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Summary. If the passage time of the edges of the 2g a lattice are stationary, 
ergodic and have finite moment  of order p > d, then a.s. the set of vertices that  
can be reached within time t, has an asymptotic  shape as t--* oe. 

I. Introduction 

In Section 2, there is a precise description of the model. For  now, consider 
Z 2 as the vertices of the square lattice. To each edge of the square lattice assign, 
independently and according to the same probabil i ty law, a nonnegative number  
called the passage time of the edge. If  r is a path  in the square lattice, the 
passage time of r is the sum of the passage time of all the edges in r. The 
travel time between two vertices x, y is the infimum of the passage time over 
all the paths in the square lattice from x to y. 

This model was introduced in [6] by Hammers ley  and Welsh. Early results 
can be found in [12]. Then Cox and Durret t  showed that under some moment  
conditions, the set of vertices, one can reach within time t has a nonrandom 
asymptotic  shape as t increases for almost all realizations of the model [4]. 
Also see [7], and [5] where there are some computer  simulations. 

An equivalent formulation of the result of Cox and Durret t  is the following. 
Let F(t) be the distribution function of the passage time of an edge and for 
x~N. 2, let Ix[=[xl[ +JXzl. 

Theorem. [4] I f  the random variable with distribution function 1 -  ( i - -F( t ) )  4 has 
finite second moment then there is a deterministic continuous and nonnegative 
function I~ on {xeN2; Ix[ = 1} such that 

lim [ x l - l T ( O , x ) - #  = 0  a.s. 
I x l ~  

X ~  ~'2 

In [7] the proof  is given for 7Z n, d > 2  under the assumption that F(t) has finite 
second moment .  Then in [7], Derriennic noticed that this result is true if the 
passage time of the edges are not necessarily independent but only stationary 
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and bounded. The purpose of this paper is to show that if the passage time 
of the edges are stationary, ergodic and have a finite moment > d (i.e. strictly 
greater than the dimension of the lattice) then the theorem holds. The proof  
is given in Section 3. 

Actually, the natural integrability conditions which appear are those of the 
Lorentz spaces L(d, 1) ([10], see also [13, V. 3] and [2]). If f is a real valued 
measurable function on a probability space (f2, ~-, P) then the Lorentz norm 
of f is 

1 

II f lid, 1 "~- ~ f*(s)  s (1/a)-1 ds 
0 

where f * :  [0, 1]--+IR +, is the nonincreasing right continuous function which 
has the same distribution as ]fl. Then L(d, 1)= {f :  I1 flld, 1 < oe}. lift[d, 1 is a norm, 
L(d, 1) is a Banach space and there are constants c and e' such that 

C'llflld+,>llflld, l>cl l f l td  where llftlf,= ~ IftPdP. 
E2 

Using a d-dimensional Rohlin tower ([11] for example), one can construct, 
for any p < d, a counterexample where the passage time of the edges have a 
moment of order p and are stationary. 

We end this section with some notation, e i=(0 . . . . .  1, ... 0) where 1 is at 
the ith position. ]R + = {2elR;2>0}.  For  x~N. d, ]xl~=max(lx(i)l;  l < i < d ) ,  [xl 
= lx (1 ) l+ . . .+ lx (d ) l  and IlxllZ=lx(1)12+.. .+lx(d)l  2 and then Ilxll<lx[ 

_-__ V~ II x II. m will be the counting measure on ;g a and lla, the indicator function 
of the set A. [2] is the greatest integer < 2. 

2. Description of the model and statement of the result 

Consider an ergodic measure preserving Zd-action (z~ : x e Z  ~) of a probability 
space (Q, ~ ,  P), that is 

(i) z~ : f2 --+ f2 is measurable for all x~TZ, a 
(ii) P(z,, A) = P(A) for all A ~ -  and xe;g a 

(iii) Zx zr=Zx+r for all x, yeT~ a 
(iv) if f :  f2 - ,  ]R is a measurable function such that f(z,,og)=f(co) 

for some x c Z  a, x =I= 0, then f =  constant a.e. 

To assign a passage time to each edge of ~d, we choose d measurable and 
nonnegative functions f~:f2 ~ IR +, 1 <-i _< d. The passage time of the edge from 
x to x+e i  (in the realization o) of the model) is t(o~;x,x+ei)=f~(r~m). Two 
vertices x, y of ~d are adjacent if [ y - x l  = 1. For  any n pairs of adjacent vertices 
(x j, y j), the distribution of (t (e~; x t + z, y 1 + z), ..., t (m; x,  + z, y, + z)) is indepen- 
dent of z e Z  d. An equivalent description of the model would be to say that 
we are given a sequence of random variables {t(c~; x, x+el) :  1 <_i<-d, x e2~ 2} 
which is stationary and ergodic (see [9, p. 22ff] for example). The case considered 
in [4] and [7] is where { t (o); x, x + el): 1 < i <<_ d, x E 2~ a} is a sequence of indepen- 
dent identically distributed random variables. 
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We now proceed as in [7-] to define the travel time between two vertices 
and the time constants. A path r in Z a is a finite sequence of adjacent vertices 

/2--1 

r = ( x  0 . . . .  , x,). The passage time of r is T(co; r)= ~. t(co; xj, xj+l) and if x and 
j=o 

y are two vertices of 71, a, the travel time from x to y is T(co; x, y)=inf{T(co; r): 
r is a path from x to y}. Then for all x, ye7Z a, T(~o;O,x+y)<T(co;O,x) 
+ T(co; x, x + y) = T(o~; 0, x) + T(~, co; 0, y), that is T(m; 0, x) is subadditive. Sub- 
sequently, e~ will not appear explicitly in most expressions. 

As in the independent case, it follows from Kingman's subadditive theorem 
[8] that if the f~, 1 < i < d are in L ~ (P) then there is a continuous function #: R a 
~ ] R  + such that for all xEZ  a, lim n-iT(O, nx)=#(x) a.e. and in L 1, and the 

n ~ o o  
following properties hold: 

(i) # (0) = 0 
(ii) #(2x) = [2]/~(x) for all 2 ~ R  and x~]R a 

(iii) # (x + y) < # (x) + # (y) for all x, y eRa 
(iv) f# (Y)-- # (x) I </2 I Y - x[ where/2 = max ( max # (ei), 1 ). 

l <_i_<d 

Theorem. I f  fiEL(d, 1) for all l <i<_d, then Ixllim~ ( ] ~  T(O, x ) - #  ( ] ~ ) ) = 0  a.e. 

The proof of the theorem relies on the following maximal lemma which 
was needed in a different context in [-13. 

Maximal Lemma. I f  f~EL(d, 1 ) f o r  all l<_i<d then P{supixJ-1T(O,x)>2} 

<K). -d sup IIf/Ilad 1 for all 2 > 0  where K is constant that depends only on the 
l <_i<_d 

dimension d. 

The proof of this lemma is essentially the same as in [1 ; Theorem 6]. How- 
ever, a self-contained proof, including the transference principle, is given below 
for the two-dimensional case. This might facilitate a possible reference to [1]. 

Fix a point x in Z 2, x +0. The construction given below is for x in the 
region x(2)> x(1) and x (2)> -x(1) .  The construction for x in the other regions 
of Z 2 is simply obtained by a rotation. 

Among all the paths from (0, 0) to x, choose a set ix of Ix] paths rj, 1 < j <  ]xl 
such that rj goes from (0, 0) to (x(1)-[([x] + 1)/2] +j ,  0), then upward to (x(1) 
-[(Ix[ + 1)/2] +L x(2)-[]x[/2]) and then to x in such a way that the edge be- 
tween (k, x(2)-~)  and (k+ 1, x(2)-g) ,  x ( 1 ) - f -  1 < k _ < x ( 1 ) + t -  1, 0 < Y <  [lx[/ 
2 ] - 1  belongs to at most [xl/2(f+ 1) paths, the edge between (k, x(2)-•) and 
( k , x ( 2 ) - E + l ) ,  x(1)-E<_k<<_x(1)+(, l<~___<[Ixj/2] belongs to at most lx[/2E 
paths and such that no other edge of the graph be,longs to these paths. 

[xl 
Since T(O, x)< T(r~) for all r~ in ~ ,  T(0, x)< Ix[ -1 ~ T(ri) and Ixl- ~ T(0, x) 

lxl j = l  

<__lx1-2 y, T(rj). 
j = l  
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This is a sum of terms of the form w(y)fl(z~co) and v(y)fE(zyo9) where w(y) 
(resp. v(y)) is the number of paths in ix which go through the edge from y 
to y+(1,0)  (resp. y to y+(0,  1)). For all y in 2g 2, w(y)<-Ix[ since the paths are 
without loops. For y in the region x(1)-- U(Ixl + 1)/2] + 1 < y ( l ) < x ( 2 ) -  l-(Ixl + 1)/ 
2] + Ix [, and 1 < y (2) < x (2)-  [Ix I/2], w (y) = 0 and v (y) = 1. And for y = (k, x (2) -  f) 
for x(1)-~e-l<-k<-x(1)+f, O<t<[ Ix l /2 ] ,  w(y)<lxl/2(f +l)<21xlly-x1-1, 
y4=x and v(y)<lx[/2# <21xlly-x1-1, y*  x. 

Ixl 
Ixl-l Z(O,x)<C((2lx[+ l) -1 ~ fl(z(i,o) c~ 

i= - Ix l  

Ixl 

+(21x1+1) -2 F, A(z.,j) ~o) 
i , j =  - I x l  

+lxl-l(fa(rxCO)+ Y, [y--x[-lfl(ZyO))) 
0<ly-xl=<lxl  

+ l x l - a ( A ( ~ c o ) +  Y, l y -  xl-  ~f2(~,co))). 
o< ly -x l -< lx l  

We must prove a maximal inequality for each of these terms. The first two 
terms are classical averages. Since the maximal function for these two averages 
is in L 2, the weak maximal inequality obtained from Chebyshev's would be 
enough for our purpose. But we prefer to treat all these four terms the same 
way. The first step is to show a maximal inequality for the real-variable case. 

1 o0 0o 

Let f :  2 U ~ .  +, then Ilf][2.x=~ ~of*(t)t-~/2dt=,=~Ef*(i- 1 ) ( ] / ~ - / ~ - 1 )  

where f *  (i) is the sequence of values o f f  rearranged in a decreasing order. 

Lemma 1. For f :  Z ~ IR +, the following maximal inequality holds: 

m{z~2g:sup(2n+l) -~ ~ f(z+i)>2}<=12)o-211f[l~,x. 
n>_O i = - n  

Lemma 2. For f:  2g 2 ~IR +, the following maximal inequality holds: 

m{zeTZ2: sup(2n+l )  -2 ~ f ( z+  y)>.t}<362-EllfLl~.l . 
n>_O Irloo__<n 

Lemma 3. For f:  2g z--, ~.+, the following maximal inequality holds: 

m{zsZZ:suplxl- l ( f (x+z)  + Z l y - x l - l f ( y+z ) )>;o}  <c ,~-2/I fll~,l. 
x*O O<ly-xl<=lxl 

Proof of Lemma 2. Write A,f(z)=(2n+ 1) _2 ~ f(z+y). It is sufficient to con- 
lyl~_<n 

sider the case where f has finite support. Following the classical covering Lemma 
[13, p. 54], we can build a finite sequence (nj, zj) such that 

A.j f (zj) > )b Vj 
Ij = [z(1)-- nj, z(1) + nj] x [-z(2)-- nj, z(2) + nj] are pairwise disjoint 
m(Ij) ~ ' ~ - m  {zE2~ 2 : sup A.f(z)> 2}. 

n 
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Put  L = U I s. Then  

(1) 

and 

1 1 
-- mii/~) ~ mi/~))~s j~f(s) since m(Ij)=(2nj+ l) 2 

1 m~L) 2 <= ~I/~(U)) Z, i-~iV*(i-1)__<~ I lf l l~,~ 

re{z: supA,  f ( z )>2}  < 9 r e ( L ) <  9(42 -1 Ilfll2,,) 2. 
n>=l 

Proof of [emma 3. The p r o o f  is similar to the one of L e m m a  2 except  for the 
calculat ion needed to ob ta in  inequal i ty  (1). 

Wri te  A x f ( z ) = l x l - l ( f ( x + z ) +  y" [ y - x l - l f ( y + z ) ) .  Consider  the 
O<ly-xl<=lx] 

case where  f has finite suppor t .  By the cover ing lemma,  we have  a finite sequence 
(x j, z j) such tha t  

A=,jf(zj)>2 for all j 

I s = {y in 7Z 2 " IY-zs l  < Ixsl} are pairwise disjoint 

re(I  j) > 9 -1  m {z: sup Ax f (z) > 2}. 
x=~O 

Put  L = U Ij .  Then  

. , ( I  j) 
~ <~ ~ ~ A~f(z~) 

< 4 

Ixsl Vm(L) o < Ir-xxl < IxA 
l Y - xj[ - l f ( y  + z j)). 

Let  p(y) be the weights which appea r  in this average,  tha t  is p(y) 
= m(Ij)lxj[ - 1 (re(L))- 1/2 [y_x j ]  - 1 if 0 < [ y - x j ]  < [xj[, p(xj) = m(Ij) rxj[ - 1 
(re(L))-112 and p(y)= 0 for  all o ther  y in ~E 2. Then  

m {y in L: p (y) > 3 i - I / z  } < ~ m {y in l j" I Y -- xjl < ]/#i m (l j)/3 I Xyl m] / -~}  
J 

<= ~ im (I j) m(1j) 
j (3 I x j f  re(L) <= i. 

4 ,.(L) .-1/2 . . _  24 
T h e r e f o r e 2 < ? ~ - i  2 V  re(L) =13~ f 0 1)< m ~  Ilfl12,1. 
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Using the transference method as it is explained in [3], we obtain a maximal 
inequality for each term of (1). The only modification needed because we are 
working with Lorentz spaces, is the use of Minkowski's inequality. This was 
first done in I-2] for similar averages with a continuous parameter. 

Lemma 4. For f:  (2 ~ ~ +, the following maximal inequality holds 

P{CO: s u p ( 2 n + l )  -2 ~ f(zrco)>2}<=c(2 -1 [Ifl l2,0 2. 
n_>0 lyl~_<.  

Proof. For k and u, positive integers, let 

and 

E={CO:sup(2n+l)  -2 ~ f(zrCO)>2} 
n<k lyl~ =<_n 

E={(z, CO): sup (2n+ l )  -2 ~ f(zr+~CO)>2 and Izloo~u}. 
n<k lyl~_<n 

(mxP)(E)= ~ m(E,o)dP=~P(Ez) where Eo, and /~ are the CO- and z-section 
z 

of E respectively. 
Since z. is measure preserving, P(E~)= P(E) for all Izloo <_-u 

P(ff,,o)=m(z: s u p ( 2 n + l )  -1 ~ f(zr+~~ Iz[oo<U} 
Inl <=k lYl~<=n 

~ c ( ~  -1 IIF.+k(-, co)[12,t) 2 

by Lemma 1, where F,  + k (Y, CO) = f (Zr CO) for l yl ~o ~ u + k and 0 otherwise. 
By an integration by parts, the Lorentz norm can be written as lIFu+kllm,1 

= { (m {F, + k (', CO) > 4}) 1/2 d 4. Minkowski's inequality yields 
0 

( I m(Eo,)dP<c2 -2 ~ ~ (m{F.+~(-,co)>A})~/2d2 dP 

_-<c2 -2 ~ (~ m{F.+k(',co)>)o} dP)t/2d 
xo 0 

(S r = c 2  -2 ( Y', p { f ( r zco )> ,~} ) l / 2d  
[xl~ <u+k  

< c 2 - 2 ( 2 ( u + k ) + l )  2 II 2 fl12,1. 

Therefore (2u+ 1)2P(E)<=c(2(u+k)+ 1)2~ -2  [If 2 112,t- Let u-~oo and then k ~ o v  
to obtain P(sup (2n+ 1) -2 ~ f(z~ c0)>2} <c(2-1IIf112,1) 2. 

n*O Izl~ <n 

The same proof works for the other two types of averages. 
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3. Proof of the theorem 

F o r  each posit ive integer 2 put  A z =  {co; sup[x[ -1  T(0, x)<~2}. F o r  each integer 
x:#0 

M>_I, VM= ;xe2g , V =  ~ VMandB={zeNJ;zr  
M>I 

Z 
zsB, there is a ro ta t ion  9~r such tha t  ~0z(ed)= i ~ - .  F o r  each posit ive 

integer k and  p > 0 ,  let C(k, p) be the conical  volume:  

C(k,p)={xE~d: X ( 1 ) 2 +  . . .  +x(d-1)2<_(x(~dk))2,0<=x(d)<p}. 

Then  Cpz(C(k, p) does not  depend  on the e lement  ~o z of  SO(d) chosen. 
F o r  beD(O), we use Mp(k,z)h to denote  the average  Mp(k,z)h(co) 

= m(q~z C(k, p))- ~ ~. h (zy co) where  the sum is over  all y in ~0~ C(k, p)~ ~E d. 
I t  is s imple to  check tha t  the ergodic  theorem holds  a.e. in these cones;  

tha t  is if b e d  (P) then Mp(k, z) h(co) ~ ~ hdP a.e. as p ~ ~ .  
Then  we can find a set f 2 ' c  f2 of  measure  one such that  for all posi t ive 

integers 2, k and  all z e B, we have:  

(2) Mp(k,z)ta~(co)~P(A2) as p ~ c ~  f o r a l l c o e f 2 ' .  

Therefore  for all coef2', there is an integer N l = N l ( c o ,  k,z, 2) such tha t  for all 
p _-> N1, P (Az) - K 1 ~ -  d < Mp (k, z) IA~ t <~ e (A),) --~ K 1 2 -  d where K 1 
= K  sup Itf/ d II.,1. 

l < i < d  

Consider  a fixed coef2' and  posi t ive integers k, 2 and  z6B. Assume  tha t  
2 K 1 ; ~ - d < l / 4 .  We  claim tha t  if p>max(Nl(co, k,z, 2),2k ) and if p ' - p  
> m a x ( 2 ,  K 6 p 2  -~) where  K 6 is a cons tan t  that  depends  only On /(1 and  d, 
then there is a z' 6 Z a n (~Pz C (k, p') \ ~o z C (k, p)) such that  z z, co 6 A~. 

To  establish the claim, put  A' = 7Z d n (~o z C(k, p ' ) \ g z  C(k, p)), d 
= ~d n ~0 z C (k, p), D' = {y ~ A': Zy co e A~} and D = {y ~ A : zy co ~ A~}. 

Then  

1 - 2 K  1 2-d < p ( A z ) - K I  ,~-a b y t h e m a x i m a l l e m m a  

< Mo(k, z) tA. ~ 
<= (m (O') + m (D))/(m (A') + m (A)). 

Thus  M (D') > m (A') -- 2 K 1 2 - a (m (A) + m (A')). 
We  would  like to have  ( I - - 2 K  1 2-a)rn(A')>2Ka 2 - n m ( A ) +  1 or  still, m(A') 

d-1 lp\d-1 , 
>8K~ 2-dm(A)'K (p+3k)aBut-~'m(A')>K2[P--2~~[P'~a 2! k , ]  (P'--P--1)>Ks~ k)  (P -p )  ,and 

re(A)< , 2~Twr < . l x s K ~ -  ) . l n e r e l o r e  it would  be enough  to have p - p  

8K~ K 5 p 

K 3 2 a" 
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We complete the proof by contradiction. Suppose that the theorem is false. 
Then there exists a measurable set F of positive measure such that, for all 
coEf, 

(3) Ixl-~ T(0'x) ( ~ )  lira sup - # > 0. 
Ix[--,oo 

Then fix co in Fc~f2' and find a sequence (x~) in Z a and e, 0 < ~ < l  such that 

> e for all i. [ x i l ~ o % ~ l _ . _ , y a s i ~ o e a n  d 1 T(O, x i ) - #  x~ 

To obtain a contradiction we make the following choices: 
1. Choose the integer ,~ large enough so that 21-d<c/(32~-dK6) and 

2K1/Xa < 1/4. 
2. Choose k large enough so that 2k-~ < e/(8 ]/-d 2). 
3. Choose M large enough to be able to find z in VM such that [zl = 1 and 

l y -  zl <e/10 fiR. 
/ 

Let n~ be the integer such that n~M<lx~ l<(n i+ l )M (and hence, 

n iM M \  
0=<1 Ix~l Ix~l} 

4. Choose No large enough such that for all i>No, Mlx~l-~<e/20~2,  

xi <e/lOfi2, [(niM)-lT(O, niMz)--#(z) l<e/lO and IlniMzl[ Y - ~  

> m a x  (2k, Nt (co, k, z, 2), )fl/K6). 
Then for these choices and for all i>  N O we have, 

(4) Ix~l- 1 T(0, x i ) -  r ( ~ )  =< Ix~l- 1 T(0, x~)-Ix~l- ~ T(0, n i Mz)  

+ [xi[- 1 T(O, n i M z ) - ( n i  M)-  1 T(O, ni Mz)  

+(n iM)  -1 T(O,n~Mz)--#(x~i l ) .  

It follows from the claim (with p =  Llni Mz[L and p ' - p = 2 K  6 p2 -d) that there 
is a z' e 7Z, d n (q~ C (k, p') \ q~ C (k, p)) such that %, co e Aa. And therefore 

(5) Ilx, l- 1T(0, xi)--[xi[- 1T(O, ni Mz)l =< Ix/l- 1 T(xi, ni Mz) 
=<]xi1-1 ' Mz)) (T(xi, z ) + T(z', ni 
< 2 Ix~l- 1 (Ix~-z'l + Iz '-  n~ Mzl) 
< 2]xil- l( lxl--ni  M z l +  2lz'--n~ Mz[). 

(6) But I x i - n i M z [ < = [ x i l ( l y - l x i l - l x i [ + l y - z [ + ( 1 - [ x i l - l n i M ) ) ,  

and Iz ' - -niMzl<l/-d[Iz ' - -niMzl]  

<= V~(p'lk + (p '-  p)) 
=< ~/d(2K6 II n, M z ll/k Rd + [I n, M z ll/k + 2 K6 I[ n~ M zll/ 2 a) 
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Taking (6) and (7) into account and properties 1. to 4., from (5) we obtain 

I lxil- a T(0,  x i ) -  I xi[- 1 T(0,  n i Mz)l < 2 '  

The  s econd  t e r m  in  (4) is b o u n d e d  by  M Ixil-l((n~ M) 1 T(O, n~ Mz))< ~/10 a n d  
the  th i rd  one  by  I(nl M ) -  1 Z(O, n~ Mz)--#(z)] + / ~ l z - - y ]  + / i l y - -  [x~[- 1 xil < 3e/10.  
Th i s  is a c o n t r a d i c t i o n  to (1). 
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