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Summary. Let ai, i >  1, be a sequence of nonnegative numbers. Define a 
nearest neighbor random motion ~ = Xo, X1, ... on the integers as follows. 
Initially the weight of each interval (i, i + 1), i an integer, equals 1. If at time 
n an interval (i, i+1)  has been crossed exactly k times by the motion, its 

k 
weight is 1 + ~, aj. Given (Xo, X1, ..., Xn)=(io, il, ..., i,), the probability 

j = l  

that X,  + 1 is i , -  1 or i, + 1 is proportional to the weights at time n of the 
intervals ( i , -  1, in) and (in, in + 1). We prove that X" either visits all integers 
infinitely often a.s. or visits a finite number of integers, eventually oscillating 
between two adjacent integers, a.s., and that lira X n / n = O  a.s. For  much 

n ---~ oo 

more general reinforcement schemes we prove P ( ~  visits all integers infinitely 
often) + P ( ~  has finite range)= 1. 

I. Introduction 

In this paper we study a class of stochastic processes driven by simple dynamics 
which depend on the entire process history. Although these processes are in 
general not Markov, we begin our discussion with a comment about Markov 
processes. Let ff = {wi, - 0 o  < i <  c~}, where each wi is a positive number, called 
the weight of the interval (i, i+  1). An integer valued stochastic process 
X o ,  X x , ... which satisfies 

(1.1) P ( X n + ,  =in+  1 I(Xo, X1, ..., X,)=(io,  ix, ..., in)) 

= 1 -- P (Xn +, = in-- 1 I(Xo, X l . . . .  , X,) = (io, il, ..., in)) 

Wi n 

Win ~- Wi~ - 1 
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is an integer valued Markov process with stationary transition probabilities 
p~,~ satisfying Pk, k-  1 > O, Pk, k + ~ > O, Pk,k- ~ + Pk,k + 1 = 1, -- OO < k < oo. Conversely, 
any such Markov process arises from an appropriate ~0 unique up to multiplica- 
tion by constants. This observation is probably due to T.E. Harris. 

Now we describe a process which has recently been introduced by Diaconis. 
This process is integer valued, and will be designated by Y0, I11 . . . .  At time 
n the weight of the interval (i, i + 1) is one plus the number of those integers 
k < n  such that (Yk, Yk*l)  is either (i, i + i )  or (i+1, i), that is, the weight of 
an interval is initially 1 and is increased (reinforced) by 1 each time it is crossed. 
If w(n, i) stands for the weight of (i, i+1)  at time n, then the version of (1.1), 
in which X is replaced by Y and w. by w(n, .), holds. This process remembers 
where it has been and prefers to cross familiar intervals, that is, those already 
often crossed. Diaconis studies this motion by showing it is equivalent to having 
an independent Polya's urn at each integer which directs the motion up or 
down. de Finetti's theorem, applied to each urn, then shows the motion is equiva- 
lent to a random walk in a random environment, and the results of this subject 
are used. Especially, almost sure recurrence follows almost immediately. (We 
will say a sequence of integers is recurrent if each integer occurs infinitely often 
in the sequence, and say the sequence has finite range if only a finite number 
of integers occur.) 

Our introduction to this subject came in two talks Diaconis gave at the 
1987 Midwest Probability Conference. His main emphasis was on the limiting 
distributions for related walks on finite graphs, distributions related to the limit- 
ing distributions of Polya's urns. This work, joint with Coppersmith, is not 
yet written down. For an exposition of the method described in the previous 
paragraph as well as very interesting results about related processes on trees, 
see Pemantle [8]. 

The present paper considers only integer valued processes. Diaconis' method 
can not be adapted to study many reinforcing schemes other than the one 
given above, that is, the one which increases the weight of each interval by 
1 (or by the same constant amount) each time it is crossed. For example, suppose 
the initial weights of all intervals are 1, and are increased by 1 only the first 
time the interval is crossed. The resulting process could be called fair random 
walk with partial reflection at the prior maximum and prior minimum, and 
is not too hard to study directly, but Diaconis' approach is inapplicable. 

We mainly study one dimensional lattice valued reinforcing walks Jf 
=(Xo, X1... ), in which the initial weights are all 1, an assumption in force 
throughout this paragraph. We prove, for very general reinforcing schemes, 
that P(3~ is recurrent)+P(J(  has finite range)= 1. Under less general schemes, 
still broad enough to include the situation where the nonnegative number ak 
(not depending on/)  is added to the weight of (i, i + 1) the k-th time it is crossed, 
and also broad enough to cover iid reinforcement, we prove X, /n - -*O a.s. as 
n ~ o o .  Parenthetically, we do not find the weak law of large numbers any 
easier to prove than the strong law. We also study the analog of gambler's 
ruin problems, and show that as 2 ~ oo, the order of magnitude of the probability 
that a reinforced walk, started at 1, hits 2 before it hits zero, can be as large 

as I/V~, but no larger. 
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In the final section we present Herman Rubin's elegant solution of a conjec- 
ture we showed him involving generalized Polya urns. Our treatment is self 
contained, and this part of the paper may be read independently of the rest. 
We then apply this result to reinforcing walks, and state several open problems. 

2. Notation and Definitions 

We define reinforced random walk (usually just called walk here, sometimes 
abbreviated RRW) to be a sequence J ( =  {Xi, i> 0} of integer valued random 
variables and a matrix [w] = {w (n, j), 0 < n < oe, - oe < j  < oe } of positive random 
variables, all defined on the same probability space, such that if ft,  is the o--field 
a({Xi,  0 < i < n, w(i, j), - oe <j < oe , 0 < i < n}) then the following hold. 

i) w ( n + l , j ) - w ( n , j ) > O ,  with equality if (X,, X , + 0  is not either ( j , j + l )  
or ( j+  1,j). 

ii) P (X, + 1 =J + 1 IX, =j,  ft,) = 1 - P (X, +1 = J -  1 IX, =j,  ft,) 
w(n,j) 

- w ( n , j ) + w ( n , j -  1) a.s. 

For  brevity we often designate this walk by 2~ instead of (J(, [w]). The ran- 
dom variables w(0, j), - o e  < j  < oe, are called the initial weights of J(, and we 
say J( is initially fair if all the initial weights are 1. We say the reinforcement 
is nonrandomized if w(n, j) is measurable with respect to o-(Xo, X1 . . . . .  X,), n > 0, 
and it is said to be up only [down only] if w(n, j) = w ( n -  1, j) whenever (X,_ 1, X,) 
is ( j + l , j )  [ ( j , j+ l ) ] .  If X , = j + I ,  X , + I = j  or X , = j ,  X , + I = j + I  , we say the 
walk crosses ( j , j + l )  between times n and n + l ,  and we say the walk starts 
at k if X0 = k a.s. The distribution of the walk is the distribution of ()~, [w]). 
By a reinforcement scheme we mean a rule which, together with the distribution 
of (Xo, w(0, k ) , - o e < k < o e ) ,  determines the distribution of the walk. There 
is no need to be more precise than this, since when we use the term it will 
always be in the context of a specific scheme. 

We say a walk is of sequence type if there is a sequence d={ak,  k > l }  of 
nonnegative numbers, called the sequence of the walk, such that if qS(n, j) is 
the number of times that (Xo, X1 . . . . .  X,)  crosses ( j , j + l )  then w(n,j)=w(O,j)  

4~(n,j) 

+ ~ at a.s. (almost surely). That is, the k-th time X crosses (j, j + 1), the weight 
i = 1  

of this interval is increased by a k a.s. Often in situations like this (and in fact 
in any situation) we omit a.s. 

We say a walk is a Diaconis walk if it is an initially fair sequence type 
walk, and all coordinates of the sequence are 1. 

Matrices in this paper are always infinite matrices of the form {aj, z, - ~ < j  
< ~ ,  1 __<i< ~ } = [ a  I. A walk is said to be of matrix type if there is a matrix 
of nonnegative terms [a], called the reinforcing matrix (or just matrix) of the 

4)(n,j) 

walk, such that w(n, j )=w(O, j )+ ~, aj, i. Finally, a walk is said to have iid 
reinforcement if i= 1 

w(n,j) = w (0,j) + ~ Zi, 
{0 <.i<n: (Xi, Xi+ 1) = (j, j +  1) or ( j+  1,j)} 
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where Z1,Z2. . .  are iid nonnegative random variables and, if n>0 ,  Z ,+I  is 
independent of ~ , ,  n > 1, the a-field defined in the definition of RRW. We use 
~ ,  only to stand for this a-field and use ~ ,  n____0, only to stand for 
a(Xo, X1, ..., X,). For most of this paper we will be working with non-random- 
ized reinforcement, in which case ~ ,  equals ~ ,  and in which case there are 
a countable number of disjoint atoms in ~,  which have probability totaling 1. 
(If P(Xo=k)= 1, there are exactly 2 ~ atoms in ~.  having positive probability.) 
Let A stand for one of these atoms and consider the process (X,+~, i>O, w(n 
+ i, j), i > 0, - oo < j  < co), conditioned on A. This process is itself a RRW. At 
most n of the initial weights for this walk may differ from the original initial 
weights, namely those of intervals crossed by Jf between times 0 and n on 
A. If the original walk was a matrix type walk, so is this conditioned one 
(not necessarily with the same matrix), but, if the original walk is a sequence 
type walk this one may not be sequence type. 

Let (X, [w]) be a R R W  and let T be a stopping time with respect to ~q,, 
n=>0, such that P ( r < o o ) = l .  Then (ST+i, i>=O, w(r+i, j ) ,  i>=O, - o o < j < o o )  
is also a RRW, although not necessarily matrix type even if Jf is; a finite 
(random) number of the initial weights for this walk may differ from those 
of the original walk. 

We use z only for inf{k: Xk__<0}. Here, as elsewhere, i n f , =  oo. Absolute 
positive constants are designated by c, C, c l, etc. The indicator function of 
a set A is written I(A), and the minimum of a and b is written a/x b. If 
=(v~, v2, .. . ,  v,) is a vector we put L(g)= n. 

3. Recurrence and Maximal Inequalities 

To begin this section we will study recurrence properties of reinforced random 
walk. The proof involves an extension of a martingale argument used by Harris 
to study recurrence of the Markov processes described in the first paragraph 
of this paper, which we briefly recall. First note that if a and b are positive, 
and if Y is a random variable which satisfies P(Y=a-1)=a/(a+b),  P (Y= 
-b-1)=b/(a+b) ,  then EY=O. Let X o, X1 . . . .  be the process described in the 

j - 1  

first paragraph of this paper, started at k>0 .  Put f ( j ) =  ~ w71, j > 0 ,  and 
i=0 

f (0 )=0 .  Then f(Xi, ,O, i>O, is easily seen to be a nonnegative martingale 
since P ( f ( X , . l ) - - f ( X , ) = w f l l ~ ) ~ - - l - - P ( f ( X n + O - - f ( X n ) =  --Wf2a]~) 
= Wj/(Wj + W j-  1) on {n < ~, X,  =j}. Since nonnegative martingales converge a.s., 
it is easy to conclude that if lim f ( n ) <  oo, P (z<  oo)< 1, while if lim f ( n ) =  or, 

n ~ o o  n ,--~ oo 

P(z < oo) = 1. See [5], p. 106 for a more detailed description of this argument. 
We are going to construct a supermartingale below, and two facts that will 
be used are: 

(3.1) (i) If a and b are positive numbers and if P ( Z = - b - 1 ) = b / ( a + b )  and 
P (Z = d) = a/(a + b) for some d _< a -  l, then EZ < O. 

(ii) I f Z  is as in i) and if Y = ( a - l - d ) I ( Z = d )  then E(Z+ Y)=0. 
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Lemma 3.0. Let X be a RRW such that all but perhaps a finite number of the 
initial weights w(O, j) equal 1. Then P(X k = 0 for some k)+ P(X has finite range, 
Xk=~O, k_->O)= 1. 

Proof. Assume with no loss of generality that Xo > O. For  0 _ n < oo define 

Put 

and 

k - 1  

FX(n,k)=F(n,k)= ~ w(n,j) -1, k ~ l ,  
j = 0  

= 0  if k__<O. 

/? M. =M.=F(n/x z, X.^~), n>0 ,  

H~=H.=M.+ ~ [w(i - l ,  X i_ t ) - l -w( i ,  Xi_l) -1] 
i=1 

�9 I(Xi>Xi-1,  i -  l<z ) ,  n=>O, 

where the sum is taken to be zero if n = 0. Then M. ,  n > 0, is a nonnegative 
supermartingale, and H. ,  n > 0, is a nonnegative martingale. To prove this, first 
note that nonnegativity is immediate for M. ,  and that w(i-l , j)Nw(i, j) ,  so 
that H.  > M..  Now put d. = M . - M . _  1. We will show 

(3.2) E(d. l f# . -  0 ~0,  n_>_l. 

On { n - l > z } ,  d ,=0 ,  so it suffices to prove E(d, l f # , _ 0 = 0  on { n - l < z ,  X . - 1  
j - 1  

=j}=Aj, j>O. Now, on Aj, M . - I =  ~ w ( n - 1 ,  0 -1, and none of the intervals 
i=0  

(i, i+ 1), i< j -2 ,  can be crossed by X between times n -  1 and n, so w(n-  1 , / )=w 
(n, i), O<i<j-2 .  Also w ( n - l , j - 1 ) = w ( n , j - 1 )  on Ajn{X ,=j+I} .  Thus, on 
Aj, (3.2) follows from the conditional (conditioned on f~,-1) version of (3.1)i) 
with Z = M , -  M,_  1, b = w ( n -  1, j -  1), a = w ( n -  1, j), and d = w(n, j ) -  1. Further- 
more, E(H, -H, - I I~ ,_O=O on Aj by (3.1)ii), and H,=H,_I  on { n - l > - c } ,  
so that Hn, n > O, is a martingale. Paranthefically we observe that the decomposi- 
tion M,  = H,  + (M, - -H , )  is not the Doob  decomposition of a supermartingale. 

Now observe that H , + I - - H , = I  on B,,= {X,,+ I > X,,, n<'c, w(n, X,.)= l}. 
Being a nonnegative martingale, H .  converges, so only a finite number of the 
events B, occur. Let F be all intervals (i, i+1),  i>Xo, such that the initial 
weighting of (i, i+1)  is 1. Then B,~D,={n<z,  f ,  crosses an interval in F for 
the first time between times n and n + 1}. Thus only a finite number of the 
events D, occur, that is, only a finite number of intervals in F are ever crossed 
before z. Since by hypothesis only a finite number of the intervals (i, i+  1), 
i >  Xo, are not in F, the number of distinct intervals crossed by ~ before 
is finite, implying the conclusion of Lemma 3.0. []  

For  later reference, we observe that if the reinforcement is down only then 
H,  = M, ,  n > 0, so that M,,  n = 0 is a martingale. 
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Theorem 3.1. Let X be an initially fair RRW. Then P(X is recur rent )+P(X has 
finite range)= 1. 

Proof. It suffices to show that for any integer m, 

(3.3) P(Xi=m for infinitely many i )+P(X has finite range, X i = m  for at most 
finitely many i)= 1. 

Since the proof is the same for all m, we do this only for m =0. An equivalent 
formulation of (3.3) for m = 0  is 

(3.4) P ( X i = 0  for some i>n)+P(X  has finite range, Xi:~0 for all i > n ) = l ,  
n=0 ,  1, 2, ... 

We have already observed in Sect. 2 that, for fixed n, {X,+i, i>0, w(n+i,j), 
i > 0, - oo < j  < oo } is itself a RRW. 

Since the initial weights for J~ are by hypothesis all 1, at most n of the 
weights w(n, i), - o o  < i <  oo, can be different from 1. Thus the walk X,+i, i>  1, 
satisfies the hypotheses of Lemma 3.0, and (3.4) follows from Lemma 3.0. []  

We observe that the hypothesis that Jf be initially fair in Theorem 3.2 cannot 
be entirely dispensed with, since there are initial weights which, without any 
more reinforcement, give rise to transient Markov chains. 

In special cases we can characterize the sample path behavior. If d = al ,  a2, ... 

is a sequence of nonnegative numbers, put q~ (d) = n~ 1 + ai 
1 i = l  / 

Theorem 3.2. i) I f  X is an initially fair sequence type RRW, with reinforcement 
sequence d, then if q~(d)= oo, J( is recurrent a.s., and if qS(d)< oo, )(  has finite 
range a.s. 

ii) I f  )( is an initially fair R R W  with iid reinforcement with associated vari- 
ables Z 1 , Z  2, . . . = Z  then if ~b(Z)= oo a.s., X is a.s. recurrent, and if ~b(Z)<oo 
a.s., )~ has finite range a.s. 

iii) In the finite range case of i) and ii) above, there are (random) integers 
N andj such that X iE{ j , j+  1} if i>N.  

Proof of i). We first consider the case q~ (d)< oo. Suppose, with no loss of generali- 
ty, that P(Xo=j)=I  for some j. For n>j  put T,=inf{k: X~=n}. Then at T~, 
the weight of ( n - l , n )  is l + a l ,  the weight of (n, n + l )  is 1, and the weight 
of (n + 1, n + 2) is also 1. Thus, conditioned on { Tn < oc } and on ~r , ,  the probabil- 
ity that (XT,, XT~+~, Xr.+2 . . . .  ) is the vector (n, n +  1, n, ...), with odd compo- 
nents n and even components n + 1, equals the infinite product 

_1I 1. 
[(1 + a l )+  CZo][ 1 ~ 1 ] [ - ( 1  + a l )+  c~2j[ 1 + e3 j . . = p > 0 ,  

J 
where c~j= 1 + ~ a~ is the weight of (n, n + 1) when it has been crossed exactly 

i = 1  

j times, and ~o = 1. Especially P(Tn+ 2 < oolT, < oo)__< (1-p) ,  which implies P(T~ 
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< oo for all n)=0,  that is, P ( s u p X i =  oo)=0, so, by Theorem 3.1, P(J~ has finite 
range) = 1. 

Next suppose qS(d)= oo, and again that P ( X o = j ) = I .  For n>j, define Vo 
= i n f { k > 0 :  Xk=n},  and vi+ 1 =inf{k > v~ :Xk=n, Xs4=i + l, O<=s<k}, i=> 1. Then 

{Vo < OO}= {sup X~>n}, 
i>= l 

and 
{vi< oo, i__>0} = {sup Xi=n,  !im X i = n  }. 

i > l  ~ c o  

Now if n>j, at time vi the weight of (n, n + l )  is 1 and the weight of ( n - l ,  n) 
2 i + 1  

is 1+  ~ ak=fli, since, on {vj<oo}, (n-- l ,  n)is  crossed exactly two times be- 
k = l  

tween v j_ 1 and vj. Thus 

SO 

P(vi+ l < Go [vi< oo)= P(Xvi+ I = n - -  1 ]vi< oo)= fli/(1 + fli) 

cO 

P(vi < oo, i>= O) = P(v o < ~ )  1-[ fill( 1 + fii) = O. 
i = 0  

This implies P(sup Xi=n,  lira X i = n ) = 0  for each n>j, and almost identical 
i i ~ c o  

reasoning yields this result if n=j. Similarly P(sup Xi-- lim X~)=0 for each 
m_>_0, so by Theorem 3.1, )(  is recurrent, i>_,, i-~co 

The proof  of ii) is very similar and is omitted. The proof of iii) will be 
given in Sect. 5. []  

Let So, $1, -.. be ordinary (unreinforced) fair nearest neighbor random walk 
started at the positive integer /~. Let 2 be an integer exceeding /t. Then it is 
well known that 

(3.5) P(  max Sk > 2) = #/2. 
O < k < ~  

(Recall z = inf{k: Sk < 0}.) This equality is in fact one of the many ways to prove 
recurrence of such unreinforced random walk. If M, ,  n >0,  is a nonnegative 
martingale started at p, then (see [3], p. 314) 

P( sup Mk>2)<=#/2, 2>0 .  
O_<k<~ 

For general initially fair R R W  only a much weaker inequality holds. 

Theorem 3.3. There is a constant C such that if X is an initially fair RR W started 
at p > 0 then 

(3.6) P(  sup Xk>=2)<Cp/]/~, 2>0 .  
O < k < ~  
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Furthermore, there is a constant c and an initially fair random walk started at 
# such that the analog for this walk of the probability appearing in (3.6) exceeds 
c #/]//2 for each 2 > #2. 

Proof. All constants in this proof are absolute constants not depending on 2 
or #. First we prove (3.6). Let H, ,  n__>0, be as in the proof of Lemma 3.0, 
and let the sets B,, D,, n >__ 0, and F, also be as in that proof. Note that, since 
the initial weights for J~ are all 1, F is all intervals (i, i + 1), i > #, so 

o~ 
(3.7) ~ I(Di)= sup Xk-- #. 

i = 0  O--<k<~ 

Since w(n, X,)=  1 on Dn, H,+I -Hn>= 1 on Dn, so (3.7) implies 

(3.8) • (H, + 1 --  Hn) 2 ~ sup X k -  ft. 
n=o 0 < k < z  

Put S(H)= H 2 +  (H ,+ t_H, )2  = #2+ (H,+I--H,) 2 . Then S(H) is the 
n = 0  n = 0  

so-called square function of H, and by an inequality of Burkholder (Theorem 8 
of [-ll) 

(3.9) P(S(H)> 2)<C1 sup ElH,,I/2=Cl#/2, 2>0,  
n > o  

the last equality since H is a nonnegative martingale, so that E IH, I=EH, 
= EH o =#.  Using (3.8) and (3.9), we get 

Thus 

p(#2+ sup X k - # > ~ , 2 ) < C I # / , ~ ,  2>0. 
O_<k<~ 

P( sup Xk>22/2)<Clp/2, 2 > 2 # ,  
O < k < r  

which is easily seen to imply (3.6). 
We preface the formal construction of the example showing the second state- 

ment in Theorem 3.3 with a heuristic explanation of what is going on. Suppose 
we reinforce an interval by adding M the first time it is crossed downwards 
and let M get very large. Then essentially we are contracting that edge after 
it is crossed downwards. The number of uncontracted edges between 0 and 
Xi is just about performing simple random walk. The number of steps this 
walk takes before hitting zero is # + 2 ( s u p X ~ - # ) ,  and the tail probabilities 

i < z  

of the time for simple random walk to hit zero are of order #/~/2. 
Now we provide the example in detail. Let 2~ be an initially fair matrix 

type R R W  with matrix [-a] started at /~ > 0, such that if re>g,  the sequence 
a,,,~, i > 1, is 0, 2 '~ + 1, 0, 0 . . . .  and if 0 < m < # this sequence is 2" + 1, 0, 0 . . . .  That 
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is, reinforce an interval the first time it is crossed downwards. Note that if 
O , =  {i>0:  w(n, i)> 1}, then 

(3.10) ~ w(n, 0 -1 <�89 
ieO~ 

Also note that, since the reinforcement is down only, the process MX,=M,, 
n>0 ,  constructed in the proof of Lemma 3.0, is a martingale, as was noted 
just after the proof of that lemma. 

Define t/o=0, t / i=inf{k>t / i_l :  [Mk-M,,_I[~I},  i>=l. If t / i_l<z,  t/i is the 
first time after t/i- 1 that X crosses an interval of weight 1. Note that on F~ = {t/i 
< z, M,, +1 > M,,}, (3.10) implies 

(3.11) M.~+I-M.,=(M.i+I-M.,+I_I)+(M.,+I_I-M.,)=I + ~ w(n,j) -1 <3/2, 
je$, 

where tp= {jeO,,: j>=Xn, and meO,,, X,,<=m<=j}. 
A similar formula holds on Gi= {th< z, M,i+, < M,,}. Inequality (3.10) now 

implies 

(3.12) l<IM,,+l-M,,[<3/2, if t/i< z. 

It is easily checked that J~, and in fact any RRW which reinforces each interval 
only once, cannot have finite range with positive probability, and this, together 

with Theorem 3.1, implies P(z < oe) = 1. Since Mz--M~_ 1 = - -  1, ~ P('c = tli ) = 1. 
i = 1  

Put Qj=M,j,,~, j>O, and let N=inf{k :  ~k=Z}. Then Qo, Q1, ... is a mart- 
ingale, by the optional sampling theorem, and (3.12) gives 

(3.13) I<[Qj-Qj+I[<3/2, j<N.  

Now on Fi, (X., +, _ 1, X r h  +1 - 1-4- 1) is the first interval (m, m + 1), such that me O,,, 
and which is crossed by X" after qi- Thus, on F~ 

while on Gi, 

max X j - - l +  max X j, 
O<j<=rh+ 1 O<=j<=~ll 

m a x  X j :  m a x  X j 
O<j<~h+  1 0_-< J<~/i 

so that putting A + = {j: Qj + 1 > Q j, 0 < j  < N}, A - = {j: Qj + 1 < Q j ,  0 ~j  < N } ,  and 
N + and N -  respectively the number of elements in A + and A-,  we have 

(3.14) N = N  + +N- ,  

and 

(3.15) N+= max X i - # .  
O<i_<z 
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N N 
Let S2(Q)=Q2+ ~ (Qi-Qi_Oz=kt2+ ~ (Qi-Qi_l) 2 be the square of the 

i=1 i=1 

square function for the martingale Q. By (3.13), we see 

(3.16) #2 + N < S 2 (Q) < #2 + (3/2)2 N. 

Shortly, we will establish the existence of a positive constant ct, such that 

(3.17) p(S2(Q)>22)>cl/2/)~, 2>#. 

Since Qo = # and QN = 0 we have 

- k t = Q u - Q 0  = ~ (Qi+l-Q,)I(ieA+)+ ~ (Qi+I-Qi)I(iEA-), 
i=0 i=0 

so (3.13), and the definition of A + and A - imply 

(3.18) ~ N + - N - >  - # .  

Together with right hand side of (3.16), and (3.14), this yields 

[#2 + (3/2)2 ~] + [(3/2) 2 + (3/2) 33 N + = S 2 (Q), 

which, together with (3.17), gives 

(3.19) P(N + >22)>c2#/2,  2># ,  

where c2 does not depend on # or 2. (Note that to show the existence of a 
c2 for which (3.19) holds it suffices to produce constants c3, c4, cs such that 
P(N + >C322)>C4#/1~, 2 > C 5 # -  ) 

Now we prove (3.17). Very roughly, think of Q as a fair random walk, and 
S2(Q) as the number of steps it takes before it hits zero. Now the probability 
of Q getting to 2 before ~ is about #/2 by gambler's ruin. Given this event, 
Q must get to either 0 or 22, and the number of steps it takes to go from 
2 to 0 or 2 2 is on the order of 22. Now the details are provided. This argument 
is a routine application of the methods of [2]. Assume W L O G  2>3/~. Put 
q5 =inf{k: Q k ~ 2 }  A N,  A = {Q,~ >__ 2} = {Q440}. Then (3.13) implies 

(3.20) 2 I(A) < Qr < (2 + 3/2) I (A) < 2 21 (A), 

and since Qk,, r k > 0, is a bounded martingale, 

EQr EQo= I2, 

so, taking expectations in (3.20) yields 

(3.21) P(A) > #/2 2. 

Now let r =inf{k>qS: IQk-Qr Using (3.13) again, we have 

(3.22) 21 (A) < I Qr  Q4,I t (A) < 2 21 (A). 
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Put g~=Q(4,+~)^r Then g~, 0 < i <  oe, is a martingale, and putting ei=g~+l 
- gi, i > 0, we have 

ei=Qr162 and ~e{=<S 2(Q). 
i=O i = 0  

The orthogonality of ei, i>  0, implies 

(3.23) 

while 

(3.24) 

i i 

E e Nc6E e Nc6(22)4P(A), 
~i=o ~ .  L ~ = o  i .  

the first inequality in (3.24) following from a result of Burkholder [1] and the 

second by the right hand side of (3.22). Put Z = ~ e 2. Let Pa and E A denote 
i = 0  

conditional probability and expectation given A. Then (3.23) yields EAZ>--22. 
By (3.24), E A Z 2 ~ c 7  ~4, c7 = 2 4 c 6  . Thus E a 2 c  7 2 2 Z I ( Z > 2 c 7 1 ~ 2 ) ~ E A Z 2 ~ c 7 2 4  , 

so EA ZI  (Z > 2 c7 22) < 22/2, implying EA ZI(Z < 2 c7 22) > 22/2, and an easy argu- 
ment now gives PA(Z>22/4)>c8, so that P(Z>=22/4)>csP(A)>=c92/I ~, using 
(3.21) for the last inequality, completing the proof of (3.17). 

Now (3.17)has been shown to imply (3.19), which, together with (3.15), shows 
that this example has the desired properties. [] 

To conclude this section we prove the following. 

Proposition 3.4. Let X be a Diaconis walk, started at 1. Then 

E sup X k ~ 3. 
O~k<~ 

Proof Taking expectations on both sides of the equality in (3.2), and summing 
over j > 0, yields 

E M . _ I - E M . =  - E { [ w ( n , X . _ O - l - w ( n - l , X . _ l ) - l ] I ( X . > X . _ t , n - l  <z)}. 

Now if Xn> max Xk, we have w ( n , X . _ l ) = 2  and w ( n - l , X . _ 0 = l  under 
O<k<_n-1 

Diaconis reinforcement, so 

(3.25) EM._I- -EM.>(1/2)P(n- - I<z ,X .> max Xk) 
O~<k<_n-1 

=(1/2)EI(n-I<%X,,> max Xk). 
O<_k<_n-1 



2 1 4  B. Davis 

N 
Now ~ (EM,_ 1 - E M . ) = E M o - E M N  < 1, since EMo= 1 and EMN>O. Also 
~, n= l  

I ( n -  1 < ~, X,  > max Xk) = sup X k -  1. Thus summing (3.25) from n = 1 
n =  1 O < _ k < ~ n -  1 O<=k<~ 

to oe, we get 

1 =< (E sup Xk-- 1)/2, 
0<k<~ 

proving the proposition. []  

4. The Strong Law 

In this section we prove the following theorem. 

Theorem 4.0. Let ~ be an initially fair R R W  which is either of sequence type 
or iid reinforced. Then 

lim X,/n=O a.s. 
n~ao 

First note that if P() (  has finite range) = 1 then X,/n -~ 0 a.s. Thus, by virtue 
of Theorem 3.2, the proof  of Theorem 4.0 will be completed upon showing its 
truth for J; satisfying P(3~ is recurrent)= 1. 

A word about notation in this section. For  a while we use P and E to 
denote probability and expectation for whatever walk we are talking about, 
then, to distinguish between several walks discussed in the same sentence or 
equation, superscripts make their appearance on P and E, and towards the 
end of the section we switch back to just P and E. 

If k is an integer, and if no, nl . . . . .  ~ is a recurrent sequence of integers 
such that [ni-n~_ll=l ,  i>0 ,  we define %(k)=%, i>0 ,  by % = i n f { i : X i = k  }, 
zj = inf { i > -c j_ t: Xi = k}, j > 1, and call (n~i + ~, n~i + 2 . . . . .  n~i + ,) the (i + 1) st excur- 
sion of t / f rom k, and classify excursions as up or down from k in the obvious 
way. 

Let N ( k ) = ~  stand for the collection of all vectors (vl, v2, ..., v,) of finite 
length which satisfy V l = k - 1 ,  v,=k, vi<k, i<n, and lv~-v~_l]--1, l <i<n. 
That is, @ is the collection of all possible down excursions. Similarly let q/(k)--q/ 
be the collection of all possible up excursions. 

For  a recurrent walk X-, l e t / )~ ' k= / J= ( / J1 , / )2  . . . .  ) be the down excursions, 
in order, made by Jr, and let U=(U1,  ~7~ . . . .  ) be the up excursions. Let S be 
the infinite sequence, each entry either d or u, such that the j-th component  
of ~ is d or u depending on whether the j-th excursion is up or down. 

The following lemma does not  generalize to all (including non-matrix) RRW. 
The proof  is somewhat long but easy. 

Lemma 4.1. Let )(  be a recurrent matrix type walk ([a]), with constant initial 
weighting ~, which starts at k. Then X is determined by (S, D, U), and ~, D, 
and U are independent. 



Reinforced R a n d o m  Walk  215 

Proof. The first statement is immediate. Too see that S is independent of (/), U) 
2i 2i 

we put So=Wk_x, Si=Wk_l+ ~ ak-l,j, i>l, and to=Wk, ti=Wk+ ~ ak,j, SO 
j = l  j = l  

that st is the weight of ( k - 1 ,  k) after this interval has been crossed exactly 
2 i times and ti is the weight of (k, k + 1) after it has been crossed exactly 2 i 
times. Then at z,, the end of the n-th excursion, if j of the first n excursions 
have been up and n - j  have been down, the weight of (k, k + 1) is tj and the 
weight of ( k - l ,  k) is s,_j,  and the probability that the n + l s t  excursion is 
up is tj/(tj+s,_j)=e(j, n-j). Thus the probability that the first n entries in 
ff are, say, all up, given that the first n elements in/~, in order, are (da . . . . .  d,) 

71--1 

and the first n elements in ff are (~1 . . . . .  ~,) is just 1--[ e(J, 0), and the probability 
j = 0  

of any other possibility for the first n entries in S could similarly be computed 
independently of the first n entries in b and ~2. Thus g is independent of (b, 0). 

To complete the proof we will show that U is independent o f / )  by showing 
that given ~11, ~2 . . . .  elements of q/ and all, d2, ... elements of ~ ,  there are 
sequences Pl, P2... of numbers depending only on gl,  g2, ... and ql,  q2,-.,  of 
numbers depending on c/1, c72, ... such that if g is a vector of length n with 
each coordinate u or d with x of the entries u and y = n - x  of these entries 
d, and if F is the event that the first n coordinates of ff are those of b', then 

(4.1) P(The first x up excursions are Ul, ..., 11x in order, and the first y down 
excursions are all, d2 . . . .  , a~y, in order IF) 

The numbers p~ are the probabilities a certain matrix type R R W  started 
at k + 1 has its first L(~) coordinates the coordinates of ~i. 

For 0___j let oSj={e~(j, i): i>k} be the weighting of the intervals (i, i+1), 
i>k, given as follows. Let 0(J, i) be the number of times k~l,  ~2 . . . . .  ~ j (k+ l )  
crosses (i, i+  1), where k~ 1 . . . . .  (tj(k--k 1) stands for the finite vector starting at 
k, with first j excursions all up and exactly (ul, ..., u j), and with the first step 
after ~j to (k+ 1). (If j = 0 ,  it stands for the vector (k, k +  1).) Put 

d/(j,i) 

co(j,i)=wi+ ~ a~,~, j>=l, o~(O,i)=wi, 
s = l  

where the sum is to be taken as zero if 0(j,  i)= 0. Let [b j] be a matrix with 
entries 

b~,s=a~,~+g,~,i), k<=i, s>=l. 

(What the other entries of [b 3] are is irrelevant.) For j > 1 let pj be the probability 
that a matrix walk with initial weight rbj_ 1 and matrix [b j -  1], started at k +  1, 
has first nj coordinates equal to Oj, if n~ is the number of components of Oj 
(that is, the first nj states visited by the walk are the coordinates of TIj)~ Then 
if N is a positive integer, given that j of the first N coordinates in S are u 
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and N - j  are d, and given that (U1 . . . . .  ~ )=(u~ , . . . ,O j )  and that 
(/)~, . . . , / )N- j )=(~I  . . . .  , tiN-j), and also given that the N + l s t  entry in ff is u, 
that is, given X~,~+I = k +  1, the probability that the N +  1st excursion is ~7j+1 
is p j+ 1. 

This conditioning is on an atom of ~N + 1. We have discussed such condition- 
ing towards the end of Sect. 2. Especially, we indicated it was a matrix type 
walk. The w(j, i) and bi, s given above are the initial weights of this walk and 
those matrix entries of the walk which have bearing on the probabilities in 
question. The numbers q~ are defined similarly, and similarly the probability 
of the j-th downward excursion being dj, given that the first j - 1  excursions 
are, in order, dl . . . .  , dj._ 1, can be computed to be qj regardless of what the 
upward excursions before the j-th downward excursion are. This establishes 
(4.1). []  

Lemma 4.2. Let X satisfy the conditions of Lemma 4.1. 

i) The distribution of ~ depends only on aj, i, k + l < j ,  O < i < o e ,  wi, i>k, 
2 i + 1  

and ~ ak, s, O<=i< oo. 

ii) The distribution of O depends only on aj.i,j<k, 0 < i <  oo and wi, i<k. 

Proof We use the notation of Lemma 4.1. Part i) follows from the fact that 
2 i + 1  

O(i, k) is always an odd number, so that co(i, k), equals Wk+ ~ ak,s, i>O, while 
s m l  

the other quantities involved in the definition of the probabilities pj depend 
only on (~71, u2 . . . .  , ~j), wi, i>k, and aj, i, k +  l < j <  oe, 1 < i <  oo. 

Part ii) is similar, but simpler; or, we could solve it by reflecting )f  about  
k and using i). []  

Let m>k. I f~=(~ l  . . . . .  ~,)e~//, let om=(~h, ~i . . . . .  , ~io), O<n, be those entries 
~i of ~, in order, which satisfy either ~ie[k,m) or ~i=m and ~ i - l < m .  Then 
t(~ m) is the number of jumps made by k~ between two adjacent integers in 
[k,m]. Similarly define, for aV=(71,~2, . . . , 7 , ) s ~  and 2<k ,  aW=(7l, .-.,7~), 
where the entries are those components of a T either in (2, k] or else equal to 
2 and with immediate predecessor greater than 2. Let q/m= {~,,: g~og} and 9 ~ 
-=-{d~: deN}. Note that if a vector in ~//" has i-th component m, the next compo- 
nent must be m - 1 .  Thus the distribution of ""  ~" ' "  U =(Us ,  U~, ...) does not involve 
w~, i>m or aj, i, j>m,  i>0,  and so the following lemma holds for essentially 
the same reasons as Lemma 4.2. 

Lemma 4.3. Let m > k, and let X satisfy the conditions of Lemma 4.1. 

i) The distribution of ~m depends only on wi, k<i<m,  aj.i, k< j<m,  i>0,  
2 i + 1  

and ~ ak,s, i>_ O. 

ii) Let 2<k .  The distribution of Da depends only on w~, 2<i<k ,  and aj, i, 
2<j<k ,  i>0 .  [] 

The proof of the following lemma is virtually identical to that of Theorem 3.2, 
and is omitted. For the matrix [a], put d j=  {a~.~, i>  1}, - oe < j <  or. 



Reinforced R a n d o m  W a l k  217 

Lemma 4.4. i) I f  2~ is a matrix type walk with matrix [a] and P(X  is recurrent) = 1 
then gp (d j) = co, - oe <j < ~ .  

ii) I f  ~ is a matrix type walk with matrix [a], satisfying d)(s oo, - oo <j 
< o~, and if all but a finite number of the initial weights are 1, then X is recur- 
rent. [] 

Now let 0 < k and let M > k. Define 

TM = ~ I (Xz ~ (0, M3, Xi + 1 ~ [0, M ] ,  i < z), 
i = 0  

so that TM is the number of jumps )( makes in [0, M] before z. Divide these 
jumps into those made in l-k, M] and those made in l-0, k] by putting 

and 

Tflt+k = ~ I(Xi E [k, M], Xi + 1 ~ [k, M], i < z) 
i = 0  

T~2,k = ~ I(Xie [0, k], Xi + 1 e [0, k], i < z). 
i = 0  

Define a matrix [a"k]=[a '] associated with the matrix [a] by a),i=aj,~, 
j=t=k, i>0,  a~,l =ak,1, a'k,2i=O, i>  1, a~,2i+ 1 =ak, 2i+ak, ei+ l, i> 1. 

Lemma 4.5. Let k>0 ,  and M > k .  Let P and E be probability and expectation 
associated with the recurrent matrix type walk, started at k, with matrix [a] 
and initial weights ~=wi ,  - o o  < i <  o~, all but a finite number of which are 
1. Let P' and E' be associated with the walk with matrix [a'], all other conditions 
the same. Then 

(4.2) ETM> E' TM. 

Proof. Our straightforward argument will in fact show 

(4.3) P(TM>=yIO, U)_--_ P'(T._-> yl~, U), 

which, since (D, ~) has the same distribution under both P and P', using Lem- 
ma 4.3, implies (4.2). Let V, be the number of u appearing before the n-th d 
in ~. We note that 7, is independent of (15, U), and that if F= inf{ i : / ) i  has 
a zero entry}, so that z occurs in the F-th down excursion from k, then, given 
(/), U), the distribution of T~t is determined by the distribution of 7r. In fact, 
given (/), if), 

(4.4) TM = const. + ~ 0i, 
i=1  
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where 0i is L(Ui M) and the sum is taken to be zero if 7r equals zero, and the 
constant is determined by/ ) .  Thus to prove (4.3) it suffices to show 

(4.5) P(Tr~j]5, U)>=P'(7r~jlS, U), 

which is implied by 

(4.6) P(~,>j[D, U, F=n)> P'(~,>j]D, U, r=n) 

since F is determined b y / ) .  Now 7, is determined by S, which by Lemma 4.1 
is independent of (/), ~7) and thus (/), U, F), so to prove (4.6) it suffices to prove 

(4.7) P(y,>=j)> P'(7,>j), j>O, n> l. 

We prove (4.7) by induction on n. Recall the definitions of si, ti, and a(j, n - j )  
made in the proof of Lemma 4,1, and let s'i, t'i, e'(j, n- j )  be the analogous 
quantities for [a']. Now si=s'i, i>  1, but ti>t~, i>  1, so that e(j, n-j)>e'(j ,  n-j), 
n>0,  0 < j <  n. That is, given the first n entries in ~, the probability that the 
n +  1 st entry is u under P is always greater than or equal to the probability 
of this event under P'. Especially since {Yl >J} is the set where the first j entries 
of ff are u, we have P(yl>>_j)>P'(71 >j). Now suppose (4.7) holds for n=m>l.  
We will show it also holds for n = m + 1. We first note, for 6 > 0, z > 0, 

z - a  

(4.8) P(7m+l >=6+z[7,,=3)= 1-] c~(6+ i,m) 
i = 0  

z - 1  

> 1-[ a'(6+i,m) 
i = 0  

=P'(y,.+a>=3+zl7,.=3). 

Furthermore, since c~(], m) < ~(] + 1, m), j > 0, m > 0, we have 

(4.9) P(7,,+ , > 6 + Z[Ym----6) < P(Tm+ ~ ~ c5 + z 1 ~ = 6  + 1). 

Thus 

P(7,.+ 1 ~Y)=  ~ P(7,.+, >=YlY,. =i) P(7., =i) 
i=O 

> ~ P(Ym+I >=YlYm =i) P'(y,,=i) 
i=O 

>= ~ P'(Y.,+I>=YlY,.=i)P'(7,. =i) 
i = 0  

=P'(ym+l->y), 
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the second inequality following from (4.8), and the first from (4.9) and the induc- 
tion hypothesis in the following manner: Put ei=P(7,,+~>y]y,,=i). Then by 
(4.9), ei is increasing in i. Thus 

e~P(7~=i) = ~ (e~-e~-~)P(?~>i)+eoP('~>O) 
i=O i = 1  

>= ~ (ei-ei-1) P'(Ym>=i)+eoP'(Ym>=O) 
i = 1  

-- ~ eiP'(7,.=i). 
i = 0  

This completes the proof of (4.7) and thus Lemma 4.5. [] 

Define the matrix [a"] associated with [a] by a~'i=aj.~ if j . k  and by 
H I !  - -  

ak, 2i_l =0,  i>_--l, ak, 2i--ak,2i- l + ak, 2i, i >= l. 

Lemma 4.6. Let 0 < k < M. Let PI and E ~ be probability and expectation associat- 
ed with a recurrent matrix type walk, started at M, with matrix [a] and initial 
weights ~, all of which, except perhaps a finite number, equal 1. Let p2 and 
E 2 be associated with the walk in which everything is the same except that [a"] 
replaces [a]. Then 

I~I TM> E2 TM. 

Proof. Let v=inf{i:  X i = k  }. The distribution of (J~i^v, i>=0, w(j, i ^  v), - o o  < j  
< oo, i>  0) is identical under p1 and p2, since the distribution of these variables 
involves only quantities the same under p1 and p2. Let A be an atom of ~ ,  
of the form {Xo = io . . . . .  Xn = in, v = n}. Of course io = M and in = k here. Then 
as previously remarked, conditioned on A, {X, + i, i__> 0, w(j, n + i), i > 0, - oo < j  
< oo} is a matrix type walk, and under both P1 and p2 it has the same initial 
weights, and starts at k. Especially note w(n, k)=w(O, k)+ak,1 under both Pa 
and p2. Now if I-b] and [b'] are the respective matrices for these walks, we 
have bj, i=b),i, j ~ k ,  i>=l, while bk, i=ak, i+l and b'k,i=ark',i+l=bk,i+bkj_l if i 
is odd, = 0 if i is even. Thus Lemma 4.6 follows from Lemma 4.5. [] 

The next lemma is an easy consequence of Lemma 4.6. 

Lemma 4.7. Let P and E be probability and expectation associated with an initially 
fair matrix type walk started at M > 0 .  There is an initially fair matrix type 
walk with up only reinforcement such that, if P' and E' are probability and expecta- 
tion of this walk stated at M, 

E TM >= E' T~,. 

Proof. By Lemma 4.3 ii), only the entries of the matrices corresponding to (i, i + 1), 
0-<i< M, have bearing on this. Thus the result follows from Lemma 4.6, upon 
changing the M rows of the matrix corresponding to each of these intervals, 
one at a time. [] 
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For  g = z o ,  Zl . . . .  , a sequence of real numbers  and (a, b) an interval, put  
n, = inf{k: Zk _--< a}, m, = inf{k > na" Zk > b}, and for i > 1, n~ = inf{k > m~_~ : Zk < a}, 
m~ = inf{k > n~: zk > b}, and let ue(a, b) = sup {i: mi < oo } (sup r = 0). Then  ue(a, b) 
is called the number  of  upcrossings of (a, b) by 5. The basic idea of the following 
lemma goes back to Neveu  [7]. See Dubins  [4]. 

Lemma 4.8. Let y and 0 < a < b be real numbers. Let Z, = Zo, Z ~ , ... be a sequence 
of integrable random variables, which are all bounded below by the same constant, 
and put ~ = cr(Zi, 0 < i <= n). Suppose 

i) P ( Z  0 = 7) = 1, 

ii) P(Z~<a, Z~+I > a ) = 0 ,  i>O, and P(Zi>a,  Z~+I < a ) = 0 ,  i>0 ,  

iii) P ( Z i < b ,  Z~+I > b ) = 0 ,  i>O, and P(Z~>b, Zi+l < b ) = 0 ,  i > 0 ,  

iv) E ( Z . + ~ I ~ ) I ( Z , < b ) = Z . I ( Z . < b ) ,  n>_>_O, 

v) P(Z.6(a,  b))=O, n>O, and 
vi) lira Z.=Zo~ exists, and Zoo < a. 

n --+ oo 

Then Eu2(a, b)=  [(7/x a ) -  E Z ~ ] / ( b -  a). 

Proof Suppose first that  7 < a. Let  

Vl = inf{k :  Zk=a}  ( inf r  = oo) 

/71 = i n f { k >  vl : Z k = b  }, 

vi = inf{k > t/i_ 1 : Zk = a}, i >-->_ 1, 

th=inf{k>vi:  Z~=b},  i> 1. 

By proper ty  ii), { v l < o o } = { Z ~ > a  for some i}. Let  M be a positive integer. 
N o w  S Z~, ,, M = a P (v~ < M), and since Z k . . . .  k > O, is a martingale,  by prop-  

{v~ =<M} 

erty iv) and the definition of Vl, we have j'Z~I A M = ~ Zo = 7. Thus  

(4.10) S Z M = 7 - a P ( v ~  < M) �9 
{vl > M} 

For  i__> 1, Zv~ = a on {vi <-_ M}, and Z(vi +k) i, ~ I(vi < M), k > O, is a bounded  mart -  
ingale, so that  

I ZM, , , ,= ~ ZMl,~,=aP(vi <M).  
{vi < M}  {vi < M }  

Also, since Z , , = b  on {t/i< oo}, S Z M A n = b P ( t h < M ) ,  yielding 
{hi =< M} 

(4.11) ZM,.n,=aP(vi  <=M)-b P(th < M) �9 
{vi <=M, q i>  M }  
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Now {v~ > M }  u U {vi<=M, l h > M  } = {ZM<a }, using property v). Thus adding 
i = l  

(4.10) and (4.11) we get 

ZM=7+(a -b)  ~ P(~h<=M) - a  ~ EP(th<M)-P(vi+, <M)], 
{ Z M  <_a} i =  1 i = 1 

and now letting M approach infinity yields, with the aid of vi), the bounded 
below property of Z~, i>  0, and the fact the second sum above equals P(ZM > b), 

which goes to 0 as m ~ ,  the equality ~ Z ~ = 7 + ( a - b  ) ~ P(rh<~)=7+(a 
-b)Eu~(a, b). i= 1 

If 7 >= a, let ~----inf{j: X~= a}, and apply the result above to the process X~+ i, 
i>0. [] 

Lemma 4.9. Let pO and E ~ be associated with an initially fair recurrent R R W  
of matrix type, started at M > 1. There is an absolute positive constant C such 
that 

E ~ z > CM ~. 

Proof. We will actually show E ~ TM>CM~. Invoking Lemma 4.7, we assume 
with no loss of generality that ~ under po has up only reinforcement on (i, i + 1), 

M - 1  

l < i < M .  Let ui be short for U~xj^~.o~j<~ (i, i+1). Put U =  ~ u~. Then U<TM 
< z, and we will prove i= 1 

E ~ U > CM~. 

Let [-a~ be the matrix corresponding to pO, and for 1 < n < M - 1  let [a "] be 
n _ _  0 the matrix which satisfies a~,j-a~,j if iq~[M-n, M - 1 1 ,  and aT, j = 0  if M - n < i  

< M. Let P" and E" be probability and expectation associated with the initially 
fair R R W  with matrix [a"], started at M. 

Define 

f"(i,j)=O if j = M - n  
M - n - 1  

= - -  Z w(i' e) -1' 
~=j 

j - 1  

= Z w(i,~:) -1, 
c z ~ M - - n  

O<=j<M-n 

M - - n < j < ~ .  

Note f"(i,j)=F(i, M--n)--F(i,j), where F is as in the proof of Lemma 3.0. Let 
Q~=f"(i ix ~, Xi^~), i>O. Then under P", QT, i>0,  satisfies the conditions i)-vi) 
required of the process Z in the statement of Lemma 4.8, with (a, b) in this 
statement replaced by any of the intervals (Z,)~ + 1), 2 an integer, 0 < 2 < n. This 
is immediate except for condition iv). The proof of iv) follows with reasoning 
similar to that which led to the comment after the proof of Lemma 3.1, since 
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under P" the reinforcement of (i, i+  1), O<i<__M-1 ,  is up only, and there is 
no reinforcement of the interval (i, i + 1) if M -  n____ i < M. 

The behavior of U for p M - 1  is particularly easy to analyze, since under 
p M - 1  none of the intervals (i, i+1),  O<_i<_M-1 ,  are reinforced before z, so 
that U has exactly the same distribution under pM- 1 that it would for (unrein- 
forced) fair random walk started at M. We have p M - 1  (Q~- I  = M - 1 ) =  1 and 
p M -  1 (Q~-  1 = _ 1) = 1, and Q~t- 1 = X i -  1 if i < z. Thus Lemma 4.8 implies 

E M - l u i = i ,  l<_i<_M--1 ,  

and so 
M - 1  

(4.12) E M - 1  U =  ~ i = M ( M - 1 ) / 2 .  
i = 1  

Now put W,=w(z, M - n )  -1, l < _ n < M - 1 .  We will prove, for 1 < n _ < M - 1 ,  
~>0, 

(4.13) 

(4.14) 

En - l ui = En ui , i < M - n, 

E " u i - - E " - l u i = E " - l ( 1 - W , ) ,  i > M - - n ,  

and 

(4.15) E " - l U M _ , - - E " u M _ , > ( e - I - - 1 ) p " - I ( W , < e ) .  

To prove (4.13) we first note that the distribution of (w(z, i), O < i < M - n )  
is the same under both P" and P"-1,  and use Lemma 4.2ii), applied to the 
process X~, Xr + 1, ... conditioned on an atom in ~ ,  where 7 = inf{i: Xi = M - n } ,  
in the same manner as the stopping time v was used in the proof  of Lemma 4.6. 

This same observation gives the first step in the proof  of (4.14), namely 

(4.16) E" w (% i)- 1 = E n -  1 W (Z, i ) -  a (5,. 
i i 

M - n - 1  

Since Q~"= - ~ w('c, i)- l ,  
/ = 0  

E" Q'~ = - f t .  

so for i > M - - n ,  Lemma 4.8 implies 

(4.17) E " u i = [ i - ( M - - n ) ] + 6  . .  

M - .  
Now Q n -  l = __ 2 W('f,  i )- i ,  s o  

i = o  

E"-  i Q~ - i  = - 6 . -  E "-  I w(z, M - n )  -1 = - 6 . -  E " -  i l/V., 
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SO for i > M -- n, L e m m a  4.8 gives 

(4.18) E n-1 u, = [i--(M - ( n -  1))] + fin + En- 1 W,, 

which, together  with (4.17), gives (4.14). 
Next  we prove  (4.15). Put  ~On= ~ w(r, s)-1. Then  it follows from the 

O < s < M - n  

discussion of the next  to last pa ragraph  that  

(4.19) Pn(~kn>t)=Pn-t(Ip">t), 0 < t < o e .  

Fur the rmore ,  w(z, 0) = 1, since re inforcement  is up only, so we have 

(4.20) pn-1  (0n > 1) = 1. 

In addit ion,  recalling that  W,=  w(z, M - n ) - ~ ,  we have 

(4.21) Q, = _ 0 n, Qn -1 = __ 0n __ Wn. 

N o w  under  pn, QT^ ~, 0 < i < oe, upcrosses (0, 1) exactly when Xi ^ ~, 0 < i < oo, 
upcrosses ( M - n ,  M - n  + 1), so that,  by L e m m a  4.8, and (4.21), we have 

(4.22) E"uM_n=EnO n. 

To  estimate E n- lUM_n, put  

71 =inf{i :  Xi=M--n} ,  

41 = i n f { i > y a  : X i = M - n +  1}, 

7i=inf{i>~i_l: X i = M - n }  i>l ,  
and 

~ i = i n f { i > y ~ : X ~ = M - n + l } ,  i > 1 .  

2,-1 ~-1 
Let  6i = 1 +  k~l aM-"'k) = W(7i, M--n)-1, i >  1. Then  under  P"-~ ,  Q ~ I _  _ 6i 

on {7i < z}, and Q~-t  = 0 on {~i < z}. Put  Ai = {~i < z}, Bi = {7i < z < ~i}. We have 

(4.23) uM_.= ~ I(A3. 
i = 1  

F or  i___ 1, put  

i _  n-1 O=<j< gi={g~,j>=O}. gi-- (2~, + i) ̂  ~, ̂ ~ I(yl < z), oo, 
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Then, under pn-1, gi is a martingale which is bounded above by 0 and below 
by - M .  Furthermore, under pn-1 

g~o = - 6i I(7i < O, 
while 

g~, ~, ~ = 0 o n  A i 

= - 5~-- 0 n on Bi. 

Now A~ u B~ = {7~ < ~}. Since g~ is a martingale under pn- 1, 

E n - 1  i _ n -1  i g o - E  g~^~I(Ti<Z), 
so that 

- - ( ~ i p n - l ( ' Y i < z )  = ~ ( - 6 , - O ' ) d W  - I=  - - ( ~ i p n - l ( B i ) - -  ~ ~ n d p n - 1 ,  
Bi Bi 

yielding 
5ipn-l(Ai)= ~ (pndpn 1. 

Bi 
Especially, 

P'-I(A~)>_e-1 ~ OndPn-lif 6i-1>~ -I. 
Bi 

Thus if m =inf{i: 6/- 1 ~ s 1}.  

~Pn-l(Ai)~=~-i ~ ~"dP"-~=~ -1 ~ O"dP "-1, 
i=m ~) Bi 

i=m 

while, noting 6i < 1, i > 1, and {~i < z} = {7, +1  < T}, w e  have 

m-1 
~ P " - I ( A i ) >  ~ O"dP "-1= 

i = 1 m-- 1 {Tin>v} 
O Bi 

i = 1  

~" dP"- 1. 

Together with the previous inequality and the fact g,"> w(0, r )>  1, this gives 

~ l P n - l ( A i ) > - - E n - l ~ n + ( g ' - l - 1 )  I I / Indpn-1 
i = 1 {~,,, < ~:} 

> E , -10 ,+(e - l_Up , - l (7 , ,<  O. 

Since {Tin < ~} = { W, < e}, this together with (4.22) and (4.23) completes the proof 
of (4.15). 

Now we conclude the proof of the lemma. Using (4.13)-(4.15), we have 

M - - 1  

E' - IU- -E 'U=E' - lUM- , - -E 'UM- ,+  ~ E ' -  I(W,-- 1) 
i = M - n + l  

>(e  -1 - 1)P"-  1 (w, < ~) + ( n -  1 ) E " - l ( w , -  1). 
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Using (4.12), we have 

M - 1  

(4.24) E ~ U = ~ (E"- i U - E" U) + E ~ -  ~ U 
n = l  

M - 1  M - 1  

> ( e - l - l )  ~ Pn-t(Wn~g)q- ~ ( n - 1 ) E " - i W .  
n = l  n = l  

M - - 1  

-- ~ ( n - - 1 ) + M ( M - 1 ) / 2  
n=l 

M-1 M-1 
>=~-~ F~ P"-~(w~<__~)+ ~ (n-1)~"-~ .  

n = l  n = t  

Now let M >  12. Then if [ ] (not be confused with a matrix) denotes the 
greatest integer function, we have M/4 < [M/3] _< ( M -  1)/2, so that either [M/3] 
of the probabilities P"-a(W,<e)  exceed 1/2 or [M/3] of the probabilities 
p . -  1 (W. > e) exceed 1/2. In the first case, 

M - 1  

~-i ~ p . - l ( W . < e ) > e - i M / 8 ,  if m > 1 2 ,  
. = 1  

while in the second E"-1 Wn ~ e/2 for at least M/4 integers n, and so, for M > 12 

M - 1 [M/3] 

( n - 1 ) E " - l W ~ >  ~ (n-1)e /2  
n = l  n = l  

> (M/4 - 1)(M/4) e/4 > (M/6)(M/4) e/4. 

Thus taking e = M , we get 

E ~ U>=M3/2/96, M>= 12, 

which, together with the fact that E ~ U > 1, finishes the proof. [] 

Now we complete the proof of Theorem 4.0. Recall that just after the state- 
ment of this theorem we observed that it is trivial except in the case that J~ 
is recurrent, an assumption we make from now on. Let e> 0 and pick M = M(e) 
so large that CM a/2 >M/e, where C is as in the statement of the last lemma. 
Suppose with no loss of generality that P(X 0 = 0 ) =  1. Let Vk=inf{i: X i = --kM}, 
0 -< k < oo, and put 

Vk+l - -1  

if)k= 2 I ( - k M < = X i ,  X i + l < = - ( k + l ) M )  �9 
i=vk 

k - 1  

Then vk> ~ 4~,. 
i = 0  
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First, suppose )( is initially fair sequence type with associated sequence d. 
Then the distribution of r conditioned on ~ _ ~  is exactly the distribution 
of r for any i>0.  This follows from Lemma 4.3 ii), together with the comment 
about conditioning made in Sect. 2. Thus Cg, i=> 1, are iid. Furthermore Lem- 
ma 4.9 and our choice of M give Evl >M/e. Thus lira vg/k>M/e, so Vk>Mk/e 

U~co 

for all but finitely many k, that is X ~ > - M k ,  O<i<Mk/e for all but finitely 
many k, which implies lira XJi > -  e. Similarly lira XJi < e. This proves Theo- 

t ' ~  i~co 

rem 4.0 for sequence type walk. 
Now we treat the case of lid reinforcement in Theorem 4.0. Let /~ be a 

distribution on [0, oo) such that the initially fair walk with iid reinforcement 
in which the reinforcing variables have distribution /~ is recurrent. Another 
way to construct a R R W  with the same distribution is as follows. Let [Z] = Zj,~, 
- o o  < j <  oo, 1 < i <  oo, be iid variables each with distribution p. The initially 
fair RRW which reinforces ( j , j +  1) by Zj,~ the i-th time it is crossed has exactly 
the same distribution as the original walk, so it suffices to show that this walk 
satisfies the strong law. Let P and E be probability and expectation associated 
with this walk, started at 0. Now conditioned on [Z] = [r], where r is a matrix 
of positive numbers for which this conditioning makes sense, the walk under 
P is an initially fair matrix type walk, and so the last lemma implies 

E(r I [z]) > C M  ~/~. 

Thus E#?k>CM 3/2. It is easily checked that the Ck are iid and thus the same 
proof used in the previous paragraph can be used to prove the strong law 
here. [] 

5. Appendix: Herman Rubin's Generalized Polya Urn Theorem, 
the Proof of Theorem 3.2 iii), and Two Open Problems 

In the classical Polya urn, an urn contains both red and white balls, one is 
drawn at random and replaced together with another ball of the same color, 
and this procedure is repeated indefinitely. It is easy to show that, with probabili- 
ty one, infinitely many balls of each color are drawn, regardless of the initial 
distribution. Here is a much tougher problem: Is it still true that infinitely 
many balls of each color are drawn probability 1, if now the k-th time a red 
(white) ball is drawn it is replaced together with k additional red (white) balls? 
This question is, as will be seen later, related to the proof of Theorem 3.2 iii). 
The proof is, as we mentioned earlier, due to Herman Rubin. Such urn models 
have been studied by learning theorists (see Luce [-6]) but to our knowledge 
questions of this type have not been addressed. 

To state Rubin's theorem in the generality necessary, we disregard urns 
and just give a rule for generating an infinite sequence of letters, each r or 
w. Let ~=(r o, r l ,  ...) and ~=(w0,  w~ . . . .  ) be two sequences of nonnegative 
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numbers such that ro>0 and w0>0. Put Rk= ~ ri and I/Vk= ~ Wi. The first 
i = 0  i = 0  

entry of the infinite sequence is r with probability Ro/(Ro + Wo), w with probabili- 
ty Wo/(Ro + Wo). Given the first n entries consist of x r's and y = n - x  w's, in 
a given order, the probability that the n + 1 st entry is r equals R~/(R~+ Wr), 
and the probability it is w equals Wr/(R~+ Wr). A sequence so generated will 
be called a generalized Polya sequence (corresponding to P and ~). Let p~= P(all 
but finitely many elements of the sequence are red) and p~=P(all  but finitely 

many elements of the sequence are white). Put ~b(~= ~ Ri-1, q~(~)= ~ Wi-1 
i = 0  i = 0  

Rubin's Theorem. i) I f  dp (r-) < oe and 49 (if) < Go then Pr > 0, Pw > O, and Pr + P,~ = 1. 

ii) I f  if) (~) < oo and 49 (~) = oo, Pr = 1. 

iii) I f  c~ (~)= oe and 4)(~)= oe, both pr and Pw equal O. 

Proof. Let Yo, Y~,... be independent exponential random variables such that 
EYe= RF ~. Let Zo, Zt  . . . .  be independent exponential random variables which 
are also independent of the sequence Y~, i>  0, and such that EZ~= W~-~. Put 

A =  Yi, k > 0  , B -  Zi, k > 0  , and G = A • B .  Let ~ be the smallest 
i i 

number in G, and in general let r be the i-th smallest number in G. Define 
a random sequence of r's and w's, called the random variable sequence, by 
making the k-th element of the sequence r if ~k~A, w if ~keB. 

The sequence just constructed above has exactly the same distribution as 
the generalized Polya sequence corresponding to ~ and ft. The proof of this 
relies on the lack of memory property of the exponential as well as the fact 
that if U and V are independent exponentials with expectations u and v, respec- 
tively, P (U < V) = u-  1 / ( U  - 1 ..~/) - 1)  and P (V < U) = v- X/(u- 1 + v-  1). Thus the 
probability that the first entry in the random variable sequence is r is given 
by P(~ lSA)=P(Yo<Zo )=Ro / (Ro +W o ) ,  as it should be, that is, agreeing with 
the probabilities defining the generalized Polya sequence. Instead of giving a 
proof that the conditional probabilities are also what they should be, to avoid 
complicated notation we will just treat a representative case, by calculating 
the probability that the fourth component of the random variable sequence 
is r given H =  {the first three components are rwr} = {~eA,  ~2eB, ~seA}. On 
H, the distance e from r to the smallest element of A greater than r is I12, 
and conditioned on H, e has the distribution of Y2. On H, the distance fi from 
43 to the smallest element of B greater than Ca is Z1 + r  =Z1 +Zo-(Y1 
+ Yo), and the lack of memory property of Z~ implies that, conditioned on 
H, fl has the distribution of Z~, noting H = { Y o < Z o < Y o + Y I < Z o + Z 1 } ,  so 
that even given H and the values of Yo, Y1, Zo, fl still has the distribution 
of Z~. The independence of the random variables { Y~, Z~; i>  0} guarantees that 

and fi are conditionally independent given H. Thus 

P(r = P(o~ < fl) = R2/(R2 + WO. 
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This agrees with the relevant conditional probability for the generalized Polya 
sequence, and completes our justification that the random variable sequence 
has the same distribution as the generalized Polya sequence. 

The rest of the proof is almost immediate. We note P ( ~  Y / < c ~ / = l  if 
\ = 0 i  / 

R F ~ < ~ 1 7 6  P(--~oY~=~176 if ~ . R f J = o o ,  and that if ~ R F l < o o ,  ~Y~ 
i = 0  i i = 0  i ~ O  i=O 

has a density which is positive on (0, oo). Analogs hold for ~ Z~. Finally, we 
i = 0  

note that p~ = P Yi < ~. Zi , and Pw = P Zi < , and it is easy to use 
i i = 0  / \ i = 0  i = 0  / 

these, together with the remarks just made, to finish the proof. [] 

Proof of theorem 3.2iii). Let j be an integer, and let T1 = in f{k~0 :  Xk=j}, and 
T/= inf{k > T~_ 1 : Xk =j}, i > 1. Write down a sequence of r's and w's by making 
the i-th entry r if Xr~+l=j+l, and making the i-th entry w if X T , + ~ = j - 1 .  
This may be a finite sequence, but the probability we generate an infinite 
sequence of r and w with an infinite number of both r and w appearing is 
less than or equal to the probability the same event occurs in a generalized 
Polya sequence, with the corresponding ~ and ~ depending slightly on whether 
X0 equals j, exceeds j, or is smaller than j. For example, if Xo=j, both ro 

2i 
and wo equal 1, and both r i and wi equal 1 + ~ aj,., i~  1. Essentially this obser- 

S = I  

vation was the basis of Diaconis' approach to Diaconis reinforcement. Now 
under the hypothesis of Theorem 3.2 iii), r  oo, which implies that r oo 
and r oo for the i and @ corresponding to the urn that would yield our 
sequences of r's and w's. Now part i) of Rubin's Theorem gives that p, + p,~ = 1, 
so the probability of infinitely many r and infinitely many w equals zero, which 
translates in our situation to the statement that, with probability one, both 
j - 1  and j +  1 are not visited infinitely often. This, together with the fact that 
Jf has finite range with probability one, completes the proof of Theorem 
3.2 iii). [] 

Finally, we mention two questions we have been unable to solve. The first 
is whether every reinforced random walk )(, as defined in Sect. 2, satisfies 
lim X,/n =0. The second is to decide if the two dimensional analog, on the 

~ta~dard two dimensional lattice, of the reinforced random walk described in 
the fourth paragraph of the first section is recurrent. (For this walk each line 
segment of length 1 connecting lattice points (i,j) initially has weight 1, and 
the weights determine the jump probabilities, so the first jump our walk makes 
is equally likely to be in any of the four directions. The first time a segment 
is crossed its weight increases to 2, and this is never increased further.) The 
same question was asked by Diaconis for the analog of Diaconis reinforcement 
on the lattice. Our question, which involves a simpler reinforcement scheme, 
should be easier than Diaconis', which is also unsettled, but we cannot handle 
it. Of course, our conjecture is that the walk is recurrent. 
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