2.1. Theorem. Let h be an upper semicontinuous function on S with - oe <= h(s) < oe 
for all s~S and let C h= - { f6C(S):  f + h , f > h } .  Let v be an infinite, locally finite 
measure on C h such that 

(2.1) v { f ~ c h :  f(I)>_X}<OO if x> h ( I )  

for all closed balls I ~  S. Let {th} be the points of  a Poisson point process tl~ 
on C(S) with mean measure v. Then the process 

(2.2) ~=,=~/1= t/i = h v  i t h a.s. 

is a max-i.d, sample continuous process and the relations (1.1) and (1.2) hold 
for ~, h and v. I f  h is continuous, the result holds also for finite v. 

Proof For simplicity, we write C for C(S) and q for t/~. Since v is infinite, 

P{tl~(C)=O}=e-v(c)=o. Therefore, h v  t/i - t/i as t / i>h for all i. Since 
i i = 1  
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oach is in c, the process .i=1  + is lower semicootiouou  and 
i = 1  t = l  

has inf o r ( s )>-  ~ .  Next we show that the process ~ is a.s. bounded. Let A~ 
s e S  

= { f e C h :  f(I)>x} with x>h(I). Then by (2.1), 

P {t/(A~) < oo} -- P {N~(AT) < oo} = 1 

where N~ is a Poisson random variable with mean 2. Since h ( s ) < ~  for all 
s and h is upper semicontinuous, every seS has a neighborhood where h is 
bounded from above so that by compactness h(S)<oo. Taking I=S in (2.3) 
shows that for each x>h(S) the number of th(S) larger than x is a.s. finite, 
and therefore P{~(S)=oo}=0,  i.e. ~ is a.s. bounded. So, since [~](S)<oe and 

has a.s. lower semicontinuous paths, in order to show that ~ is sample continu- 
ous it is enough to prove that ~ has upper semicontinuous sample paths with 
probability one. 

Write qo, for q(co). Let f21 be the set of co's for which t/~,(A~)<oe for all 
x> h(I) rational and all closed balls I with rational radii and centers in a count- 
able dense set of points of S, and for which qi(e))>h for all i. Then P(f21)=l 
by (2.3). Take now o9~f21 and seS. Assume ~(co)(s)<x for some x <  oe (which 
implies, in particular, h(s)<x). Take I,J.{s}, I, closed balls in the countable 
collection just described, with se(I,) ~ Then AI~$A~. Moreover, h being upper 
semicontinuous, h(s)<x implies h(I,)<x from some n on; hence t/~(A~,)<oe 
by assumption. So, we can apply downward continuity of t/~, and obtain 

,o (Az~,) ~ t/,o (Ar But ~ (co) (s) < x implies qo~(A}'~) = 0, and since t/is integer valued, 
qo~(Ar~)=0 from some n(co) on. Equivalently, sup 1/i(co ) (u)<x for n>n(co) and 

r U~In 

i=1,  .... Hence lim ~(m) (u)< lim sup V th(c~ (u)<x. This shows that for all 
U"-~S n ~ ~ 1 7 6  U~In i = l  

o~ef21, seS, lim ~ (co) (u) =< ~ (co) (s), i.e. that ~(o~) is upper semicontinuous. We 
u ---~ s 

have thus proved that ~ is sample continuous. 
Note that, since h is upper semicontinuous, a simple compactness argument 

shows that if (2.1) holds, then it holds for all KcS  closed. Now, ~(K)>x  if 
and only if 1,h(K)>x for some i, i.e. {~(K)>x}={tl{f(K)>x}#O }. Therefore, 
P {~ (K) > x} = 1 implies that P (t/{ f (K) > x} = 0) = 0 which in turn implies that 
v { f (K) > x} = oo (since v (A) = p < ~=>P (q (A) = 0} = e- p =~ 0), hence by (2.1), that 
x =< h (K). Hence 

h(K)>sup{x: P{~(K)>x}=I} (=sup{x:  P{~(K)>x}=I}) .  

The reverse inequality is trivial from h(K)<= ~(K) a.s. Hence, (1.1) is proved. 
To prove (1.2) note that the above observation shows that if x~>h(KO, i 

= 1 . . . .  n, then 

(2.4) P{r i= 1 .... , n} =P{tl{f(K~)>x,} =0, i=  1 . . . .  , n} 

=P@Q@= {f(Ki)>x~})=O) 

 exP{ 
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Since (2.4) is equivalent to (1.3), this completes the proof of the theorem for 

v infinite. The only obstruction in the finite case is that ~ = h v t/ takes 
i 

the value h with probability e-~(c):t:0. Hence, in this case, we need h to be 
continuous. 

It remains to verify that ~ is max-i.d. This is obvious because for all n, 
the pairs (h, v/n) satisfy the hypotheses of the theorem, hence there is a sample 
continuous process 4, which is related to v/n and h by (1.1)-(1.3). Consequently, 
if ~,i, i=1,  . . . ,n ,  are i.i.d, copies of ~,, then for any ti . . . .  ,tme[0,1], 

x l , . . . , x m e ~  with h(tj)>xj, (1 .2) immediate ly  yields P ( ( ~  {~(t,)<xr}) 
\ =1 ] r 

:P(r=(~l {i=~/1 ~ni(tr)~Xr}),i'e'~(~)"=~(i+= 1 ~ni)" [] 

By Dini's lemma, the convergence of the partial maxima + th to ~ in Theo- 
rem 2.1 is uniform for almost every co. i= 

2.2 Remark. Theorem 2.1 applies to give the sample continuity of the limiting 
process arising from the normalized maxima of Brownian motions considered 
in Brown and Resnick [5]. 

We only have a converse to the above theorem if h is continuous. (Note 
that, by Theorem 1.2, if ~ is upper semicontinuous - hence, afortiori, if ~ is 
continuous - then the function h defined by (1.2) is also upper semicontinuous.) 
Before proving the partial converse, we note that condition (2.1) in Theorem 2.1 
cannot be relaxed. 

2.3 Example. Let 

is O<:s<-- 1 
1 

f~(s)  = 1 
1 :<-s<<-l. l 

1 
v{fi} =-=, i= l  .. . .  , h : f l .  Z 

Then v lives in C h and h is the largest function for which this is true. We 

have q = ~ N1/~ 6~ with N~/i independent Poisson random variables with mean 
i=1 

1/i. So, t/{f/} =Nile, P {q {fi} :~0} = 1 - e  -1/~, and the sets {q { f~} +0} are indepen- 
dent. Hence, since X(1-e-~/z)= o% we have P{q {f~} ~ 0 i.o.} = 1, i.e. the atoms 
{th} of the point process with mean measure v contain infinitely many different 

f~ with probability 1. This shows that 4=  V q~=I(o, ~ a.s., i.e. ~ is not continuous 
i=1 

(in fact it is not even upper semicontinuous). [] 

2.4 Theorem. Let ~ be a max-i.d, sample continuous process on S such that the 
function defined by 

h(s)=sup{x: P{~(s)>=x}=l}, seS 
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is continuous. Then there is a locally-finite Borel measure v on C h such that, 
/f{rh} are the atoms of  a Poisson point process with mean measure v, then 

and the relations (1.1) and (1.2) (hence also (2.4) and (2.1)) hold for 4, h and 

Proof Since h is continuous, h(s)> - o e  for all s. In what follows, by subtracting 
h from ~ if necessary, we may assume h=0 .  By Norberg's Theorem 5.1 in [18] 
(Theorem 1.2 above with h = 0), there is a locally finite (hence a-finite) measure 
v on 0gh (endowed with the vague topology) such that (1.2) and (1.3) hold. If 
v--0, then ~ =_-0 in which case the theorem is obvious. Hence, it may also be 
assumed that v$0 .  The proof consists of showing that v*(CC)=0 (actually, 
v.(C~)=0 would be enough) since then the result follows by Theorem A, Sect. 
17 in Halmos [11] (note that the trace of the Borel a-algebra of (U,v) on 
C contains the balls). 

Consider 

vllilfll~>~3-v ~ and VJ~llfll <=~3-v ~ 

and let Wand  V be independent max-i.d, processes with trajectories in U asso- 
ciated to the pairs (0, v ~) and (0, v~) respectively. Then Y= W v  V has law Q 
= ~o (4). Furthermore, 

(2.5) II v(co) lkoo =~ a.s. 

Note that Iv~l-v~(U)< oo. This follows because v{llfNco >e} = - l o g  P{[I ~ 11oo 
=<e} < oo since h = 0  satisfies (1.1). So, we can take W to be the process 

NIv~ I 

W -  V Zj 
j = i  

lie 
where Z = Z t ,  Z2 . . . .  are i.i.d, with 5 r  independent of V,, and NI~~ I 

is Poisson with parameter Ivq independent of both {Zi} and K (For verification, 
simply compute the characteristic functions.) In particular, 

(2.6) {W= Z} ~ {Niv.i = 1} and 
P(NI~ I = 1)=v { Ilfli ~ >e} e-~{llsIl= >~/>0 

for all e > 0 small enough (if v ~ 0 then there is eo > 0 such that v ~  0 for all 
0<8<eo) .  

Since ~ ( W v  V)= &o(~) and ~ is sample continuous, it follows that 

(2.7) P* (Wv V~ C c) = O. 

(If we call Q the law of ~ in C, and i the inclusion of (C, ]L" I1 ~) into (U v), 
which is continuous, then ~~ V)= Q o i-1 gives mass 1 to a o'-compact subset 
D of (W,, v) contained in i(C) because Q is tight in C. Therefore, P ,{Wv VeC}  
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> P { Wv Ve D} = Q (i- 1 (D)) = P (Z ~ D) = 1.) Assuming, without loss of generality, 
that NI,,I, V and Zi, i s N ,  are defined as coordinates in a product probability 
space, we have by (2.6) and (2.7) 

0 = P* (Wv Ve C c) => P* (Z v Ve C ~, NI~ I = 1) = P* (Z v Ve CO P(NI~. I = 1). 

(This requires the obvious fact that (p • y)* (A x B)= p* (A) 7" (B).) Therefore 

P*(Z v V~C c) =0. (2.8) 

Let 

1 
A~, = {f_->0: f e  U, Ilfll ~o >r,f(t) is continuous iff(t) > - - ,  

m 

l i m f ( t , ) <  1 forall t , ~ t  if f ( t )=0}.  
tn ~ t  m 

Let mo be such that v 1/" ~-0 for all m>mo. For some m>mo, let e=l/m, 
and let Z and V be as above for this e. Then, since [IVil~o<e, in order that 
V(co)vZ(a0 be a continuous function it is necessary that ZEA~ whenever 
II Z JJ ~ > r, r > e. Thus, by (2.5), (2.8) and the perfectness of coordinates in a prod- 
uct probability space (e.g. Andersen [1], Prop. 3.1) we have, for all r > e  

0=P*{ZvVeC~}>P*{Ze{I IUt l  >r} \A~}=(  v~] * ~o \lv~l] ({ll/l/~o >r}\A~,). 

Since for r>e, v~{llfll~>r} =0  ({]lfllo~ >~} is a Borel set of(U, v)), we obtain 

v*({ IlfII ~ > r}\A~,) = 0, r=>e. 

Let now C, = C n { f >  0, II f II ~ > r}. Since C, = (~ A~, (note A~, $ as m T, for fixed 
r), we obtain m> 1/, 

v*(C ~n { Itfll co >r})=v*({ Ilf[[ 0o >r}\Cr) < ~, v*({ ][f[t~ >r}\A~n)=O. 
m > 1 / r  

Since e is only required to be 0 < e =  1/m< 1~too in this argument, it follows 
that the identity v* (C ~ c~ { J] f I1 o~ > r}) = 0 holds for all r > 0. Then 

v*(CC)~ ~ v*(CCn{Hfrl~o>r})=O. [] 
r - l = m o + l  

Theorem 2.1 and 2.3 completely characterize the max-i.d, laws in C(S) which 
have a continuous vertex. It is possible for the vertex h to be upper semicontinuous 
but not continuous. When this happens ~ may be sample-continuous even if 
v is not concentrated on the continuous functions as the following example 
indicates. 

2.5. Example. Take for n~N, 

f.(s) = - 1 ) s - n + 2 - 1 / n  
O<s< 1 - 1/n 
1 -  Un<s< 1 
s=l ,  
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and let v{f,} = 1 ,  heN.  The vertex is 
n 

h(s)=I~l~(s), 

which is upper semi-continuous but not continuous. 
Let {th} be the atoms of a Poisson point process with mean measure v. 

Then 

~ = V  ~i 
i = 1  

is max-i.d. (at least in (U, v)) by Norberg's Theorem. 
Only finitely many of the f, 's are non-zero on each interval [0, t], t < 1. There- 

fore, ~(s) is the maximum of at most finitely many non-zero continuous functions 
and hence is continuous at s ~: 1. Furthermore, ~ is continuous at 1 because 
almost always occur infinitely many f, 's among the q{s (since v has infinite 
mass), and along any subsequence (nk)c (n) 

lim V f , k ( s ) = l =  V f.~(1). 
k = l  k = l  

Thus, ~ is sample continuous max-i.d, even though v is concentrated on C c. [] 
Although the max-L6vy measure v of a max-i.d, sample continuous process 

need not live on C, it cannot be concentrated too far away from C. In fact, 
if h = -  o% then v is supported by the continuous functions on S with values 
in [ -  o% ~).  

2.6. Corollary. Let ~ be a max-i.d, sample continuous process on S, and let (h, 
v) be its associated pair. Let g > h be a continuous function. Then 

v * { f e g h :  f v g e C  c}=0. 

In particular, v* { f >  g: f ~C ~} =0. I f  h= - oe then 

(2.9) v* { f e  uh: f V M e C ~ for some M > - oo } = O. 

Proof. For any Borel set A of U g, let 

vg (A)=v{ f euh :  f v geA}. 

Then (g, vg) is the pair associated to the max-i.d, sample continuous process 
v g, which therefore satisfies the hypotheses of Theorem 2.4. Then 

by Theorem 2.4. Hence, v*{f: f v g ~ C  ~} =0. [] 
It is possible for h - - -  oe and for v to satisfy (2.9) in Corollary 2.6, but 

for ~ to fail to be sample continuous: 
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! 
2.7. Example. Let v(f,)=--- for n=2 ,  3 . . . .  where f ,  are constructed so that for 
j > l  n 

fj(t) is continuous on (2 -J, 2 -J§ 

with f j (3 .2 -~ -a )=0  

lim f j ( t )= - oo 
t] '2-j+ 1 

lim f j ( t )= - 
tJ. 2 - J  

f j ( t )= -- oo on (2 -j, 2 - J +  1)c 

Then ~ is discontinuous at 0. [] 

3 Max-stable sample continuous processes 

Proposition 3.2 below provides the representation theorem for max-stable pro- 
cesses of a special type. This is one of the two main steps in the proof of 
the general result, Theorem 3.7. 

3,1. Definition. A stochastic process ((t), teS, is simple max-stable in C(S) if 
it is max-stable in C(S) and if for every t~S, ((t) has a ~1,1 distribution, that 
is 

(3.1) P{~(t )<x}  = e  -~-: I ( x >  0), t~S, x 6 ~ .  

(Note that ~1, 1 (x) =/;1 (x - 1).) 

3.2. Proposition. For a stochastic process ~ on S the following are equivalent: 
(i) ~ is simple max-stable in C(S). 
(ii) There is a finite Borel measure a on C~ = {f~ C(S): ]J f II ~ = 1 , f>  O} such 

that for all t~S, S f ( t )  do-(f)= 1, and if v denotes the measure d v = d a  x dr/r 2 
c~ 

on C~ x JR+ = C(S) + = { f  eC(S): f=> O , f$  0}, then 

(3.2) ~ (4) = ~e  n, 

where {qi} are the points (functions) of the Poisson process with mean measure 
V. 

(iii) There is a finite Borel measure a on C~ with S f ( t )  da ( f ) - -1  for all 
c; 

t e S such that for K1 . . . . .  K.  compact subsets of S, xl  . . . . .  x.  > O, n ~ N, 

(3.3) - l o g P  {~(K,)<x,} = ~ max-g(K') dcr(g). 
i C~ i<n Xi  
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(iv) ~ is sample continuous and there is a finite Borel measure ~ on C~ with 

f ( t )dcr( f )=l  forall teS suchthatforall feC(S), f > 0 ,  
c~ 

(3.4) - l o g P { ~ < f } =  S IIg//llco d~(g). 
c~ 

Proof (i)=~(ii): If ~ is simple max-stable in C(S) then in particular ~ is max-i.d. 
in C(S). Moreover, 

h(t)=sup{x: P{~( t )>x}=l}=sup{x:  e-~-'I(x>O)=O}=O, teS, 

i.e. the vertex of ~ is h - 0  which is continuous. Hence, by Theorem 2.4 there 
is v on C(S) + such that 

(3.5) 
co 

where {t/i} are the points of the Poisson point process with mean measure v. 
Now, as is customarily done ([-10]), we obtain the form of v from the fact 
that if ~i are i.i.d, with ~ ( ~ ) =  ~(r then 

(3.6) 
i = 1  

(which is obvious from (3.1)). Let K =  {K1, ..., K,}, •= {xl . . . .  , x,}, n6N,  where 
K i are compact subsets of S and xi are positive numbers. For ease of notation, 
define 

At, x= {fsC(S) + : f(gi)<=xi, i= 1 .... , n}. 
Then 

(3.7) v(A~,x)= - l o g  P {~eAt, x} by (2.4) 

= - l o g  P {,=~/1 ~ienAg, x} by (3.6) 

= - n log P{r At, x } 

= - n  log P {~eAt,,~} 

= nv(nA~e,x) by (2.4). 

Since the sets A ~- determine Borel measures on C(S) +, it follows that K, :~ 

v(A) = nv(nA), 

Hence (by standard arguments), 

(3.8) v(A) = sv(sA), 

neN,  AeM(C(S)+). 

seN+, Ae~(C(S)+). 

It follows from this, as in e.g. [10], that if a measure ~ is defined on C[  by 

a(A)=v{g: g/tlgHo~eA, [Ig[[~_->l}, AeM(C~), 
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then, with the "polar coordinates" identification 

c(s)+ ~ c ~  • 
f ~ ( f  / l[ f ll ~o, [[fJ[~), 

we have 

(3.9) dv = da x dr/r 2. 

In particular, v(C(S) + = ~ so that (3.5) becomes (3.2). Finally, for all teS ,  

(3.10) 1= - l o g P { { ( t ) <  1} by (3.1) 

=v{g: g(t)> 1} by (2.4) 

= ~ I ( ( f r ) :  I l f [ ] ~ = l , r > l / f ( t ) ) d a ( f ) x d r / r  2 
C~ xN+ 

c~ + 1/ ) c~ 

by (3.9) 

thereby completing the proof of (ii). 
(ii)=~(i): h = 0  and v as in (ii) are respectively the vertex and the max-L6vy 

measure of a max-i.d, sample continuous process ~ on S by Theorem 2.1. By 
undoing the steps in the previous p r o o f  it is obvious that (3.9) implies (by 
(3.8) and (3.7)) 

for all KT, 2, where ~ are i.i.d, with law 5~(~). Hence 

i.e. ~ is max-stable in C(S). Finally, a computation completely analogous to 
that in (3.10), together with (2.4), gives 

x - l = x - '  I f ( t ) d a ( f ) = v { g : g ( t ) > x } = - l o g P { ~ ( t ) < x }  
c~ 

for all t e S  and x > 0 ,  i.e. (3,1). Thus, r is simple max-stable in C(S). 
(iii)r This is just a computation similar to (3.10): if v is defined by 

(3.9) then 

(3.Ii) v(A},x)= ~" I((r , f ) :  [ I f [ l o ~ = l , r > m i n x i / f ( K i ) ) d c r ( f ) x d r / r  2 
C~ x~+ i<= n 

= ~ max f ( K i )  da ( f ) .  
C~ i<= n X i  
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So, (3.3) simply expresses the fact that the max-L6vy measure of ~ is dr= 
da x dr/r 2 (note that (3.3) does determine the finite dimensional distributions 
of 4). 

(iv)~=>(iii): Since (3.4) is nothing but 

(3.4') - l o g P { ~ < f } = v { g e C ( S ) + :  g a;f}, 

as a computation not unlike (3.11) shows, it follows that (iii) implies (iv) (use 
for instance (4.9) and (4.10) below to obtain (3.4') from (3.3) via (3.11)). (Note 
that the < in (3.3), (3.4) and (3.4') can be replaced by __<). If a is as in (iv), 
i.e. as in (ii), then d v = d a x d r/r 2 is the max-L6vy measure of a simple max-stable 
sample continuous process ~-as shown above. Then (iii) holds for ~-, hence so 
does (3.4') by the argument just mentioned. Hence P { ~ < f } = P { r  for all 
f > 0 ,  f e e ( s ) ,  and therefore ~(~- )=~(~)  since these quantities do determine 
the finite dimensional distributions of sample continuous processes. [] 

Next we show that simple max-stable processes have almost all their sample 
paths strictly positive. Since we will need to prove similar properties for other 
max-stable processes, we isolate the argument that gives them. It uses random 
closed sets. We refer to Matheron [15] for generalities on random closed sets 
and their laws. 

3.3. Lemma. (i) Let A be a random closed subset of a a-compact space T satisfying 

(3.12) ,LZ(A)= &o A i ,  n e N  
i = l  / 

for Ai i.i.d, with &a(Ai) = ~~ and 

(3.13) P { t e A } < l  forall teT. 

7hen 

(3.14) P { A = r  

(ii) If, with the same notation, A satisfies (3. I3) and 

(3.15) ~ ( A ) = ~  Ai , nelN 
i 

then A also satisfies (3.14). 

Proof It is enough to assume T is compact. (i): For K compact, let Tz(K) 
-- P {A ~ K =~ r be the hitting functional of A. Since 

Ai ~ K  +-49 c ~ {AicaK:t=qb}, 
i i = 1  

it follows that, by (3.12), TA(K)<=(TA(K))" for all n~N. This implies that TA(K ) 
is either 0 or 1. Hence, by (3.13), TA({t})=0 for all teT. But by monotone 
continuity of TA (K,~K with Kn and K compact, implies TA(Kn)$ TA(K)) and 
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compactness of T, for each t e T  there is an open neighborhood G t such that 
TA (Gt) = 0. A finite number of the Gi, i = 1 . . . . .  r, cover T so that 

P { A : # ( 9 } = P { A n T : # c ~ } = P  n G, 4=0 P{AnGi :#r  
i 

Thus, (3.14) is proved. 
For (ii), let QA (K) = 1 - T a (K) = P {An  K = qS}. If (3.15) holds, then from 

A i n K =  ~ A i n K =  

we obtain Qa(K)< (QA(K)) n for all n ~ N  and K c T compact. Hence Ta is either 
0 or 1 and (3.14) follows as in case (i). []  

3.4. Corollary. Let ~ be a sample continuous simple max-stable process on S. 
Then 

(3.16) P { r  

Proof. Take A={ t :  ~(t)=0}. Since by definition ~ ( 0 = ~ (  1 V r , 4, i.i.d. 
\n ,=1 

with law 2~a(~), and ~(t), ~i(t)>=O, it follows that the random sets {t: -1 + ~i(t) 
n i=1 ~t n 

9,  {t: ~i(t)=0} have the same law as {t: r that is, (3.12) holds. = 0 _  = i  

Moreover P { t s A } = P { ~ ( t ) = O } = O  by definition, so that (3.13) is satisfied. 
Hence, Lemma 3.3 yields P{{t: ~(t)=0} =4)} = 1, i.e. (3.16). []  

3.5. Lemma. Let ~ be max-stable in C(S), and let a(t), b(t) and 7(0 be the real 
functions (a(t)> O) defined in (1.6.) 7hen 

(i) the functions a, b and ? are continuous; 
(ii) P (1 + 7 (t) (4 (t) - b (t))/a (t) # 0 for all t) = 1. 

Proof. The continuity of 7(0 follows from (1.7) and the assumed continuity 
of a, (t)> 0 in Definition 1.4. Then, if t k --* t, it follows that 

(3.17) J] F~(tk)-- F~(t)II oo ~ 0 

by an observation made after (1.5) in Sect. 1. Since ~(ti)--*~(t) a.s. and the 
distribution function of ~(t), Fv(t)(a(t ) x + b(t)), is continuous, it also follows that 

(3.18) sup I Fv(tk )(a (tk) X + b (tk)) -- Fv( o (a (t) x + b (t))J ~ 0. 
xE]R 

So, (3.17) and (3.18) imply 

(3.19) Fv(t)(a(tk)x+b(tk))~Fv(t)(a(t)x+b(t)),  x~lR. 
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Obviously (see (1.5)), F~t 0 is one-to-one on the set {u: F~(t)(u)e(O, 1)}, which 
includes at least a half-line. This and (3.19) show that there is a half-line L 
such that 

(3.20) a(tk)X+b(tk)--~a(t)x+b(t) for all x~L. 

Consequently, the continuity of the functions a(t) and b(t) is established, thereby 
verifying (i). 

We prove (ii) by showing that 

P(l+7(t)(~(t)-b(t))/a(t)=Oforsomet~Ai)=O for i=  1,2, 3, (3.21) 

where 

(3.22) A t = { t :  7(0>0},  A2={t :  ~;(t)<0} and A3={t :  7(0--0}. 

(3.21) is obvious for i-- 3. Let 

~(t)= [1 +7(t)(~(t)-b(t))/a(t)] 1/7(~ tEA1 ~AA2. 

Then a simple computation shows that ~(t) is simple max-stable. For i=  1, (3.21) 
becomes 

P(~(t)4:0, t~AO= 1, 

which follows from Corollary 3.4 (since Lemma 3.3 holds for a-compact spaces, 
so does Corollary 3.4). The relevant case is i=  2. Let 

p( t )= -- 1-7(O((( t ) -b( t ) ) /a( t ) ,  tEA2. 

Define A={tEA2: p(t)=0}. Then by (i), A is a random closed set of A2 (which 
1 

is a-compact). Since for t ~ A2, (4 (t)- b (t))/a (t) < - -  a.s. (since this process has 
Y 

distribution F~), it follows that 

P(t~A)=P(p(t)=O)=O and p ( t )<0  a.s. 

In particular, (3.13) holds for A. Moreover, p is max-stable and 

5f n-~(t) V pi(t): t~A2 =Sq({p(t): t~A2} ) 
\ ~ -  i = 1 

by (1.7) and (1.8) (or, better, p is max-stable because { is, and for each 
teA2, xelR, P(p(t)<x)=e-(-x)-l/~I(x<O)+I(x>O)). So, since p < 0 ,  {teA2: 

n -'(0 + pi(t)=O}= ~) {t~A2: pi(t)=0} and therefore, A also satisfies (3.15). 
i = 1  i = 1  

Lemma 3.3 gives P ( A = 0 ) =  1, that is V(A4:O)=P(p(t)=O for some t~A2)=0,  
i.e. (3.21) holds for i = 2. []  
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3.6. Corollary. Let ~ be max-stable in C(S) and let a(t)>O, b(t) and 7(0 be the 
functions defined in (1.6). Let ~'(t), teS, be the process defined by 

(3.23) r E1 +7(t)(~(t)+b(t))/a(t)] 1/~ct), t eS  

where, by abuse of  notation, the formula means 

(3.23') ~(t)=e (~")-b(t))/"(t) if 7(t)=O. 

Then ~(t), t6S, is simple max-stable in C(S). 

Proof ~ is well-defined and sample continuous by Lemma 3.5. Simple computa- 
tion from (1.5) and (1.6) establishes that ~(~(t))= ~1,1 for all t, and it is equally 

easy to prove that the finite-dimensional distributions of n-  ~ ~/ ~i(t), tES, equal 
i = 1  

the corresponding ones of ~(t), teS, if ~i are i.i.d, with law s That is, 
is max-stable. Therefore, ~ is simple max-stable in C(S). [] 

Suppose now we are given ~ simple max-stable in C(S) and continuous 
functions a(t)>0, b(t), and 7(t). Then a new process ~(t) may be defined by 
inverting equation (3.23), namely 

( 3 . 2 4 )  r  t eS  

where, with the usual abuse of notation, 

(3.24') ~(t)=a(t) In ~(t)+b(t) if 7(0=0. 

Then, ~(t) is well-defined by Corollary 3.4, sample continuous, max-stable in 
C (S), and P ((4 (t) - b (t))/a (t) < x) = F~(o (x). 

Collecting this last observation, Corollary 3.6 and Proposition 3.2 yields 
the following characterization of processes which are max-stable in C(S). 

3.7. Theorem. A process ~ on a compact metric space S is (strictly non-degenerate) 
max-stable in C(S) if and only if there exist 

(a) continuous functions a (t) > O, b (t), and 7 (t) and 
(b) a finite measure a on C~(S) satisfying ~ f ( t )  d a ( f ) =  1 for all teS, 

c? 
o r )  

such that, if ~ =  V tl/ where {q/} are the points of  a Poisson point process on 
i = 1  

C(S) with means measure d v = d a  x , then the law of ~ coincides with the law 

of  the process defined by the equations (3.24) and (3.24') with ~ in place of 
~. I f  this is the case, then the norming functions a,(t) and the location functions 
b,(t) of Definition 1.4 are given by the equations (1.7)-(1.9), and the variable 
(~(t)--b(t))/a(t) has the F~(t) distribution for all teS. 

Although we do not have a complete spectral representation of max-i.d. 
laws in C(S) the situation is not unlike the situation of infinitely divisible laws 
from sums for which there is not a complete characterization of L6vy measures 
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in C(S). In contrast, Theorem 3.7 gives a complete description of the representa- 
tion for max-stable laws in C(S) while the results for stable laws in C(S) are 
less complete (e.g. [2]). 

4 An application to random sets 

We obtain, as an application of the results in Sect. 2, a representation for non- 
void random compact convex subsets of a separable Banach space which are 
infinitely divisible with respect to the operation "convex hull of unions". Norberg 
[18] obtains a representation of max-i.d, random compact sets of IR d which 
are allowed to be 0 and also the whole space. Norberg's result is obtained 
as a consequence of his representation of max-i.d, random variables taking values 
in continuous semilattices (this general result contains also the representation 
for upper semicontinuous functions quoted in Theorem 1.2, and its proof, consid- 
erably more involved, is based on an extension of Choquet's theorem; it does 
not seem to contain, however, the results from Sect. 2). We also obtain a charac- 
terization of a somewhat restricted notion of stable sets for convex hulls of 
unions. 

4.1. Definition. A random compact convex subset E of a separable Banach 
space B is i.d. for  convex hulls o f  unions if for each n 

\ i = 1  

where E,i are independent identically distributed random compact convex sets. 
For  random compact convex sets and their support functions see e.g. Hor-  

mander [12] and Gin6 and Hahn [7]. We recall a few facts. Given a compact 
convex set K c B, its support function k: B*-~ IR, where B* is the (topological) 
dual of B, is 

k(y*) = sup y* (x), y* eB*. 
x 6 K  

Let B* be the unit ball of B* and w* denote the weak*-topology. Let S c 
C(B*,  w*) be the set of w*-continuous, subadditive and positively homogeneous 
functions on B*. Let f be the collection of all nonempty compact convex 
subsets of B. Then the map 

s 

that assigns to each set its support function is 1 - 1  and onto, is an isometry 
between the Hausdorff distance (d) and the sup-norm (bt- q[ ~), and takes convex 
hulls of unions into max's, i.e. 

co K i ~-~ lq , n < oo 
i 

(where n = oe is only allowed if the left side is in o~ff). Since (BT, w*) is compact 
metric, this isometric isomorphism allows the representation of max-i.d, compact 
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convex sets to be reduced to the terms of Theorems 2.1 and 2.4. This gives 
a characterization because, as we will see below, if ~eS is max-i.d, then the 
vertex of its support, h, is automatically continuous. Up to a few not necessarily 
trivial details, this is the essence of the proof  below. 

On notation" given compact sets or random sets K, 3, we denote their 
respective support functions or processes by k, 4. A measure v on X means 
a Borel measure on (3f, d), which becomes a Borel measure v o s -  1 on (S, ll" II ~) 
by the isometry s, and we continue to denote v o s -  1 by v .  

4.2. Theorem. Let H be a non-void compact convex subset of B and let v be 
a locally finite Borel measure on 

J~ffH= { K e g f :  K~H,K=t=H} 
such that 

(4.1) v{Ke~ffH: K ~ D } < o o ,  D~JY ~H. 

Let {Ki} be the points of a Poisson point process on JY" with mean measure 
v. Then 

oo 

is an infinitely divisible random compact convex set for convex hulls of unions. 
Moreover 

(4.3) 

and 

U [K: P{S__K} = 1]) 

(4.4) v{K~oy'H: K f ~ D } = - - l o g P { N G D } ,  D ~ J f  H. 

Conversely, if ~ is infinitely divisible for convex hulls of unions, then equations 
(4.3) and (4.4) define respectively a non-void compact convex set H and a locally 
finite measure v on ~r~ satisfying (4.1) such that (4.2) holds in distribution. 

Proof. The idea is to pass to support functions and processes, and apply Theorem 
2.1 for the direct part and Theorem 2.4 for the converse. Assume (4.1). In order 
to apply Theorem 2.1, it must first be shown that (4.1) implies (2.1), or equivalent- 
ly, 

(4.5) v{k~Sh:k~Zg}<oo, geS  h, 

where sh= {geS: g> h, g~eh}, implies 

(4.6) v {k~Sh: k(I) > x} < oe 

for all x<h(I )  and all w*-compact subsets I of B*. This is obviously true for 
I =  {0} (h(0)=0 and geS=~g(O)=O). I f / .  {0}, let veB be such that sup y*(v)=x, 

y * ~ I  

let kv~S be defined by kv(y*)=y*(v), y*~B*,  and let g = h  v ko. Then g e S  h and 
g (I) = x. Hence {k e Sh: k (I) > x} _~ {k ~ sh: k $ g} from which it follows that (4.5) 
implies (4.6). 
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Since H44,, heScC(B*, w*). So, Theorem 2.1 shows that if {t/i} are the 
points of a Poisson point process with mean measure v supported by S h, then 

(2) = h v q~ is a sample continuous max-i.d, process. Since subadditivity and 

positive homogeneity are preserved by the max operation, it follows that the 
paths of ~ are in S. Passing to sets gives (4.2). 

Next we prove that if 

~= sup [ f e S :  P{~>f} = 1] 

then h=~,  i.e. (4.3) holds. By Theorem 2.1, h satisfies (1.1). Therefore we have 

(4.7) S~f<~P{~>f}=l~P{~(y*)>f(y*)}=lVy*cB*~h>f 

and 

( 4 . 8 )  S~f<h~P{~(y*)>f(y*)}=l Vy*eB~P{~>f}=l 
(by continuity of ~ and f and by separability of B~') ~ f  =< ~. 

Taking f=h in (4.8) gives h<~,  whereas (4.7) implies h>sup[feS: f<~] =h. 
Hence, h = h" and (4.3) is proved. 

By Theorem 2.1, v satisfies (1.2). But (1.2) implies (4.4) because if {y*} is 
a countable w*-dense set of B*, then 

(4.9) (~ {geC(B*): g(y*)<=f(y*)}={geC(B'~): g ~ }  
n = l  

and 

(4.10) ~) {geC(B*): g(y*)>f(y*)}={geC(B*): g;~_f}. 

Then 
oo 

m ---~ ~ 1 7 6  n 1 

= lim --lo 
m - + a O  n :  1 

= - l o g P { ~ < f } .  

The direct part of the Theorem is thus proved. 
For the converse, let ~ be a subadditive and positively homogeneous max-i.d. 

sample continuous process on (B*, w*). Then, by Remark 1.3, there is an upper 
semicontinuous function h' B* -+ [-- o% oo] and a measure v on not necessarily 
finite functions on B* with closed graphs such that (1.1) and (1.2) in Theorem 
1.2 hold. Since ~(y*)< o% it follows that h(y*)< oo for all y*eB*. Also, h(0)=0 
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because 4(0)=0 a.s. Suppose h(y*)= - o o  for some y*eB*, y*#O, and let 2 e N  
be such that P { ~ ( - y * ) > 2 } < l  (i.e. 2 > h ( - y * ) ) ;  such a 2 exists since 
h ( - y * ) <  oo. Then, by (1.2), for all M > 0 ,  

oo>v{f>=h: f#h,f(y*)>__-M}+v{f>h: f=t=h,f(--y*)>=2} 
> v { f > h :  f ,h,  f(y*)> - M  o r f ( - y * ) > 2 }  
= - l o g  P{r < - M ,  4 ( - y * )  < 2}. 

Hence, 
P{4(Y*) < --M, 4(--y*) <2} :~0. 

Therefore, for some m in the set of probability 1 where ~(e)) is subadditive, 
r y*)>_h(y*), 4(e), -y*)>h(-y*) and 4(co, 0 )=0=h(0) ,  we have 

0 =  h(0)< 4(09, y* + ( -y* ) )  < ~(~, y*)+ ~(co, - y * ) <  - M + 2 ,  

which implies 2 > M  for all M, i.e. 2 =  ~ .  In other words, 2 > h ( - y * ) = > 2 =  + ~ ,  
that is h(-y*)= + ~ ,  a contradiction. Thus we have proved that h takes values 
in ( - ~ ,  ~) .  An argument entirely similar to the previous one shows that h 
is subadditive (given y*, z*~B*, (1.2) shows, as above, that for all e > 0  

P {4(y*)<h(y*)+e, ~(z*)<h(z*)+e}=~O, hence h(y* + z*)<h(y*)+h(z*)+ 2~). 

But h is also upper semicontinuous (Remark 1.3). Therefore h is continuous 
at 0: on the one hand, by upper semicontinuity, lira h(y*)<h(O)=O, while 

y*~0 

on the other, by subadditivity, 0 = h(0)< h(y*)+ h(-y*) and these two conditions 
obviously imply lim h(y*)=O=h(O). But by subadditivity, h is then continuous 

y*~O 

for all y* E B~' since I h (y* ) -  h (z*)l < h (y* - z*) v h (z* - y , )  ~ 0 as y* ~ z*. Since 
h is continuous, the measure v is supported by Ch=--C(BT, co*) h by Theorem 
2.1, and v satisfies (1.2), hence (2.1). 

Suppose f~C h, f ~ s u p p v  and f is not positively homogeneous, i.e. 
v{g: I [ f - g  II~>e, g~Ch}>0  for all e>0,  and for some ~ > 0  and sEBT,f(~s ) 
#~f(s). Since h is positively homogeneous and f>=h, either f(s)>h(s) or 
f(as)>h(as) or both. Let us assume, without loss of generality, that f(s)>h(s) 
and h(as)<f(~s)<~f(s). Let fi=-~f(s)-f(~s). Then f(s)>=h(s)+6/a. Let ~' 

= 3 -~  A ~,  and let 

'/[/'-~{g GCh: I[f-glloo <6'} 

d / =  {g~Ch: g(s)>f(s)--6' or g(~s)>f(as)+6'). 
Then 

(4.11) 0 < v(Jr < c~ 

since v{g~Ch: g(s)>f(s)--fi'} < oO by (2.1) and 

(4.12) v ( ~ )  < 

by (2.1). Let 41, 42, 43 be independent sample continuous max-i.d, processes 
respectively associated to (h, vLr), (h, vl~\~), and (h, v[~o). Then ~ce(~) 
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= ~ ( ~ 1  V 42 v 43)" We note that if g~Jg" then o~g(s)-g(es)>c~f(s)-o~cS'-f(o~s) 
-6 '=6-~ ' -c~6 '>__6/3.  Likewise, if g~Af and g ' ~ ' ~ ,  then e (gvg ' ) ( s ) -  
(g v g')(es)>6/3. Hence, if gi~JV then Vg i  is not positively homogeneous, and 
the same is true for (Vgi)v  (Vg'i) if g~e./v and g'ie~//g ~. Therefore, if r + h  and 

~2 = h  then ~1 v ~2 v ~3 =(Vgi)  v (V g'i), gieJv,  g~e Jg~, and we have 

P { 4 is not positively homogeneous} > P { r + h, 42 = h} = (1 - e- v(•)) e-  v(m\x) > 0 

by (4.11) and (4.12), a contradiction. Hence, fCsupp v, i.e. v contains only posi- 
tively homogeneous functions. 

A similar proof shows that v is supported by subadditive functions. Suppose 
that f~supp  v and is not subadditive. Then there are s, teB* such that f(s+t) 
>f(s)+f(t), and v{geCh: I I f -g l loo<e}>0  for all e>0.  Take 6=f ( s+t ) - f ( s )  
- f  (t), 6'=6/4, J[/'= {geCh: ]l f -gl[o~ < 6'} and ,~={gGCh: g(s + t)> f (s + t)-6'  
or g(s)>f(s)+6' or g(t)>f(t)+6'}. Then, 0<v(JV)<oo,  v(~r 

ga JV '~  g(s + t) > g(s) + g(t) + o and 
o t  

! C=::~ t g~JV, g EJg (gvg)(s+t)>(gvg')(s)+(gvg')(t)+~. 

Thus, if 41, 42, ~3 are as above for these JV and Jg, then 

P {4 is not subadditive} > P {41 :t = h, 42 = h} > 0, 

a contradiction. Hence the support of v consists entirely of subadditive functions. 
Then v is concentrated on S h, hence passing back to sets, on X h. 

Finally, observe that (4.9) and (4.10) together with (1.2) imply 

v{f~Sh: f=<g}=- - log  P{~<g},  gcSh 

as in the proof of the direct part. That is, v satisfies (4.4). Now (4.1) is a conse- 
quence of (4.3) and (4.4) [] 

A consequence of this Theorem is that if ff is a random compact convex 
set of B which is infinitely divisible for convex hulls of unions and such that 
S 4 = 0 a.s., then the compact set H defined by Eq. (4.3) is non-void, i.e. S contains 
a.s. a fixed non-void compact convex set. 

We now consider a restricted notion of stable random set for convex hulls 
of unions when B = IR a. 

4.3. Definition. The compact convex random set S in B = IRa is stable for convex 
hulls of unions if 4(Y*) is a non-degenerate random variable for all y*~B*\{0} 
and if there exist compact convex sets K,  and positive real numbers a,, n~N, 
such that 

n 

U 
(4.13) ~,o (~) = ,L,~ , = 1  J ,  n e N  

an / 

o0 where {~i}i= 1 are i.i.d, copies of ~. 
This definition is less general than it looks at first glance. 
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4.4. Proposition. A random compact convex set ~ in B = ]R d is stable for convex 
hulls of unions if and only if there exist 7 > 0  and a compact convex set H such 
that 

,414, 
i = 1  

where {Si}/~=l are i.i.d, copies of 3. Moreover, there exists a compact convex 
random set 6) containing zero as an interior point almost surely such that 

(4.15) 5((S) = 5e(O + H). 

Proof If S satisfies (4.14) it is certainly stable since a fortiori N satisfies (4.13). 
Suppose now that S is stable. By passing to support processes we see that 
~eS , the support process of ~, is max-stable with b , (y*)=-k , (y*) ,  y*eB*,  
and a,(y*)=a, .  Although ~ is degenerate at 0eB*, most of Proposition 3.5 
can be applied. In particular a (y*)> 0, b (y*) and 7 (Y*) are continuous on B*\{0} 
and B*\{0}---A 1 •A2•A3 ,  where, as in the proof of Lemma 3.5, A1, A2 and 
A3 are respectively the subsets of B~\{0} where 7 is positive, negative, and 
zero. Since a , = n  -~(y*) it follows that ~ is constant. Hence, B*\{0} =Ai for some 
i=1,  2, 3. 

We next establish that B*\{0} =A1. Suppose B*\{0} = A  3. Then, by (1.9), 
- k, (y*) -- b, (y*) = a (y*) log n > 0 which is impossible because, by subadditivity, 
either k,(y*)>_O or k,(-y*)>_O. Suppose B*\ {O}=A2 .  Then, by (1.8), - k , ( y * )  
= b, (y*) = (n r -  1) (a (y*)/7 - b (7*)) so that, since n r - 1 < 0, a / 7 -  b e S. Therefore, 

+ ( a /7 -  b)eS a.s.. But, by the definition of A z, we also have P {(~ (y*)-b(y*))/ 
a ( y * ) < - 1 / 7 } = 1  for all y*eB+\{0}.  (See the comments following (1.5).) So, 
P { ~ (y*) + (a (Y*)/7 -- b (y*)) < 0, ~ ( -  y*) + (a ( -  Y*)/7 - b ( -  y*)) N 0} = 1 which con- 
tradicts ~ + ( a / 7 - b ) e S  a.s. as in the previous case. Therefore B* \{0}=A 1. In 
this case, by (1.8), k , =  - b , = ( n ~ - l ) ( b - a / y )  so that h - b - a / y e S ,  and, by (1.7), 
an=n ~ with y>0.  So, (4.14) follows from (4.13) by letting H be the random 
set with support function h. In particular, H(h) is the vertex of the support 
of S (4). 

Since ~ - h  is obviously positively homogeneous (both ~ and h are), and 
~ - h > 0  in B*\{0) a.s. (by Lemma 3.3; see Corollary 3.4, that applies to a- 
compact sets), in order to prove (4.15) it is enough to show that ~ - h  is also 
subadditive (since then it will be the support process of a random set O that 
contains 0 as an interior point). By sample continuity of ~ it suffices to prove 
a.s. subadditivity for a countable dense set of points in B*, hence for two. 

For ne]N, define random processes 

mn 

X.=n-' V ~-n-'h 
i = m n - l + l  

where 4i are i.i.d, copies of ~ and m,=n(n+l ) /2 .  Then the processes X,  are 
independent and their common distribution is ~ ( ~ - h )  by (4.14). Given x*, 
y*eB*\{0}, let I1, be the random variable 

Y , = X , ( x *  + y * ) - X , ( x * ) - X , ( y * ) ,  n e N ,  
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and let 
Y= (4-- h)(x* + y * ) - ( r  h ) (x*) -  ( 4 -  h)(y*). 

For  co in the set of probability one where all the processes 4~ are subadditive, 
we have by the subadditivity of V ~i, 

Y , ( o o ) > = - l ( h ( x * - y * ) - h ( x * ) - h ( y * ) ) ~ O  as n ~ o o .  

Hence, lira inf Y. (co) > - 1 for all r > 0, i.e. 
n --+ oo r 

P (~)= 1 . ~  {co: Y"(~ > - - 1 } )  =1" 

Thus, by the Borel-Cantelli Lemma, ~ P  (Y, =< - 1 }  < oo for all r, i.e. 

P { Y < = - l } = O a n d P { Y < O } = O .  This shows that 4 -  h is a.s. subadditive. 

In order to give the spectral representation of ~, define 

(4.16) 

for any given h~S, and 

(4.17) 

S (h~ = { f e S :  f >  h,f~= h , f -  hsS}  

f m h )~-1 
T ~ , ~ , h ( f ) = ( ~ - - ) ,  f ES (h~ 

[ ]  

for any 7 > 0, any continuous and positively homogeneous function a on B~'\{0}, 
and any heS. Actually T,,,, h(S ~h~) is a cone of C(B*\{0}) consisting of functions 
which are constant on rays 2y*, 2>0 .  The second assertion is obvious; as 
for the first, for 2 > O, f e S  (ht, 

and 

2 T~,,, h ( f ) = ( 2 '  (f--h))~- ~ = T~,a,h(2 ~ (f__ h)+h), 

f e S ~h) ~ 2' ( f  - h) e S 

f -h>=O and f - h ~ - O = > 2 ' ( f - h ) + h e S  (h~. 

The transformation T~, a, h is introduced so that  T,, ~, h(~) is ~b 1, 1 for the max-stable 
support  process 4 of interest. 

4.5. Theorem. S is a compact convex random set stable for convex hulls of unions 
if and only if there exist a positive number 7, a continuous positively homogeneous 
function a on B*\{0}, a compact convex set H, and a finite measure ~ on 

satisfying 
~h) ~ h ~ .  II g II = 1},  T~,a,h(S ) l = { g e T ~ , a , h ~  .. 0o 

S f ( y * ) d ~ ( f ) = l  for any y* =t= O, 
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such that for all compact convex sets K with H ~ K ~ 

= g k - h i  

I f  l i C K  ~ then P { ~ _ K }  =0. 

Proof Let ~ be stable for convex hulls of unions. Then ~ is infinitely divisible 
and ~ is max-i.d, with support in S (h), where h is the support function of H 
in (4.14). The argument at the end of the proof of Theorem 4.2 applied to 

- h shows that the support of the max-L6vy measure v of ~ consists of continu- 
ous functions f such that f -  h is non-negative and subadditive. Since the support 
of ~ is also contained in S h, it follows that 

(4.19) supp vcs S (h). 

Before drawing conclusions from (4.19), let us deduce properties for the function 
a. The number ~ > 0 and the function a on B*\{0} are defined by the requirement 
that the random variable ( ~ ( y ) - b ( y  ))/a(y )) - be ~1.1, for every y ~BI\{0},  
which is possible because, as proved in Proposition 4.4., A1 = B*\{0}. From 

P{(~(2y*)-b(2y*))~-~ < x } = e  -"(zy*)~-~/~, 2>0,  x > 0 ,  
and 

P {(~ (2 y*) - b (2 y*))~- ~ < x} = P {(~ (y*) - b (y*))~-~ < x/2 ~- ~} 

=exp{-2~-~a(y*)~-~/x}, 2>0,  x > 0 ,  

it follows that a is positively homogeneous. Also, a is continuous on A1 = B•\{0} 
by Proposition 3.5. 

Suppose that t/, are the points of a Poisson point process with mean measure 
v. Then 

~ = h v  (V~,) and T~,,,h(hv (V~/,))=T~,a,h(h)v (VT~,,,h(q,)) 

where we define T~,,,~(h)=0. Therefore, the max-L6vy measure of T~,,,h(~ ) 

= is /~=Vo T~-,lh, a locally finite measure supported by the cone 

T~,a,h(S~h)), by (4.19). On the other hand, since is ~1,1 on B*\{0}, 

the computations (3.7) and (3.10) from Proposition 3.2 apply to # and yield 

(4.20) d# = da • dr/r 2 

and, T~,a,n(S <h)) being a cone, a is supported by Ty,a,h(S(h))l. Moreover, a is 
finite and ~f(y*) da ( f ) =  1 for all y* *0.  

Conversely, if a verifies these properties, the the max-i.d, process Vq* on 
B*\{0}, where t/i are the points of a Poisson process with mean measure # 
defined by (4.20), has almost all of its trajectories in T~,,. h(S th)) because 

(i) it is sample continuous by the proof of Theorem 2.1 (the compactness 
of the space in Theorem 2.1 is only used to obtain that the vertex of the support 
is finite, which is trivial in this case because the vertex is 0) and 
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(ii) iftheT~,,,h(S (h)) and 9 ~ i e C ( B ~ \ { 0 } ) t h e n  9 l~iE:ZT, a,h(S(h))" (More spe- 
i = 1  i = l  

if - [ f i - -  h ~ ' - '  (h) ~o [ V f / - -  h \ ' - '  
cifically, ~ i - ~ T  ) , with f i e S  , then iV 1 q i = ~ }  which is cont inu-  

ous. Consequent ly ,  9 f/ is cont inuous  on B~'\{0} because h and a are, but  
i = 1  

then 9 fi is bounded  outside an open ne ighborhood  of  0 and positive h o m o -  
i = 1  

geneity gives cont inui ty  as 0. Subaddit ivi ty of  9 f~ is obvious  and therefore 
i = 1  

9 o(h) which 9 T ,,,(h), f i e ~  , " implies that  tlie ~,a, ht~ j). 
i = 1  i = 1  

N o w  9 7/ is a simple max-stable process by the structure of # (see the 
i = 1  

proo f  of  Prop.  3.2, (ii)=~(i)). Then  ~=T~,a, h t/ is the suppor t  process of  

a stable r a n d o m  set S with the characteristics ~-1,  a, h and o-. [ ]  

Acknowledgement. We thank the referee for pointing out that the von Mises parametrization 
of max-stable distribution functions in P, would simplify our reduction of the general max-stable 
process to the simple max-stable case in Theorem 3.7 (i.e. Lemma 3.5 and Corollary 3.6). 
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