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0 Introduction 

Consider the linear stochastic equation 
t t 

~,(t) = ~o + f ~ L j O ( s ) d ~ ( ~ )  - fXO(~.)ds (0.~) 
o / o 

in a separable (complex) Hilbert space 240, where Wj(t), j = 1,2, . . . ,  are inde- 
pendent standard Wiener processes, Ls, K are, in general, unbounded operators 
defined on a dense domain ~ C ~ and ~P0 ~ ~ .  The equation is called dissi- 
pative if 

[[Zi~,[] 2 -2Re(K@[~,) <= cI1~1I 2, ,p ~ ~ .  (0.2) 
i 
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Results on the equation of this type can be found in the book of Rozovsky 
[19], where existence and uniqueness of the strong solution of Eq. (0.1) in a 
scale of Hilbert spaces is established under additional hypotheses (cf. Sect. 4). 
Many other works use conditions of the coercivity type, stronger than (0.2) 
(see [5] for a survey of various approaches and results). 

In this paper we make an observation that under very mild conditions it 
is possible to prove the existence and uniqueness for solutions of dissipative 
equations in the weak topology sense (Sect. 1 ). The proof takes some inspira- 
tions from quantum stochastic calculus (although not using it!), namely, from 
Frigerio-Fagnola's existence proof and Mohari's uniqueness proof for quantum 
stochastic differential equations (see [18, Chap. VI] for a survey of these ideas). 

In Sect. 2 we introduce the dual stochastic differential equation, establish 
existence and uniqueness of its solution, and the duality relation. These concepts 
are the classical pattern of the "dual cocycle", introduced and studied in the 
noncommutative situation by Joum~ [15]. 

The reminiscence of quantum stochastic calculus is not occasional. In 
fact, the conservative stochastic differential equations are closely related to 
some important concepts in the noncommutative probability, such as dynamical 
semigroup and nonlinear stochastic equation for the normalized posterior wave 
function (Sects. 3,4). We call the linear equation (0.1) conservative if the 
left-hand side in (0.2) is identically zero, 

IlLjOll 2-2Re(KO]4' ) = o, 4' E 9 .  (0.3) 
J 

i f  the operators Lj,K are bounded, then this condition implies mean-square 
norm conservation for the solution: 

M l l 4 ' ( t ) l l  = = 114'0ll 2 , (0.4) 

however in general one will have only M I I 4 ' ( t ) l l  2 __ [14,01f 2 with the possibility 
of strict inequality (see Sect. 3). Solutions of (0.1) provide classical stochas- 
tic representation for a quantum dynamical semigroup (relation (3.2)), and the 
property (0.4) is closely related to the unitality (non-explosion) of this dynam- 
ical semigroup. In Sect. 4 we derive (0.4) from (0.3) and a further condition 
of hyperdissipativity which means dissipativity in a Hilbert scale associated 
to the operator K + K*. This gives quite a different view on the conditions 
for unitality of quantum dynamical semigroup, obtained by operator-theoretic 
methods in [4]. 

The nonlinear stochastic equation, satisfied by the normalized posterior 
wave function in a continuous quantum measurement process, was extensively 
discussed recently in physical literature (see [7,2]). This equation is also 
interesting from a mathematical point of view. A general study of this type 
of equations with arbitrary driving martingales, and with bounded operator 
coefficients is presented in [1]. The case of unbounded operator coefficients is 
substantially more complicated, essentially with the possibility of violation of 
the property (0.4). In the paper [11] Gatarek and Gisin proved existence of 
solution for the nonlinear stochastic equation by using reduction to the linear 
equation (0.1) via Girsanov's transformation, in the case of one-dimensional 
Wiener process. They also commented that the multidimensional case can be 
treated in the same way. However the argument in fact substantially relies upon 
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the property (0.4), which is automatic in their case. To extend this argument 
to the general case, one has to complement it by a condition, ensuring the 
mean-square norm conservation (Sect. 4). 

1 Existence and uniqueness of the weak topology solution 

The condition (0.2) implies closability of K since Kc = K + (c/2)I is accretive: 

Re(0IKc~b ) > 0, ~b E ~ ,  

and the closure Kc of Kc is accretive (see [16]). Let ~* be a core for K*. We 
assume that 

(I. 1) Lj are closable with L] defined on ~*, and 

2 !IL~Oll 2 < c , ,  V, ~ ~ * .  
J 

We say that Eq.(0.1) has weak topology (wt-) solution on [0, T], if there 
exists random process ~b(t), t E [0, T], with values in 24 ~, weakly continuous 
in probability, and such that 

t t 

(01~,(t)) - (6100) = f 2 ( L f 4 1 ~ b ( s ) ) d N ( s )  - f (K*6l~ , ( s ) )ds  (1.1) 
0 j 0 

for all 0 E @*, t E [0, T]. 

Theorem 1 Let the condition (I.1) be fulfilled. Then there exists a wt-solution 
of Eq. (0.1), satisfying 

Mlt0(t)lt 2 < 1[~,0112S ' , (1.2) 

Ml(q~10(t) - ~t(s)) [  2 "~ CO, Tit - s I II~01i 2, 0 ~ Y .  (1.3) 

I f  moreover 

(I.2) f2c maximal accretive (m-accretive), i.e. - k ~  is generator of  a contrac- 
tion semigroup, then such solution is a.s. unique. 

Proof. Let Kc be any m-accretive extension of Kc, then R, = (I + (1/n)Kc)- 1 ; 
n = 1,2 . . . . .  are bounded operators, converging strongly to I as n --+ oc [16]. 
Consider 

L~ = L jR, ,  K ~ = R ,*KR , ,  

then these are bounded operators satisfying the dissipativity condition (0.2) 
with the same constant. Moreover 

L~, -+ Lj~, K %  --, KO, ~, c ~ (2.4) 

(see [9]). The equation 

n 

d~b"(t) = ~ L j ~ n ( t ) d W j ( t ) - K ' O ~ ( t ) d t ,  ~"(0) = 00 (1.5) 
j=i 
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has unique strong solution which is Markov process in X/F. The dissipativity 
condition implies 

Mll@~(t)l l  2 __< ll@0ll2e c' (1.6) 

This follows from the fact that by the It@ formula for square of norm, the 
process ]l@(t)ll2e" satisfies an exponential equation with nonpositive coefficient 
of dr, hence is a supermartingale (ef. [1]). 

Consider the family 
@"(t); n = 1,2,... ; 

of functions of t C [0, T] with values in the separable Hilbert space Y | 
Lwr2(W), where 5e~(W) is the space of complex random variables with finite 
second moment, generated by Wj(t); t E [0, T]. For any q5 C 9 "  by (1.5),(1.6) 

Ml(4) l@"(t)  - @"(s))l  2 _-< % w i t  - sl [[@01t 2 . ( 1 . 7 )  

By using (1.6),(1.7), the Arzela-Ascoli theorem, separability of the Hilbert 
space and diagonalization, one can find a subsequence {nk} such that for all 
q5 E 9f a, r E 5~a2(W) the sequences M~(@l@~k(t)) will converge uniformly in 
t c [0, T]. By (1.6) and the weak compactness of the unit ball in aug | 5~2(W), 
there is @( �9 ), such that 

M~(4)l@"k(t)) _~ M~(qSl@(t)), ~b ~ J(~, ~ 6 ~ 2 ( W ) .  (1.8) 

Taking limits in (1.6),(1.7) we obtain (1.2),(1.3). In particular, @(t) is 
weakly continuous in the mean-square sense, hence in probability. Let us show 
that we can pass to the limit in Eqs. (1.5), i.e. in 

t 

M~(~blO"k(t)) =- M~(q~l@0) + M~ f ~ (Ly k* q)l@"k(S)) dW](s) 
0 j 

t 

+ M~ f (K~k* (91@~(s))ds, (~ ~ ~*, ~ E ~ ( m )  . 
o 

By (1.8) one can pass to the limit in the left side and in the second term on 
the right side, and it remains to show the weak convergence of the stochastic 
integral. Since by (1.6) and (I.2) 

2 

M ~(Lk*491@"k(s))dWj(s) <= oil@oil ~IIL~$11 , (1.9) 
0 j J 

it is sufficient to show this for the dense subset of random variables {Ip(t)}, 
defined as 

t 

Io(t) =- 1, lp(t) = f Ip_m(S) ~-~aj(s)dWj(s), 
o J 

where aj(t) are arbitrary functions, satisfying ~j laj(t)l 2 < const. We have 

- -  ~Lnk* 
MIp(t) )__]1, 70]~gn~(s))dWj(s) = f M l p _ l ( s )  a](s)L~k*q~l@'k(s) ds.  

0 j 0 

(1.1o) 
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By conditions (I.1), (I.2) the series ~b(s) = Ejaj(s)Ljk*~ is convergent with the 
norm bounded uniformly in s,k. From (1.8), (1.6), (1.4) and (I.1) one sees that 
the integrand in the right-hand side of (1.10) converges pointwise as k --+ ec. 
This proves convergence of the stochastic integrals as k -+ c~, and hence the 
existence of the wt-solution. 

Let Ol,I/t2 be two solutions, such that 01 (0 )=  ~t2(0), and satisfying (1.2). 
Then 6(t) = Ol(t) - O2(t) satisfies 

t t 
(4,l,~(t)) = f ~ ( L ~ j d ~ 1 6 ( s ) ) d W ; ( s )  - f ( K * 4 l f i ( s ) ) d s  . 

0 j 0 

To prove uniqueness it is sufficient to show 

rap(t) =- MIp(t)6(t) = O; p = O, 1,... , 

for arbitrary aj(s), defining Ip(t). By the Ito product formula 

(1.11) 

! 

(4)llp(t)~(t)) = f ~ ((L;lp(s) + aj(s)Ip_l(s))~l~(s)) d~(s) 
o j 

(1.12) 

By (1.2) one has Ml[Ip(t)6(t)[ [ < const, hence taking into account (I.1), the 
stochastic integral is a martingale. Taking expectation gives 

(4'Imp(O) = ~a;(~) j ~  
0 J 

for p => 1 and 

I t 
mp_l(s) d s -  f (K*(plmp(s))ds , (9 C ~* , 

0 

(~blm0(t)) = - f  (K*(olmo(s))ds, 0 C 9 * .  
0 

By (I.2) the operator K~* is m-accretive, so that ( 2 I + K * ) ~ *  is dense in ~f  
for 2 > c/2. Using this fact and taking Laplace transform as in [18], one gets 
mp(t) = 0. Then by induction one alTiVes at (1.11). 

The Markov property follows from the fact that Cnk(t) are Markov and 
from the uniqueness of the solution. [] 

Remark. 1. The proof of existence can be extended to the case where Lj = 
Lj(t, co) (respectively K = K(t, co)) are regular left continuous in t in the strong 
operator topology on the domain 9 ,  which is assumed independent of t, co 
(respectively in the strong resolvent sense), the dissipativity condition (0.2) 
holds with a constant independent of t, ~o, and (I.1) is replaced with 

Z l l t ~ ( t ,  co)0[] 2 < co,  r E ~ * ,  
J 

where c o and 9 "  are independent of t, co. 
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2 The dual equation 

According to the Riesz theorem the one-to-one correspondence between vectors 
05 E ~f  and linear bounded functionals 05* on 2/f is established by the formula 
05* : ~ ~ (4)t0), 0 c 2/f. Consider the stochastic differential equation 

d05*(t) = ~-~ 05*(t)LjdWj(t) - 05*(t)K dt; 05*(0) = 05;, 
J 

which we call the dual equation. Precisely, we shall call random process 
05(t); t E [0, T], with values in .ff~ wt-solution of  the dual equation if 05(t) 
is weakly continuous in probability and satisfies 

t t 

(05(t)lt#) - (05010) = f~ (05(s ) lL j~ )dWj( s )  - f(05(s)lK~b)ds (2.1) 
0 j 0 

for all 0 E ~ ,  t E [0, T]. Note that the right-hand side is defined due to the 
dissipativity condition (0.2). Let us denote St the unitary operator of time 
reversal in ~2(W) ,  uniquely determined by the relation 

W(s), s ~ t, 
S tW(s)= W ( t ) -  W ( t - s ) ,  s < t .  

Operator St is an involution, St 2 = I. 

Theorem 2 Under the conditions of  Theorem 1 there exists a unique wt- 
solution o f  Eq. (2.1), satisfying 

Ml(05(t)100)l 2 __< l105ol[211$ollZe ct . (2.2) 

Moreover, this solution satisfies the duality relation 

M~(05(t)100) = MSt-7(05010(t)) ,  (2.3) 

where ~ E y2 (W) ,  and tp(t) is the solution of  (1.1). 

Proof Consider the approximating equation 

d05n,(t) ~ n* n * = 05 (t)L'j dWj(t) - 05n*(t)K n dt; 05n*(O) = 050 �9 
j=l 

It has unique strong solution 05n(t), such that MI105n(t)lI 2 < oc. This  solution 
can be represented as multiplicative stochastic integral 

05n*(t)=05~lim~ rI ( I §  j=l 

where At=t /N ,  Wj(k)=Wj(kAt) - W j ( ( k - 1 ) A t )  and the product is time- 
ordered as indicated. This follows from a result of Emery [8] in finite- 
dimensional case and can be generalized to infinite dimensions by using 
the technique of [13]. The limit then should be understood as strong limit 
in probability. 
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In the same way 
+_.__ 

On( t )=  lira I + L  Xw   -Knzxt 
N---~ o o  = j = l  

for the solution of (1.5). Since S t A ~  (k) = A~(N-k+l); k = 1,.. . ,N, we have 

M~(~U(t)I00) = MS,--~(~bolOn(t)). (2.4) 

Applying this twice with ~ = (0~(t)100), we obtain 

Ml(qSn(t)l~ro)[ 2 = M[(~)ol~n(t))[ 2 . (2.5) 

From (1.6) it follows then 

M l ( O n ( t ) ] O o ) ]  2 < II00lj2jl~,o]12e ct . (2.6) 

Also from (1.7) we obtain 

M[(0n(t) - 0"(s)I00)[ 2 = M[(OoI0~(t) - 0n(s))[ 2 < %0,r) -- siilOoil 2. 
(2.7) 

From (2.4) and (1.8) it follows that M~(q~(t)10o) converge uniformly in t for 
00 c .~, ~ 6 Y~(W). Let 0(" ) be the limiting random function. Then (2.3) 
follows from (2.4) and (2.2) from (2.5). 

Due to (2.7) q~(t) is weakly continuous in probability. The proof that qS(t) 
is wt-solution of the dual equation (2.1) proceeds like in Theorem 1, but 
making use of the duality relation (2.3). For example, the estimate (1.9) is 
replaced with 

M i~j(Onk(s)lL~k~Jo)dWj(s) 2 

t 

= 
o j 

t 

= f ~ Ml(q%lC,f~(s)))l 2 ds < Cll~01t 2 ~ IIL;k(loII 2 
0 j j 

< c'114 2(1100112 z = 011 + IIX001l ) ,  

for 00 E ~ ,  where O7(t) is the solution of (0.1), satisfying 0f(0) = L~0,  and 
(1.6), (0.2) were used. 

Uniqueness is also proved as in Theorem l, but using the estimate (2.2) 
instead of (1.6). For example, to prove that the stochastic integral in the analog 
of formula (1.12) is martingale, we observe that for a wt-solution qS(t) 

M ~  I(O(s)l(Lj]p(S) + aj(s)]p_l(S))t~o)l 
J 
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Similarly to (2.5) we obtain from (2.3) 

M l ( g ~ ( t ) 1 0 0 ) l  2 = M l @ 0 1 g , ( t ) ) l  z . 

A.S. Holevo 

(2.8) 

3 Quantum dynamical semigroups 

In what follows we assume that the condition (0.2) holds with c = 0, i.e. 

[ILjg, ll= _-< 2Re(0IK~'), ~' ~ 9 .  (3.1) 
J 

The notion of dynamical semigroup is a noncommutative analog of that of 
(sub-)Markov semigroup: while the latter are semigroups of maps in functional 
spaces, the former are semigroups of maps in operator algebras, having certain 
properties of positivity and normalization. These semigroups satisfy differential 
equations, that are noncommutative generalization of the Kolmogorov equations 
(see Appendix). 

Let N ( J f )  be the algebra of all botmded operators in 24 ~ Since it is dual 
Banach space of the space of trace-class operators, it is supplied with the weak* 
topology. On norm-bounded sets this topology coincides with the weak operator 
topology (see e.g. [3]). A map �9 in ~ ( ~ )  is called completely positive if 

t,J 

for any finite sets {Oj}Eaf,  {Xj}EN(~) .  By a dynamical semigroup in 
M ( ~ )  (or quantum dynamical semioroup) we shall call a semigroup ~t; t __> 0, 
of weak* continuous completely positive maps in M(af),  satisfying ~0 = Id 
(the identity map of N ( S ) ) ,  and ~t[I] < I (the unit operator in Se'). Moreover 
for any 32 the function t --+ q?t[X] must be weak*-continuous./1St is called unital 
if e)~[f] = I. 

Proposition Under the assumptions (I.1), (I.2) the relation 

0P0l~t[x]%) = M(g,(t)lXO(t)), t >: O, (3.2) 

defines a dynamical semigroup q?t in N(Jf).  I f  @ (corr. @*) is an invariant 
domain of e -gt (corr. of  e -K-t) for t > O, then this semigroup is the min- 
imal solution of the forward and backward Markovian master equations 
(A.6), (A.2). 

Proof For fixed t the relation (3.2) defines a bounded linear map X -+ ~t[X] 
in ~ ( J f ) .  In fact by (1.2) the right side is a bounded form in %,X. The 
semigroup property follows from the Markov property of solutions. From the 
definition (3.2) one can see that the maps X --~ q?t[X] are weak* continuous 
and completely positive: 

2 

*x M ~Xj.~,j(t)  > O, 

where 0j(0) = 0]- 
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Moreover, the function t -*  ~ t[X]  is weak* continuous for all X E N(Js 
To see this it is sufficient to establish continuity of functions t ---, (qS0]q)t[X]O0) 
at t = 0. From (1.2) we have 

M l l ~ , ( t )  - 4,oil 2 _-< 2[[1~,o[I z - R e M ( ~ o l 0 ( t ) ) ] ,  (3.3) 

which tends to zero as t -~ 0 by (1.3). From the definition (3.2) the required 
continuity then follows. 

From (1.2) with c = 0 
#~t[I] < I .  (3.4) 

We shall use the Dirac's notation I~)(~1 for the rank one operator 
Z ~ ~b(~'lZ). The relation (2.8) implies 

(0olq ' , [ l r162 o) = Ml(~(t)l~,o)l 2 = Ml(q%l~,( t))f .  (3.5) 

By using Eq. (1.1) and the Ito product formula, we obtain the equation 

which is equivalent to the forward equation (A.6) with p = IOo)@0l, and by 
using (2.1), 

l 
which is the backward equation (A.2) with X = Iq%)(401. Assuming that 9 ,  9 "  
are invariant domains of the corresponding contraction semigroups in Jg, one 
can see from the proofs of Theorems A. 1, A.2 that these equations are equiva- 
lent to the corresponding Markovian master equations with arbitrary p , X ,  and 
to their integral versions (A.8), (A.4). 

According to these theorems, there exists the minimal solution ~ for both 
equations. Thus 

(0ol~,[l~o)(~ollOo) _-> (Oof~[14o)(4ol]Oo)  �9 

On the other hand, by Lemma A.3 

(r162 > (r162162162 

where g?~ is the unique solution of the backward equation (A.10) with r/ < 1. 
Consider the stochastic equation 

then J 

(~01q',"[l~0)(q%l]0o) = Ml(q~(OIg,0)l 2 

by the uniqueness of the solution of Eq. (A.10). On the other hand, by (2.8) 
this is equal to Ml(q~ol~,.(t))l 2, where O~(t) is the solution of 

d ~ ( t )  = ~1 ~ L j O ~ ( t ) d W j ( t )  - K~p~(t)dt, ~pn(O) = 0o . 
i 
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Arguing as in the proof of Theorem 1, we can find a sequence ilk T 1, such 
that ~b,k(t) ~ ~b(t) weakly in A z | 5eZ(w) uniformly in t. Then 

lim infM[(qSol~b"k(t))l 2 > M[(~bol0(t))] 2 = (~b01~St[lr 
k---+ a<:~ 

Finally (~b01~t[lr < (O01~[[r that is ~t is the minimal 
solution. [] 

The following example, inspired by [6], shows that contrary to the case of 
bounded operators, the conservativity condition (0.3) does not imply (0.4); 
thus the dynamical semigroup ~t = ~ defined by (3.2), need not be unital. t ' 

Example 1. Let ~ = I z and let {In); n = 0, 1,...} be the canonical basis 

in Jr Let @ = {0 E ~ :  N~n=O n41(oln)[ 2 < ec} and consider the equation 

t t 

O(t) = ~bo + f L~b(s)dW(s) - f XO(s)ds,  (3.6) 
0 0 

la2"t2 a t = ~  ~ x / n + l l n + l ) ( n  1, a =  where L = ( a  t)2, K =  ~__  with n=0 
Y]nC~l X / n l n -  1)(n I being the "creation" and "annihilation" operators. The hy- 
potheses of Theorem 1 are satisfied, so that the equation has the unique 
wt-solution. The condition (0.3) holds on ~ ,  but the solution $(t)  satisfies 

MIIg,(t)[I 2 < IIg, oll 2 for t > 0. To see this take IlOolt = 1 and observe that 

MIl~P(t ) l l  2 = ~ n=o pn(t), where p~(t) = Ml(nl0(t))l 2 satisfy 

d 
- ~ p n ( t ) = - ( n +  l ) ( n +  2 ) p ~ ( t ) + ( n - 1 ) n p , - z ( t ) ;  n >= 2,  

which is just the Kolmogorov forward equation for an exploding pure birth 
process, so that ~ n=0 pn(t) < 1, t > O. [] 

Thus the minimal dynamical semigroup ~ may not be unital; however if it 
is, then ~ is the unique solution of both Markovian master equations [4, 14]. 
The situation is similar to that for the Kolmogorov-Feller equations in the 
theory of Markov processes [10]. The noncommutative analog of the problem of 
non-explosion for quantum dynamical semigroups was investigated by operator- 
theoretic methods by Davies [6] and later by Chebotarev and Fagnola [4], who 
gave some sufficient conditions for the unitality. In the next section we develop 
a different view on this problem, based on the stochastic representation (3.2) 
and on Ito's stochastic calculus in a Hilbert space. 

4 Hyperdissipativity 

Let R be a positive self-adjoint operator in ~ defined on ~ - - ~ ( R ) ,  and 
let H be a symmetric operator with ~ ( H )  D ~ .  Defining 

K = � 8 9  ~ ( K )  = ~ ,  

we have K* D �89 - ill. We shall assume 

(II.1) ~ is a core for k and K*. 



Dissipative stochastic equations 493 

This condition will allow us to take 9 "  = 9 .  

(II.2) I[H011 _-< elli/011 + c2110]t, 0 E ~ , f o r  some cbc2 > O. 

If c~ __< 1, then by Wrist's theorem (see [16]) (II.2) ~ (II.1) and K,K* are 
m-accretive operators, which implies (I.2) with ~ = ~*.  

Consider Eq. (0.1) with Lj satisfying (I. 1 ), (I.2) and the conservativity con- 
dition (0.3) written in the form 

IILj0112 = (e010), 0 ~ 9 .  (4.1) 
J 

By Theorem 1 it has the unique wt-solution satisfying (1.2) with c = 0. 

Theorem 3 Let the conditions (I.1),(I.2),(II.1), (II.2) and 
(II.3) 0 E @ implies LjO E @(R I/2) and 

2 IIR*/NLjOII2 - 2Re(K01R0) < c[(0lR0) + [10112], 0 E ~ ,  
J 

be fulfilled. Then (4.1) implies mean-square norm conservation (0.4). 

Remark. 2. As shown in [12], similar result can be derived from Theorem 3.2.2 
of [19] by taking special Hilbert scale associated with R. The condition (II.3) 
expresses dissipativity in this scale and therefore we call it hyperdissipativity. 
The condition (II.2) is rather technical and certainly can be relaxed (for exam- 
ple if R = 0, H essentially self-adjoint, then (0.1) is the Schroedinger equation, 
which always has unique solution satisfying (0.4)). 

Proof We use the normal triple 3f c J{~ C ~'* of Hilbert spaces, where K = 
0 2 =  ~(R 1/2) with the norm II liar IIR1/20112 @ 1101l 2. The canonical bilinear form 

between s and 2g* will be denoted [ �9 , �9 ] (see e.g. [19, Sect. 3.2]). 
Let us take R,, = (I + (1/n)R) -1 instead of (1 - (1/n)K~) -1 in the proof of 

Theorem 1. The condition (I1.2) insures that L~,K" have the same properties 
as operators in ~ and are bounded in 5f. Take 00 E 2F and consider (1.5) 
as equation in the Hilbert space 2F. From (II.2) and (I1.3) one can deduce 
dissipativity in ;g: 

Ilzj011~ = 2Re(0lK~0)~r < ctl011~, 0 ~ 9 ,  
J 

with a constant c independent of n. This implies that the solution lpn(t) lies 
in Y" and 

Mll0~(t)l] 2. __< 1100112e" 

The sequence 0n(t) is norm-bounded in 5f | y 2 ( W )  and weakly converges 
to 0(t)  in ~t ~ | 2a2(W), hence in ;T | ~2 (W) .  Therefore 

MIl~(t)ll 2 ~ II~oll~e2 c t  . (4.2) 

Taking into account that O(t) E ~ ,  the relation (1.1) can be rewritten as 

t t 

( ~ 1 0 ( t ) )  - (~100) = f ~ (<Lj~(s)) dWj(s) - f [~,KO(s)] as, 
0 j 0 
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where K is bounded operator from Sf to Sf*. Indeed by (I1.2) it follows that 

[(OIxO)l <= c[(~,IRO) + 11~,112], 0 ~ 

(see [16, Theorem VI-1.38]), whence the operator (R +I) - I /eK(R + 1 )  -1/2 is 
bounded on a dense domain. Now 

liKe'liar, = Ib(R +1)-1/21011 <- II(R +I)-I/2K(R + I ) - V 2 1 I  �9 II011~ �9 

Applying the Ito formula for the square of norm in the form given in 
[19, Theorem 2.4.2] one obtains 

t 

110(0112 = 1100112 + f~2Re(O(s)lLjO(s))dWj(s), (4.3) 
0 j 

where the integral with respect to ds vanishes because of the conservativity 

condition (4.1) extended to 5f. Denoting p(t)  = i I ~,(t)l12, 
~(t) = { O(t)p(t)-I if  p(t) > 0 ,  

a fixed unit vector from ~r otherwise 

and 
aj(t) = 2 Re(~b(t)lLj~(t)), (4.4) 

we can rewrite (4.3) as the exponential equation 

dp(t) = p(t) dZ( t ) ,  (4.5) 

where Z(t) = fo P~jaj(s)dWfis) is a local martingale. To establish (0.4) it is 
sufficient to prove that p(t) is martingale, and this can be shown by appropriate 
modification of an argument of Gatarek and Gisin [11]. 

Consider the stopping times 

^ 2 
zn = inf{t > 0: t l~( t ) l ly  _-< n}.  

Since by Cauchy-Schwarz inequality and by (4.1) the quadratic variance (Z(t)) 
of  Z(t) is evaluated as 

t t t 
^ 2 

(Z(t)) = f ~ aj(s) 2 ds < 4 f ~ IILj~,(s)ll 2 as = 4 f II0(s)ll~ as, 
o j  o j  o 

we have 
(Z(t A zn)) < 4tn. 

This is sufficient for p(t A z,) to be uniformly integrable martingale [17], 
in particular, 

Mp(t  A z~) = p(O). 

Take [lff01[ = 1, then p(t A z,) is the density of the new probability measure 
t'~ with respect to the basic measure P. From (4.2) one has 

Ifl ,  l l~(t A zn)[[~ = Mll~,(t A z . ) l l~  _-< II001[~re c'- 
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It follows that 

I1~( )1[ 2 

as n -~ oc. Therefore 

2 

whence Mtl~(t)ll  2 = 1 = ll001[ 2. [] 

Example 2. This example shows that (II.3) is not a necessary condition 
for the mean-square norm conservation. Consider Eq. (3.6) in Yf = f 2 ( 0 ,  oc) 
with 

d 1 
Z z - -  m m .  

dx x '  
~ ( L )  = {0:  0(0)  = 0, 0 '  C •2} ; 

1 d 2 
l 1 * K = ~ R = ~ I ; L =  �9 ~ ( R )  = {0:  0(0)  = 0, 0 "  ~ S }  

2 dx 2' 

and H = 0. In defining L we have in mind the inequality 

O O  

f x-210(x)l 2 dx < 4 f  ]0'(x)] 2 dx, 
0 0 

valid for 0 C ~ ( L )  (see [16, p. 345]). With ~ = 3 "  = ~ ( R )  one can check the 
conditions (I.1), (I.2) ( ( ILl ) ,  (II.2) are trivially satisfied) and the conservativity 
condition (4.1). 

The condition (II.3) does not hold, since 0 E ~  does not imply L 0  E 
~ ( R  1/2) = ~ (L) .  However  (0.4) holds for solutions of  Eq. (3.6). We sketch 
the argument without going into detail. The function p(t,x) = Ml0( t ,x)[  2 sat- 
isfies the forward Kolmogorov equation 

@ 0 (x l p ) +  l 02 
& -  & ~ / x 2 p ;  0 < x < ~ ,  

and the initial condition p(O,x) = t00(x)l 2. This is diffusion on (0, oc) with unit 
coefficient and with the drift x 1, for which both 0 and oc are non-attainable 
boundaries, hence 

O G  

M]]O(t)ll 2 = fp ( t ,x )dx  = fp(O,x)dx = llOoll 2 . 
o o 

Now let us consider the wt-solution of  a conservative equation (0.1) and assume 
that (0.4) holds (for example the conditions of  Theorem 3 are fulfilled). Let 
110011 = 1, then (0.4) implies that the process p(t) = 110(0112 can be regarded as 
the Radon-Nikodym derivative of  a new probability measure t '  with respect 
to the initial P. By the Ito formula for the function 0 ~ FI0112 the process 
p(t) satisfies the exponential equation (4.5), and is the uniformly integrable 



496 A.S. Holevo 

exponential martingale 

p( t )  = exp[Z(t) - �89 (Z(t))]. 

According to Girsanov's theorem, the processes 

t 
l~j(t) = W j ( t ) -  f a j ( s ) d s ;  j = 1,2 . . . . .  t > 0,  

0 

are independent standard Wiener processes with respect to the new probability 
measure P. The normalized process ~( �9 ) satisfies the nonlinear stochastic 
equation 

t d t 
t~(t) = ~ ( 0 ) +  f ~ [ j ( s ) ~ ( s ) d W j ( s ) -  fk(s)~(s)ds, (4.6) 

0 j=l  0 

where d < 0% 

1 d 1 d 
[ j ( s )  = Lj - �89 Is = K - 2 j=l ~ aj(s)Lj + g j : l  ~ aj(s)2I ' 

and aj(s) are the quadratic functions of ~(s), given by (4.4). Equation 
(4.6) can be derived by applying the Ito product formula to the function 

-+ 0 �9 tl 0 ]]-1 and by taking into account the exponential equation for 
the process II0(t)[1-1, which is just square root of the Radon-Nikodym 
derivative of P with respect to P (cf. [1]). This is the nonlinear equa- 
tion for normalized posterior wave function in a continuous measurement 
process (see [7,2]). The linear equation (0.1) plays the same role for 
this equation as Zakai's equation in the classical nonlinear filtering 
theory. 

In this way one obtains a generalization of the result of Gatarek and Gisin 
[11] on the existence of solution of Eq. (4.6) (in the sense of proof of the 
Theorem 3) with a priori given Wiener processes Wj(t), in the case d = 1, 
L = L1 self-adjoint and K = 1L2. Note that the generalization to the case 
d > 1 (or even d = 1, L nonselfadjoint) is by no means straightforward, since 
a condition of the type (II.3) must appear (which is fulfilled automatically in 
the situation of [11]). 

The uniqueness of the strong solution of (4.6) can then be proved 
along the same lines as in [11]. This solution gives a different stochastic rep- 
resentation for the dynamical semigroup from Sect. 3: 

( ~ 0 1 ~ , [ x ] 0 0 )  = M(~(t)lx~(t)), 
which has important applications in the theory of quantum measurement (see 
[1,2, 7, 11] for further details and references). 

Acknowledgements. Thanks are due to A. Barchielli, F. Fagnola, D. Elworthy and J. 
Zabczyk for discussions of intermediate versions of the paper. This work was partially 
supported by the Grant J6M100 from International Science Foundation and Russian 
Government. 
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Appendix 

The minimal solution of  Markovian master equations 

Let N ( ~ )  be the algebra of all bounded operators in a Hilbert space ~ .  Since 
it is dual of the Banach space of trace-class operators ~"(-yg), it is supplied 
with the weak* topology, defined by the family of seminorms 

X -+ TrpX, p E g-(2(~). (a.1) 

Let ,I, be a linear bounded map in @ ( ~ ) ,  then the adjoint map �9 = ~I'* in 
N(.;4 ~ is weak* continuous, and every weak* continuous map c) arises in this 
way [3]. �9 is called preadjoint of �9 and denoted ~. .  If r is a dynami- 
cal semigroup in ~ ( a f ) ,  then ~gt = (<Pt). is a strongly continuous semigroup 
in Y(24~), called preadjoint semigroup. 

Let Lj,K be operators satisfying the dissipativity condition (3.1), then we 
can consider the backward quantum Markovian master equation 

~ (Olodx]~)  

= E (Ljg, l~,[x]4,) - (KC, l,~dx]r - ( r  (A.2) 
J 

for q~, ~ E 9 .  We assume the following regularity properties for a solution 
of the backward equation (A.2): this should be a family (not necessarily a 
semigroup) (I)t: t => 0, of normal completely positive maps in ~(d4~), uni- 
formly bounded in norm, satisfying ~0 = Id, and such that all functions 
t ~ ~t[X], X ~ ~(Ytf), are weak* continuous. 

The following results may be considered as extensions of ideas of Feller 
[10] to the noncommutative situation. 

Theorem A.1 Let k be m-accretive and ~ be an &variant domain of the 
semigroup exp(-Kt),  t > O. Then there exists the minimal solution ~ of 
Eq. (A.2), which is a dynamical semigroup. 

Proof (Sketch). Introducing the semigroup ~t[P] = e-KtPe-x*t in -Y-(~,~), we 
see that the dense domain 

D = lin{p: p = [qS)(Ol, qS, O E ~}  (A.3) 

is an invariant domain for ~)t. Defining Alp] =EjlLjq~)(Lj~, I for p =  
14)(01 D, one can show [14] that (A.2) is equivalent to the integral equation 

t 

Tr pq~t[X] = Tr ~r + f Tr A[v),Ep]]~t_,[X ] ds, 
0 

p C D, x E ~ ( ~ ) .  

(A.4) 
Indeed, both equations are equivalent to 

d 
j-sTr~,[p]~t-s[X] = -TrA[vT~,[p]]~t_,[X], 0 _< s _< t .  

Note that in (A.4) N(a4Y) may be replaced by any weak* dense subspace. 
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The existence of the minimal solution is proved by considering iterations 
[4, 9]: 

t 

Tr p~7 +1 [Y] = Tr ~'t[p]X + f Yr A[~s[p]]q~_~[Y] ds (A.5) 
0 

with ~][X] = ~t[X] = e-X*tXe -;~t. Complete positivity of A implies that 
~]+~ _ ~5] is completely positive, and (3.1) implies ~ [ I ]  < I, by induction. 
By bounded monotone convergence there exists lim,_~oo~5~' = ~5~176 , satisfying 
(A.4). Since for any other solution ~t the difference ~t - ~] is completely pos- 
itive by induction, ~ is the minimal solution. For detailed proof of properties 
of ~5~ see [4,9, 14]. [] 

Assuming the condition (I. 1), we can consider the forward equation: 

~ ( r  

= ~ ( L j ~ I ~ , [ p ] L ] O )  - (K* q~[,I,,[p]~,) - (q~['I 't[p]K*O). (A.6) 
J 

For a solution ~t; t > 0, of (A.6) we demand that ~ [  should satisfy the 
regularity properties of solution of the backward equation. Defining 

D* = lin{X = IO)(q~l; ~b,r E ~*} 

and A*[X] = EjlLj~)(L]O t for X = 10)(qSI E D*, we have 

TrA[p]X = TrpA*[X]; p E D, Y E D*. (A.7) 

Theorem A.2 Let k (hence K*) be m-accretive and 9" an invariant domain of 
the semigroup exp(-K*t) ;  t > O. Then ~P~ = (qa~), is the minimal solution 
of the forward equation (A.6). 

Proof Like in the previous theorem, one can prove that (A.6) is equivalent to 

t 

Yr@t[p]X = Trp~t[X] + f Tr~t_s[p]A*[~[X]]ds, p E J ( ~ ) ,  X E D*, 
0 

(A.8) 
where J-(JY) can be replaced by any norm-dense subspace. The proof then 
proceeds along the same lines as for the classical Kolmogorov-Feller equation 
[10]. Consider the iterations 

t 

Tr ~ + l [ p ] X  = Tr p~t[X] + fTr~_s[p]A*[~s[X]] ds, (A.9) 
0 

with ~ [ p ]  = ~t[P]. If these iterations converge, then the limit is the minimal 
solution, by the same argument as in previous theorem. We shall prove by 
induction that ~ = ( ~ ) , ;  then the convergence will follow from the proof of 
Theorem A.2. In our proof we take p E D and X E D*. 

Assuming that (q~),  = ~ for k = n - 1,n, we have from (A.9) with n + 1 
replaced with n: 

t 

Tr pq~[X] = Tr p~;[X] + f Tr p~7_-, ~ [A* [~s[X]]] ds. 
0 
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By substituting into (A.5), 

t 

Tr p@~+l [X] = Tr @t[p]X + f Tr A[@s[p]]4t_s[X] ds 
0 

t t - s  

+ f f Tra[~)dp]]e~L)_u[A*[q, dX]]] duds. 
0 0 

Changing variables and using (A.7), this is transformed to 

t 

Tr p~t[X] + f Tr p4t- , [A* [ ~  IX]]] du 
0 

t t - - u  

+ f f frA[~s[p]]q~_-l_u[A*[q?~[X]] ] dsdu 
0 0 

l 

= Tr p(~dX] + f Tr p~t- ,[A* [~,[X]]] du, 
0 

by (A.5) with n §  1 replaced with n. By the induction assumption, we 
obtain (A.9). [] 

Consider also the backward equation with Lj replaced with r/Lj (0 < ~/ < 1). 
We shall write it already in the integral form 

t 

Trp~t[X] = Trffdt[p]X+~12fTrA[~,[p]]~bt_,[X]ds, p E D. (A.10) 
0 

Lemma A.3 Equation (A.10) has unique solution ~ .  Moreover, ~ - ~] is 
completely positive for all t. 

Proof(Sketch). Let ~t be a solution of (A.10) and ~] be the minimal solution, 
which exists by Theorem A.1. Denoting At[X] = ~t[X] - O~[X], X > 0, and 
taking p = 10)(01, 0 C 9 ,  we have 

t 

0 ~ (0tdxdX]0) ~ 72 l<im HAdX]lifTrA[q~dlO)(OI]ds, 
O _ s < t  0 

and the integral is evaluated as 

t ~d 
f 2  IILSK 01t2ds =  lle-K'll2ds _-< 110112 �9 
0 j 0 

It follows that At = 0. Second assertion follows by induction from considering 
(A.5) and similar iterations for (A.10) (see [9]). [] 

Note added in proof Recently the author was able to improve Theorem 3, 
by replacing operator R in the condition (II.3) with arbitrary strictly positive 
self-adjoint operator A, having the core 79. The restrictive technical condition 
(11.2) is the relaxed to II H0  tl < II A0 II, [I R0 1/< II A0 I[ for all 0 E 79. 
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