Isoperimetric constants and estimates of heat kernels of pre Sierpinski carpets

Hirofumi Osada

Department of Mathematics, Faculty of Science, University of Tokyo, Hongo, Tokyo 113, Japan

Received December 9, 1988; in revised form March 19, 1990

Summary. The author calculated isoperimetric constants of the n-dimensional pre Sierpinski carpet \mathscr{Y}_{n}. As an application, he obtained the following estimate of the Neumann heat kernel $p_{n}(t, x, y)$ on \mathscr{Y}_{n};

$$
p_{n}(t, x, y) \leqq \text { const. } t^{-d(n) / 2} \quad \text { for } 1 \leqq t<\infty, \quad x, y \in \mathscr{Y}_{n},
$$

where

$$
d(n)=\log \left(3^{n}-1\right) /\left\{\log \left(3^{n}-1\right)-\log \left(3^{n-1}-1\right)\right\} .
$$

0. Introduction

The purpose of this paper is to calculate the isoperimetric constants of the n-dimensional pre Sierpinski carpet and, as an application, to present an estimate of the Neumann heat kernel on the n-dimensional pre Sierpinski carpet.

Let $C_{n, i}^{\circ}$ be the open set in \mathbb{R}^{n} defined by

$$
C_{n, i}^{\circ}=\sum_{\dot{j} \in \mathbb{Z}^{n}}\left\{2 \cdot 3^{i} \dot{\mathfrak{I}}+\mathrm{R}_{n, i}^{\circ}\right\},
$$

where $i \in \mathbb{Z}$ and $R_{n, i}^{\circ}$ is the open rectangle

$$
R_{n, i}^{\circ}=\left\{x=\left(x_{k}\right) \in \mathbb{R}^{n} ; \quad 2 \cdot 3^{i-1}<x_{k}<4 \cdot 3^{i-1} \quad \text { for } k=1,2, \ldots \ldots n\right\} .
$$

We set

$$
\mathscr{S}_{n}=\mathbb{R}^{n}-\bigcup_{i \in \mathbb{Z}} C_{n, i}^{\circ}
$$

and

$$
\begin{equation*}
\mathscr{Y}_{n}=\mathbb{R}^{n}-\bigcup_{i \in \mathbb{N}} C_{n, i}^{\circ}, \tag{0.1}
\end{equation*}
$$

where $\mathbb{N}=\{1,2,3, \ldots\}$.

Fig. 1

The fractal \mathscr{S}_{2} is called the Sierpinski carpet [11]. \mathscr{S}_{n} was taken by Kusuoka as the generalization of \mathscr{S}_{2} for $n \geqq 3$ (in private communication). \mathscr{S}_{n} is called n-dimensional Sierpinski carpet, and \mathscr{Y}_{n} the n-dimensional pre Sierpinski carpet, see Fig. 1. We refer to [1-3] for work on the Sierpinski carpet, and to [7, 10] for the physical background relating fractals.

We introduce now the notions of the isoperimetric constants. For this we denote by $\mathcal{O}_{n, b}$ the totality of bounded open sets in \mathbb{R}^{n} with smooth boundaries. Let O be an open set in \mathbb{R}^{n} with a sufficiently smooth boundary. Set

$$
\begin{equation*}
\mathscr{I}_{d}^{+}(O)=\inf \frac{\|O \cap(\partial q)\|_{n}^{d}}{|O \cap q|_{n}^{d-1}} . \tag{0.2}
\end{equation*}
$$

Here the infimum is taken over $q \in \mathcal{O}_{n, b}$ with $1 \leqq|O \cap q|_{n}<\infty$; we denote by $\|\left.\cdot\right|_{n}$ (resp. $\|\cdot\|_{n}$) the n dimensional ($n-1$ dimensional) volume in \mathbb{R}^{n} induced by Lebesgue measure, and by ∂q the boundary of q in \mathbb{R}^{n}. Similarly we set

$$
\mathscr{I}_{d}^{-}(O)=\inf \frac{\|O \cap(\partial q)\|_{n}^{d}}{|O \cap q|_{n}^{d-1}}
$$

Here the infimum is taken over $q \in \mathcal{O}_{n, b}$ with $0<|O \cap q|_{n} \leqq 1 . \mathscr{I}_{d}^{+}(O)\left(\right.$ resp. $\left.\mathscr{I}_{d}^{-}(O)\right)$ is called the large (small) scale isoperimetric constant of O with index d.

Now we state our results.
Theorem 1. Let \mathscr{Y}_{n}° be the open kernel of \mathscr{Y}_{n}, and set

$$
\begin{equation*}
d(n)=\log \left(3^{n}-1\right) /\left\{\log \left(3^{n}-1\right)-\log \left(3^{n-1}-1\right)\right\} \tag{0.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
d(n)=\sup \left\{d ; \mathscr{I}_{d}^{+}\left(\mathscr{Y}_{n}^{\circ}\right)>0\right\} . \tag{0.5}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\mathscr{I}_{d(n)}^{+}\left(\mathscr{Y}_{n}^{\circ}\right)>0 \quad \text { and } \quad \mathscr{I}_{n}^{-}\left(\mathscr{Y}_{n}^{\circ}\right)>0 . \tag{0.6}
\end{equation*}
$$

Remark. $d(2)=3 / 2, d(3)=2.764 \ldots d(n) / n \rightarrow 1$ as $n \rightarrow \infty$.

The significance of isoperimetric constants lies in the fact that they give bounds on the heat kernel for large time. We quote the following lemma from [9].

Lemma. Let $p_{o}(t, x, y)$ be the Neumann heat kernel on O. Suppose $\mathscr{I}_{d}^{+}(O)>0$ and $\mathscr{F}_{e}^{-}(O)>0$ for some $d, e \geqq 1$. Then

$$
p_{o}(t, x, y) \leqq \text { const. } t^{-d / 2} \quad \text { for } 1 \leqq t<\infty, \quad x, y \in O
$$

and

$$
p_{o}(t, x, y) \leqq \text { const. } t^{-e / 2} \quad \text { for } 0<t<1, \quad x, y \in O
$$

This lemma follows from a combination of Federer-Fleming's theorem and Nash's theorem (and its extentions due to Carlen-Kusuoka-Stroock [5]).

Theorem 2. Let $p_{n}(t, x, y)$ be the Neumann heat kernel on the n-dimensional pre Sierpinski carpet. Then

$$
\begin{equation*}
p_{n}(t, x, y) \leqq \text { const. } t^{-d(n) / 2} \quad \text { for } 1 \leqq t<\infty, \quad x, y \in \mathscr{Y}_{n} \tag{0.8}
\end{equation*}
$$

Kusuoka conjectured Theorem 1 and 2 in private communication. He also proved Theorem 1 and 2 for $n=2$ with a different method from ours. However, his method is not effective for $n \geqq 3$, because he used some special property of $n=2$.

Let $\tilde{d}(n)$ denote the order of the decay of the Neumann heat kernel of the n-dimensional pre Sierpinski carpet:

$$
\mathcal{X}(n)=-2 \cdot \lim _{t \rightarrow \infty}\left(\left(\log p_{n}(t, x, x)\right) / \log t\right)
$$

if the limit of the right hand side exists and is independent of x. By Theorem 2 we have

$$
d(n) \leqq \tilde{d}(n) .
$$

Hence we obtain lower bounds on $\tilde{d}(n)$ (if it exists). It is also known ([8]) that

$$
\tilde{d}(n) \leqq \log _{3}\left(3^{n}-1\right)
$$

To prove the existence of $\tilde{d}(n)$ and to calculate the precise value of $\mathcal{Z}(n)$ are still open problems for $n \geqq 3$. Recently Barlow-Bass-Sherwood [3] proved the existence of $d(2)$.

One motivation of our work is to obtain lower bounds on the spectral dimension of the n-dimensional Sierpinski carpet, denoted by $d_{S}(n)$. The spectral dimension is defined in terms of the density of states, that is, the asymptotic frequency of the large eigenvalues of the Laplacian on a bounded region. In our case the construction of the Laplacian itself is a problem. One possible idea is to construct the Brownian motion, a nondegenerate diffusion process with sufficiently many invariant properties, in order to define the Laplacian as its generator. If we obtain $\mathscr{X}(n)$ and show that

$$
C_{1} \cdot t^{-\hat{d}(n) / 2} \leqq p_{n}(t, x, x) \leqq C_{2} \cdot t^{-\tilde{d}(n) / 2} \quad \text { for all } x \in \mathscr{Y}_{n}, \quad 1 \leqq t<\infty,
$$

then we may construct the Brownian motion as a limit of $\left\{3^{-k} \cdot X_{r \cdot 3 \rho k}\right\}(k \rightarrow \infty)$, where $\left\{X_{t}\right\}$ is the reflecting Brownian motion on \mathscr{Y}_{n} and $\left.\rho=\left(\log _{3}\left(3^{n}-1\right)\right) / \tilde{d}(n)\right)$. If this procedure is justified, the resulting Brownian motion has the transition probability density $p(t, x, y)$ with respect to μ (the limit of $\mu_{k}(d x)=\left(3^{n} /\left(3^{n}\right.\right.$ $-1))^{k} \cdot 1_{\text {dy }_{n}}\left(x / 3^{k}\right) d x(k \rightarrow \infty)$ in the vague topology), such that

$$
p(t, x, y) \leqq \text { const. } t^{-\tilde{d}(n) / 2} \quad \text { for all } 0<t<\infty .
$$

Hence from Mercer's theorem we have $\tilde{d}(n)=d_{S}(n)$ (see [4], p. 618). In the case of the 2-dimensional Sierpinski carpet, Barlow-Bass-Sherwood [3] proved $d_{S}(2)=\tilde{d}(2)$.

In Barlow-Perkins [4], Goldstein [6] and Kusuoka [8], the spectral dimension of another fractal, the Sierpinski gasket was obtained to be $\log _{5} 9$. The large scale isoperimetric constant equals 0 for $d>1$, since the Sierpinski gasket is a finitely ramified fractal, that is, it can be disconnected by removing finitely many points. Hence for the Sierpinski gasket isoperimetric constants yield only a trivial estimate.

We prepare the following notation in order to explain the idea of the proof.
For $i \in \mathbb{Z}$ and $\mathfrak{j}=\left(j_{1}, j_{2}, \ldots, j_{n}\right) \in \mathbb{Z}^{n}$, let $u_{n, i, \mathfrak{j}}$ denote the open rectangle defined by

$$
u_{n, i, \dot{\mathbf{j}}}=\left\{x=\left(x_{k}\right) \in \mathbb{R}^{n} ; \quad 3^{i} \cdot j_{k}<x_{k}<3^{i} \cdot\left(j_{k}+1\right)\right\} .
$$

We set

$$
\begin{equation*}
\mathscr{U}_{n, i}=\left\{u_{n, i, j, j} ; \mathfrak{j} \in \mathbb{Z}^{n}\right\} \quad \text { and } \quad \mathscr{U}_{n}=\bigcup_{i \in \mathbb{Z}} \mathscr{U}_{n, i} . \tag{0.9}
\end{equation*}
$$

Note that elements of \mathscr{U}_{n} have the following property:

$$
\begin{equation*}
u \supset u^{\prime} \quad \text { or } u \subset u^{\prime} \quad \text { if } u \cap u^{\prime} \neq \phi, \quad\left(u, u^{\prime} \in \mathscr{U}_{n}\right) \tag{0.10}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mathbb{U}_{n}=\left\{\mathbb{U}=\left\{u_{i}\right\} ; u_{i} \in \mathscr{U}_{n}, u_{i} \cap u_{j} \neq \phi \quad \text { if } i \neq j\right\} \tag{0.11}
\end{equation*}
$$

and set for $\mathbb{U}=\left\{u_{i}\right\} \in \mathbb{U}_{n}$

$$
\begin{equation*}
[\mathbb{u}]=\bigcup_{i} u_{i} . \tag{0.12}
\end{equation*}
$$

Here \bar{A} stands for the closure of A in \mathbb{R}^{n}.
For $i \in\{1,2, \ldots, n\}$ and $j \in \mathbb{Z}$, let $H_{n, i, j}$ denote the $n-1$ dimensional plane defined by

$$
H_{n, i, j}=\bigcup_{m \in \mathbb{Z}}\left\{x=\left(x_{k}\right) \in \mathbb{R}^{n} ; x_{i}=3^{j} \cdot(2 m+1)\right\}
$$

We set

$$
\begin{equation*}
H_{n, i}=\bigcup_{j \in \mathbb{Z}} H_{n, i, j} \quad \text { and } H_{n}=\bigcup_{1 \leqq i \leqq n} H_{n, i} \tag{0.13}
\end{equation*}
$$

We denote by $F_{i}(u)$ the face of $u \in \mathscr{U}_{n}$ included by $H_{n, i}$;

$$
\begin{equation*}
F_{i}(u)=(\partial u) \cap H_{n, i} . \tag{0.14}
\end{equation*}
$$

We set

$$
\begin{equation*}
F(u)=\bigcup_{i=1}^{n} F_{i}(u) \tag{0.15}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left\|F_{i}(u) \cap \mathscr{Y}_{n}^{\circ}\right\|_{n}=\frac{1}{n} \cdot\left\|F(u) \cap \mathscr{Y}_{n}^{\circ}\right\|_{n} \quad \text { for all } i=1,2, \ldots, n \tag{0.16}
\end{equation*}
$$

We now explain the idea of our method. We first observe that
(0.18) $\frac{\left\|F(u) \cap \mathscr{Y}_{n}^{\circ}\right\|_{n}^{d(n)}}{\|\left. u \cap \mathscr{Y}_{n}^{\circ}\right|_{n} ^{(n)-1}}=n^{d(n)} \quad$ for $u \in \mathscr{U}_{n, j} \quad$ with $j \geqq 0 \quad$ and $\quad u \cap \mathscr{Y}_{n}^{\circ} \neq \phi$.

So our strategy is to show for all $q \in \mathcal{O}_{n, b}$ and $x \in q \cap \mathscr{Y}_{n} \bigcap_{i \in \mathbb{Z}}\left\{\bigcup_{u \in \mathscr{U}_{n, i}} u\right\}$ there exists $u \in \mathscr{U}_{n}$ satisfying $x \in u$ and

$$
\begin{equation*}
\left\|(\partial q) \cap u \cap \mathscr{Y}_{n}^{\circ}\right\|_{n} \geqq \varepsilon_{n}\left\|F(u) \cap \mathscr{Y}_{n}^{\circ}\right\|_{n} . \tag{0.19}
\end{equation*}
$$

Here ε_{n} is a positive constant depending only on the dimension n. From (0.19) we conclude that there exists $\mathbb{U} \in \mathbb{U}_{n}$ such that

$$
\begin{equation*}
q \cap \mathscr{Y}_{n}^{\circ} \subset[\mathbb{X}], \tag{0.20}
\end{equation*}
$$

and that all elements u of \mathbb{x} satisfy (0.19), and then we obtain Theorem 1.
(0.19) is the main ingredient in the proof of Theorem 1 , and will be proved by induction via the dimension n. The condition that q is bounded is essential for (0.19). For example, if $q=\{x ;|x|>1\}$, then there exists no $\varepsilon>0$ satisfying (0.19) for all $x \in q$. Indeed, the size of u containing x and $\partial q=\{x ;|x|=1\}$ becomes bigger as x goes far away from the origin while $\left\|(\partial q) \cap u \cap \mathscr{Y}_{n}^{\circ}\right\|_{n} \leqq\|\partial q\|_{n}$.

In Section 1 we prepare some notation and definitions, and restate Theorem 1 in its general form. Section 2 presents a reduction of Theorem 1. Section 3 completes the proof of Theorem 1.

1. Notation and definitions

In this section we prepare some notation. We shall prove $\mathscr{\mathscr { J }}_{d(n)}^{+}(O)>0$ for a class of open sets containing \mathscr{Y}_{n}°.

Let $\theta=\left(\theta_{i}\right)(i \in \mathbb{N}=\{1,2,3, \ldots\})$ be a sequence of $\{0,1\}$, and let Θ be the totality of θ, that is

$$
\Theta=\left\{\theta=\left(\theta_{i}\right) ; \theta_{i}=0 \text { or } 1(i \in \mathbb{N})\right\} .
$$

We set

$$
\begin{equation*}
0=(0,0, \ldots) \quad \text { and } \quad \mathbb{1}=(1,1, \ldots) \in \Theta . \tag{1.1}
\end{equation*}
$$

Let $C_{n}(\theta)$ be the closed set in \mathbb{R}^{n} defined by

$$
\begin{equation*}
C_{n}(\theta)=\bigcup_{\left\{i ; \theta_{i}=1\right\}} C_{n, i} \tag{1.2}
\end{equation*}
$$

where

$$
C_{n, i}=\sum_{\dot{j} \in \mathbb{Z}^{n}}\left\{2 \cdot 3^{i} \cdot \mathfrak{j}+R_{n, i}\right\}
$$

and $R_{n_{8}}$ is the closed rectangle

$$
R_{n, i}=\left\{x=\left(x_{k}\right) \in \mathbb{R}^{n} ; 2 \cdot 3^{i-1} \leqq x_{k} \leqq 4 \cdot 3^{i-1} \text { for all } k=1,2, \ldots n\right\}
$$

Let $O_{n}(\theta)$ be the open set in \mathbb{R}^{n} defined by

$$
\begin{equation*}
O_{n}(\theta)=\mathbb{R}^{n}-C_{n}(\theta) \tag{1.3}
\end{equation*}
$$

Obviously we have for $\theta \in \Theta$

$$
\begin{equation*}
\phi=C_{n}(0) \subset C_{n}(\theta) \subset C_{n}(\mathbb{1}) \text { and } \mathbb{R}^{n}=O_{n}(\mathbb{0}) \supset O_{n}(\theta) \supset O_{n}(\mathbb{1}) \tag{1.4}
\end{equation*}
$$

Moreover $O_{n}(\mathbb{1})$ is the open kernel of n dimensional pre Sierpinski carpet;

$$
\begin{equation*}
\mathscr{Y}_{n}^{\circ}=O_{n}(\mathbb{1}) \tag{1.5}
\end{equation*}
$$

We shall show in Section 2 and 3 the following theorem.

Theorem 1.1.

$$
\begin{equation*}
\mathscr{I}_{d(n)}^{+}\left(O_{n}(\theta)\right)>0, \quad \mathscr{I}_{n}^{-}\left(O_{n}(\theta)\right)>0 \quad \text { for all } \theta \in \Theta \tag{1.6}
\end{equation*}
$$

Theorem 1 comes from Theorem 1.1. Indeed, $\sup \left\{d ; \mathscr{I}_{d}^{+}\left(\mathscr{Y}_{n}^{\circ}\right)>0\right\} \geqq d(n)$ is clear. Let $w_{r}=\left\{x=\left(x_{i}\right) ;-3^{r}<x_{i}<3^{r}\right.$ for $\left.i=1,2, \ldots, n\right\}$. Then

$$
\inf _{r \geqq 1} \frac{\left\|\left(\partial w_{r}\right) \cap \mathscr{Y}_{n}^{\circ}\right\|_{n}^{d}}{\left|w_{r} \cap \mathscr{Y}_{n}^{\circ}\right|_{n}^{d-1}}=0 \quad \text { for all } \quad d>d(n)
$$

This implies $\sup \left\{d ; \mathscr{I}_{d}^{+}\left(\mathscr{Y}_{n}^{\circ}\right)>0\right\} \leqq d(n)$. We, therefore, obtain (0.5). (0.6) is clear from (1.6).

We define measures associated with $\theta \in \Theta$. Let $|\cdot|_{n, \theta}$ (resp. $\|\cdot\|_{n, \theta}$) be the n dimensional volume ($n-1$ dimensional volume) defined by

$$
\begin{equation*}
|\cdot|_{n, \theta}=\left|\cdot \cap O_{n}(\theta)\right|_{n}, \quad\|\cdot\|_{n, \theta}=\left\|\cdot \cap O_{n}(\theta)\right\|_{n} \tag{1.7}
\end{equation*}
$$

Here $|\cdot|_{n}\left(\right.$ resp. $\left.\|\cdot\|_{n}\right)$ is the $n(n-1)$ dimensional volume induced by Lebesgue measure. Obviously we have

$$
\begin{aligned}
& |\cdot|_{n, \mathbb{Q}}=|\cdot|_{n}, \quad\|\cdot\|_{n, 0}=\|\cdot\|_{n}, \\
& \left\|F_{i}(u)\right\|_{n, \theta}=\frac{1}{n} \cdot\|F(u)\|_{n, \theta} \quad \text { for all } i=1,2, \ldots, n .
\end{aligned}
$$

We observe, if $u, u^{\prime} \in \mathscr{U} \mathscr{U n}_{n, i}$ and $|u|_{n, \theta},\left|u_{n, \theta}\right|_{n}>0$, then

$$
|u|_{n, \theta}=\left|u^{\prime}\right|_{n, \theta}, \quad\|F(u)\|_{n, \theta}=\left\|F\left(u u^{\prime}\right)\right\|_{n, \theta}
$$

Now we define functions $A_{n, \theta}(i, j): \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
A_{n, \theta}(i, j)=\left(\frac{3^{n}-1}{3^{n}}\right)^{\lambda(i, j, \theta)}, \tag{1.8}
\end{equation*}
$$

where $\lambda(i, j, \theta)$ is the function defined by

$$
\begin{array}{lll}
\lambda(i, j, \theta)=\#\left\{k \in \mathbb{N} ; \theta_{k}=1, i<k \leqq j\right\} & \text { for } i \leqq j, & \\
\lambda(i, j, \theta)=-\#\left\{k \in \mathbb{N} ; \theta_{k}=1, j<k \leqq i\right) & \text { for } i \geqq j, \quad\left(\theta=\left(\theta_{k}\right), k \in \mathbb{N}\right) .
\end{array}
$$

Note that $\Lambda_{n, \theta}(i, j) \geqq 1$ for $i \geqq j$ and $\Lambda_{n, \theta}(i, j)=1$ if both of i and j are smaller than one.

The following lemma is an immediate consequence of these definitions.
Lemma 1.2. Let $\theta \in \Theta$ and $u \in \mathscr{U}_{n, i}$ with $|u|_{n, \theta}=0$. Then

$$
\begin{equation*}
|u|_{n, \theta}=A_{n, \theta}(0, i)|u|_{n, \theta}, \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\|F(u)\|_{n, \theta}=A_{n-1, \theta}(0, i)\|F(u)\|_{n, \boldsymbol{e}} . \tag{1.10}
\end{equation*}
$$

We finish this section with the following lemma, which will be used in Sections 2 and 3 .

Lemma 1.3. Let $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ be sequences of positive numbers such that $\left(\sum_{i} b_{i}\right)<\infty$. Let c be a constant with $c \geqq 1$. Then

$$
\begin{equation*}
\left(\sum_{i} a_{i}\right)^{c} /\left(\sum_{i} b_{i}\right) \geqq \inf _{i}\left(\frac{\left(a_{i}\right)^{c}}{b_{i}}\right) . \tag{1.13}
\end{equation*}
$$

Proof. Since $c \geqq 1$, we obtain

$$
\left(\sum_{i \leqq k} a_{i}\right)^{c} \geqq \sum_{i \leqq k} a_{i}^{c}=\sum_{i \leqq k}\left(\frac{a_{i}^{c}}{b_{i}}\right) \cdot b_{i} \geqq \inf _{i \leq k}\left(\frac{a_{i}^{c}}{b_{i}}\right) \cdot\left(\sum_{i \leqq k} b_{i}\right)
$$

for all k, which implies (1.13) immediately.

2. The reduction of Theorem 1

In this section we obtain the reduction of Theorem 1 and 1.1. We begin by introducing a notion of θ proper to an open set q.

Let $u \in \mathscr{U}_{n}$. u is said to be θ proper to an open set q, if

$$
\begin{equation*}
\left\|(\overline{q \cap u}) \cap F_{i}(u)\right\|_{n, \theta} \geqq \mu\left\|F_{i}(u)\right\|_{n, \theta} \quad \text { for all } i=1,2, \ldots, n . \tag{2.1}
\end{equation*}
$$

Here $\overline{q \cap u}$ is the closure of $q \cap u$, and μ is a positive constant satisfying

$$
\begin{equation*}
1 / 2<\mu<1 . \tag{2.2}
\end{equation*}
$$

μ will be fixed throughout this paper. Note that, if $q \supset u$, then u is θ proper to q, and that, if u is θ proper to q, then u is θ proper to all open sets including q.

Recall that $\mathcal{O}_{n, b}$ denotes the totallity of the bounded open sets with smooth boundary, see (0.9) for the definition of $\mathscr{U}_{n, i}$.

Theorem 2.1. Let $q \in \mathcal{O}_{n, b}$ and $u \in \mathscr{U}_{n, i}$. Suppose u includes $u^{-} \in \mathscr{U}_{n, i-1}$ satisfying

$$
\begin{equation*}
u^{-} \text {is } \theta \text { proper to } q \text { and }\left|u^{-}\right|_{n, \theta}>0 \tag{2.3}
\end{equation*}
$$

Then, at least, one of the following holds:

$$
\begin{equation*}
\|(\partial q) \cap u\|_{n, \theta} \geqq \varepsilon_{n}\|F(u)\|_{n, \theta} \tag{2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
u \text { is } \theta \text { proper to } q \text { and }|u|_{n, \theta}>0 . \tag{2.5}
\end{equation*}
$$

Here ε_{n} is the constant defined by

$$
\begin{equation*}
\varepsilon_{2}=(1-\mu) / 3, \quad \varepsilon_{n}=n^{-1} \cdot 3^{-2} \cdot \min \left\{(1-\mu) / 2, \mu / 3^{n}\right\} \cdot \varepsilon_{n-1} . \tag{2.6}
\end{equation*}
$$

We shall prove Theorem 2.1 in Section 3. We derive here Theorem 1 and 1.1 from Theorem 2.1.

Let $\mathbb{U} \in \mathbb{U}_{n}$ (see (0.12) for the definition of $\left.\mathbb{U}_{n}\right)$. \mathbb{u} is said to be a θ exhausion of an open set q if \mathbb{U} satisfies the following conditions;

$$
\begin{gather*}
q \cap \mathcal{O}(\theta) \subset[\mathbb{U}], \quad \text { where }[\mathbb{U}] \text { is defined by }(0.12), \tag{2.7}\\
\|(\partial q) \cap u\|_{n, \theta} \geqq \varepsilon_{n}\|F(u)\|_{n, \theta} \quad \text { for all } u \in \mathbb{U}, \tag{2.8}
\end{gather*}
$$

(2.9) each $u \in \mathbb{U}$ includes $u^{-} \in \mathscr{U}_{n}$ such that
(i) $u^{-} \in \mathscr{U}_{n, i-1}$, where i is the integer such that $u \in \mathscr{U}_{n, i}$,
(ii) u^{-}is θ proper to q and $\left|u^{-}\right|_{n, \theta}>0$.

Proposition 2.2. (i) Let $\theta \in \Theta$ and $q \in \mathcal{O}_{n, b}$. Suppose that Theorem 2.1 holds for n. Then there exists a θ exhaustion \mathbb{U} of q.
(ii) Let $q^{\prime} \in \mathcal{O}_{n, b}$ with $q \subset q^{\prime}$. Then there exists θ exhaustion \mathbb{u} of q and \mathbb{w}^{\prime} of q^{\prime} such that

$$
\begin{equation*}
[\mathbb{u}] \subset\left[\mathbb{u}^{\prime}\right] . \tag{2.10}
\end{equation*}
$$

Proof. Let $q_{0}=q \cap O_{n}(\theta)$, and set

$$
\begin{equation*}
\mathscr{U}^{-}(x)=\left\{u \in \mathscr{U}_{n} ; x \in u, u \text { is } \theta \text { proper to } q \text { and }|u|_{n, \theta}>0\right\} . \tag{2.11}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathscr{U}^{-}(x) \neq \phi \quad \text { for all } x \in q_{00}=q_{0} \bigcap_{i \in \mathbb{Z}}\left\{\bigcup_{u \in \mathscr{U}_{n, i}} u\right\} . \tag{2.12}
\end{equation*}
$$

This is because, for all $x \in q_{00}$, there exists a unit u with $x \in u \subset q_{0}$ and u is θ proper to q and $|u|_{n, \theta}>0$ if $u \subset q_{0}$. Let $u^{-}(x)$ denote the element of $\mathscr{U}^{-}(x)$
with $u^{-}(x) \supset u$ for all $u \in \mathscr{U}^{-}(x)$. Then $u^{-}(x)$ exists uniquely, since q is bounded. Furthermore, we denote by $u(x)$ the element of \mathscr{U}_{n} satisfying

$$
\begin{equation*}
u^{-}(x) \subset u(x) \quad \text { and } \quad u(x) \in \mathscr{U}_{n, i(x)}, \tag{2.13}
\end{equation*}
$$

where $i(x)$ is the integer such that $u^{-}(x) \in \mathscr{U}_{n, i(x)-1}$. From Theorem $2.1 u(x)$ satisfies (2.8).

We denote the collections of $u(x)$ over $x \in q_{00}$ by $\mathscr{U}(q)$, and set

$$
\begin{equation*}
\mathbb{U}=\left\{u \in \mathscr{U}(q) ; \text { there exists no } u^{\prime} \in \mathscr{U}(q) \text { with } u \varsubsetneqq u^{\prime}\right\} . \tag{2.14}
\end{equation*}
$$

Since q is bounded, \mathbb{u} is not empty and $q_{0} \subset[\mathbb{\mathbb { L }}]$. It is easy to see that $\mathbb{\pi}$ is θ exhaustion of q. Hence we obtain (i).

Next we show (ii). Let

$$
\begin{equation*}
\mathscr{U}^{-}\left(x, q^{\prime}\right)=\left\{u \in \mathscr{U}_{n} ; x \in u, u \text { is } \theta \text { proper to } q^{\prime} \text { and }|u|_{n, \theta}>0\right\} . \tag{2.15}
\end{equation*}
$$

Then by the definition of θ proper we have

$$
\begin{equation*}
\mathscr{U}^{-}(x) \subset \mathscr{U}^{-}\left(x, q^{\prime}\right) \quad \text { for all } x \in q_{00} . \tag{2.16}
\end{equation*}
$$

(ii) follows from this immediately. Q.E.D.

Lemma 2.3. Suppose Proposition 2.2. holds for n Then

$$
\begin{equation*}
\mathscr{I}_{d(n)}^{+}\left(O_{n}(\theta)\right) \geqq\left(\varepsilon_{n}\right)^{d(n)-1} \quad \text { for all } \theta \in \Theta . \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{I}_{n}^{-}\left(O_{n}(\theta)\right)>0 \quad \text { for all } \theta \in \Theta . \tag{2.18}
\end{equation*}
$$

Proof. We first prove (2.17). Let $q \in \mathcal{O}_{n, b}$ with $|q|_{n, \theta} \geqq 1$ and $\mathbb{4}$ be a θ exhaustion of q. Set $D=D(n)=\frac{d(n)}{d(n)-1}=\frac{\log \left(3^{n}-1\right)}{\log \left(3^{n-1}-1\right)}$ and $\varepsilon=\varepsilon_{n}$. Then

$$
\begin{equation*}
\frac{\left(\|\partial q\|_{n, \theta}\right)^{D}}{|q|_{n, \theta}} \geqq \frac{\left(\sum_{u}\|(\partial q) \cap u\|_{n, \theta}\right)^{D}}{\sum_{\mathrm{u}}|q \cap u|_{n, \theta}} \geqq \varepsilon^{D} \frac{\left(a^{\prime}+a^{\prime \prime}\right)^{D}}{\left(b^{\prime}+b^{\prime \prime}\right)}, \tag{2.19}
\end{equation*}
$$

where

$$
a^{\prime}=\sum_{\mathbb{w}^{\prime}}\|F(u)\|_{n, \theta}, \quad b^{\prime}=\sum_{\boldsymbol{\pi} r^{\prime}}|u|_{n, \theta}, \quad a^{\prime \prime}=\sum_{\mathbb{u}^{\prime \prime}}\|F(u)\|_{n, \theta}, \quad b^{\prime \prime}=\sum_{\mathbb{w}^{\prime \prime}}|u|_{n, \theta},
$$

and

$$
\mathbb{u}^{\prime}=\left\{u ; u \in \mathbb{U},\|F(u)\|_{n, \theta} \geqq 1\right\}, \quad \boldsymbol{u}^{\prime \prime}=\left\{u ; u \in \mathbb{U}, 0<\|F(u)\|_{n, \theta}<1\right\} .
$$

Now we divide the case into two parts: $b^{\prime} \geqq b^{\prime \prime}$ and $b^{\prime}<b^{\prime \prime}$.
Suppose that $b^{\prime} \geqq b^{\prime \prime}$. Then by Lemma 1.3 we have

$$
\begin{equation*}
\frac{\left(a^{\prime}+a^{\prime \prime}\right)^{D}}{\left(b^{\prime}+b^{\prime \prime}\right)} \geqq \frac{a^{\prime D}}{2 b^{\prime}} \geqq \frac{1}{2} \cdot \inf _{u \in \mathbb{w}^{\prime}} \frac{\left(\|F(u)\|_{n, \theta}\right)^{D}}{|u|_{n, \theta}} \geqq \frac{1}{2} \cdot n^{D}>1 \tag{2.20}
\end{equation*}
$$

We next suppose $b^{\prime}<b^{\prime \prime}$. Then, by $b^{\prime}+b^{\prime \prime}=|q|_{n, \theta} \geqq 1$, we have $b^{\prime \prime} \geqq 1 / 2$. Let $N=\frac{n}{n-1}$. Then we have from Lemma 1.3

$$
\begin{equation*}
\frac{\left(a^{\prime \prime}\right)^{N}}{b^{\prime \prime}} \geqq \inf _{u \in \mathbf{u}^{\prime \prime}} \frac{\left(\|F(u)\|_{n, \theta}\right)^{N}}{|u|_{n, \theta}}=\inf _{u \in u^{\prime \prime}} \frac{\left(\|F(u)\|_{n, \theta}\right)^{N}}{|u|_{n, \theta}}=n^{N} \tag{2.21}
\end{equation*}
$$

We used here $\mathcal{O}_{n}(\theta) \supset u$ for $u \in \mathbb{U}^{\prime \prime}$ to pass from the second term to the third. Hence we obtain from $D>N$ and $a^{\prime \prime} \geqq 1$ that

$$
\begin{equation*}
\frac{\left(a^{\prime \prime}\right)^{D}}{b^{\prime \prime}} \geqq \frac{\left(a^{\prime \prime}\right)^{N}}{b^{\prime \prime}} \geqq n^{N} \tag{2.22}
\end{equation*}
$$

Then we have by Lemma 1.3 that

$$
\begin{equation*}
\frac{\left(a^{\prime}+a^{\prime \prime}\right)^{D}}{\left(b^{\prime}+b^{\prime \prime}\right)} \geqq \min \left\{\frac{\left(a^{\prime}\right)^{D}}{b^{\prime}}, \frac{\left(a^{\prime \prime}\right)^{D}}{b^{\prime \prime}}\right\} \geqq \min \left\{n^{D}, n^{N}\right\}>1 \tag{2.23}
\end{equation*}
$$

From (2.19), (2.20) and (2.23) we conclude (2.17).
Second, we prove (2.18). Let $q \in \mathcal{O}_{n, b}$ with $0<|q|_{n, \theta} \leqq 1$ and u be a θ exhaustion of q. Set $N=N(n)=n /(n-1)$ and $\varepsilon=\varepsilon_{n}$. Let $a^{\prime}, b^{\prime}, \ldots$ be defined as before.

We divide the case into two parts: $a^{\prime}>0$ and $a^{\prime}=0$:
Suppose that $a^{\prime}>0$. Then $a^{\prime} \geqq 1$. This with $|q|_{n, \theta} \leqq 1$ yields

$$
\begin{equation*}
\frac{\left(\|\partial q\|_{n, \theta}\right)^{N}}{|q|_{n, \theta}} \geqq\left(\sum_{u}\|(\partial q) \cap u\|_{n, \theta}\right)^{N} \geqq \varepsilon^{N}\left(a^{\prime}+a^{\prime \prime}\right)^{N} \geqq \varepsilon^{N} \tag{2.24}
\end{equation*}
$$

Next we suppose $a^{\prime}=0$. Then $b^{\prime}=0$. Hence we have

$$
\begin{equation*}
\frac{\left(\|\partial q\|_{n, \theta}\right)^{N}}{|q|_{n, \theta}} \geqq \varepsilon^{N} \frac{\left(a^{\prime}+a^{\prime \prime}\right)^{N}}{\left(b^{\prime}+b^{\prime \prime}\right)}=\varepsilon^{N}\left(a^{\prime \prime}\right)^{N} / b^{\prime \prime} \geqq \varepsilon^{N} n^{N} \tag{2.25}
\end{equation*}
$$

From (2.24) and (2.25) we conclude (2.18). Q.E.D.
We next present a simple observation for exhaustion, which will be used in the proof of Proposition 3.6.

Lemma 2.4. Let $\theta \in \Theta, U \in \mathscr{U}_{n, i}$ with $|U|_{n, \theta}>0$ and $u \in \mathscr{U}_{n}$.
(i) Let $q \in \mathcal{O}_{n, b}$ with $q \subset U$ and suppose that u is θ proper to q. Then

$$
\begin{equation*}
u \subset U . \tag{2.27}
\end{equation*}
$$

(ii) Let $q, q^{*} \in \mathcal{O}_{n, b}$ with $q \cap q^{*}=\phi$ and $\overline{q \cup q^{*}}=\bar{U}$. Let $\mathbb{u}\left(\right.$ resp. $\left.\mathbb{u}^{*}\right)$ be a θ exhaustion of $q\left(q^{*}\right)$. Then

$$
\begin{equation*}
[\mathrm{u}],\left[\mathrm{u}^{*}\right] \subset \overline{U^{+}}, \tag{2.28}
\end{equation*}
$$

where $U^{+} \in \mathscr{U}_{n, i+1}$ such that $U \subset U^{+}$, and

$$
\begin{equation*}
[\mathbb{u}] \subset \bar{U} \quad \text { or } \quad\left[\mathbb{u}^{*}\right] \subset \bar{U} . \tag{2.29}
\end{equation*}
$$

Proof. We first prove (i). Assume $u \supsetneq U$ or $u \cap U=\phi$. Then, by $q \subset U$ and this assumption, we have

$$
\left\|(\overline{q \cap u}) \cap F_{i}(u)\right\|_{n, \theta} \leqq\left\|(\overline{U \cap u}) \cap F_{i}(u)\right\|_{n, \theta} \leqq 2^{-1}\left\|F_{i}(u)\right\|_{n, \theta},
$$

which contradicts to (2.1).
Second, we prove (ii). Let $u \in u$ with $u \in \mathscr{U}_{n, j}$. Then u contains a unit $u^{-} \in \mathscr{U}_{n, j-1}$, which is θ proper to q. From (i) we have $u^{-} \subset U$. Hence $u \subset U^{+}$, which implies $[\mathbb{U}] \subset{\overline{U^{+}}}^{+}$. Similarly we have $\left[\mathbb{U}^{*}\right] \subset \bar{U}^{+}$. We, therefore, conclude (2.28).

Now we proceed with the proof of (2.29). Suppose that (2.29) is false. Then from (i) and (2.28), $\mathbb{4}$ and \mathbb{w}^{*} consist of the single element U^{+}, and U is θ proper to q and $|U|_{n, \theta}>0$. Therefore,

$$
\begin{equation*}
\left\|(\overline{q \cap U}) \cap F_{i}(U)\right\|_{n, \theta} \geqq \mu\left\|F_{i}(U)\right\|_{n, \theta} \quad \text { for all } i=1,2, \ldots, n, \tag{2.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left(\overline{q^{*} \cap U}\right) \cap F_{i}(U)\right\|_{n, \theta} \geqq \mu\left\|F_{i}(U)\right\|_{n, \theta} \quad \text { for all } i=1,2, \ldots, n \tag{2.32}
\end{equation*}
$$

The sum of the first terms of (2.31) and (2.32) equals $\left\|F_{i}(U)\right\|_{n, \theta}$, since $q \cap q^{*}=\phi$ and $q \cup q^{*}=\bar{U}$. Hence

$$
\left\|F_{i}(U)\right\|_{n, \theta} \geqq 2 \mu\left\|F_{i}(U)\right\|_{n, \theta}
$$

This yields contradiction, because $1<2 \mu$ by (2.2). Q.E.D.

3. Proof of Theorem 2.1

In this section, we shall complete the proof of Theorems 1, 1.1 and 2.1.
First of all we prepare a couple of notations. We set for $\mathbb{\Psi} \in \mathbb{U}_{n}$ and $\theta \in \Theta$

$$
\begin{equation*}
F[\mathbb{\Psi} \mid \theta]=\sum_{u \in \mathbb{U}}\|F(u)\|_{n, \theta}, \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
[\mathbb{U}]=\bigcup_{u \in \mathbb{U}} u \tag{3.2}
\end{equation*}
$$

We call $\hat{\mathbb{U}} \in \mathbb{U}_{n}$ a minimal covering of $\mathbb{U} \in \mathbb{U}_{n}$ if $\hat{\mathbb{U}}$ satisfies the following conditions:

$$
\begin{array}{ll}
& {[\mathbb{U}] \subset[\hat{\mathbb{U}}],} \\
F[\hat{\mathbb{U}} \mid \mathbb{D}] \leqq F[\mathbf{v} \mid \boldsymbol{D}] & \text { for all } \mathbb{v} \in \mathbb{U}_{n} \quad \text { with } \quad[\mathbb{U}] \subset[\mathbf{v}] . \tag{3.4}
\end{array}
$$

Proposition 3.1. Let $\mathbb{\Psi} \in \mathbb{U}_{n}$ and suppose [$\left.\mathbb{U}\right]$ is a bounded set. Then there exists a minimal covering tu of $\mathbb{~}$.

Proof. Since [$\mathbb{\mathbb { L }}]$ is a bounded set in \mathbb{R}^{n}, we can assume

$$
\begin{equation*}
[\mathbb{u}] \subset\left[-3^{k}, 3^{k}\right] \times\left[-3^{k}, 3^{k}\right] \times \ldots \times\left[-3^{k}, 3^{k}\right] \quad \text { for some } k . \tag{3.5}
\end{equation*}
$$

Let $I=\{(i, j) ; i, j \in \mathbb{Z} \cup\{\infty\}, i \leqq 0, i \leqq j\}$, and let \rightarrow denote the order on I defined by the following conditions:

$$
\begin{equation*}
(i, j) \rightarrow\left(i^{\prime}, j^{\prime}\right) \tag{3.5}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
i>i^{\prime} \quad \text { or } \quad i=i^{\prime} \quad j<j^{\prime} \tag{3.6}
\end{equation*}
$$

For example,

$$
\begin{aligned}
& (0,0) \rightarrow(0,1) \rightarrow(0,2) \rightarrow \ldots \rightarrow(0, \infty) \rightarrow(-1,-1) \rightarrow(-1,0) \rightarrow \ldots \rightarrow(-1, \infty) \\
& \rightarrow(-2,-2) \rightarrow(-2,-1) \rightarrow(-2,0) \rightarrow \ldots \rightarrow(-2, \infty) \rightarrow(-3,-3) \rightarrow(-3,-2) \rightarrow \ldots
\end{aligned}
$$

Let $\{\mathbb{\Psi}(i, j)\},(i, j) \in I$, be a sequence of elements of \mathbb{U}_{n}, defined by induction via (i, j) :

$$
\begin{gather*}
\mathbb{U}(0,0)=\bigcup_{i \geqq 0} \mathbb{U}_{i}, \quad \text { where } \quad \mathbb{U}_{i}=\mathbb{U} \cap \mathscr{U}_{n, i} . \tag{3.7}\\
\mathbb{U}(i, j)=\mathbb{U}^{\prime}(i, j) \cup\left\{\mathbb{\mathbb { u }}(i, j-1)-\left\{u \in \mathbb{U}(i, j-1) ; u \subset\left[\mathbb{U}^{\prime}(i, j)\right]\right\}\right\}, \tag{3.8}
\end{gather*}
$$

where

$$
\mathbb{u}^{\prime}(i, j)=\left\{u \in \mathscr{U}_{n, j} ;\|F(u)\|_{n, 0} \leqq F[\mathbb{u}(i, j-1 ; u) \mid 0]\right\}
$$

and

$$
\begin{gather*}
\mathbb{u}(i, j-1 ; u)=\{v \in \mathbb{U}(i, j-1) ; v \subset u\} . \\
\lim _{j \rightarrow \infty} \mathbb{U}(i, j)=\mathbb{U}(i, \infty) . \tag{3.9}\\
\mathbb{U}(i-1, i-1)=\mathbb{U}(i, \infty) \cup\left\{\mathbb{U}_{i-1}-\left\{u \in \mathbb{U}_{i-1} ; u \subset[\mathbb{U}(i, \infty)]\right\}\right\} . \tag{3.10}
\end{gather*}
$$

Note that from (3.5) the limit (3.9) exists for all i. This is because $\mathbb{u}(i, j)$ $=\mathbb{u}(i, k)$ for all $j \geqq k$. Now we define

$$
\begin{equation*}
\hat{\mathrm{u}}=\lim _{i \rightarrow-\infty} \mathbb{u}(i, \infty) . \tag{3.11}
\end{equation*}
$$

It is not difficult to see that $\hat{\mathbf{u}}$ is a minimal covering of \mathbf{u}. Q.E.D.
Remark. The minimal covering is not always unique. For example, let \mathbb{u} $=\left\{u_{i}\right\}_{i=1,2,3, \ldots} \in \mathbb{U}_{2}$ satisfying that

$$
[\mathrm{u}] \subset[0,1] \times[0,1], \quad u_{2 i-1}, u_{2 i} \in \mathscr{U}_{2,-i} \quad \text { and } \quad u_{i} \cap u_{j}=\phi \quad \text { for } i \neq j .
$$

Then both of u and $[0,1] \times[0,1]$ are the minimal coverings of u.

Lemma 3.2. Let $\mathbb{\Psi}, \mathbb{v} \in \mathbb{U}_{n}, \theta \in \Theta$. Suppose

$$
|v|_{n, \theta}>0 \quad \text { for all } v \in \mathbb{V}
$$

and

$$
\begin{equation*}
F[\mathbb{U} \mid 0] \leqq F[\mathbf{v} \mid 0] . \tag{3.12}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{i} A_{n-1, \theta}(i, m) F\left[\mathbb{U} \cap \mathscr{U}_{n, i} \mid \theta\right] \leqq \sum_{i} A_{n-1, \theta}(i, m) F\left[\mathbb{v} \cap \mathscr{U}_{n, i} \mid \theta\right] \tag{3.13}
\end{equation*}
$$

for all $m \in \mathbb{Z}$, where $\Lambda_{n-1, \theta}$ is the function defined by (1.8).
Proof. Clearly we can assume $|u|_{n, \theta}>0$ for all $u \in \mathbb{U}$. Note that from the definition of $\Lambda_{n-1, \theta}$, we have

$$
\begin{equation*}
\Lambda_{n-1, \theta}(0, i) \cdot A_{n-1, \theta}(i, m)=\Lambda_{n-1, \theta}(0, m) \quad \text { for all } i . \tag{3.14}
\end{equation*}
$$

Then (3.13) follows from Lemma 1.2. Indeed,

$$
\begin{align*}
F & {[\mathbb{u} \mid \mathbb{0}]=\sum_{i} F\left[\mathbb{U} \cap \mathscr{U}_{n, i} \mid \mathbb{0}\right] } \tag{3.15}\\
& =\left\{A_{n-1, \theta}(0, m)\right\}^{-1} \cdot \sum_{i} A_{n-1, \theta}(i, m) F\left[\mathbb{U} \cap \mathscr{U}_{n, i} \mid \theta\right] .
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
F[\mathbf{v} \mid \mathbb{O}]=\left\{A_{n-1, \theta}(0, m)\right\}^{-1} \cdot \sum_{i} A_{n-1, \theta}(i, m) F\left[\mathbf{v} \cap \mathscr{U}_{n, i} \mid \theta\right] . \tag{3.16}
\end{equation*}
$$

Combining (3.15) and (3.16) with (3.12) yields (3.13). Q.E.D.
Let $\mu: \Theta \rightarrow\{-\infty\} \cup \mathbb{N} \cup\{\infty\}$ denote the function defined by

$$
\begin{equation*}
\mu(\theta)=\sup \left\{i ; \theta_{i}=1\right\} \quad \text { if } \theta=\left(\theta_{i}\right) \neq 0, \quad \mu(\theta)=-\infty \quad \text { if } \theta=0 . \tag{3.17}
\end{equation*}
$$

Note that $\mu(\theta)=-\infty$ if and only if $\theta=\mathbb{0}$.
As a corollary of Lemma 3.2 we have the following:
Lemma 3.3. Let $\theta \in \Theta, m=\mu(\theta)$ and $\mathbb{u}, \mathbb{v} \in \mathbb{U}_{n}$. Suppose that $-\infty<m<\infty$,

$$
\begin{equation*}
|v|_{n, \theta}>0 \quad \text { for } v \in \mathbb{V} \tag{3.18}
\end{equation*}
$$

and that

$$
\begin{equation*}
[\mathbb{U}] \subset[\mathrm{V}] . \tag{3.19}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{i} \Lambda_{n-1, \theta}(i, m) F\left[\hat{\mathbf{u}} \cap \mathscr{U}_{n, i} \mid \theta\right] \leqq F[\mathbb{v} \mid \theta], \tag{3.20}
\end{equation*}
$$

where $\hat{\mathbb{U}}$ is a minimal covering of \mathbf{u}.

Proof. By (3.4) and (3.19) we have

$$
\begin{equation*}
F[\hat{\mathbf{u}} \mid 0] \leqq F[\mathbb{v} \mid 0] . \tag{3.21}
\end{equation*}
$$

Then from Lemma 3.2 we obtain

$$
\begin{align*}
& \sum_{i} \Lambda_{n-1, \theta}(i, m) F\left[\hat{\mathbf{u}} \cap \mathscr{U}_{n, i} \mid \theta\right] \leqq \sum_{i} A_{n-1, \theta}(i, m) F\left[\mathbf{v} \cap \mathscr{U}_{n, i} \mid \theta\right] \tag{3.22}\\
& \quad \leqq \sum_{i} F\left[\mathbf{v} \cap \mathscr{U}_{n, i} \mid \theta\right]=F[\mathbf{v} \mid \theta] .
\end{align*}
$$

Here we used $\Lambda_{n-1, \theta}(i, m) \leqq 1$ for all i. Q.E.D.
Let $U \in \mathscr{U}_{n, k}$ be fixed, and suppose

$$
\begin{equation*}
U=T \times A \tag{3.23}
\end{equation*}
$$

where

$$
T=\left(\tau, \tau^{\prime}\right) \quad \text { and } \quad A \in \mathscr{U}_{n-1, k} .
$$

Note that $\tau^{\prime}-\tau=3^{k}$ and $\tau=i_{0} 3^{k}$ for some $i_{0} \in \mathbb{Z}$. Without loss of generality we can assume that τ satisfies

$$
\begin{equation*}
\{\tau\} \times A=F_{1}[U], \tag{3.24}
\end{equation*}
$$

where $F_{1}[U]$ is the first face of U defined by (0.14). This assumption implies that i_{0} is odd.

Let

$$
\begin{equation*}
U^{r}=T^{r} \times A, \quad T^{r}=\left(\tau+r \cdot 3^{k-1}, \tau+(r+1) \cdot 3^{k-1}\right) \quad(r=0,1,2) \tag{3.25}
\end{equation*}
$$

We set $T^{r}=\left(\rho, \rho^{\prime}\right)$. Without loss of generality, we can assume

$$
\begin{equation*}
\{\rho\} \times A \supset F_{1}[u] \quad \text { for all } u \in \mathscr{U}_{n, k-1} \text { such that } u \subset U^{r} . \tag{3.26}
\end{equation*}
$$

We set for $\theta \in \Theta$ and $t \in T$,

$$
\begin{equation*}
\theta(t)=\left(\theta_{i}(t)\right), \quad \widetilde{\theta}(t)=\left(\widetilde{\theta}_{i}(t)\right), \tag{3.27}
\end{equation*}
$$

where

$$
\theta_{i}(t)=1\left(\left\{C_{n}\left(\theta^{(i)}\right) \cap \Pi_{t} \cap U\right\} \neq \phi\right), \quad \theta_{i}(t)=0\left(\left\{C_{n}\left(\theta^{(i)}\right) \cap \Pi_{t} \cap U\right\}=\phi\right),
$$

and

$$
\widetilde{\theta}_{i}(t)=\theta_{i}(t)(i \neq k), \quad \widetilde{\theta}_{i}(t)=0(i=k) .
$$

Here $C_{n}(\cdot)$ is the closed set defined by (1.2), and $\theta^{(i)}=\left(\theta_{j}^{(i)}\right)$ is the element of Θ defined by $\theta_{j}^{(i)}=0(j \neq i)$ and $\theta_{j}^{(i)}=\theta_{i}(j=i)$, and Π_{t} is the $n-1$ dimensional plane defined by

$$
\begin{equation*}
\Pi_{t}=\left\{x=\left(x_{i}\right) \in \mathbb{R}^{n} ; x_{1}=t\right\} . \tag{3.28}
\end{equation*}
$$

We see

$$
\begin{equation*}
\{t\} \times\left\{C_{n-1}(\theta(t)) \cap A\right\}=C_{n}(\theta) \cap I_{t} \cap U \tag{3.29}
\end{equation*}
$$

Now we consider the functions $\Phi_{\theta, U}^{r} ; \mathbb{U}_{n-1} \rightarrow \mathbb{R}(r=0,1,2)$ defined by

$$
\begin{equation*}
\Phi_{\theta, v}^{r}[\alpha]=\int_{T^{r}} \sum_{i \geqq \hat{m}(t)} F\left[\hat{\mathbb{a}} \cap \mathscr{U}_{n-1, i} \mid \theta(t)\right] d t . \tag{3.31}
\end{equation*}
$$

See (3.25) for the definition of T^{r}. Here

$$
\tilde{m}(t)=\mu(\tilde{\theta}(t)),
$$

where $\mu(\cdot)$ is defined by (3.17), $\theta(t)$ is (3.27) and $\hat{\mathbb{a}}$ is the minimal covering of \mathfrak{a} which is constructed by Proposition 3.1.

Similarly we define

$$
\begin{equation*}
m(t)=\mu(\theta(t)) . \tag{3.32}
\end{equation*}
$$

Note that

$$
\begin{equation*}
-\infty \leqq \tilde{m}(t) \leqq m(t) \leqq k, \quad \#\left\{i ; \theta_{i}(t)=1, \tilde{m}(t)<i \leqq m(t)\right\} \leqq 1, \tag{3.33}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{n-1, \theta(t)}(i, m(t)) \geqq\left(\frac{3^{n-1}-1}{3^{n-1}}\right) \quad \text { for all } i \geqq \tilde{m}(t) \tag{3.34}
\end{equation*}
$$

See (1.8) for the definition of $A_{n-1, \theta(t)}(i, m(t))$.
Lemma 3.4. Let $n \geqq 3$, and let $\mathfrak{a} \in \mathbb{U}_{n-1}$ such that $[\alpha] \subset \bar{A}$. Then

$$
\begin{equation*}
\Phi_{\theta, U}^{r}[\mathfrak{a}] \geqq(1 / 2) \cdot \sum_{a \in \mathfrak{a}}|a|_{n-1, \theta(\rho)} . \tag{3.35}
\end{equation*}
$$

Here ρ is defined by (3.26).
Proof. Let $a \in \mathscr{U}_{n-1}$ and $i(a)$ be the integer such that $a \in \mathscr{U}_{n-1, i(a)}$. We prove this lemma in the case of $r=0$. Set $T(a)=\left\{t \in T^{0} ; \tilde{m}(t) \leqq i(a)\right\}$, and suppose $|a|_{n-1, \theta(\rho)}>0$.

We first see that

$$
\begin{equation*}
\int_{T(a)}\|F(a)\|_{n-1, \theta(t)} d t \geqq(1 / 2) \cdot|a|_{n-1, \theta(\rho)} . \tag{3.36}
\end{equation*}
$$

Indeed, if $i(a)=k$, that is $a=A$, then $T(a)=T^{0}$. Hence we have

$$
\begin{aligned}
& \int_{T(a)}\|F(a)\|_{n-1, \theta(t)} d t \\
& \quad=(n-1) \cdot\left\|F_{2}(U) \cap\left\{x \in \mathbb{R}^{n} ; x_{1} \in T^{0}\right\}\right\|_{n, \theta} \\
& \quad \geqq(n-1) \cdot\left(\frac{3^{n-2}-1}{3^{n-1}-1}\right) \cdot|a|_{n-1, \theta(\rho)} \geqq(1 / 2) \cdot|a|_{n-1, \theta(\rho)} .
\end{aligned}
$$

Suppose $i(a)<k$, and set $I=\left(\rho^{\prime}-3^{i(a)}, \rho^{\prime}\right)$. Here ρ^{\prime} is the number such that (ρ, ρ^{\prime}) $=T^{0}$, which means $\rho^{\prime}=\rho+3^{k-1}$. Then $I \subset T(a)$ and

$$
\begin{aligned}
& \int_{T(a)}\|F(a)\|_{n-1, \theta(t)} d t \geqq \int_{I}\|F(a)\|_{n-1, \theta(t)} d t \\
& \quad=(n-1) \cdot\left\|F_{2}(U(a))\right\|_{n, \theta}=(n-1) \cdot|a|_{n-1, \theta(\rho)},
\end{aligned}
$$

where $U(a) \in \mathscr{U}_{n}$ is defined by $U(a)=I \times a$.
It follows from (3.36) that

$$
\begin{align*}
\Phi_{\theta, U}^{0}[\mathbb{a}]= & \int_{T^{0}} \sum_{i \geqq \tilde{m}(t)} \sum_{a \in \dot{\mathfrak{a}} \cap \mathcal{U}_{n-1, i}}\|F(a)\|_{n-1, \theta(t)} \mathrm{d} t \tag{3.37}\\
& =\sum_{a \in \hat{\mathbb{\alpha}}} \int_{T(a)}\|F(a)\|_{n-1, \theta(t)} \mathrm{d} t \\
& \geqq(1 / 2) \cdot \sum_{a \in \hat{\mathbb{\alpha}}}|a|_{n-1, \theta(\rho)} \geqq(1 / 2) \cdot \sum_{a \in \hat{\tilde{a}}}|a|_{n-1, \theta(\rho)} .
\end{align*}
$$

We can prove similarly the case of $r=1,2$. Q.E.D.
We present some notation which will be used in the rest of this section. Let $\pi_{i, u}$ be the projection from a unit u to $F_{i}(\mathrm{u})$, the face of u defined by (0.14). We set

$$
\begin{align*}
& b_{i} \equiv b_{i}(q, u)=(\overline{q \cap u}) \cap \pi_{i, u}((\partial q) \cap u), \tag{3.41}\\
& a_{i} \equiv a_{i}(q, u)=F_{i}(u) \cap(\overline{q \cap u})-b_{i},
\end{align*}
$$

where \bar{q} is the closure of q and ∂q is the boundary of q in \mathbb{R}^{n}.

$$
\begin{align*}
& \beta_{i} \equiv \beta_{i}(q, u, \theta)=\left\|b_{i}\right\|_{n, \theta}, \tag{3.42}\\
& \alpha_{i} \equiv \alpha_{i}(q, u, \theta)=\left\|a_{i}\right\|_{n, \theta} .
\end{align*}
$$

Moreover,

$$
\begin{align*}
& \alpha_{i}^{*} \equiv \alpha_{i}^{*}(q, u, \theta)=\alpha_{i}\left(q^{*}, u, \theta\right), \tag{3.43}\\
& \beta_{i}^{*} \equiv \beta_{i}^{*}(q, u, \theta)=\beta_{i}\left(q^{*}, u, \theta\right),
\end{align*}
$$

where $q^{*}=(\bar{q})^{C}$.
We often omit (q, u, θ) if no confusion occurs.
Lemma 3.5. For all $(q, u, \theta) \in\left(\mathscr{O}_{n, b}, \mathscr{U}_{n}, \Theta\right)$ and $i \in\{1,2, \ldots, n\}$, we have
(i) $\alpha_{i}+\beta_{i}+\alpha_{i}^{*}+\underline{\beta}_{i}^{*}=\left\|F_{i}(u)\right\|_{n, \theta}$,
(ii) $\alpha_{i}+\beta_{i}=\left\|(\overline{q \cap u}) \cap F_{i}(u)\right\|_{n, \theta}$,
(iii) $\|(\hat{o} q) \cap u\|_{n, \theta} \geqq \beta_{i}+\beta_{i}^{*}$.

Proof. Lemma 3.5 follows from the above definitions immediately. Q.E.D.
Proposition 3.6. Let $n \geqq 3$ and suppose Theorem 2.1 holds for $n-1$. Let $U \in \mathscr{U}_{n, k}$ satisfy (3.23), and let $U^{r}(r=0,1,2)$ be the subset of U defined by (3.25). Set

$$
\begin{equation*}
\alpha(r)=\sum \alpha_{1}(q, u, \theta) \quad \text { and } \quad \alpha^{*}(r)=\sum \alpha_{1}^{*}(q, u, \theta), \tag{3.46}
\end{equation*}
$$

where summations are taken over $\left\{u ; u \in \mathscr{U}_{n, k-1}, u \subset U^{r}\right\}$. Then

$$
\begin{equation*}
\|(\partial q) \cap U\|_{n, \theta} \geqq \varepsilon_{n-1} 3^{-2} \cdot \min \left\{\alpha(r), \alpha^{*}(r)\right\} \tag{3.47}
\end{equation*}
$$

where ε_{n-1} is the positive constant in Theorem 2.1.

Proof. Let

$$
\begin{equation*}
\tilde{a}(r)=\cup a_{1}(q, u) \quad \text { and } \quad \tilde{a}^{*}(r)=\cup a_{1}\left(q^{*}, u\right) \tag{3.48}
\end{equation*}
$$

where unions are taken over $\left\{u ; u \in \mathscr{U}_{n, k-1}, u \subset U^{r}\right\}$ and $a_{1}(\cdot, u)$ is defined by (3.41). Since $\tilde{a}(r)$ and $\tilde{a}^{*}(r)$ are contained in the $n-1$ dimensional plane $\left\{x=\left(x_{i}\right)\right.$; $\left.x_{1}=\rho\right\}$ (see (3.26) for ρ), we can rewrite

$$
\tilde{a}(r)=\{\rho\} \times a(r), \quad \tilde{a}^{*}(r)=\{\rho\} \times a^{*}(r),
$$

where $a(r), a^{*}(r) \subset \mathbb{R}^{n-1}$. Set

$$
\begin{equation*}
a=\left\{a(r) \cap O_{n-1}(\theta(\rho))\right\}^{\circ}, \quad a^{*}=\left\{a^{*}(r) \cap O_{n-1}(\theta(\rho))\right\}^{\circ} . \tag{3.49}
\end{equation*}
$$

Here $O_{n-1}(\cdot)$ is defined by (1.3) and A° means open kernel of A in \mathbb{R}^{n-1}. Note that

$$
\begin{equation*}
|a|_{n-1, \theta(\rho)}=\|\tilde{a}(r)\|_{n, \theta}=\alpha(r), \quad\left|a^{*}\right|_{n-1, \theta(\rho)}=\left\|\tilde{a}^{*}(r)\right\|_{n, \theta}=\alpha^{*}(r) . \tag{3.50}
\end{equation*}
$$

Let $\mathfrak{a}(t)$ (resp. $\left.\mathfrak{a}^{*}(t)\right)$ denote a $\theta(t)$ exhaustion of $a\left(a^{*}\right)$. Such exhaustions exist by Theorem 2.1 for $n-1$ and Proposition 2.2. We can choose $a(t)$ and $\mathfrak{a}^{*}(t)$ such that $\mathfrak{a}(t)=\mathbb{a}(s)$ and $\mathfrak{a}^{*}(t)=\mathfrak{a}^{*}(s)$ if $\theta(t)=\theta(s)$. Then there exist \mathbb{v} and $\mathbb{v}^{*} \in \mathbb{U}_{n-1}$ satisfying

$$
\begin{equation*}
a \subset[\mathrm{v}] \subset[\alpha(t)], \quad a^{*} \subset\left[\mathrm{v}^{*}\right] \subset\left[\mathfrak{a}^{*}(t)\right] \quad \text { for all } t \in T^{r}, \tag{3.51}
\end{equation*}
$$

and

$$
|v|_{n-1, \theta(t)}>0 \quad \text { for all } v \in \mathbb{V} \cup \mathbb{V}^{*} \quad \text { and } t \in T^{r} .
$$

Indeed, we can construct \mathbb{v} and \mathbb{v}^{*} in the following way:

$$
\mathbf{v}=\bigwedge_{t \in T^{r}} \mathfrak{a}(t), \quad \mathbf{v}^{*}=\bigwedge_{t \in T^{r}} \mathfrak{a}^{*}(t),
$$

where \wedge is defined by

$$
\mathfrak{a} \wedge \mathbb{b}=\{u \in \mathfrak{a} \cup \mathbb{b} ; \text { there exists no } v \in \mathfrak{a} \cup \mathbb{b} \text { such that } v \varsubsetneqq u\} .
$$

Let

$$
\tilde{q}(t)=\cup \pi_{1, u}\left(q \cap u \cap \Pi_{t}\right) \quad \text { and } \quad \tilde{q}^{*}(t)=\cup \pi_{1, u}\left(q^{*} \cap u \cap \Pi_{t}\right),
$$

where unions are taken over $\left\{u ; u \in \mathscr{U}_{n, k-1}, u \subset U^{r}\right\}$ and $\pi_{1, u}$ is the projection from u to $F_{1}(u)$, and $\Pi_{t}=\left\{x=\left(x_{i}\right) \in \mathbb{R}^{n} ; x_{1}=t\right\}$. Let $q(t)$ and $q^{*}(t)$ be open sets in \mathbb{R}^{n-1} such that

$$
\tilde{q}(t)=\{\rho\} \times q(t), \quad \tilde{q}^{*}(t)=\{\rho\} \times q^{*}(t) .
$$

Then

$$
\begin{equation*}
a \subset q(t), \quad a^{*} \subset q^{*}(t) \quad \text { for all } t \in T^{r} \tag{3.52}
\end{equation*}
$$

From Theorem 2.1 for $n-1$ and Proposition 2.2 there exists a $\theta(t)$ exhaustion $\mathbb{v}(t)\left(\right.$ resp. $\left.\mathbb{v}^{*}(t)\right)$ of $q(t)\left(q^{*}(t)\right)$ such that

$$
[\mathfrak{a}(t)] \subset[\mathbb{v}(t)], \quad\left[\mathbb{a}^{*}(t)\right] \subset\left[\mathbb{v}^{*}(t)\right] \quad \text { for all } t \in T^{r}
$$

Hence we see from (3.51) that

$$
\begin{equation*}
[\mathbf{v}] \subset[\mathbf{v}(t)] \quad \text { and } \quad\left[\mathbf{v}^{*}\right] \subset\left[\mathbb{v}^{*}(t)\right] \quad \text { for all } t \in T^{r} \tag{3.53}
\end{equation*}
$$

Let $\hat{\mathbf{v}}$ and $\hat{\mathbf{v}}^{*}$ be the minimal coverings of \mathbf{v} and \mathbf{v}^{*}, respectively.
Set

$$
\begin{equation*}
\Lambda_{\theta(t)}(i)=A_{n-1, \theta(t)}(i, m(t)), \tag{3.54}
\end{equation*}
$$

where $A_{n-1, \theta(t)}(i, j)$ is the function defined by (1.8) and $m(t)=\mu(\theta(t))$. See (3.17) for the definition of $\mu(\theta)$ and (3.27) for the definition of $\theta(t)$. From Lemma 3.3 and (3.53), we have

$$
\begin{equation*}
\sum_{i} \Lambda_{\theta(t)}(i) F\left[\hat{\mathbf{v}} \cap U_{n-1, i} \mid \theta(t)\right] \leqq F[\mathbf{v}(t) \mid \theta(t)] \tag{3.55}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i} A_{\theta(t)}(i) F\left[\hat{\mathbf{v}}^{*} \cap \mathscr{U}_{n-1, i} \mid \theta(t)\right] \leqq F\left[\mathrm{v}^{*}(t) \mid \theta(t)\right] . \tag{3.56}
\end{equation*}
$$

Let $T_{1}=\left\{t \in T^{r} ;[\mathbb{V}(t)] \subset A\right\} \quad$ and $\quad T_{2}=\left\{t \in T^{r} ;\left[\mathbb{v}^{*}(t)\right] \subset A\right\}$. Then by Lemma 2.4 we have

$$
\begin{equation*}
T_{1} \cup T_{2}=T^{r} \tag{3.57}
\end{equation*}
$$

From (2.8) we have

$$
\varepsilon_{n-1}\|F(v)\|_{n-1, \theta(t)} \leqq\|(\partial q(t)) \cap v\|_{n-1, \theta(t)}
$$

for $v \in \mathbb{v}(t) \cup \mathbb{v}^{*}(t)$ with $v \subset A$. This is beause for $v \subset A$,

$$
\|(\partial q(t)) \cap v\|_{n-1, \theta(t)}=\left\|\left(\partial q^{*}(t)\right) \cap v\right\|_{n-1, \theta(t)}
$$

Hence taking the summation with respect to v over $\mathbb{v}(t)$ and $\mathbb{v}^{*}(t)$, respectively, yields

$$
\begin{equation*}
\varepsilon_{n-1} F[\vee(t) \mid \theta(t)] \leqq\|(\partial q(t)) \cap A\|_{n-1, \theta(t)} \quad\left(t \in T_{1}\right) \tag{3.58}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{n-1} F\left[\mathbb{v}^{*}(t) \mid \theta(t)\right] \leqq\|(\partial q(t)) \cap A\|_{n-1, \theta(t)} \quad\left(t \in T_{2}\right) . \tag{3.59}
\end{equation*}
$$

We obtain from (3.55) and (3.58) that

$$
\begin{equation*}
\varepsilon_{n-1} \sum_{i} \Lambda_{\theta(t)}(i) F\left[\hat{v} \cap \mathscr{U}_{n-1, i} \mid \theta(t)\right] \leqq\|(\partial q(t)) \cap A\|_{n-1, \theta(t)} \tag{3.60}
\end{equation*}
$$

for $t \in T_{1}$, and from (3.56) and (3.59) that

$$
\begin{equation*}
\varepsilon_{n-1} \sum_{i} \Lambda_{\theta(t)}(i) F\left[\hat{\mathbf{v}}^{*} \cap \mathscr{U}_{n-1, i} \mid \theta(t)\right] \leqq\|(\partial q(t)) \cap A\|_{n-1, \theta(t)} \tag{3.61}
\end{equation*}
$$

for $t \in T_{2}$.
Now we divide the case into two parts:

$$
\begin{equation*}
F[\hat{\mathbf{v}} \mid 0] \leqq F\left[\hat{\mathbf{v}}^{*} \mid 0\right] \tag{3.62}
\end{equation*}
$$

and

$$
\begin{equation*}
F[\hat{\mathrm{~V}} \mid \mathbb{D}] \geqq F\left[\hat{\mathrm{~V}}^{*} \mid \mathbb{D}\right] . \tag{3.63}
\end{equation*}
$$

First we suppose (3.62). Then by Lemma 3.2 with the notation in (3.54) we have

$$
\sum_{i} \Lambda_{\theta(t)}(i) F\left[\hat{\mathbf{v}} \cap \mathscr{U}_{n-1, i} \mid \theta(t)\right] \leqq \sum_{i} \Lambda_{\theta(t)}(i) F\left[\hat{\mathbf{v}}^{*} \cap \mathscr{U}_{n-1, i} \mid \theta(t)\right] .
$$

Combining this with (3.61) and noting (3.60) and $T^{r}=T_{1} \cup T_{2}$ yield

$$
\varepsilon_{n-1} \sum_{i} \Lambda_{\theta(t)}(i) F\left[\hat{\mathbf{v}} \cap \mathscr{U}_{n-1, i} \mid \theta(t)\right] \leqq\|(\partial q(t)) \cap A\|_{n-1, \theta(t)}
$$

for all $t \in T^{r}$. By (3.34) and (3.54) we have

$$
\Lambda_{\theta(t)}(i) \geqq\left(\frac{3^{n-1}-1}{3^{n-1}}\right) \quad \text { for all } i \geqq \tilde{m}(t)
$$

Hence we see

$$
\begin{equation*}
\varepsilon_{n-1} \cdot\left(\frac{3^{n-1}-1}{3^{n-1}}\right) \cdot \sum_{i \geqq \tilde{m}(t)} F\left[\hat{v} \cap \mathscr{U}_{n-1, i} \mid \theta(t)\right] \leqq\|(\partial q(t)) \cap A\|_{n-1, \theta(t)} \tag{3.64}
\end{equation*}
$$

for all $t \in T^{r}$. Integrating both sides of (3.64) over $t \in T^{r}$, we obtain

$$
\varepsilon_{n-1} \cdot\left(\frac{3^{n-1}-1}{3^{n-1}}\right) \cdot \Phi_{\theta, U}^{r}[\mathbb{y}] \leqq\left\|(\partial q) \cap U^{r}\right\|_{n, \theta} .
$$

See (3.31) for the definition of $\Phi_{\theta, U}^{r}$. Combining this with Lemma 3.4 and noting $\left(\frac{3^{n-1}-1}{3^{n-1}}\right) \cdot\left(\frac{1}{2}\right) \geqq 3^{-2}$ yield

$$
\varepsilon_{n-1} \cdot 3^{-2} \cdot \sum_{v \in \mathfrak{v}}|v|_{n-1, \theta(\rho)} \leqq\left\|(\partial q) \cap U^{r}\right\|_{n, \theta} .
$$

We, therefore, obtain from (3.50) and (3.51) that

$$
\begin{align*}
\varepsilon_{n-1} \cdot 3^{-2} \cdot \alpha(r) & \leqq \varepsilon_{n-1} \cdot 3^{-2} \cdot \sum_{v \in \mathbb{v}}|v|_{n-1, \theta(\rho)} \tag{3.65}\\
& \leqq\left\|(\partial q) \cap U^{r}\right\|_{n, \theta} \leqq\|(\partial q) \cup U\|_{n, \theta} .
\end{align*}
$$

Second, we suppose (3.63). Then by the same argument as above we have

$$
\begin{equation*}
\varepsilon_{n-1} \cdot 3^{-2} \cdot \alpha^{*}(r) \leqq\|(\partial q) \cap U\|_{n, \theta} . \tag{3.66}
\end{equation*}
$$

Combining (3.65) and (3.66) completes the proof. Q.E.D.
Proposition 3.7. Let $n \geqq 3$, and suppose Theorem 2.1 holds for $n-1$. Then Theorem 2.1 holds for n with the positive constant ε_{n} defined by

$$
\begin{equation*}
\varepsilon_{n}=n^{-1} 3^{-2} \varepsilon \cdot \varepsilon_{n-1} \tag{3.67}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon=\min \left\{(1-\mu) / 2, \mu / 3^{n}\right\} \tag{3.68}
\end{equation*}
$$

Proof. Let $\theta \in \Theta, q \in \mathcal{O}_{n, b}$ and $U \in \mathscr{U}_{n, k}$. Suppose U contains $U^{-} \in \mathscr{U}_{n, k-1}$ satisfying (2.3). We shall show that U satisfies (2.4) or (2.5):

$$
\begin{equation*}
\|(\partial q) \cap U\|_{n, \theta} \geqq \varepsilon_{n}\left\|F_{i}(U)\right\|_{n, \theta}, \tag{2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
U \text { is } \theta \text { proper to } q \text { and }|U|_{n, \theta}>0 \tag{2.5}
\end{equation*}
$$

We divide the case into three parts:
(I) $\beta_{i}(q, U, \theta)+\beta_{i}^{*}(q, U, \theta) \geqq \varepsilon\left\|F_{i}(U)\right\|_{n, \theta}$ for some i.
(II) $\beta_{i}(q, U, \theta)+\beta_{i}^{*}(q, U, \theta)<\varepsilon\left\|F_{i}(U)\right\|_{n, \theta} \quad$ for all i, $\alpha_{i}^{*}(q, U, \theta)<\varepsilon\left\|F_{i}(U)\right\|_{n, \theta} \quad$ for all i.
(III) $\beta_{i}(q, U, \theta)+\beta_{i}^{*}(q, U, \theta)<\varepsilon\left\|F_{i}(U)\right\|_{n, \theta} \quad$ for all i, $\alpha_{i}^{*}(q, U, \theta) \geqq \varepsilon\left\|F_{i}(U)\right\|_{n, \theta} \quad$ for some i.

Here $i \in\{1,2, \ldots, n\}$.
First suppose (I): Then from (iii) of Lemma 3.5 we have

$$
\|(\partial q) \cap U\|_{n, \theta} \geqq \beta_{i}(q, U, \theta)+\beta_{i}^{*}(q, U, \theta) \geqq \varepsilon\left\|F_{i}(U)\right\|_{n, \theta},
$$

which implies (2.4).
Second we suppose (II): By Lemma 3.5 we have

$$
\begin{aligned}
& \left\|(\overline{q \cap U}) \cap F_{i}(U)\right\|_{n, \theta} \\
& \quad=\left\|F_{i}(U)\right\|_{n, \theta}-\alpha_{i}^{*}(q, U, \theta)-\beta_{i}^{*}(q, U, \theta) \\
& \quad \geqq(1-2 \varepsilon)\left\|F_{i}(U)\right\|_{n, \theta} \geqq \mu\left\|F_{i}(U)\right\|_{n, \theta} .
\end{aligned}
$$

We, therefore, conclude U is θ proper to q, which is (2.5).
Finally suppose (III): Without loss of generality we can assume $i=1$; $\alpha_{1}^{*}(q, U, \theta) \geqq \varepsilon\left\|F_{1}(U)\right\|_{n, \theta}$. Hence we have

$$
\begin{equation*}
\alpha^{*}(r) \geqq \alpha_{1}^{*}(q, U, \theta) \geqq \varepsilon\left\|F_{1}(U)\right\|_{n, \theta} \quad \text { for } r=1,2,3 . \tag{3.72}
\end{equation*}
$$

Here $\alpha^{*}(r)$ is defined by (3.46).

Now, there exists r such that $U^{-} \subset U^{r}$, where U^{r} is the subset of U defined by (3.25). Since $\alpha_{1}\left(q, U^{-}, \theta\right)+\beta_{1}\left(q, U^{-}, \theta\right)=\left\|\left(q \cap U^{-}\right) \cap F_{1}\left(U^{-}\right)\right\|_{n, \theta}$ and U^{-} is θ proper to q, we have

$$
\begin{align*}
\alpha_{1}\left(q, U^{-}, \theta\right)+\beta_{1}\left(q, U^{-}, \theta\right) & =\left\|\left(\overline{q \cap U^{-}}\right) \cap F_{1}\left(U^{-}\right)\right\|_{n, \theta} \tag{3.73}\\
& \geqq \mu \cdot\left\|F_{1}\left(U^{-}\right)\right\|_{n, \theta} \geqq \mu \cdot 3^{-n+1} \cdot\left\|F_{1}(U)\right\|_{n, \theta}
\end{align*}
$$

If $\|(\partial q) \cap U\|_{n, \theta} \geqq \varepsilon\left\|F_{1}(U)\right\|_{n, \theta}$, we obtain (2.4). Then we assume $\|(\partial q) \cap U\|_{n, \theta}$ $<\varepsilon\left\|F_{1}(U)\right\|_{n, \theta}$, which implies

$$
\begin{equation*}
\beta_{1}\left(q, U^{-}, \theta\right)+\beta_{1}^{*}\left(q, U^{-}, \theta\right) \leqq\left\|(\partial q) \cap U^{-}\right\|_{n, \theta} \leqq \varepsilon\left\|F_{1}(U)\right\|_{n, \theta} \tag{3.74}
\end{equation*}
$$

Combining (3.73) and (3.74) yields

$$
\alpha_{1}\left(q, U^{-}, \theta\right) \geqq\left(\mu \cdot 3^{-n+1}-\varepsilon\right)\left\|F_{1}(U)\right\|_{n, \theta} \geqq \varepsilon\left\|F_{1}(U)\right\|_{n, \theta} .
$$

Hence we obtain

$$
\begin{equation*}
\alpha(r) \geqq \alpha_{1}\left(q, U^{-}, \theta\right) \geqq \varepsilon\left\|F_{1}(U)\right\|_{n, \theta} . \tag{3.75}
\end{equation*}
$$

Combining (3.72) and (3.75) with Proposition 3.6 yields

$$
\begin{aligned}
& \|(\partial q) \cap U\|_{n, \theta} \geqq \varepsilon_{n-1} \cdot 3^{-2} \cdot \min \left\{\alpha(r), \alpha^{*}(r)\right\} \\
& \quad \geqq \varepsilon_{n-1} \cdot 3^{-2} \cdot \varepsilon\left\|F_{1}(U)\right\|_{n, \theta}=\varepsilon_{n}\|F(U)\|_{n, \theta},
\end{aligned}
$$

which implies (2.4). Q.E.D.
Proof of Theorem 1, 1.1 and 2.1. As we see in Section 2, Theorem 2.1 implies Theorem 1 and 1.1. Hence from Proposion 3.7, what remainds is to show Theorem 2.1 for $n=2$. We use the notation $\alpha_{i}, \beta_{i}, \ldots$ as before. Let $q \in \mathcal{O}_{2, b}$ and $U \in \mathscr{U}_{2, k}$. Suppose U includes $U^{-} \in \mathscr{U}_{2, k-1}$ satisfying (2.3).

We set

$$
\begin{equation*}
\varepsilon_{2}=2 \varepsilon / 3, \quad \varepsilon=(1-\mu) / 2 . \tag{3.76}
\end{equation*}
$$

We divide the case into three parts:
(I) $\beta_{i}(q, U, \theta)+\beta_{i}^{*}(q, U, \theta) \geqq \varepsilon\left\|F_{i}(U)\right\|_{2, \theta}$ for some i.
(II) $\beta_{i}(q, U, \theta)+\beta_{i}^{*}(q, U, \theta)<\varepsilon\left\|F_{i}(U)\right\|_{2, \theta}$ for all i, and $\alpha_{i}^{*}(q, U, \theta)$

$$
<\varepsilon\left\|F_{i}(U)\right\|_{2, \theta} \text { for all } i .
$$

(III) $\beta_{i}(q, U, \theta)+\beta_{i}^{*}(q, U, \theta)<\varepsilon\left\|F_{i}(U)\right\|_{2, \theta}$ for all i, and $\alpha_{i}^{*}(q, U, \theta)$ $\geqq \varepsilon\left\|F_{i}(U)\right\|_{2, \theta}$ for some i.
Here $i=\{1,2\}$.
First suppose (I): Then (2.4) follows from (iii) of Lemma 3.5.
Second suppose (II): Then (2.5) follows from (i) of Lemma 3.5.
Now we easily see

$$
\begin{array}{ll}
\alpha_{1}(q, U, \theta)=0 & \text { if } \alpha_{2}^{*}(q, U, \theta)>0 \\
\alpha_{2}(q, U, \theta)=0 & \text { if } \alpha_{1}^{*}(q, U, \theta)>0 \tag{3.78}
\end{array}
$$

This is because $n=2$.
Finally we suppose (III): Without loss of generality we can assume

$$
\alpha_{2}^{*}(q, U, \theta) \geqq \varepsilon\left\|F_{2}(U)\right\|_{2, \theta}>0 .
$$

Hence from (3.77)

$$
\begin{equation*}
\alpha_{1}(q, U, \theta)=0 \tag{3.79}
\end{equation*}
$$

This with the first hypothesis of (III) and Lemma 3.5 implies

$$
\alpha_{1}^{*}(q, U, \theta) \geqq(1-\varepsilon) \cdot\left\|F_{1}(U)\right\|_{2, \theta}>0 .
$$

Then from (3.78), we have

$$
\begin{equation*}
\alpha_{2}(q, U, \theta)=0 \tag{3.80}
\end{equation*}
$$

Now there exists i such that

$$
\begin{aligned}
\alpha_{\imath}(q, U, \theta) & +\beta_{\imath}(q, U, \theta)+\beta_{\imath}^{*}(q, U, \theta) \\
& \geqq \alpha_{\imath}\left(q, U^{-}, \theta\right)+\beta_{\imath}\left(q, U^{-}, \theta\right)+\beta_{\imath}^{*}\left(q, U^{-}, \theta\right) .
\end{aligned}
$$

This with (3.79) and (3.80) yields

$$
\begin{align*}
\beta_{\imath}(q, U, \theta) & +\beta_{\imath}^{*}(q, U, \theta) \tag{3.81}\\
& \geqq \alpha_{\imath}\left(q, U^{-}, \theta\right)+\beta_{\imath}\left(q, U^{-}, \theta\right)+\beta_{\imath}^{*}\left(q, U^{-}, \theta\right) \\
& \geqq \alpha_{\imath}\left(q, U^{-}, \theta\right)+\beta_{\imath}\left(q, U^{-}, \theta\right) \\
& \geqq \mu\left\|F_{\imath}\left(U^{-}\right)\right\|_{2, \theta} \geqq \mu \cdot 3^{-1}\left\|F_{\imath}(U)\right\|_{2, \theta} \geqq \varepsilon_{2}\|F(U)\|_{2, \theta} .
\end{align*}
$$

Here we used the assumption on U^{-}to pass from the third line to the fourth, and $\mu / 3 \geqq 1 / 6 \geqq(1-\mu) / 3$ by (2.2). This implies (2.4). Q.E.D.
Acknowledgement. We are grateful to Professor S. Kusuoka who lead our interest to this problem.

References

1. Barlow, M.T., Bass, R.F.: The construction of Brownian motion on the Sierpinski carpet. Ann. Inst. Henri Poincaré, Probab. Stat. 25, 225-257 (1989)
2. Barlow, M.T., Bass, R.F.: Local times for Brownian motion on the Sierpinksi carpet. Probab. Th. Rel. Fields 85, 91-104 (1990)
3. Barlow, M.T., Bass, R.F., Sherwood, J.D.: Resistance and spectral dimension of Sierpinski carpets
4. Barlow, M.T., Perkins, R.F.: Brownian motion on the Sierpinski gasket. Probab. Th. Rel. Fields 79, 543-623 (1988)
5. Carlen, E., Kusuoka, S., Stroock, D.: Upper bounds for symmetric Markov transition functions. Ann. Inst. Henri Poincaré, N. Ser. B23, 245-287 (1987)
6. Goldstein, S.: Random walks and diffusions on fractals. In: Kesten, H. (ed.) Percolation theory and ergodic theory of infinite particle systems. IMA vol. Math. Appl. 8, 121-128 (1987)
7. Havlin, S., ben-Avraham, D.: Diffusion in disordered media, Adv. Phys. 36, 695-798 (1987)
8. Kusuoka, S.: A diffusion process on a fractal. In: Ito, K., Ikeda, N. (ed.) Probabilistic methods in mathematical physics, Taniguchi Symp., Katata 1985, pp. 251-274, KinokuniyaNorth Holland 1987
9. Osada, H.: Reflecting barrier Brownian motions in domains with infinite many obstructions and homogenization. (to appear)
10. Rammal, R., Touloúse, G.: Ramdom walks on fractal structures and percolation clusters. J. Phys. Lett. 44, L13-L 22 (1983)
11. Sierpinski, W.: Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée. C. R. Acad. Sci., Paris, Sér. 162, 629-632 (1916)
