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Summary. A notion of an optimal partition of a measurable space into countably 
many sets according to given nonatomic probability measures is defined. It 
is shown that the set of optimal partitions is nonempty. Bounds for the optimal 
value are given and the set of optimal partitions is characterized. Finally, an 
example related to statistical decision theory is presented. 

1. Introduction 

Suppose we are given countably many nonatomic probability measures {#i}F=l 
on the same measurable space (5~, ~). Let ~ denote the set of all measurable 
partitions P={Ai}F= 1 of the space (Y', N). Here by a partition is meant a 
sequence of countably many disjoint subsets from N the union of which is 

contained in 3f. Let {el}?= 1 be a sequence of positive nuriabers with ~ el = 1. 
i = l  

Definition. A partition P * =  {A*}?~= ~ is said to be a-optimal if it maximizes 
the number inf[ei- 1/~i(Ai)] with P =  {Ai}~~ i e ~  ranging over ~, i.e. 

inf [eF ~/zi(A*)] = sup {inf [e~ -~ #i(A,)] : P = {Ai}~~ 1 ~ } ,  
i e N  i ~ N  

where N = { 1, 2 . . . .  }. 
The purpose of this paper is to prove the existence of an e-optimal partition 

and to find its form and upper and lower bounds for inf [e( l# / (A*)] .  These 
i ~ N  

results generalize those obtained in the finite case, where one considers optimal 
partitions of a measurable space into finitely many sets according to the measures 
{#i}~= 1 and numbers {ei}7= 1 (see Legut and Wilczynski [9]). The problem of 
s-optimal partitioning a measurable space (5~, N) can be interpreted as a problem 

�9 of fair division of an object Y" among countably many participants (cf. [7]). 
In this problem each #~ represents the individual evaluation of sets from N. 
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The problem of fair division with a finite number  of participants has been consid- 
ered since 1946 (cf. [2, 5-13]). 

We assume throughout  this paper  that ~ el is finite to ensure that the 
i = 1  

above problem has nontrivial solutions for every sequence {/~}i% 1 of nonatomic 
probabili ty measures on ( f ,  N). For  example, if # ,=/~2 . . . . .  #n= . . .  and if 

~ e  i = oo then 
i = 1  

A ~o sup{inf[e(~/~(A~)]:  P =  { ~}~=a~} = 0  
ieN 

and thus any partition is a-optimal. 
The paper  is organized as follows: In Sect. 2 we prove existence of an e- 

optimal partition P * =  {A*}9= ~ e ~  and obtain lower and upper bounds for the 
number  

t* = sup {inf [el -1 ~i(Ai)]: P = {Ai}i~, ~ }  
ieN 

In Sect. 3 we characterize the e-optimal partitions and in Sect. 4 we give an 
example of application of our main result to statistical decision theory. 

2. The existence and bounds 

To prove that there exists a parti t ion P*={A*}F= 1 maximizing the number  
inf[-e~-1 #/(Ai)] we need the following result due to Eisele [4]. 
ieN 

Theorem 1. I f  {#i}~~ 1 is a sequence of nonatomic finite measures, then the range 
X of the mapping fi: ~--* R N defined by 

fi (P) ---- (#1 (A1), #2 (A2),---) ~ RN, P = {Ai} ~=1 c 

is convex and weakly compact in a(R N, (RN) *) topology. 

Making use of Theorem 1, Legut [7] proved: 

Theorem 2. There e~cists a partition p o =  { A O } F _ I ~  of Y" satisfying # i ( A ~  

for all i~N. 

It  is clear that 

(1) t* = sup {tER: ( te l ,  t e  2 . . . .  ) { ~ X }  

and thus Theorem 2 implies that t* = 1. 

Let us denote by X" the range of the mapping #": ~ -+ R" defined by 

kt"(P) = (#1 (A~), #2 (A2), .. �9 #,(A,))~R", P = {A~} ~= 1 ~ .  
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It is known that X" is convex and compact in R" (cf. [3]). Further, let 

or equivalently 

* - -  A oo t, - sup {inf [e~ -~ #~(Ai)] : P = { g}i= ~ ~ ) ,  
i n n  

t.* ----sup {teR: (tel, t e  2 , . . . ,  t O ~ n ) e X n } .  

Theorem 3. There exists an e-optimal partition P * =  ~A*~ ~176 satisfying #i(A*) ( i ) i = l  

= t* el for each i~N. Moreover, t *=  lira t*. 
tl ~ co 

Proof. For  each n ~ N  the compactness of X" yields t * ( ~ l , e  2 . . . .  ,an) 
=( t*e  1, t,* a2, --., t*e , )eX",  implying that t*(el ,  e2, ..., c~,, 0, 0, . . . )eX, n_>l._ 
Moreover, st*xc~ is a nonincreasing sequence of numbers bounded from below I n S n = l  

by t*. Denote to=  lira t*. Obviously, to>t* and t*(el ,  c~2, ..., e, ,  0, 0 . . . .  ) con- 

verges weakly to t o e =  to(Cq, e2, ...). From the weak compactness of X we have 
t ~  and hence t ~  *. But this implies that t ~  * and that t *e~X ,  which 
by (1) completes the proof. 

Now we find estimates on the number t*. 

Theorem 4. I f  at least two of the measures {#i}~~ are different, then 1 < t * < M ,  

where M:=sup  #1 i ) : P =  i l e  �9 
t 1 

Proof First we show the inequality t* < M. There is nothing to prove if M = oo. 
Then assume that M < oo and suppose that t* > M. The definition of t* yields 
e 7 I# i (Ai ) )M for all iEN, where P * =  {A*}2~ 1 is an a-optimal partition. Hence 

we have ~ #i(A*)> M, which contradicts the definition of the number M. 
i = 1  

Now we prove the inequality t *>  1. By our assumption there exists an m e N  
such that Mm > 1 (cf. [5]), where 

Mm,= #1(A~ = sup # i ( A i ) : P = { A i } ~ 1 6 ~  �9 
i ~ l  i 

Denote rg=#i(A~ i.'=1, 2, ..., m. It follows from the convexity and the weak 

compactness of the set X c_R ~ that for each sequence (fil)i~0 with ~ fi~=l 
i = O  

and for each ui~X, i ~ N ~  {0}, the sequence ~, fliu ~ belongs to X. Let 
i = O  

i = 1  i=O 
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where r=(ra, r2, ..., r~, 0 . . . .  )~X and ei=(0 . . . . .  0, 1, 0 . . . .  )~X (1 is placed at 
the i-th coordinate, i~N). Clearly V~_X. Now it is sufficient to compute the 
real number 

s* .-:max {ssR: S(C(1, ~2,.. .)@ V}. 

The set on the right hand side is not empty, because s(el, c~ 2, . . .)eV iff the 
following system of equations for fli, iENw{0} has a solution, and for s = l  
this is the case: 

f l o r i - ~ - f l i - ~ - ~ i  S for i<:m, 

fli=~is for i>m, 

~ / ~ = 1 .  
i=0 

We see further by solving these equations, that 

s* = min {ri[r,-cq(Mm- 1)]-1: [ri_o:i(Mm_ 1)] >0,  i < m} 

and finally we get 1 < s* < t*, which completes the proof. 

3. The main result 

In this section we will prove our main theorem. For this we need the following 
three lemmas. 

Lemma 1. Let 

S" :=(s=(sl,s2, ...,sn)~Rn: si>O for alli<nand ~ si= t}. 
i=l  

Then the following equalities hold 

t* =max  min ~ pi~71ai= min max ~ pia:[lai, 
aeX~  P e~n i ~ l  p~gn a~X n i= 1 

where Sn stands for the closure of S ~ in R n. 

The proof of this lemma can be obtained by using the minimax theorem 
of Sion (cf. [1]). For more details see Legut and Wilczynski [9]. 

Lemma 2. Let 

S={s=(sl ,s2 .. . .  )~El"s~>=O forall i~N and ~ s i=l}  
i=l  

and let 
S o = {s ~ S: si <= 2 t* ~i for all i ~ N}. 
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T h e n  

(2) 

and 

(3) 

P r o o f  Since 

t * =  s u p  i n f  ~ Pi o~ l a i ~-  i n f  s u p  ~ Pi o~ l a i 

a e x  p e S  i= 1 p e S  a E x  i= l 

oo ~o 
t*= sup inf ~ pic~-lai= inf sup ~, picot-la i 

a e X  p e s o  i = 1  peSo  a~X  i = 1  

A oo sup {inf[c~F 1 #i(Ai)] : P = { i}i: l ff ~ }  
t e N  

=sup inf[-ct/- 1 ai] =sup inf ~, p i e i - l a i  
a e X  i eN  a e X  p e S  i= 1 

the first equality in (2) follows from Theorem 3. Moreover, by Lemma 1 and 
Theorem 3, we have 

n 
inf sup Z Pl c~7 l al < inf sup Z Pi c~[ -1 al 
p e S  a e X  i = I  p e S  n a e X  i = 1  

= inf sup ~ pi~[ -1 a~--- t,* ~ t * = s u p  inf ~ pic~TXai, 
P esn  a e X n  i = 1 a e X  p e S  i = 1 

which yields (2) (sup inf<infsup always holds). We now start proving (3). By 
(2), for each 0 < e < t* there exists p(e)~ S such that 

hence 

t*+e=>sup ~, pi(e)c~71al, 
a~X i = l  

t* + e _> sup Pi (e) O~ F 1 
i eN  

Therefore p ( e ) e S  o. By (2) we have 

~o 
inf sup Z Pl c~71 a, = inf sup E Pi O~Z 1 a," 

peSo aEX i = 1  p e S  a e X  i = 1  

=sup inf ~ p i a f l a i < s u p  inf ~ pio~flai<= inf sup ~ p i~[ - la i ,  
a e X  p e S  i = 1  a e X  peSo  i = 1  peSo  aEX i = 1  

which completes the proof of Lemma 2. 

Lemma 3. There ex i s t s  o o P =(Pl, pO, ...)eSo such that  

t*=sup ~ p~ 
a e X  i= 1 
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Proof. It follows from (3) and from the compactness of So that there exist 
pO, pa, ... from So such that p,~pO in E 1 and 

(4) 

It is clear that 

oo 
t* lim sup ~ " 1 Pi O~i ai. 

n-+oo aeX i = 1  

t *=  inf sup ~ pic~F*ai < sup i P~ �9 
PeSo aeX i = 1 aEX i= 1 

To prove the converse inequality let us suppose that 

sup i P~ 
aeX i = 1 

for some e > 0. Then there exist b EX and an integer number k = k(e) such that 

k 

(5) p~ and ~p~ 
i = 1  i = l  

Let L. '=max ai * b~ and let 
i < k  

Then 

XL = {aeX:  ~/- 1 ai <= L for each i~N}. 

~o i ai sup ~ p~ ~/- ' a i - sup pO cq- 1 
aeXL i = 1  aeX.L i = 1  

= aExLSUp i ~ ( P i - - P i ) O ~  i =  ,1 0 -- 1 ~i . ~ L  ii= 1 1 P T - P ~  

which implies (L < oo) that 

(6) lim sup i P~ c~i-lai = sup i pO ~i-Xai. 
n~a3 aEXL i = l  aEXL i = 1  

Hence, by (5), (6) and (4) 

k i t*+e< ~ p~ sup p~ 
i = 1 aEXL i = 1 

= lim sup i P~ ~ <= lim sup i P~ ~i-1 a, = t*. 
n--~oo aeXL i = 1  n~oo aEX i = 1  

But this is a contradiction, which completes the proof of Lemma 3. 
As a consequence of the last two lemmas we obtain the following 
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Corollary. Let P* = {A*}•= 1 e ~  be an a-optimal partition. Then 

(7) inf ~ Pi e/- I#i(A*) = ~ pO e/-~#i(A,)= sup ~ pO o;~-l#i(Ai), 
p e S o  i = 1 i = 1 Pe .@ i =  1 

where pO is as in Lemma 3. 

Proof. Since #i(A*)=t*ei for each i> 1 by Lemma 2 and Lemma 3 we have 

t*=sup inf ~ piei -l#i(Ai)= inf ~ plei -~#i(A*) 
P e ~  p e S o  i =  l p e S o  i =  l 

= ~ p 0  e / - 1  #i(A*)__< sup ~, pO ~i-1 #i(Ai)=t. ' 
i = 1  P e ~  /=1  

and hence (7) holds. 
Before coming to the main theorem we will introduce the following notation. 

For each ieN, let f~=d#i/dv denote the Radon-Nikodym derivative, where v 

~ 2-i#~. Moreover, let {B*}?~=~ and (C*? ~ be two sequences of measurable ~- t. i ) i = l  
i = 1  

sets from (~r, N) defined by 

B*= (~ {xeSf: p~176 ieN, 
j = l  
j * i  

C*= ~ {xe3Y:p~176 i~N. 
j = l  
j * i  

Now we may state the main result of the paper. 

e Theorem 5. Let { i}i=l be a sequence of positive numbers with ~i = 1. Then 
i = 1  

there exist a point poe S o and a corresponding a-optimal partition P* = {A*} F= 1 e 
satisfying 

(i) B* c A* = C*, 
(ii) #2 (A*)/a~ = #2 (A*)/a2 . . . . .  t*. 

Moreover, any partition P * =  {A*}/~= 1 E-@ which satisfies (i) and (ii) is a-optimal. 

Proof. The existence of the a-optimal partition P*={A*}~=le~ satisfying (ii) 
follows from Theorem 3. By Corollary, this partition maximizes the number 

~p~ with  P={Ai}~= t ranging over ~ ,  i.e. ~p~ 
i = 1  i = 1  

=sup ~ p~ and hence (i) must hold. Since all measures #i are non- 
P e ~  i= l 

atomic the rest of the proof is straightforward. 
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4. Statistical interpretation 

Suppose  tha t  Y is an f va lued  r a n d o m  var iab le  hav ing  an u n k n o w n  d i s t r ibu t ion  
# which  be longs  to  the set {#1, #2 , - - .} .  G iven  a single obse rva t ion  Y = y  it  
is to be dec ided  w h i c h  is the t rue d i s t r ibu t ion  of Y A decis ion rule is a me a su ra b l e  
pa r t i t i on  P =  {A~}~= ~ of ~f wi th  the unde r s t and ing  tha t  if Y falls in A i then  
# = # ~  is guessed. If  tha t  guess is correct  and  the t rue value  of  # is #~, j >  1, 
then the ga in  equals  e~-~, o therwise  it is equal  to zero. I t  is easy to see tha t  
the e - o p t i m a l  pa r t i t i on  is m i n i m a x  in the  fol lowing p r o b l e m :  F i n d  a pa r t i t i on  
which maximizes  the min ima l  expected  payof f  R, where  

R = i n f [ e 7  ~ #i(Ai)]. 
i eN 
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