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Summary. The author calculated isoperimetric constants of the n-dimensional
pre Sierpinski carpet %,. As an application, he obtained the following estimate
of the Neumann heat kernel p,(t, x, y) on %,;

pa(t, x, y)<const.t ¢™2  for 1<t<oo, x,ye%H,,
where
d(n)=log(3"—1)/{log(3"—1)—log(3"~ ' —1)}.

0. Introduction

The purpose of this paper is to calculate the isoperimetric constants of the
n-dimensional pre Sierpinski carpet and, as an application, to present an estimate
of the Neumann heat kernel on the n-dimensional pre Sierpinski carpet.

Let C;; be the open set in R” defined by

C,?’i= Z {231j+R,c,),l},

JeZr
where ieZ and R;; is the open rectangle

RS ={x=(x)eR"; 237 '<x,<4-371 for k=1,2,...... n}.

We set
&F=R"— U o
ieZ
and
0.1) % =R"— U Cy o
ieN

where N={1,2,3, ...}.
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Fig. 1

The fractal & is called the Sierpinski carpet [11]. &, was taken by Kusuoka
as the generalization of &% for n=3 (in private communication). %, is called
n-dimensional Sierpinski carpet, and %, the n-dimensional pre Sierpinski carpet,
see Fig. 1. We refer to [1-3] for work on the Sierpinski carpet, and to [7,
10] for the physical background relating fractals.

We introduce now the notions of the isoperimetric constants. For this we
denote by 0, , the totality of bounded open sets in R" with smooth boundaries.
Let O be an open set in R” with a sufficiently smooth boundary. Set

10~ @4g)s

(02) efd+ (0) = inf—lo—n—qig_—l .

Here the infimum is taken over ge@, , with 1=|0ng|,<o0; we denote by
||, (resp. |i*|l,) the n dimensional (n—1 dimensional) volume in IR” induced
by Lebesgue measure, and by g the boundary of ¢ in IR”. Similarly we set

10~ @)y

u¢d (0)=1nfm_—1‘

Here the infimum is taken over ge@, , with 0<|0 ng|,=<1. 4" (0) (resp. 5 (0))
is called the large (small) scale isoperimetric constant of O with index d.
Now we state our results.

Theorem 1. Let #° be the open kernel of %, and set

0.4) d(m)=log(3"—1)/{log(3"—1)—log(3" ' —1)}.
Then

0.5) d(n)=sup{d; %" (B2)>0}.
Moreover,

0.6) Fin(@>0  and 57 (@2)>0.

Remark. d(2)=3/2,d(3)=2.764.... d{n}/fn— 1 as n - co.
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The significance of isoperimetric constants lies in the fact that they give
bounds on the heat kernel for large time. We quote the following lemma from

[9].

Lemma. Let py(t, x, y) be the Neumann heat kernel on O. Suppose % (0)>0
and £, (0)>0 for some d, e21. Then

polt, x, y)<const.t~ %2 for 1<t<c0, x,ye0,
and
Polt, x, y)Sconst.t ™92 for O<t<l, x,yeO.

This lemma follows from a combination of Federer-Fleming’s theorem and
Nash’s theorem (and its extentions due to Carlen-Kusuoka-Stroock [51]).

Theorem 2. Let p,(t, x, y) be the Neumann heat kernel on the n-dimensional
pre Sierpinski carpet. Then

0.8) Pa{t,x, y)Sconst. t 742 for 1<i<o0, x,yed,.

Kusuoka conjectured Theorem 1 and 2 in private communication. He also
proved Theorem 1 and 2 for n=2 with a different method from ours. However,
his method is not effective for n=>3, because he used some special property
of n=2.

‘Let d(n) denote the order of the decay of the Neumann heat kernel of the
n-dimensional pre Sierpinski carpet:

d(n)=—2-lim ((log p,(t, x, x))/log ¢),

if the limit of the right hand side exists and is independent of x. By Theorem
2 we have

d(n)<d(n).

Hence we obtain lower bounds on d(n) (if it exists). It is also known ([8])
that

d(m)<log;(3"—1).

To prove the existence of d(n) and to calculate the precise value of d(n)
are still open problems for n=3. Recently Barlow-Bass-Sherwood [3] proved
the existence of d(2).

One motivation of our work is to obtain lower bounds on the spectral dimen-
sion of the n-dimensional Sierpinski carpet, denoted by dg(n). The spectral dimen-
sion is defined in terms of the density of states, that is, the asymptotic frequency
of the large cigenvalues of the Laplacian on a bounded region. In our case
the construction of the Laplacian itself is a problem. One possible idea is to
construct the Brownian motion, a nondegenerate diffusion process with sufficient-
Iy many invariant properties, in order to define the Laplacian as its generator.
If we obtain d(n) and show that

C t7¥2<p (1, x,x)SCy-t 42 forall xe®,, 1<t<oo,
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then we may construct the Brownian motion as a limit of {37%- X, 5,.}(k — o0),
where {X,} is the reﬂectmg Brownian motion on %, and p =(log;(3"—1))/d(n)).
If this procedure is justified, the resulting Brownian motion has the transition
probability density p(t, x, y) with respect to u (the limit of pu,(dx)=(3"/(3"
—1))¥- 14 (x/3%) dx(k — o0) in the vague topology), such that

p(t, x, y)=const.t 742 forall Q<< oco.

Hence from Mercer’s theorem we have d(n)=dg(n) (see [4], p. 618). In the case
of the g2-dimensional Sierpinski carpet, Barlow-Bass-Sherwood [3] proved
ds(2)=d(2).

In Barlow-Perkins [4], Goldstein [6] and Kusuoka [8], the spectral dimen-
sion of another fractal, the Sierpinski gasket was obtained to be logs9. The
large scale isoperimetric constant equals 0 for d> 1, since the Sierpinski gasket
is a finitely ramified fractal, that is, it can be disconnected by removing finitely
many points. Hence for the Sierpinski gasket isoperimetric constants yield only
a trivial estimate.

We prepare the following notation in order to explain the idea of the proof.

ForieZ and j=(, /2, ..., J)EZ", let u, ; ; denote the open rectangle defined

by i

Un,i,3= {x=(x)eR"; 3 jr<xp <3G+ D}
We set
(0.9) Uy, ;= {thn,, 3> JEL"} and U,=\) U, ;-

icZ

Note that elements of %, have the following property:

(0.10) um>u  or ucy  funux¢, (uu'e,).
Let
0.11) U,={u={u};, me¥, uinu;£¢ if i+j},

and set for u={y;}eU,

(0.12) [ul= U u;.

Here 4 stands for the closure of A in R™.
For ie{l,2,...,n} and jeZ, let H, ;; denote the n—1 dimensional plane
defined by

H,; ;= U{x (xpeR™; x;=3/-2m+1)}.

meZ
We set

0.13) H,;=\JH,,, and H,= U H,.

JeZ 1Zign
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We denote by F(u) the face of ue#, included by H, ;;

(0.14) EWw=0uwnH, ;.

We set

(0.15) F(u)=,L:J1 ().

Note that

(0.16) ||Fi(u)m@,,°H,,=%-HF(u)n@/,,OH,, forall i=1,2,...,n.

We now explain the idea of our method. We first observe that

I F () " %2 2™ )

(O-IS)W=H for ue#,; with j=0 and un®P=+¢.

So our strategy is to show for all ge®, , and xeqn%, ({ {J u} there exists

ieZ ucWUn:

ue, satisfying xeu and
(0.19) l@g)nun®ll,ze, | Fu)n®2,.

Here &, is a positive constant depending only on the dimension n. From (0.19)
we conclude that there exists e U, such that

(0.20) gN %2 <[u],

and that all elements u of w satisfy (0.19), and then we obtain Theorem 1.

(0.19) is the main ingredient in the proof of Theorem 1, and will be proved
by induction via the dimension n. The condition that g is bounded is essential
for (0.19). For example, if g={x;|x|>1}, then there exists no &>0 satisfying
(0.19) for all xeq. Indeed, the size of u containing x and 0g={x;|x|=1} becomes
bigger as x goes far away from the origin while ||(8q) nun@P|,£ldq]|,.

In Section 1 we prepare some notation and definitions, and restate Theorem
1 in its general form. Section 2 presents a reduction of Theorem 1. Section
3 completes the proof of Theorem 1.

1. Notation and definitions

In this section we prepare some notation. We shall prove .4, (0)>0 for a
class of open sets containing #°.
Let §=(0) (ieN={1,2,3,...}) be a sequence of {0, 1}, and let @ be the
totality of 6, that is
©={0=(0);0,=00r 1(ieN)}.
We set

(1.1) 0=(0,0,...) and 1=(1,1,...)e®.
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Let C,(8) be the closed set in R" defined by
(12) Cn(B): U Cn,ia

{:0:;=1}

where
Cn,i= Z {2 3ij +Rn,i}7

jezn
and R, ; is the closed rectangle
R, ;={x=(x)eR" 2.3 '<x,<4-3 'forallk=1,2,...n}.

Let 0,(6) be the open set in R” defined by
(1.3) 0,()=R"—C,(0).
Obviously we have for e ®
(1.4) ¢=C,(0)=C,(0)=C, 1) and R"=0,(0)>0,(0)>0,(1).
Moreover O,(1) is the open kernel of n dimensional pre Sierpinski carpet;
(1.5) Wy =0,(1).

We shall show in Section 2 and 3 the following theorem.
Theorem 1.1.
(1.6) I (0,(0)>0,  £7(0,(8)>0 forall §c6.

Theorem 1 comes from Theorem 1.1. Indeed, sup{d; %" (#°)>0}=d(n) is
clear. Let w,={x=(x)); —3 <x;<3 fori=1,2,...,n}. Then
o @w) 27
_— & = 1 .
rlgt; PR 0 forall d>d(n)

This implies sup {d; %" (#°)>0} <d(n). We, therefore, obtain (0.5). (0.6) is clear
from (1.6).

We define measures associated with 6e®. Let ||, , (resp. |- I, 4) be the n
dimensional volume (n— 1 dimensional volume) defined by

a.n lo=1" 00Oy 11"l 6= 11" N Cu(O)],-

Here ||, (resp. ||+ ],) is the n{(n—1) dimensional volume induced by Lebesgue
measure. Obviously we have

I.|n,®=l.|n5 ”'“n,OZH'an
|E@ln,0= I F @,y forall i=1,2,...n

We observe, if u, w' €%, ; and |ul, 4, [}, (>0, then

[uly,o=10ln0,  NF (@ o=1F @),
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Now we define functions 4, 4(i, j): Z x Z —-IR by
(31— 1\AG00)
18) Aatied =5

where A(i, j, 0) is the function defined by

AG,j, 0)=# {keN; 0,=1,i<k <)} for i<j,
A(,j, 0)= — # {keN; 0,=1,j<k<i) for i=j, (0=(6y),keN).
Note that 4, 4(i,))=1 for i=j and 4, 4(i,j)=1 if both of i and j are smaller

than one.
The following lemma is an immediate consequence of these definitions.

Lemma 1.2. Let 0O and ue, ; with |u|, ¢=0. Then

(1.9) [, 6= A, 6(0, D)ty 0
and
(1.10) | F@)ln,0=An-1,6(0, ) | F(@)ll,, o

We finish this section with the following lemma, which will be used in Sec-
tions 2 and 3.

Lemma 1.3. Let {a;} and {b;} be sequences of positive numbers such that (3 b;) < o0.

Let ¢ be a constant with ¢ 1. Then
(1.13) (Z )C/(z bl)>1nf<( ’))

Proof. Since ¢ =1, we obtain

(T arzy a=3 (7)-bzinf ()T b)

i<k i<k i<k i<k

for all k, which implies (1.13) immediately.

2. The reduction of Theorem 1

In this section we obtain the reduction of Theorem 1 and 1.1. We begin by
introducing a notion of # proper to an open set q.
Let ue,. u is said to be 0 proper to an open set g, if

2.1) g nuw) N E@ o2 ull E@,,e forall i=1,2,....n
Here gnu is the closure of g ~u, and u is a positive constant satisfying

2.2) 1/2<p<l.
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u will be fixed throughout this paper. Note that, if gou, then u is 8 proper
to g, and that, if u is 6 proper to g, then u is 6 proper to all open sets including

qg.
Recall that @, , denotes the totallity of the bounded open sets with smooth
boundary, see (0.9) for the definition of %, ;.

Theorem 2.1. Let g0, , and uc, ;. Suppose u includes u™ e#, ,_, satisfying
(2.3) u” is O propertoqandju™|, ¢>0.

Then, at least, one of the following holds:

24) 1Og null,eZe, [ FW)lln, o
or
(2.5) u is 6 proper to q and |ul, 4> 0.

Here &, is the constant defined by

(2.6) e =(1—p)/3, &=n""3"2-min{(1—p)/2, u/3"} &,

We shall prove Theorem 2.1 in Section 3. We derive here Theorem 1 and
1.1 from Theorem 2.1.

Let welU, (see (0.12) for the definition of W,). w is said to be a 0 exhausion
of an open set ¢ if w satisfies the following conditions;

2.7 gn @) =[], where [w]isdefined by (0.12),
(2‘8) “(aq)muﬂn,egan HF(u)“n,H for all Uew,

(2.9) each uew includes u~ €%, such that
(i) u~ €%,,;—, where i is the integer such that ue%, ;,
(ii) u~ is @ proper to g and |u™|, ¢>0.

Proposition 2.2. (i) Let 0@ and ge0, . Suppose that Theorem 2.1 holds for
n. Then there exists a 0 exhaustion U of g.

(i) Let q'€0, , with q=q'. Then there exists 8 exhaustion W of q and W of
q' such that

(2.10) [u]<lw].

Proof. Let gy =g 0,(0), and set

(2.11) U~ (x)={ue,; xeu,uis 0 proper to q and |ul, 4> 0}.

Then

(2.12) U (x)+¢ forall xeqoo=qo (){ U u}-
ieZ ueUn,;

This is because, for all xeqqq, there exists a unit u with xeucq, and u is
0 proper to q and |ul, y>0 if u < g,. Let u™ (x) denote the element of %~ (x)
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with u~ (x)>u for all ue# ™ (x). Then u™ (x) exists uniquely, since g is bounded.
Furthermore, we denote by u(x) the element of %, satisfying

2.13) u” (x)cu(x) and u(x)e%, i,

where i(x) is the integer such that u™ (x)e%, ;x—1- From Theorem 2.1 u(x)
satisfies (2.8).
We denote the collections of u(x) over xeqqo by % (g), and set

(2.14) u={ue¥(q); there exists no u'e ¥ (q) withu S u'}.

Since g is bounded, w is not empty and g,<[w]. It is easy to see that w
is @ exhaustion of q. Hence we obtain (i).
Next we show (ii). Let

(2.15) U~ (x,q)={uc,; xeu,uis 0 proper to g’ and |u|, 4> 0}.
Then by the definition of @ proper we have
(2.16) Y- (X)W (x,q) forall xeqq,.

(i) follows from this immediately. Q.E.D.
Lemma 2.3. Suppose Proposition 2.2. holds for n Then

2.17) T O, )2y ™™ forall 6.
and
(2.18) £7(0,(0)>0 forall 6€6.

Proof. We first prove (2.17). Let qe@, , with |g|, =1 and @ be a # exhaustion

d log(3"—1
of g. Set D=D(n)= d(ngrﬁl =102?;”_1_)1)

Ql@g)nul,e)”

and e=¢,. Then

(10414,0" p@+a’)’
2.19 . Z 2 28 "y 0
219 e = Ylaouh, = G+5)
where
a/:Z“F(u)”n,(b b/=Zl”|n,o9 a”=z ”F(u)”n,()a b”:ZIUIn,G,
and

u'={uucw, |[Fu), 21}, w'={uuew,0<||F)|,,<1}.

Now we divide the case into two parts: b’ =b" and b’ <b”.
Suppose that b’ =b". Then by Lemma 1.3 we have

@raP a1 U@ 1

a”_ 1 -n”>1.
(2.20) (b/+bu) :2b/=2 ulérg‘, luln,ﬁ

N
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We next suppose b'<b”. Then, by b'+b"=|q|, 421, we have b"=1/2. Let

N :n—il' Then we have from Lemma 1.3

(2.21) @r inf UE )0" _ inf w—ﬂ,

b” :ueu" [u[,,,g uew’’ [u{,,’ o -

We used here 0,(f)>u for ueu” to pass from the second term to the third.
Hence we obtain from D> N and a” =1 that

D NN
(2.22) (“b,), > (“b,? =",
Then we have by Lemma 1.3 that
(a/+a:r)D o (ar)D (a//)D o DN
(2.23) ) Zming, = =min{n”,n"} > 1.

From (2.19), (2.20) and (2.23) we conclude (2.17).

Second, we prove (2.18). Let g @, , with 0<|g/, o<1 and w be a 8 exhaustion
of . Set N=N(n)=n/(n—1) and ¢=¢,. Let @, b/, ... be defined as before.

We divide the case into two parts: a’ >0 and a’'=0:

Suppose that @' >0. Then a’ = 1. This with |g|, o<1 yields

(Haqnn,e)N g(z H(@q)ﬁu”n,o)N_Z_EN(a'—i-a”)NéSN.

2.24
( ) ‘qln,B o

Next we suppose a' =0. Then b’'=0. Hence we have

(10glna" . w(@+a)"

(2.25) a2

=eMa" /b zeVn®.

From (2.24) and (2.25) we conclude (2.18). Q.E.D.

We next present a simple observation for exhaustion, which will be used
in the proof of Proposition 3.6.

Lemma 2.4. Let 0e©, Ue, ; with |U|, >0 and uc,.
(i) Let g0, , with q= U and suppose that u is 0 proper to q. Then

(2.27 ucU.

(i) Let q, q*€0, , with qng*=¢ and qu g*=U. Let W(resp. u*) be a 0 exhaus-
tion of g(g*). Then

(2.28) [u], [u*]cUT,
where U* €%, ;. such that U< U™, and

(2.29) [u]eU or [w*]cU.
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Proof. We first prove (i). Assume u22U or unU=¢. Then, by gq< U and this
assumption, we have

@ w) NE@ae < 1T N0 N EWao <27 | W)l o,

which contradicts to (2.1).

Second, we prove (i). Let uew with ue, ;. Then u contains a unit
u~ €, ;—,, which is 6 proper to g. From (i) we have u~ < U. Hence uc U™,
which implies [u] < U™. Similarly we have [u*] < U™. We, therefore, conclude
(2.28).

Now we proceed with the proof of (2.29). Suppose that (2.29) is false. Then
from (i} and (2.28), w and w* consist of the single element U™, and U is ¢
proper to q and |U|, 4> 0. Therefore,

230 @A DAED) o2 plEU)l,, forall i=1,2,...,n,
and
232) 1@ ADAEO) o2 u| Oy, forall i=1,2,...,n

The sum of the first terms of (2.31) and (2.32) equals || F,(U)| ., since gng*=¢
and qu q* = U. Hence

VEUM 622 [ Fi(UM .-

This yields contradiction, because 1 <24 by (2.2). Q.E.D.

3. Proof of Theorem 2.1

In this section, we shall complete the proof of Theorems 1, 1.1 and 2.1.
First of all we prepare a couple of notations. We set for weU, and 8@

(3.1) Flu|0]= ) IF@],,e
and
(3.2) [u]= U u.

uew
We call f1eWU, a minimal covering of wel, if Wi satisfies the following conditions:

(3.3) [w] = [d1],
(3.4) F[@|0]<F[v|0] forall veWl, with [w]c[v].

Propesition 3.1. Let uelU, and suppose [W] is a bounded set. Then there exists
a minimal covering 1 of wW.
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Proof. Since [w] is a bounded set in IR", we can assume
(3.5) [w]c[—3%3 ] x[—3% 3] x...x[—=3%3¥] forsome k.

Let I={(,));i,jeZ w{},i<0, i<j}, and let - denote the order on I defined
by the following conditions:

(3.5) @J)—@,J)

if and only if

(3.6) i>i or i=i j<j.
For example,

(0,0)=(0,1) > (0,2) = ... 5 (0, 50) > (— 1, = 1) > (=1,0) > ... > (~1, o)
(=2, =) (=2, =) > (=2,0)> ... >(=2,00) > (=3, =3) > (=3, =) > ...

Let {w(,))}, (i, j)el, be a sequence of elements of U,, defined by induction
via (i, j):

(3.7 u(0,0)= {J w;, where w=un%,;.

iz0
(3.8) u(i,)=w'j)u{ulj—1)—{ueul,j—-);uc [ @)1},
where

W' (G, j)= {u€ Uy, j; | F W)l o S F [w(i,j—1;u)| 07 }

and
u(i,j—1;u)={veu(i,j—1);v=ul.
(39) lim w(i, j)=w(, o).
Jjo

(3.10) u(i—1,i—=uf, o)u {u;,_, —{uew,_,;uclu(, «)]}}.

Note that from (3.5) the limit (3.9) exists for all i. This is because w(i,j)
=w(i, k) for all j=k. Now we define

(3.11) G= lim w(, o).

i+—c

It is not difficult to see that @ is a minimal covering of . Q.E.D.

Remark. The minimal covering is not always unique. For example, let w
={U}i=1,2,3,..€U, satisfying that

[w]=[0,11x[0,1], wupi—y,uy; €%, —; and wu;nu;=¢ for i=j.

Then both of w and [0, 1] x [0, 1] are the minimal coverings of w.
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Lemma 3.2, Let w, velU,, 8 ®. Suppose

[V],,>0  forall vev
and
(3.12) Flu|0]=F[v]|0].
Then

(B13) Y Ao Em Fun, |01<Y A,- 1,00, m) F[V %, ;6]

SJor all meZ, where A, _, 4 is the function defined by (1.8).

Proof. Clearly we can assume [u], ,>0 for all uew. Note that from the definition
of A4, ¢, we have

(3.14) An_l’g(o, i)‘An_l,g(i, m):An_l’g(O, m) fOI' all i.
Then (3.13) follows from Lemma 1.2. Indeed,
(3.15) Flu|0]=) Flun,,|0]

={An—1,9(05 m)}_l 'zAn~1,9(ia m)Flun, ;|0].

Similarly, we have

(3.16) FLv[0]= {451,400, m)} ™"} 4,160, m) F[v "%, ;| 0].

Combining (3.15) and (3.16) with (3.12) yields (3.13). Q.E.D.
Let u: ©® - {—o0} UINU {0} denote the function defined by

(3.17)  p(@)=sup{i;§;=1} if 0=(0)+0, u@=-—co if 8=0.

Note that u(6)= — oo if and only if §= 0.
As a corollary of Lemma 3.2 we have the following:

Lemma 3.3. Let 0 ©, m= u(0) and u, velU,. Suppose that — oo <m< 0

H

(3.18) [v],,e>0  for vev,

and that

(3.19) [u]=[v].

Then

(3.20) Y. Aues,olim) FLOLA %, ;| 0] S F[v|6],

where €1 is a minimal covering of w.



482 H. Osada

Proof. By (3.4) and (3.19) we have
(3.21) F[G| O} F[v|0].
Then from Lemma 3.2 we obtain

(322) Z An—l,ﬂ(ia m)F[ﬁ:Im%n,zIe] éZAn—l,G(i’ m) F[Vn%n,tig]

<Y FIvn,;|0}=F[v}0].
Here we used 4,_, 4(i, m)<1foralli Q.E.D.
Let Ue%, , be fixed, and suppose
(3.23) U=Tx A4,

where
T=(t,7) and Ae,.,,.

Note that v’ —1=3* and 1=i, 3* for some i,eZ. Without loss of generality
we can assume that  satisfies

(3.24) {1} x A=F, [U],

where F,[U] is the first face of U defined by (0.14). This assumption implies
that iy is odd.
Let

(325 U'=T'xd4, T'=@F+r3YLt+F+1)-3*") (¢=012).
We set T"=(p, p). Without loss of generality, we can assume
(3.26) {p} x A>F[u] forall ue,,_,suchthatucU"
We set for 0e® and teT,
(3.27) 0)=0,1), IO=@:0),
where

0:0)=1({C,(0)NIM,AU}+¢), 6,()=0({C,(0V)nI,nU}=9¢),
and
0i(0)=0,(t) (i%k), B,(1)=0(i=k).
Here C,(-) is the closed set defined by (1.2), and 89=(6Y) is the element of
@ defined by #9=0(j=*i) and 6Y=0,(j=i), and II, is the n—1 dimensional
plane defined by
(3.28) ,={x=(x;)eR"; x, =t}.

We see

(3.29) (1} % {Co_ (BN A}=C(O) T, U.
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Now we consider the functions @§ y; U,_; - R(r=0, 1, 2) defined by

(3.31) & y[al=| Y Flana,_,|00]dt

Tr iZm()
See (3.25) for the definition of T". Here
m(t)=p(@(),
where p(*) is defined by (3.17), 0(z) is (3.27) and & is the minimal covering

of @ which is constructed by Proposition 3.1.
Similarly we define

(3.32) m(e)=p(O ).

Note that

(333  —coSmO=mOSk  #{;6:0=1Lm0O<ism@O} <1,
and

(3.34) Ay 1 o0l m(z))g(i;_j—l) forall i m(z).

See (1.8) for the definition of A,,_; ¢ (i, m(2)).

Lemma 3.4. Let n>3, and let aeWU,_, such that [a] = A. Then

(3.35) 0, yla]=(1/2) Z Ialn—l,O(p)'

dea

Here p is defined by (3.26).

Proof. Let ac,_, and i(a) be the integer such that ae#,_, ;.. We prove
this lemma in the case of r=0. Set T(a)={reT°; m()<i(a)}, and suppose
laln—1,60)>0.

We first see that

(3.36) j IF (@ n-1,000dt=(1/2)1aln-1,0(p)-

T{(a)
Indeed, if i(a)=k, that is a= A, then T(a)=T°. Hence we have
I IF(@)lla-1,00)dt
T (a)
=n—1)[BU)N{xeR"; x,€T°} |4

321
2(n—1)- (?’T—l) |aln- 1,002 (1/2) |aly-1,0¢0)-



484 H. Osada

Suppose i(a)<k, and set I=(p'—3'®, p'). Here p’ is the number such that (p,p’)
=T?, which means p'=p+3*" 1. Then I = T(a) and

f [F(@lla-1,00 dt%j | F(@)l-1,00) dt
T (a) I

=n—1)- |1 U@)|lne=m~1)-1al- 1,00,
where U(a)e%, is defined by U{g)=1x a.
It follows from (3.36) that

(3.37) B olal= | Y Yicanan | F@]-1,00dt

TO izm(t)

=Y [ IF@la-1,00dt

acq T (a)

=(1/2)- z Ialn—1,a(p)§(1/2)‘ Z lala— 1,00

aed acg

We can prove similarly the case of r=1,2. Q.E.D.

We present some notation which will be used in the rest of this section.
Let =; , be the projection from a unit u to F(u), the face of u defined by (0.14).
We set

(3.41) bi=bi(q, w)=(gnu)nm;,(09) Nu),
a; Eai(qa u) = E(u) N (q—mﬂ) - bi:

where 4 is the closure of g and &g is the boundary of ¢ in R".
(3.42) Bi=Bi(q, u, 0) =1l .6,

aiEai(qs u, H) = ”aiHn,G'
Moreover,

(3.43) af = o (g, u, 0) =o;(q*, u, 0),
ﬁ:k Eﬁf(qn u, 0)=ﬁl(q*5 u, 6)3

where g* = (7).
We often omit (g, u, §) if no confusion occurs.

Lemma 3.5. For all (g, u, 0)e(0, ,, %,, ©) and ie{1,2, ..., n}, we have
() oot Bt o + B = Fw) 5
(i) o4+ ;= [[(g A 4) O Fy(w) [0 i
(iii) [@q)Nul, ez B+ BF.
Proof. Lemma 3.5 follows from the above definitions immediately. Q.E.D.

Proposition 3.6. Let n=>3 and suppose Theorem 2.1 holds for n—1. Let Uc%,
satisfy (3.23), and let U"(r=0, 1, 2) be the subset of U defined by (3.25). Set

(3.46) a(f)=Yoy(q,u, 0 and o*@)=) af(q u,0),
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where summations are taken over {u; u€, ,_,, ucU"}. Then
(3.47) 10N Ully g2 51 377 min{a(r), a*(r)},
where ¢, is the positive constant in Theorem 2.1.

Proof. Let

(3.48) a(r)=Ua,(q,u) and da*(r)=Ua,(g* u),

where unions are taken over {u; ue, ;.,, ucU"} and a,(+, u) is defined by
(3.41). Since d(r) and a*(r) are contained in the n— 1 dimensional plane {x=(x;);
x, =p} (see (3.26) for p), we can rewrite

am={p}xa(), a*@)={p}xa*{),

where a(r), a*(r)cIR" 1. Set

(3.49) a={a()n0,-1(0(p)}°, a*={a*()nO0,_,(O(p))}°.

Here O,_,(+) is defined by (1.3) and A° means open kernel of 4 in R*~!, Note
that

(3-50)  alu-1,00 =18 0=a(),  [a*|n-1,00)=1@* ()]s, 0=0*(r)-

Let a(t) (resp. @*(t)) denote a 6(t) exhaustion of a(a*). Such exhaustions
exist by Theorem 2.1 for n—1 and Proposition 2.2. We can choose a(t) and
a*(t) such that a(t)=a(s) and a*(t)=a*(s) if 8(t)=0(s). Then there exist v
and v*elU,_, satisfying

(3.51) ac[vlcla(®)], a*c[v*]c[oa*()] forall teT",

and
[Vli—1,60y>0 forall vevuv* and teT".

Indeed, we can construct v and v* in the following way:
v= /A a(t), v*= A\ a*@,
teTr teTr

where A is defined by

oA b= {ueaub;there exists no vea U b such that v S u}.
Let

§()=Um, (grundl) and §*()=Um, (q* nuniL,),
where unions are taken over {u; ue, ;_,, ucU"} and =, , is the projection

from u to Fi(u), and II,={x=(x)eR"; x; =t}. Let q(f) and g*(¢) be open sets
in R"? such that

gO={p} xq@, §*O={p}xg*@.
Then

(3.52) acq(t), a*cqg*@) forall teT".
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From Theorem 2.1 for n— 1 and Proposition 2.2 there exists a 6(z) exhaustion
v (1) (resp. v*(1)) of g(t)(g* (t)) such that

[a@®)]<[v(®], [@*@]c[v*@®)] forall teT"
Hence we see from (3.51) that
(3.53) [vlie[v(@)] and [v*]c[v*({)] forall teT"

Let ¥ and ¥* be the minimal coverings of v and v*, respectively.
Set

(3.54) Agy (D)= Ay 1,9 (i, m(2)),

where 4, ¢¢(i,j) is the function defined by (1.8) and m(t)=u(6(t)). See (3.17)
for the definition of u(#) and (3.27) for the definition of 6(f). From Lemma
3.3 and (3.53), we have

(3.55) ZAe(t)(i)F[“A'm%n—mwm]éF[V(t)W(t)]
and
(3.56) Z Aoy () FI¥* %, ;|0 1< F[v*(1)[0(0) ].

Let Ty ={teT"; [v(t)Jc A} and T,={teT"; [v*(r)]J<A}. Then by Lem-
ma 2.4 we have

(3.57) TLuoT,=T"
From (2.8) we have
En-1 IF O lla-1,00= 109N 0]4-1,00
for vev(r)u v*(t) with v < A. This is beause for v< 4,
1©@a@)Nvla-1,00=1Eg*E) O V]-1,00)-

Hence taking the summation with respect to v over v(f) and v*(t), respectively,
yields

(3-58) tn 1 FLYOIOMIZ1(0q))NAllic 1,6y (teTh)
and
(3.59) ey FIV¥OIO@I=((@q®) N Allh-1,60p (€T

We obtain from (3.55) and (3.58) that

(3.60) En~1 Z Aoy FL¥ Ny ;|00 =H(OgO) N All-1,000
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for te T;, and from (3.56) and (3.59) that
(3.61) €n-1 Z Agry ) FI¥* 0 Uy— 1,100 I=[1(0q@) N Allu-1, 009

for teT,.
Now we divide the case into two parts:
(3.62) F[¥|0]=F[¥$*|0]
and
(3.63) F{¥|0]zF[$*|0].

First we suppose (3.62). Then by Lemma 3.2 with the notation in (3.54)
we have

Z Ay FLY U,y 1,:16(1)] _—<—_Z A D FL¥* N U, 1,:10@)]-

Combining this with (3.61) and noting (3.60) and T"=T; U T, yield

&n-1 ZAe(z)(i)F[‘A’f'\d]/nﬂ,il@(t)] <@gt Alla-1,60)

for all te T". By (3.34) and (3.54) we have

!
Ae(t) (l) 2 <—§,T> forall i = l’?l(t)

Hence we see

(364 8(3—41) S P9 0y 1 1100)]= 10a0) 0 Alr. o

3! izm()
for all te T”. Integrating both sides of (3.64) over te T”, we obtain

371—1_1 . .
bp~1" B Dy y[VIZHNE@P U, -

See (3.31) for the definition of &} ;. Combining this with Lemma 3.4 and noting
i1y (1

. > =2 gi

( 31 ) (2)=3 yield

Eamy 372 Z - 1,00 = @@ NU |, .

vewy

We, therefore, obtain from (3.50) and (3.51) that
(365) 8n*1'3_2'0‘(r)§8n—1'3—2‘ Z lv'n—l,e(p)

veEwY

SH@PAUne=@g)0 Ul
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Second, we suppose (3.63). Then by the same argument as above we have
(3.66) tn-1-37 2 * =@ U, -

Combining (3.65) and (3.66) completes the proof. Q.E.D.

Proposition 3.7. Let n= 3, and suppose Theorem 2.1 holds for n—1. Then Theorem
2.1 holds for n with the positive constant ¢, defined by

(3.67) g,=n"'37%g-¢, 4,
where
(3.68) e=min{(1— /2, £/3"}.

Proof. Let 0€0, qe 0, , and Ue%, . Suppose U contains U~ €%, ;- satisfying
(2.3). We shall show that U satisfies (2.4) or (2.5):

2.4) 1@q) N Ulln ez e, | E(U) a0
or
2.5) U is 8 proper to g and |U|,, 4> 0.

We divide the case into three parts:

0 Biq, U, 0)+ B (g, U, )z | E(U) |,y  forsome i
(D) Bilg, U, 0)+ B (g, U, 0)<e | E(U)],,e  foralli,

af(g, U, 0)<e| F (U)o for all i.
(IID) Bi(q, U,0)+B¥(q, U, 0)<e||F(U)|,, foralli
“Ek(q, U: H)EEHE(U)“n,g for some i.

Here ie{1, 2, ..., n}.
First suppose (I): Then from (iii) of Lemma 3.5 we have

@) Ullue2Bilg, U, 0)+ B (g, U, 0)2 e[| F(U)lln,0

which implies (2.4).
Second we suppose (I1): By Lemma 3.5 we have
g U)YNE(U) 6
= | F(U)|n,e— (g, U, 0)—BF (4. U, 0)
2(1-28) | E(U)l|n,02 I F(U) 1,0
We, therefore, conclude U is 0 proper to g, which is (2.5).

Finally suppose (III): Without loss of generality we can assume i=1;
a¥(g, U, )= || F, (U)|,,o. Hence we have

(3.72) a*(r)zaf(q U,0)ze| F (U)o for r=1,2,3.

Here o*(r) is defined by (3.46).
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Now, there exists r such that U~ < U", where U" is the subset of U defined
by (3.25). Since a,(q, U™, )+ p1(q, U™, )=|{gn U )nF,(U7)|, e and U~
is 0 proper to g, we have
(3.73) a1(q. U,0)+B1(q. U™, 0)=1gnU )N F (U )6

Zp WU ) o2z p-37" 2 FL(U) 0

IF (@@ Ul,e=ellFi(U)|nq, we obtain (2.4). Then we assume [[(6q)n U], ,
<e||F(U)|,.q, which implies

(3.74) Big. U, 0+ BT (q U™, 010U |l g=el| F(U)lln,o-
Combining (3.73) and (3.74) yields
01(q, U™, 0z (u-37"" =) I K, (D) ln,0 2 | Fy (U) 1,0
Hence we obtain
(3.75) a(r)z o (g, U™, )2 | Fy (U0
Combining (3.72) and (3.75) with Proposition 3.6 yields

10Ul 02 --3" % min{a(), a* ()}
28,1372 e[ Fy (U)], 0=, | F(U) 1,6,

which implies (2.4). Q.E.D.

Proof of Theorem 1, 1.1 and 2.1. As we see in Section 2, Theorem 2.1 implies
Theorem 1 and 1.1. Hence from Proposion 3.7, what remainds is to show Theo-
rem 2.1 for n=2. We use the notation «;, f;,... as before. Let ge@, , and
Ue%,,,- Suppose U includes U~ €%, ; -, satisfying (2.3).

We set

(3.76) g,=2¢/3, e=(1—pu)/2.
We divide the case into three parts:

() Bia, U,0)+p¥(q, U, 0)z¢ | F(U)| 5,0 for some i.
(1) Big, U, 0)+B¥(q, U, ) <e| F(U)| 5,4 for alli, and o (g, U, 6)
<e||F;(U)|,,¢foralli.
(D) Bi(g, U, 0)+ BF(q, U, ) <e|| F(U)||, for alli, and of (g, U, 6)
e E(U}|,, ¢ for some i.
Herei={1,2}.
First suppose (I): Then (2.4) follows from (iii) of Lemma 3.5.
Second suppose (I1): Then (2.5) follows from (i) of Lemma 3.5.
Now we easily see
(3.77) a,(q, U, 0)=0 if a¥(q, U, 0)>0,

(3.78) 4,(q, U, 0)=0 if a*(q, U,8)>0.

This is because n=2.
Finally we suppose (III): Without loss of generality we can assume

a%(q, U, 0)Z el F(U)l,,>0.
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Hence from (3.77)
(3.79) oy (g, U, 8)=0.
This with the first hypothesis of (III) and Lemma 3.5 implies

af(q, U, 0)2(1—¢)- | Fy (U)5,0>0.

Then from (3.78), we have
(3.80) a,(g, U, 8)=0.

Now there exists 1 such that

(g, U, 0)+B.(q, U, )+ B (4, U, )
2u(q U™, 0+B.(q. U™, )+, U™, 0)

This with (3.79) and (3.80) vields
3.81)  Blq. U.0)+ Bk (g, U,0)

20(q, U™, 0)+ (g, U™, 0+ (g, U™, 0)
2a(q, U™, 0)+B.(q. U, 9)
ZpllEU ) ,02zp-37H | E(U)]

2,028 | F(U)

2,8

Here we used the assumption on U~ to pass from the third line to the fourth,
and u/3=1/62(1— u)/3 by (2.2). This implies (2.4). Q.E.D.

Acknowledgement. We are grateful to Professor S. Kusuoka who lead our interest to this prob-
lem.
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