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Summary. The  au tho r  calculated isoper imetr ic  cons tants  of  the n-dimensional  
pre Sierpinski carpe t  ~ , .  As an  appl icat ion,  he ob ta ined  the following es t imate  
of  the N e u m a n n  heat  kernel  p,(t, x, y) on ~r 

p.(t, x, y) <=const. t -dt")/2 for l = < t < o %  x, y e ~ , ,  

where 

d (n) = log (3" - 1)/{log ( 3 " -  1) - log (3"-1 _ 1)}. 

O. Introduction 

The  pu rpose  of this pape r  is to calculate the isoper imetr ic  cons tants  of  the 
n-dimensional  pre Sierpinski carpet  and,  as an appl icat ion,  to present  an  es t imate  
of  the N e u m a n n  heat  kernel  on the n-dimensional  pre Sierpinski carpet.  

Let  C ~  be the open  set in Nn defined by 

C ~ ~ {2. ~~ ~ �9 = 3 j + R , , i } ,  
je~g" 

where ie7Z, and  R,~ is the open rectangle 

R ~ i = {x = (Xk) eN";  

We set 

and  

(0.1) 

2"3i -a<Xk<4"3  i-1 for k = l ,  2, .  . . . . .  n}. 

ieTZ 

~,.=F."- U c.~ 

where N = { 1, 2, 3 . . . .  }. 
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The fi-actal 52 is called the Sierpinski carpet [11]. 5~ was taken by Kusuoka 
as the generalization of 5~2 for n > 3 (in private communication). ~ is called 
n-dimensional Sierpinski carpet, and ~r the n-dimensional pre Sierpinski carpet, 
see Fig. 1. We refer to [1-3] for work on the Sierpinski carpet, and to [7, 
10] for the physical background relating fractals. 

We introduce now the notions of the isoperimetric constants. For  this we 
denote by (9,,b the totality of bounded open sets in IR" with smooth boundaries. 
Let O be an open set in R"  with a sufficiently smooth boundary. Set 

II o c,(aq)lt~. 
(0.2) o&+(O)=inf i O ~ q f a _  ~ . 

Here the infimum is taken over qe(9,,b with l____[Oc~q[,<oo; we denote by 
]" [, (resp. II" 11,) the n dimensional ( n - 1  dimensional) volume in IR" induced 
by Lebesgue measure, and by ~ q the boundary of q in l~". Similarly we set 

~ - ( O ) = i n f  i O c ~ q [ d _  1 . 

Here the infimum is taken over q e (9,, b with 0 < I 0 c~ ql,____ 1. ~r + (O) (resp, ~ -  (O)) 
is called the large (small) scale isoperimetric constant of O with index d. 

Now we state our results. 

Theorem 1. Let ~ o  be the open kernel of~ and set 

(0.4) 

Then 

(0.5) 

Moreover, 

(0.6) 

d(n) = log (3" - 1)/{log (3" - 1 ) - log(3  "-1 - 1)}. 

d(n) = sup {d; Jd + (ago) > 0}. 

+ o Ja(n)(~,~ ) > 0  and J.-(a#~)>O. 

Remark. d(2) = 3/2, d(3) = 2.764 .... d(n)/n ~ 1 as n --+ oo. 
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The significance of isoperimetric constants lies in the fact that they give 
bounds on the heat kernel for large time. We quote the following lemma from 
[9]. 

Lemma. Let po(t, x, y) be the Neumann heat kernel on O. Suppose Ja+(O)>0 
and ~ -  (0) > 0 for some d, e > 1. Then 

and 

po(t, x, y)<  const, t -el2 

Po (t, x, y)< const, t-e/2 

for l=<t< oo, x ,y~O,  

for 0 < t < l ,  x, yeO. 

This lemma follows from a combination of Federer-Fleming's theorem and 
Nash's theorem (and its extentions due to Carlen-Kusuoka-Stroock [5]). 

Theorem 2. Let p,(t, x, y) be the Neumann heat kernel on the n-dimensional 
pre Sierpinski carpet. Then 

(0.8) p,(t,x,y)<=const, t -a(")/2 for l < t <  r x, y e ~ , .  

Kusuoka conjectured Theorem 1 and 2 in private communication. He also 
proved Theorem 1 and 2 for n = 2 with a different method from ours. However, 
his method is not effective for n >  3, because he used some special property 
of n=2 .  

L e t  if(n) denote the order of the decay of the Neumann heat kernel of the 
n-dimensional pre Sierpinski carpet: 

~(n) = --2- lim ((log p,(t, x, x))/log t), 
t ~ o o  

if the limit of the right hand side exists and is independent of x. By Theorem 
2 we have 

d (n) _<_ at(n). 

Hence we obtain lower bounds on ~(n) (if it exists). It is also known ([8])  
that 

/7(n) < log 3 ( 3 " -  1). 

To prove the existence of ~(n) and to calculate the precise value of ~(n) 
are still open problems for n >  3. Recently Barlow-Bass-Sherwood [3] proved 
the existence of if(2). 

One motivation of our work is to obtain lower bounds on the spectral dimen- 
sion of the n-dimensional Sierpinski carpet, denoted by ds(n ). The spectral dimen- 
sion is defined in terms of the density of states, that is, the asymptotic frequency 
of the large eigenvalues of the Laplacian on a bounded region. In our  case 
the construction of the Laplacian itself is a problem. One possible idea is to 
construct the Brownian motion, a nondegenerate diffusion process with sufficient- 
ly many invariant properties, in order to define the Laplacian as its generator. 
If we obtain ~(n) and show that 

Cl.t-a("l/2~p,(t ,x,x)<=C2.t  -a(")/2 for all x 6 0X~, l=<t< oo, 
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then we may construct the Brownian motion as a limit of {3-k. X~. 3o ~} (k--' oo), 
where {X~} is the reflecting Brownian motion on Yr and p=(log3(3"-1))/~(n)). 
If this procedure is justified, the resulting Brownian motion has the transition 
probability density p(t, x, y) with respect to # (the limit of #k(dX)=(3"/(3" 
-- 1)) k- le.(x/3 k) dx(k ~ oo) in the vague topology), such that 

p(t, x , y ) < c o n s t  t -7t(n1/2 for all 0 < t  < oo. 

Hence from Mercer's theorem we have ~(n)= ds(n) (see [--4], p. 618). In the case 
of the 2-dimensional Sierpinski carpet, Barlow-Bass-Sherwood [-3] proved 
ds(2) = ~(2). 

In Barlow-Perkins [-4], Goldstein [-6] and Kusuoka [-8], the spectral dimen- 
sion of another fractal, the Sierpinski gasket was obtained to be log 5 9. The 
large scale isoperimetric constant equals 0 for d > 1, since the Sierpinski gasket 
is a finitely ramified fractal, that is, it can be disconnected by removing finitely 
many points. Hence for the Sierpinski gasket isoperimetric constants yield only 
a trivial estimate. 

We prepare the following notation in order to explain the idea of the proof. 
For i eZ and ~ = (j,, J2, .--, J.)e;g", let u,, i,~ denote the open rectangle defined 

by 
U,,i4={x=(Xk)elR"; 3i'jk <Xk <31"(]k + l) }. 

We set 

(0.9) q/ , ,~={u, , , , j ;~e~"} and q/, = U q/., ,. 
i eZ  

Note that elements of q/, have the following property: 

(0.10) u~u'  or ucu '  if uc~u'#:4), (u,u'eql.). 

Let 

(o.11) U,={va={u~};uiECll.,uic~uj+(o if i~-j}, 

and set for ~ t=  {ui}eU, 

(0.12) [,~3 : ~J u,. 
i 

Here .A stands for the closure of A in IR". 
For ie{1, 2, ..., n} and je;g, let H,,~,j denote the n--1 dimensional plane 

defined by 
H,,i,J = U { x = ( x j e l l " ;  x i= 3J.(2m+ 1)}. 

m~Z 

We set 

(o.13) H. , i=  U H.,i,j and H.= ~j H.,i- 
j eZ  i <=i<-n 
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We denote by F~(u) the face of ueq/, included by H,, i; 

(0.14) V~ (u) = (0 u) n H.,~. 

We set 

(0.15) F(u) = 0 Fi(u)" 
i = l  

Note that 

(0.16) 
1 

IlF~(u)~~ - =  t lF(u)n~l l ,  forall i=1,2 ,  ,n. - - n  ' . . i  

We now explain the idea of our method. We first observe that 

II F(u) n ~.o if . )  
(0.18) [u~.O[d~)= r =nd(") for ue~ with j > 0  and u c ~ . ~  

So our strategy is to show for all qe(9,, b and x E q n ~ ,  (] { U u} there exists 

ue~//, satisfying xeu and ~z ,~e,,~ 

(0.19) 

Here e. is a positive constant depending only on the dimension n. From (0.19) 
we conclude that there exists u e U ,  such that 

(0.20) q n ~ s  ~ [~ ] ,  

and that all elements u of ~ satisfy (0.19), and then we obtain Theorem 1. 
(0.19) is the main ingredient in the proof of Theorem 1, and will be proved 

by induction via the dimension n. The condition that q is bounded is essential 
for (0.19). For  example, if q= {x;lx[> l}, then there exists no e > 0  satisfying 
(0.19) for all xeq. Indeed, the size of u containing x and 8q = {x; Ixl = 1} becomes 
bigger as x goes far away from the origin while J[ (aq) n u c~ ygo ][, =< I[ 8q H.. 

In Section 1 we prepare some notation and definitions, and restate Theorem 
1 in its general form. Section 2 presents a reduction of Theorem 1. Section 
3 completes the proof of Theorem 1. 

1. Notation and definitions 

In this section we prepare some notation. We shall prove ~ , ) ( O ) > 0  for a 
class of open sets containing y/o. 

Let 0=(0~) ( i eN={1 ,  2, 3 . . . .  }) be a sequence of {0, 1}, and let O be the 
totality of 0, that is 

O = {0= (0i); 0 ,=0 or 1 (ielN)}. 
We set 

(1.1) 0=(0 ,0  . . . .  ) and 1=(1 ,1  . . . .  )cO. 
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(1.2) 

Let C.(O) be the closed set in IR" defined by 

c.(0)= U c.,,, 
{i; 0~ = 1) 

where 
C. , ,=  2 {2.3'.~+R.,,}, 

~ e z -  

and R,~ ~ is the closed rectangle 

R,,i={x=(xk)eN"; 2.3 ~-1 <x~ < 4 . Y - 1  for all k =  1, 2, ... n}. 

Let O,(0) be the open set in N," defined by 

(1.3) O,(0) = N " -  C,(O). 

Obviously we have for 0e O 

(1.4) 4)=C.(ll))cC.(O)cC.(l) and IR"=O.(0)=O.(0)~O.( t ) .  

Moreover O.(t) is the open kernel of n dimensional pre Sierpinski carpet; 

(1.5) q]o = O. (1[). 

We shall show in Section 2 and 3 the following theorem. 

Theorem 1.1. 

(1.6) ~ , ) ( O ,  (0)) > 0, ~ -  (O,(0))> 0 forall OeO. 

Theorem 1 comes from Theorem 1.1. Indeed, sup{d; ~ +  (~/,~ >d(n) is 
clear. Let w,= {x=(xl); - 3 " < x i <  3' for i=  1, 2 . . . .  , n}. Then 

II (8w') c~ ~r176 II"~ = 0  for all d>d(n). inf o d -  1 

This implies sup {d; ~ +  ( ~ ) >  0} <=d(n). We, therefore, obtain (0.5). (0.6) is clear 
from (1.6). 

We define measures associated with 0~O. Let I'1.,o (resp. II" I[,,0) be the n 
dimensional volume ( n -  1 dimensional volume) defined by 

(1.7) I'1,,,o=['~0,,(0)1,,, I['ll.,o=ll'mO.(O)lln. 

Here ['1, (resp. I1" II.) is the n(n-1) dimensional volume induced by Lebesgue 
measure. Obviously we have 

I'l.,| It'L,~= N'II., 

]jF~(u)ll,,o=l.llf(u)H,,o for all i=  1, 2, . . . ,n. 

We observe, if u, u'~~ and ]u[.,o, lu'l.,0 >0, then 

lut.,o-----lu'ln.o, IIF(u)lln.o= IIF(u')lf.,o. 
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Now we define functions An, 0 (i, j): ~g x Z ~ ~ by 

/3 n_  l\~(~,J,0) 
(1.8) An, o ( i , j ) = l ~  ) , 

where 2(i,j, O) is the function defined by 

2(i,j, 0)= e {keN; 0~ = 1, i<k<=j} 

2(i,j, 0)= - :~ {keN;  Ok=l,j<k<=i ) 

for i<j,  

for i>j,  (O=(Ok), keN) .  
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Note that A, ,o( i , j )>l  for i> j  and An.o(i , j)=l if both of i and j are smaller 
than one. 

The following lemma is an immediate consequence of these definitions. 

Lemma 1.2. Let OeO and uedtln, i with ]u].,0=0. Then 

luln, o =An, dO, i) lu[,, | 

Il F (u) lln, o = An-1, o( 0, i)IIf(u)tl., ~. 

(1.9) 

and 

(1.1o) 

We finish this section with the following lemma, which will be used in Sec- 
tions 2 and 3. 

Lemma 1.3. Let {at} and {b,} be sequences o f  positive numbers such that (~  b,) < oo. 
i 

Let c be a constant with c > 1. Then 

(~i ai)C/(~i b ~ ) > i n f ( ~ ) .  (1.13) 

Proof Since c > 1, we obtain 

(i~kai)C> ~, a~= ~" {a~].bi> inf[a~l.(~k bi) 

for all k, which implies (1.13) immediately. 

2. The reduction of Theorem 1 

In this section we obtain the reduction of Theorem 1 and 1.1. We begin by 
introducing a notion of 0 proper to an open set q. 

Let ueq/n, u is said to be 0 proper to an open set q, if 

(2.1) ][(qc~u)c~Fi(u)]ln, o>#llFi(u)l[n,o for all i=1 ,2 ,  . . . ,n.  

Here q n u is the closure of q c~ u, and/~ is a positive constant satisfying 

(2.2) 1/2 </~ < 1. 
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# will be fixed th roughou t  this paper. No te  that,  if q D u, then u is 0 proper 
to q, and that,  if u is 0 proper to q, then u is 0 proper to all open sets including 
q. 

Recall  that  (9,, b denotes the totalli ty of the bounded  open  sets with smooth  
boundary ,  see (0.9) for the definition of ~//,, i. 

Theorem 2.1. Let q ~ (9,, b and u ~ q/,, i. Suppose u includes u-  ~ ql,, i-  1 satisfying 

(2.3) u-  is 0 proper to q and [u- [,, o > O. 

Then, at least, one of the following holds: 

(2.4) 

o r  

(2.5) 

[l(aq) nu[I.,o>e. IIF(u) Ll.,o, 

u is 0 proper to q and ]u],, 0 > 0. 

Here 8, is the constant defined by 

(2.6) ~2 = ( 1 - # ) / 3 ,  e , = n - i . 3 - 2 . m i n { ( 1 - # ) / 2 ,  W3"}.8 ._l .  

We shall prove Theorem 2.1 in Section 3. We derive here Theorem 1 and 
1.1 from Theorem 2.1. 

Let  ~ e l l ,  (see (0.12) for the definition of ll.).  lu is said to be a 0 exhausion 
of an open  set q if lu satisfies the following condit ions;  

(2.7) q c~ (9(0) c [~u], where [ ~ ]  is defined by (0.12), 

(2.8) II(~q)c~uLl,,o>~,LIF(u)lln. O for all u ~ ,  

(2.9) each u e ~  includes u -  e~//, such that  
(i) u -  e~ 1, where i is the integer such that  ueq/ , , i ,  

(ii) u -  is 0 proper to q and [u- ] , ,0>0.  

Proposit ion 2.2. (i) Let OeO and qe(9,, b. Suppose that Theorem 2.1 holds for 
n. Then there exists a 0 exhaustion ~ of q. 
(ii) Let q'e(9., b with qcq ' .  Then there exists 0 exhaustion ~ of q and ~ '  of 
q' such that 

(2.10) 

Proof Let  qo=qnO,(O),  and set 

(2.11) 

Then  

[~3 = [~ ' ] .  

~//- (x) = {u e~ xeu,  u is 0 proper to q and lu[,,o > 0}. 

(2.12) ~ / / - (x) .q~ fora l l  x~qoo=qo ~ { U u}. 
i E Z  Uff~/n, i 

This is because, for all x~qoo, there exists a unit u with x e u ~ q o  and u is 
0 proper to q and [u], ,0>0 if u c qo. Let  u - ( x )  denote  the element of ~//-(x) 
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with u - ( x ) ~  u for all u~q/-(x) .  Then u- (x)  exists uniquely, since q is bounded. 
Furthermore,  we denote by u(x) the element of q/, satisfying 

(2.13) u - ( x ) c u ( x )  and u(x)~ql~,i~x), 

where i(x) is the integer such that u-(x)eqln, i(x)_ 1. From Theorem 2.1 u(x) 
satisfies (2.8). 

We denote the collections of u(x) over Xeqoo by q/(q), and set 

(2.14) ~t= {u Eq/(q); there exists no u'~ql(q) with u c u  '~ =X: 1" 

Since q is bounded, ~ is not empty and qo = [~] .  It is easy to see that 
is 0 exhaustion of q. Hence we obtain (i). 

Next we show (ii). Let 

(2.15) ql- (x ,q ' )={u~qln;x~u,  u isOpropertoq '  andluln, o>O }. 

Then by the definition of 0 proper we have 

(2.16) q l - ( x ) c q l - ( x , q ' )  for all xeqoo. 

(ii) follows from this immediately. Q.E.D. 

Lemma 2.3. Suppose Proposition 2.2. holds for n Then 

ja~)(O.(O))>=(~,,)a(.)- I for all 0 ~ 0 .  (2.17) 

and 

(2.18) J~- ((9, (0)) > 0 for all 0 ~ O. 

Proof We first prove (2.17). Let q~(9,,b with Iqr,,o>= 1 and ~ be a 0 exhaustion 
d(n) l o g 0 " -  1) 

of q. Set D = D ( n ) =  d(n)-~l - log(3 n- t _ 1) and e =e  n. Then 

(~  JR (Oq) c~ u Bin, 0) ~ 
(2.19) (tl ~ q lB,, 0) ~ > ~ >__ ~D (a' + a") D 

Iql,,o - ~lqc~ul,,o - (b'+b") ' 

where 

a'=~llF(u)ll , ,o,  b '=~lu[, ,o,  a " = ~  IIF(u)ll,,o, b "=~ lu l , , o ,  
rLt' T~_" ggl t  111"" 

and 

�9 t '=  {u; u~ta, llF(u)ll,,o>l}, ~a"={ugu~a,O<l]F(u)l[, ,o<l}.  

Now we divide the case into two parts: b '>  b" and b '<  b". 
Suppose that b' > b". Then by Lemma 1.3 we have 

ill F(u)I1,, 0) ~ >_1 
(2.20) (a'+a")~ > a'~ >_1. inf lul,,o = 2 "nO> 1. 

(b'+b") = 2 b ' = 2  u,~, 
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We next suppose b' <b". Then, by b' + b " =  [ql,,o~ 1, we have b"=> 1/2. Let 
n 

N -  Then we have from Lernma 1.3 
n - l "  

i t t \ N  
(2.21) ta ) . (Hf(u)ll.,o) N (IIF(u)II.,,)N=nN --U; & lnf -- inf 

. . . .  " [bl[n,O U~l l I"  [Uln, 0 

We used here (9,(O)~u for u e ~ "  to pass from the second term to the third. 
Hence we obtain from D > N and a" > 1 that 

(a") D __> (a") u 
(2.22) b" b" > nN" 

Then we have by Lemma 1.3 that 

(2.23) (a'(b,+b,,)+ a")D =>min [.#(a')D ' b '  (a"~")'D}b _-->min {n D, n N } > 1. 

From (2.19), (2.20) and (2.23) we conclude (2.17). 
Second, we prove (2.18). Let qe(9., b with 0 <  Iql.,0 < 1 and ~ be a 0 exhaustion 

of q. Set N = N ( n ) = n / ( n - 1 )  and e=e. .  Let a', b', ... be defined as before. 
We divide the case into two parts: a' > 0 and a' --- 0: 
Suppose that a '>0 .  Then a '>  1. This with Iq[.,0 < 1 yields 

(2.24) (11 ~ q It., o) N ~ ( ~  II (~ q) ~ u ll., o) N > e u (a' + a") N >= eN. 
]ql.,0 

Next we suppose a ' =  0. Then b '=  0. Hence we have 

(a' + a") N 
(2.25) (t] 0 q [I,,, o) N > ~N = eN (a,,)N/b,, > ~N nN. 

[q[.,o = (b' + b") 

From (2.24) and (2.25) we conclude (2.18). Q.E.D. 

We next present a simple observation for exhaustion, which will be used 
in the proof of Proposition 3.6. 

Lemma 2.4. Let 0 ~ 0 ,  U eql., i with Iul.,0>0 and u~ql..  
(i) Let q~(9., b with q c  U and suppose that u is 0 proper to q. Then 

(2.27) u ~ U. 

(ii) Let q, q*~(9,, b with qc~q* =4) and q ~ q *  = U. Let va(resp, va*) be a 0 exhaus- 
tion of q(q*). Then 

(2,28) [~t], [~*]  c U +, 

where U + Eql,,i+ l such that U c U +, and 

(2.29) [ ~ ] ~ U  or [ ~ * ] c U .  
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Proof We first prove (i). Assume u ~  U or u n U = 4~. Then, by q c U and this 
assumption, we have 

II(q ~ u ) n F ~ ( u ) l l . , o ~  II(U n u ) ~ F ~ ( u ) [ I . , o ~ 2  - I IIFi(u)ll~,o, 

which contradicts to (2.1). 
Se c ond ,  we prove (ii). Let u e ~  with u~q/,,j. Then u contains a unit 

u -eq l , , j _ l ,  which is 0 proper  to q. F rom (i) we have u - c U .  Hence u c U  +, 
which implies [ ~ ]  c U § Similarly we have [~*]  c U § We, therefore, conclude 
(2.28). 

Now we proceed with the proof  of (2.29). Suppose that (2.29) is false. Then 
from (i) and (2.28), ~ and ~*  consist of the single element U +, and U is 0 
proper to q and [U[,,o> 0. Therefore, 

(2.31) II(qnU)~f~(U)ll.,o~llf~(g)ll..o for all i=  1,2, . . . ,n,  

and 

(2.32) rl(q*nU)nF~(U)ll.,o~zllF~(U)ll~,o for all i = 1 , 2  . . . .  ,n. 

The sum of the first terms of (2.31) and (2.32) equals I[ Fi(U)I[ n, 0, since q c~ q * =  ~b 
and q u q* ~ U. Hence 

PP F~(U) rl,,o>-2# [[ F~(U)I[,,o. 

This yields contradiction, because 1 < 2 ~ by (2.2). Q.E.D. 

3. Proof of Theorem 2.1 

In this section, we shall complete the proof of Theorems 1, 1.1 and 2.1. 
First of all we prepare a couple of notations. We set for ~elUn and 0~O 

(3.1) F[ lu[0]=  ~ IIF(u)lJ.,o, 
U E ~ I  

and 

(3.2) [~ ]  = U u. 
UN~LI 

We call Ca s gJ, a minimal covering of lu ~lIJ, if ~ satisfies the following conditions: 

(3.3) [lu] c [~] ,  

(3.4) f [~ l~ ) ]__<f [v [~ ]  forall  velIJ ,  with [ T u ] c [ v ] .  

Proposition 3.1. Let ~ d .  and suppose [~ ]  is a bounded set. Then there exists 
a minimal covering Ca of ra. 



(3.7) 

(3.8) 

where 
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Proof. Since [~t] is a bounded set in N2, we can assume 

(3.5) Du] c [ - 3 k, 3 k] x [ - 3 k, 3 k] x . . .  x 1- - 3 k, 3 k] for some k. 

Let I = {(i, j); i, j e2~ u { co }, i < 0, i __<j}, and let --* denote the order on I defined 
by the following conditions: 

(3.5) (i,j) - ,  (i',j') 

if and only if 

(3.6) i>i '  or i=i '  j<j ' .  

For  example, 

(0, O)+ (0, 1)--*(0,2)--* ... + (0 ,  co) + ( -  1, - 1 ) ~ ( - l ,  O)+ ... - , ( - l ,  co) 

+ ( - 2 ,  - 2 ) - - * ( - 2 ,  - i ) - , ( - 2 , 0 ) +  . . . - , ( - 2 ,  o o ) + ( - 3 ,  - 3 ) - - + ( - 3 ,  - 2 ) +  .... 

Let  {~(i,j)}, (i , j)eI,  be a sequence of elements of II , ,  defined by induct ion 
via (i, j): 

~.t(0, O) = U ~i ,  where ~t i = ~ c~ q/~,i. 
i_>_0 

ra(i,j) = ~ '  (i,j) w {~a(i , j -  1 ) -  { u e ~ ( i , j -  1); u c [~ '  (i, j) ] }}, 

and 

�9 t'(i,j) = {ueq/,,fi IIF(u)][,, , < F [ ~ ( i , j -  1;010]  } 

ra(i,j-- 1 ;u )=  {veva(i , j--  1); v c u}. 

(3.9) lim va(i,j) = ~a(i, oo). 
j--* oo 

(3.10) ~ u ( i - l , i - 1 ) = r a ( i ,  oO)kd(~dti_l--{uCltli_l;UC[IU~(i , co)]}}. 

Note  that  from (3.5) the limit (3.9) exists for all i. This is because ax(i,j) 
=lu(i,  k) for a l l j > k .  Now we define 

(3.11) r lim ~(i,  co). 

It is not  difficult to see that  ~ is a minimal covering of ~ .  Q.E.D. 

Remark. The minimal covering is not  always unique. For  example, let lu 
= {ui}i= 1,2,a .... eU2 satisfying that  

[ ~ ]  c [0,1] x [0,1], u : i _ l , u 2 i ~ 2 , _ i  and u i ~ u j = r  for i~=j. 

Then both of ~t and [0, 1] x [0, 1] are the minimal coverings of ~ .  
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L e m m a  3.2. Let ~, y e l l , ,  0~0.  Suppose 

Ivl , ,0>0 for all v ~ v  

and 

(3.12) 

Then 

(3.13) A,_ ~,o(i, m) F[vac~ ql,,il O] < ~  A,_ 1,o(i, m) F I v  c~ ~, ,  il0] 
i i 
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of A,_  1,0, we have 

(3.14) A,-1.o(O, i). A , -  l,o(i, m)= A,_ l.o(O, m) 

Then (3.13) follows from L e m m a  1.2. Indeed,  

(3.15) 

for all i. 

i 

= {A,-1,o(O, m)}- l " ~ ,A , -  a,o(i,m) F[~c~li,,ilO]. 
i 

(3.18) 

and that 

(3.19) 

Then 

(3.20) 

Similarly, we have 

(3.16) F[v]~]={A,_ l ,o (O,m)} - l .~  A,_l,o(i,m)F[vc~ql,,ilO]. 
i 

Combining  (3.15) and (3.16) with (3.12) yields (3.13). Q.E.D. 

Let/~: O ~ { -- oo} u N w  {oo} denote  the funct ion defined by 

(3.17) # ( 0 ) = s u p { i ;  0i = 1} if 0=(0i)4= I), /~(0)= - oo if 0 =  I). 

No te  that  #(0) = - oo if and only if 0 = I). 
As a corol lary of L e m m a  3.2 we have the following: 

L e m m a  3.3. Let OeO, m = # ( 0 )  and ~, welD,. Suppose that - oo < m <  oo, 

]v], ,0>0 for yew, 

[ ~ ]  = I v ] .  

~ A,-1,o(i,m) F[Can cg,,i[O] < F[vlO], 
i 

where Ca is a minimal covering of ~. 

for all m~Z, where A,_ 1, o is the function defined by (1.8). 

Proof Clearly we can assume [u[, ,0>0 for all u ~ .  No te  that  f rom the definition 
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Proof By (3.4) and (3.19) we have 

(3.21) F[Ctt $]_-<F[vl ~]. 

Then from Lemma 3.2 we obtain 

(3.22) ~ An_l,o(i,m)F[Yanqln, ilO]<=~ A,,_l,o(i,m)F[vc~ql,,~[O ] 
i i 

< ~ V[v c~oU..~lO]= F[vtO]. 
i 

Here we used A,_ 1,0 (i, m) < 1 for all i. Q.E.D. 
Let U~q/,,,k be fixed, and suppose 

(3.23) U = Tx  A, 

where 
T=(z,z ')  and A~[n_ l ,  k. 

Note that z ' - z = 3  k and ~=io 3k for some ioEZ. Without loss of generality 
we can assume that z satisfies 

(3.24) {r} x A=F~ [U], 

where /71 [U] is the first face of U defined by (0.14). This assumption implies 
that i o is odd. 

Let 

(3.25) U'=T~xA, T'=(r+r.3X-t ,z+(r+l) .3 k-l) (r=0, 1,2). 

We set T~= (p, p'). Without loss of generality, we can assume 

(3.26) {p} xA=Fl[u ] forall u~ql,,,k_l Suchthatu=U ~. 

We set for 0 e 69 and t ~ T, 

0 (t) = (0, (t)), ~(t) = (01 (t)), (3.27) 

where 

and 

01(t)= 1 ({C,(O~~ nU}Oer O~(t)=O({C,(O~~ 

~ , ( t ) =0 i ( t ) ( i ,k ) ,  0 , ( t ) = 0 ( i = k ) .  

Here C,( ' )  is the closed set defined by (1.2), and 0(1) = (0}/)) is the element of 
O defined by 0~~ and OJ)=Oi(j=i), and //t is the n - 1  dimensional 
plane defined by 

(3.28) / L =  {x = (x,)elR"; x l  = t}. 

We see 

(3.29) {t} x { C,_ t (O(t))c~ A } = C,(O)c~ Ht~ U. 
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Now we consider the functions q~, v; 1Lr_ i ~ R( r  = 0, 1, 2) defined by 

(3.31) ~,v[r ~ ~, F[a~q l ,_ l , , lO( t ) ]d t .  
T r i>=~( t )  

See (3.25) for the definition of TL Here 

r~(t) = #(O(t)), 

where #( ' )  is defined by (3.17), O(t) is (3.27) and & is the minimal covering 
of ~ which is constructed by Proposition 3.1. 

Similarly we define 

(3.32) 

Note that 

(3.33) 

and 

-~<=rfi(t)<=m(t)<=k, 

m(t)=#(O(t)). 

@{i;O~(t)=l, fft(t)<i<=m(t)}<I, 

(3.35) 0, v [r > (1/2)- ~ l al .-  a,0(p). 
a E ~ t  

Here p is defined by (3.26). 

Proof Let aE~lln_l and i(a) be the integer such that aeq/,-1,~(a). We prove 
this lemma in the case of r=0 .  Set T(a )={ t eT~  tfi(t)<i(a)}, and suppose 
lal,-1,0(p)>0. 

We first see that 

(3.36) ~ ]lF(a)ll._ i,o(o dt ~(1/2).lal._ l,O(p). 
T (a) 

Indeed, if i(a)=k, that is a = A ,  then T(a)= T ~ Hence we have 

[] F ( a) [I . _ t, o(t) d t 
T (a) 

= (n -- 1). I1 F2 (U) c~ {x ~IR"; xl ~ T O } Jl,, 0 

> (n - 1). ~ ~ ] .  lal, - 1,0(o) > (1/2)- l a l , -  1, o(p). 

See (1.8) for the definition of A,_  1, o(,)(i, re(t)). 

Lemma 3.4. Let n > 3, and let ct~lIi,_ 1 such that [ax] c_A. Then 

. >(3"-1--1) 
(3.34) A.  i,o(oO, ra(t))= 3._ 1 forall i>=rh(t). 
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Suppose i(a)<k, and set I = ( p ' - 3  ~("), p'). Here p' is the number  such that  (p,p') 
= T ~ which means p' = p + 3 k- 1. Then I c T(a) and 

]lF(a)l[.-1,o(odt > ~ Ilf(a)H.-1.o(odt 
T (a) I 

=(n - -  1). [[ F;(U(a))[1,,o = ( n -  1)-[a[,_ t, o(o), 

where U (a)eqg, is defined by U (a)= 1 x a. 
It follows from (3.36) that  

(3.37) r176 = ~ Z Z . ~ , ~  . . . . .  HF(a)II.-Lo(o d t  
T O i>fn(t) 

= ~', I HF(a)H.-1,o(t) d t  
ae~x T(a) 

>(1/2). ~ lal,_~,o(,)>(1/2). ~ [a[,_ ~,o(o). 
aE~t a e ~  

We can prove similarly the case of r = 1, 2. Q.E.D. 

We present some notat ion which will be used in the rest of this section. 
Let rcl, u be the projection from a unit u to F~(u), the face of u defined by (0.14). 
We set 

(3.41) bl =- b~ (q, u) = (q n u) ~ n~, ~ ((c3 q) c~ u), 

a, - ai(q,  u) = F~ (u) ~ (q ~ u) - b~, 

where ~ is the closure of q and a q is the boundary  of q in ~" .  

(3.42) /?~-/?,(q, u, 0) = I/b, Ll..o, 

O ; i ~ i ( q ,  U, O ) =  Ilaill,,o. 

Moreover,  

(3.43) c~* --= c~* (q, u, 0) = ei (q*, u, 0), 

/~*---]~* (q, u, 0)= fli(q*, u, 0), 

where q* = (c~) c. 
We often omit  (q, u, 0) if no confusion occurs. 

L e m m a  3.5. For all (q, u, 0)e((9,,b, q/,, O) and i~{1, 2 . . . .  , n}, we have 

(i) cq + fl, + ~* +/~* = I] F~(u)[1,,0, 
(ii) e l+i l l  = Ll(qc~u)c~F~(u)lL,,o, 

(iii) II(~q)c~ull,,o>=fi,+ fl *. 

Proof. Lemma 3.5 follows from the above definitions immediately. Q.E.D. 

Proposition 3.6. Let n> 3 and suppose Theorem 2.1 holds for n - 1 .  Let U~ql,,k 
satisfy (3.23), and let Ur(r = 0, 1, 2) be the subset of U defined by (3.25). Set 

(3.46) c~(r )=~el (q ,u ,  0) and a*(r)=~e*(q,u,O),  
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where summations are taken over {u; ueql,, k_ 1, u a Ur}. Then 

(3.47) r] (0 q) c~ U[r,, 0 > e ,_ l  3 - 2. min {~ (r), e* (r)}, 

where e,_ 1 is the positive constant in Theorem 2.1. 

Proof Let  

(3.48) a(r) = U al(q,  u) and 8" (r) = U al(q*,  u), 

where unions are taken over {u; Ueql,,k_l, u c U  ~} and a l ( ' ,  u) is defined by 
(3.41). Since 8(r) and 8*(r) are conta ined in the n - 1  dimensional  plane {x=(xi) ;  
Xl =p}  (see (3.26) for  p), we can rewrite 

8(r) = {p} x a(r), ~7" ( r )=  {p} x a* (r), 

where a (r), a* (r) c IR" - 1. Set 

(3.49) a = {a(r) c~ O, _x (0 (p))} ~ a* = {a* (r) n O,-1 (0 (P))} ~ 

Here  O,-1 ( ')  is defined by (1.3) and A ~ means open kernel of A in R" -~ .  No te  
that  

(3.50) lal,-1,0<p)--lla(r)lB,0=c~(r), [a*l,-~,0r 

Let  ~(t)  (resp. ~*(t)) denote  a 0(t) exhaust ion of a(a*). Such exhaust ions 
exist by Theorem 2.1 for n - 1  and Proposi t ion  2.2. We can choose et(t) and 
ex*(t) such that  ct(t)=et(s) and r if O(t)=O(s). Then  there exist v 
and v *  e l / , _  ~ satisfying 

a c E v ] c [ ~ ( t ) ] ,  a * a [ v * ] c [ ~ * ( t ) ]  fora l l  t e T  ~, (3.51) 

and 

]V[n_l,0(t)>O fora l l  v e w w v *  and t e T  r. 

Indeed, we can construct  v and w* in the following way: 

" =  A ,,(t), A 
t e T r t e T r 

where i is defined by 

A lb = {u e ~ u Ib; there exists no v e ~t ~ Ib such that  v ~ u}. 

Let  

~(t)=Una, , , (qnunII t )  and s n u n I I t )  , 

where unions are taken over  {u; UE~.,k-1, u c U  r} and nl,u is the project ion 
from u to Fl(u ), and I I~={x=(xi)eR";  x l = t  }. Let q(t) and q*(t) be open  sets 
in R"-1 such that  

cT(t) = {p} x q(t), ~*( t )=  {p) x q*(t). 
Then 

(3.52) acq(t) ,  a*cq*(t)  fora l l  t e T  r. 
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From Theorem 2.1 for n -  l and Proposition 2.2 there exists a O(t) exhaustion 
w(t) (resp. v* (t)) of q(t)(q* (t)) such that 

let(t)] ~ [v(t)],  [r (t)] ~ [w* (t)] for all t~ T ~. 

Hence we see from (3.51) that 

(3.53) [ v ] ~ [ w ( t ) ]  and [ v * ] ~ [ v * ( t ) ]  forall t~Tq 

Let r162 and r162 be the minimal coverings of v and v*, respectively. 
Set 

(3.54) Ao( o (i) = An- 1, o(t)(i, re(t)), 

where A,_ 1,o(t)(i,j) is the function defined by (1.8) and m(t)=#(O(t)). See (3.17) 
for the definition of #(0) and (3.27) for the definition of O(t). From Lemma 
3.3 and (3.53), we have 

(3.55) y" Ao(o(i) F [r ~ q/n- 1,~ I 0(t)] < F [v(t) lO(t)] 
i 

and 

(3.56) Ao(o (i) F [r n ql._ 1,1 [ 0 (t) ] < F [w* (t)[0 (t) ]. 
i 

Let TI={t~T ' ;  [w( t ) ]cA} and T2={t~T';  [w*(t)]~A}. Then by Lem- 
ma 2.4 we have 

(3.57) T~ v T a = T'. 

From (2.8) we have 

%- a [IF(v)[I.-1,o(t) < ]](3q(t))nv]].-1,o(o, 

for v~v ( t )~v* ( t )  with v ~ A .  This is beause for v c A ,  

II (0 q (t)) n v II.- 1,0~,) = II (0 q* (t))  n v II. - ~, 0.)- 

H e n c e  taking the summation with respect to v over v(t) and v* (t), respectively, 
yields 

(3.58) e.-x F[w(t)lO(t)]<= II(~q(t))c~A[I.-1,o(o (t~TO 

and 

(3.59) ~.-1 F[w*(t)[O(t)]< II(gq(t))c~A[[.-l,o(o (t~T2). 

We obtain from (3.55) and (3.58) that 

(3,60) e,-1 ~ Ao(o(i) F[C" c~ql,-1,ilO(t) ] <_ IL((?q(t))c~ A ll,-1,o(o 
I 
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for t~ T1, and from (3.56) and (3.59) that 

(3.61) ~._l ~ Ao(t)(i)F[~* c~ql._l,~lO(t)]<Jl(Oq(t))c~A[l._l,o(t) 
i 

for te  T2. 
Now we divide the case into two parts: 

(3.62) 

and 

(3.63) 
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F [~r I ~] => F [~r I ~)]. 

First we suppose (3.62). Then by Lemma 3.2 with the notation in (3.54) 
we have 

~, Ao(t)(i) F [r162 c~ ql,_ 1,i 10 (t)'] ~ ~ A o(o(i) F [r c~ q/,_ 1,i  [0 (t)]. 
i i 

Combining this with (3.61) and noting (3.60) and Tr= T1 w T2 yield 

e,- z ~ Ao~t)(i) F [ v  ~ ql,-1,ilO(t) ] < U(Oq(t))c~ A ][,- a,o(t) 
i 

for all t s  TL By (3.34) and (3.54) we have 

rora   

Hence we see 

/3.-1_1\ 
(3.64) ~ n _ l . l ~ -  )" ~, f[~c~lln_l,ilO(t)]<]l(Oq(t))c~All,_l,o(o 

i > f n ( t )  

for all te  TL Integrating both sides of (3.64) over t~ T *, we obtain 

e._, .~ 3._ 1 }.qVo, vKv]<l[(~q)ng~ll . ,o  . 

See (3.31) for the definition of ~[, v. Combining this with Lemma 3.4 and noting 

3 " -  1 ] > 3 - 2 yield 

e.-1 "3 -2" ~ [vl.-1,o(o) < II(aq)n g~l[.,o . 

We, therefore, obtain from (3.50) and (3.51) that 

(3.65) e.-a'3-2"~(r)<e.-a'3 -z" ~ [vl.-1,o(p) 

< H (Oq) c~ U~ll,,o < H(~?q)w UIl,,,o. 
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Second, we suppose  (3.63). Then by  the same argument  as above  we have 

(3.66) e,_ 1" 3 - 2. ~ ,  (r) _<_ II (0 q) n U II,, 0. 

Combining  (3.65) and (3.66) completes the proof. Q.E.D. 

Proposition 3.7. Let n> 3, and suppose Theorem 2.1 holds for n -1 .  Then Theorem 
2.1 holds for n with the positive constant e, defined by 

,~n=n- 1 3-2g.Sn_ 1, (3.67) 

where 

(3.68) 8 = rain {(1 -- #)/2,/1/3"}. 

Proof. Let 0 e O ,  qe~ , .b  and UE0g,,k. Suppose  U contains U-Eq / , , k -1  satisfying 
(2.3). We shall show that  U satisfies (2.4) or (2.5): 

(2.4) II(~q) n Ull,,o>-_~,ilF~(U) Ll,,o, 

or 

(2.5) U is 0 proper  to q and [ U L 0 > 0. 

W e  divide the case into three parts:  

(I) fl~(q, U,O)+fi*(q, U,O)>=ellFi(U)ll,,o f o r s o m e  i. 
(II) fli(q, g,o)+~*(q, g,o)<ellF~(g)l],,o for alli, 

a*(q, U, 0 )<a  II Fi(U) It,,0 for all i. 
(III) fi,(q,g,o)+~*(q,U,O)<~[lF~(g)[I,,o for all i, 

c~* (q, U, 0) > ~ Ih F~(U)lb,, 0 for some i. 

Here  ie  { 1, 2, ..., n}. 
First  suppose (I): Then from (iii) of L e m m a  3.5 we have 

Ll(~q) n Ull,,o> ~i(q, U, O)+ fi*(q, U, 0)>~ HF~(U)[L,,0, 

which implies (2.4). 
Second we suppose (II): By L e m m a  3.5 we have 

II(qn g ) n  F~(g) H,,o 
--IIF~(g)ll,,o-~*(q, U, O)-~*(q, U, O) 
> ( 1 - 2 e )  II F~(U)II,,0 > ~ kl~(U)[I.,o. 

We, therefore, conclude U is 0 proper  to q, which is (2.5). 
Finally suppose (III): Wi thout  loss of generality we can assume i = l ;  

e*(q, U, O)>e IIFI(U)II,,o. Hence we have 

(3.72) c~*(r)>=c~*(q,g,o)>=~llFl(U)ll,,o for r =  1,2, 3. 

Here  e* (r) is defined by  (3.46). 
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Now, there exists r such that  U -  c U r, where U r is the subset of U defined 
by (3.25). Since el(q, U-, O)+fla(q, U-, O)=]l(qc~g-)~Fl(g-)[I,,o and U -  
is 0 proper  to q, we have 

(3.73) ~,(q, U-, O)+fl~(q, U-, (9)= [l(qn U-)c~F,(U-)ll,,o 
>=#" It F~(U-)ll.,o>=#" 3 -"+ *" IIFI (U)I].,o. 

If II (~ q) c~ U I[., o => e [] F, (U)I[., 0, we obtain (2.4). Then we assume ]l (3 q) ~ U II., o 
< e Il F1 (U) II.. o, which implies 

(3.74) fl~(q,g-,o)+fl~(q,g-,o)<ll(Oq)c~U-II.,o<ellF~(U)l].,o . 

Combining (3.73) and (3.74) yields 

~l(q, U-, O)>(#" 3-"+ ~-e) llf, (U)lln, O>ellfa (g)]]..o �9 

Hence we obtain 

(3.75) 7(r)>cq(q, U-, 0 ) ~  IIFx(f) II,,o. 

Combining (3.72) and (3.75) with Proposit ion 3.6 yields 

II(Oq)~ Ull.,o>e.-1" 3-2 -min  {~(r), c~* (r)} 

> e,-1. 3- 2.e lJ Fl (U)ll,,o=e, HF(U) H,,o, 

which implies (2.4). Q.E.D. 

Proof of Theorem 1, 1.1 and 2.1. As we see in Section 2, Theorem 2.1 implies 
Theorem 1 and 1.1. Hence from Proposion 3.7, what  remainds is to show Theo- 
rem 2.1 for n = 2 .  We use the nota t ion  cq, fli . . . .  as before. Let q~C2, b and 
UEq12, k. Suppose U includes U-~q/2 ,k-1  satisfying (2.3). 

We set 

(3.76) ez=2e/3, e=(1 --#)/2. 

We divide the case into three parts:  

(I) fli(q, U, O)+ fl*(q, U, O)>=e ilF~(U)lJ2,0 for some i. 
(II) fli(q, U,O)+fl*(q, U,O)<ellF~(U)ll2,oforalli, and~*(q, U, O) 

<e f] F~(U)IJ2,o for all i. 
(III) ill(q, U, 0) + fl* (q, U, 0) < e J[ Fi( U) I[ 2, 0 for all i, and e* (q, U, 0) 

->__ e It F~(U)II z, ~ for some i. 
Here i =  {1, 2}. 

First suppose (I): Then (2.4) follows from (iii) of Lemma 3.5. 
Second suppose (II): Then (2.5) follows from (i) of Lemma 3.5. 
Now we easily see 

(3.77) e~ (q, U, 0) = 0 if c~* (q, U, 0) > 0, 

(3.78) c~2(q, U, 0 ) = 0  if ~ ' (q,  U, 0)>0.  

This is because n = 2. 
Finally we suppose (III): Wi thout  loss of generality we can assume 

~*(q, U, O)>=e IIF2(U)II2,o>O. 
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Hence  f rom (3.77) 

(3.79) ~ (q, U, 0) = 0. 

This  with the first hypo thes i s  of  (III) and  L e m m a  3.5 implies  

ct~ (q, U, 0 )>(1  - e ) .  Ilfl(U)[12,o>O. 
Then  from (3.78), we have  

(3.80) c~2(q, U, 0 ) = 0 .  

N o w  there  exists z such tha t  

a,(q, U, O)+ fi,(q, U, O)+ fl*(q, U, O) 
>cry(q, U-, O)+fl,(q, U-, O)+fl*(q, U-, 0). 

This  wi th  (3.79) and  (3.80) yields 

(3.81) /~,(q, v, 0) + / ~  (q, u, 0) 
> 7,(q, U-, O)+ fi,(q, U-, O)+ fl*(q, U-, O) 
> c~(q, U-, O) + fl,(q, U-, O) 
>/1 ][F~(U-)N 2 , 0 ~ #  "3-1 IIF~(U)1[2,0~ ~2 Ilf(U)]12,o. 

Here  we used the a s s u m p t i o n  on  U -  to  pass  f rom the th i rd  line to the fourth,  
and  #/3 > 1/6>__(1 - / 0 / 3  by  (2.2). This  impl ies  (2.4). Q.E.D.  

Acknowledgement. We are grateful to Professor S. Kusuoka who lead our interest to this prob- 
lem. 
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