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Summary. We examine the notion of 'flee independence' according to Voicu- 
lescu. This form of independence is used for defining 'free white noise' or 
'process with stationary and freely independent increments'. We prove a 
general limit theorem giving the combinatorics of infinitely freely divisible 
states and thus of free white noises with the help of 'admissible' partitions. 
We realize the free analogues of the Wiener process and of the Poisson 
process as processes on the full Fock space of L 2 OR). 

1. Introduction 

In quantum stochastics (non-commutative probability theory) one tries to devel- 
op a probability theory for quantum systems. The main problem consists in 
giving good mathematical models for the description of a quantum system cou- 
pled to a quantum Markovian random generator. In classical probability theory 
the analogous problem of a Brownian particle is modeled by assuming a white 
noise as random generator and coupling this via stochastic differential equations 
to the particle. 

This is imitated in quantum stochastics. There the classical concepts of ran- 
dom variables and probability measures are replaced by the functional analytic 
concepts of operator algebras and states. Thus we would like to describe the 
stochastic influence of the operator algebra for the random generator on the 
operator algebra for the quantum system. In analogy to the classical situation 
we want to give meaning to Langevin equations like 

d a (t) = [H (t), a (t)] d t + d co (t), 

where the operator a (t) of the quantum system (in the Heisenberg picture) does 
not only evolve deterministic according to the Schr6dinger equation, but also 
feels the influence of some random operator d ~o (t) which we want to characterize 
as white noise. 

We will only make assertions about the moments of the white noise. But 
similar to the classical case, where one usually chooses a concrete realization 
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of the Wiener process on continuous paths, we want to find 'simple' explicit 
models for white noises, i.e. operator algebras and states, which give exactly 
the wanted moments. 

So the aim is clear: Find an operator algebra with a state which deserves 
to be called a white noise and develop a quantum stochastic calculus for it 
in order to give meaning to Langevin equations with respect to this state. 

Until now only two white noises are known, namely the bosonic white noise 
of the CCR-algebra and the fermionic white noise of the CAR-algebra. The 
corresponding stochastic calculi were developed by Hudson and Parthasarathy 
[HuP] and Applebaum and Hudson [-ApH], respectively (but compare also 
[BSW 1, 2]). 

Kfimmerer [Kfim 1, 2] has given an axiomatic definition of 'white noise' 
and 'coupling to white noise'. This general flame allows the development of 
a stochastic integration theory. Of course the results of this abstract frame are 
not so considerable like the ones of the two concrete models. 

We will present in this note a new concrete example of a white noise, which 
allows as far reaching investigations as the bosonic and fermionic models. This 
white noise is the Cuntz algebra, i.e. the C*-algebra of creation and annihilation 
operators on the full Fock space of L2(IR), with the vacuum expectation as 
state. The stochastic calculus for the Cuntz algebra was developed in [Spe] 
and will be published elsewhere [KSp]. 

This white noise is connected with a form of independence ('free' indepen- 
dence) introduced by Voiculescu [Voi 1], but compare also [Avi]. 

We will give limit theorems for this kind of independence and recognize 
in this way analogues of Gaussian and Poisson distributions. 

The paper is organized as follows. In Sect. 2 we deal with the problem of 
'independence' in quantum stochastics. In Sect. 3 the special form of indepen- 
dence according to Voiculescu ('free' independence) is introduced. In Sect. 4 
we prove some limit theorems for the free independence and obtain especially 
the combinatorics of the free analogues of Gaussian and Poisson distribution. 
In Sect. 5 we present the full Fock space and the Cuntz algebra and show 
that the free analogues of the Wiener process and Poisson process may be 
realized in the full Fock space. 

2. The Concept of 'Independence' in Quantum Stochastics 

Let (f~, Z, P , ( X  1 , . . . ,  X ' ] ) t~ )  be a n-dimensional classical process with stationary 
i .  i i and independent increments. For I =  [tl, t2) let X I . = X t 2 - X t ,  be the increment 

of the i-th coordinate of this process. Let 9t be the ring generated by all semi- 
closed intervals I of the above form. Then the definition of X} extends to I~91 
such that the mapping Iw+(X~ . . . .  , X~) is finitely additive. The distribution of 
(X ] . . . . .  X~) depends only on 2(I), the Lebesgue-measure of I. The mapping 
I~----*(X] . . . .  ,X']) will be called a 'n-dimensional white noise' with respect to 
the probability measure P. 

It is clear that (X~ . . . . .  X~) can be written as a sum of arbitrarily many 
independent and identically distributed random variables. Therefore the distribu- 
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tion of (X~, ..., X~) is for all Ie~fl an infinitely divisible one closely connected 
to limit theorems. 

We will now deal with non-commutative versions of white noises and develop 
the analogues of the above statements. 

In quantum probability the random variables X 1 . . . .  , X~ and the probability 
measure P are replaced by n operators c~, ..., c~ and a state p on the algebra 
generated by all these operators. In the classical case the random variables 
X~, ..., X~ may be viewed as one new random variable XI:=(X/~ . . . .  , X~) with 
values in IR", i.e. the difference between the general case and the case n =  1 
is mainly one in notation. In the non-commutative case the operators c~, ..., c~ 
may be non-commuting and such a reduction is not POssible. 

The problem in defining 'white noise' is now the meaning of ' independence'.  
Whereas in classical probability theory there is only one possible definition 
of ' independence' ,  the situation in non-commutative probability theory is not 

i and c{2 (11, Izegl, 11 ~I2 =0) shall so simple. Independence of the operators c h 
be understood as usual as the independence of the algebras cgt, = (c~ l i = 1 . . . . .  n) 
and %2 = (c~  [i = 1 . . . . .  n)  with respect to the states Ph =P/cgI, and Pr~ = p/cgh. 
There ( R )  denotes the algebra generated by all operators reR. Thus we have 
to define the independence of subalgebras cg k of an algebra ~ with respect to 
a state p. Of course we are led by the classical situation and demand some 
form of factorization. 

In his axiomatic theory of 'white noise' Kfimmerer [Kfim2] only demands 
the factorizing of time ordered products, i.e. 

p(al...a,,)=ph(aa)...pi,,(am) if ai6qf1~ and I1<I2<.. .<Im, 

where I1 < I2 means : for  all t l ~I1 and t2~I2 we have t t < t2- For  other products 
no rule is prescribed. 

Example. Let a~Cgl,, b ~cgI2 with 11 <12. Then 

p (a a b b) = PI, (a a) Pi2 (b b), 

but no formula for p(abab) is given. 
So we have different possibilities for adding rules for calculating products 

which are not time-ordered. These different rules lead to different forms of 'inde- 
pendence'. 

Usually one demands that independent operators commute ( 'tensor case'), 
i.e. for I1, Ize9t , 11 hi2 =0 :  

(q~fh, c,~f~2) = c,~h @ % 2 , p /<~fh ,  % 2 )  = px, @ ,oz2 �9 

This means that the algebra cg=(c/x] i=l  . . . .  ,n;Ie91) is built together as a 
'commuting '  sum of the non-commutative subalgebras cgx~ with respect to p. 
Using this form of independence for the definition of white noise leads to the 
bosonic white noise of the CCR-algebra, which contains the classical white 
noise as a special case. 
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If the ~ are graded one may also use the antisymmetric tensor product 
for the definition of independence. This leads to the fermionic white noise of 
the CAR-algebra. 

We will replace these concepts by a more non-commutative one which takes 
instead of the tensor product the reduced free product, i.e. a 'maximal non- 
commuting'  sum of the (~Ii" This concept is due to Voicutescu and will be 
explained in the next section. 

3. The Free Independence According to Voiculesen 

Let J be an index set. For all i~J let ~r be a C*-algebra and ~0~ a state on 
z~r In [Voi 11 Voiculescu defined the reduced free product (~ ,  0 )=  *i~s(Sg~, q)i) 
of the (~r cp~). We will use the following characterization. 

Definition. For all i~J let dz be a C*-algebra with 1 and (p~ a state on ~r 
Furthermore let a C*-algebra ~ with 1 and a state ~b on ~ be given. Then 
(~ ,  0) is called reduced free product of the (~r ~0i) if we have: 

(i) There exist unital *-homomorphism j~: ~ --* sJ, such that ~ is generated 
by UJi (~) .  

(ii) 0oj~=qh for all i~J. 
(iii) For m e N  and kieJ  with k, : : ~ k  2 :~= . . .  :~=k m (consecutive indices are dis- 
tinct) and aiedk, and ~Ok,(ai) =0  we have 

0 (Jk, (a 1)... Jkm (a,,)) = 0 (independence). 

(iv) The GNS construction applied to (~ ,  (~) yields a faithful representation 
o f ~ .  

Theorem 1. For all (s~, ~oi) there exists a reduced free product (s~, (o) and it 
is unique up to isomorphism. 

Proof See [-Voi 1]. [] 

Therefore we can speak of the reduced free product and we will denote 
it by *~s(~r q~i) = (*i~j d i ,  *~j q)z). 

In the following we will sometimes identify ~ with j~(sJ~). 
We will only use part (iii) of the definition. It says that the subalgebras 
are independent in the sense of Kfimmerer [Kiim 1]. We will call this form 

of independence according to Voiculescu free independence. Part (iii) of the defini- 
tion allows us the calculation of all moments for al ,  ...,am with respect to 

if all moments of a~ with resepct to ~0k, (for all i) are known. This calculation 
is done according the following recursive procedure: Let k 1 :t = k2 + .." 4 = k,, and 
a~Edk~ be given. Then define (note ~(a~)= q~k,(ai)) 

a ~  O(ai)" 1, 
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thus a~ and 0 (a~  We have 

~b (a t . . .  a,.) = ~b [(a ~ + ~b (at)" 1),.. (a ~ + 0 (a,.) �9 1)] 

= ~ O(a~(t) )  . . .  ~9(a~(n)) ~b(a~ a~ 
7t, ~r 

where the sum runs over all part i t ions of {1 . . . . .  m} into two ordered sets 
(~ (1) . . . . .  ~ (n)) and (~ (1) . . . . .  r (m-n) )  with n > 1. Because of part  (iii) of the defini- 
t ion the term for n = 0 vanishes. After combining neighbouring elements from 

0 0 the same algebra the terms a~(t),. .a~(m-,) can be written again as a product  
bl . . .bm,  with b ~ ,  and l t ~ 1 2 ~  ... #el,.,. We can now repeat this procedure 
and because of m' < m we will come to an end after finitely many  steps. 

Example.  Let a ~ r  bEsffz. Then we have 

(p (a b a)  = 0 [-(a o + q) l (a). 1) (b 0 + cp 2 (b). 1) (a ~ + cpt(a ) �9 1)] 

= qh (a) 0 (b ~ a~ + ~02 (b) 0 ( a~ a~ + qh (a) ~b (a ~ b ~ + q~ 1 (a) ~02 (b) 0 ( a~ ) 

+ q~ t (a) q~ t (a) 0 (b~ + cp 2 (b) q~ 1 (a) 0 (a ~ + ~P t (a) cp 2 (b) Cpx (a) 

= q~2 (b) 0 (a ~ a~ + ~P t (a) ~02 (b) q~ (a) 

= q~t ( a a )  q~2 (b). 

In the following lemmas we will give some simple properties of this calcula- 
t ion procedure. We will set J = N.  

L e m m a  1. Consider a product a = a l . . .  am~*iZ 1 ~ with 
(i) ai ~ dkl  for  all i. 

(ii) There exists  a j with kj~-ki  for  all i 4 j ,  i.e. there is only one fac tor  f rom 
the algebra ~ffkj. 

(iii) Cpk ~ (a j) = 0. 
Then ~ (a) = O. 

Proo f  Use the above recursive formual  for ~b(al... am). All summands  are either 
zero because they contain a factor ~pkj(ai) or they contain a factor bl ...b,,,, 
which fulfils again the assumptions of the lemma, but  with m' < m. So the asser- 
t ion follows by induction. [] 

L e m m a  2. Consider a product a = a l . . . a"  ~ * ~= 1 ~ with 
O) a ~ d k ~  for  all i. 

(ii) There is one algebra which appears only once, i.e. there exists a j with 
kj ~= ki for  all i ~=j. 

Then 0 (a) = ~Okj(aj) O(al .. . aj_ 1 aj + 1... am). 

Proo f  Write aj = a ~ + ~Pkj(aj)" 1. Then 

O(a)=q~kj(a~) (o(al . . . a j -  x aj+ a ...a,,) + O(al . . . a j -  t a ~ aj+t  ...am). 

The second summand  vanishes because of Lemma 1. []  
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If a~... aj_ 1 ai+ ~ ... a,, fulfils again the requirements of the lemma, we may 
repeat the procedure. If a product  has such a form that this can be repeated 
until m = 1 we will call this product  admissible, otherwise non-admissible. 

Example. Let ae~41, b e d 2 ,  cesJ3, desd4. Then c b a a b c d c  is an admissible 
product:  

O(cbaabcdc)=(ol  (aa) ~(cbbcdc)  

=(Pl (aa) (p4(d) (b(cbbcc) 

= qol(aa ) (o4(d) ~o2(b b ) (o(ccc) 

= (pl(aa)~04(d) q~2(bb) ~o3(ccc). 

We see that for admissible products the calculation of (b is the same as 
in the tensor case. 

Given elements a~edk, we will call an expectation of the form q,j (ai(a)... a~(,)) 
( j eN)  with k i ( i )=  kit2) . . . . .  ki(r) =j, i.e. ai(i) . . . . .  ai(r)E~,  an elementary moment 
of the a~. 

Lemma 3. Consider a product a=ai . . .ame*F=l d i  with aiedk~ for all i and 
k 1 ~ k 2 ~ ... =4= km. Let s be the number of different algebras occurring in a, i.e. 
s,= ~ {ki ,  ..., kin}. Then (o(a) can be written as a sum of products of elementary 
moments of the ai, where each summand contains at least s factors. 

Proof. We will do this by induction on m. For  m=l(~(al)=(Okl(al))  and 
m = 2(~(al a2) = tPkl (a0 q)k~(a2)) the assertion is clear. 
Let m > 2: Write ai = a ~ + (o (ai)" 1, thus a ~ e S~k~ and ~ (a/~ = 0. Then 

(b(a) = ~ (p (a~(1)) ~ ... (o (a~(,))* r (a,(1)~ ... a~~ n)), 

where the sum runs over all partitions of {1, .. . ,m} in two ordered sets n 
0 0 =(re(l) . . . .  , re(n)) and a=(a(1) ,  ..., a ( m - n ) )  (with n >  1). The term a~(1)...a~(m-,) 

contains at least s - n  elements from different algebras ~r thus it is according 
to the induction hypothesis the sum of products of elementary moments of 
the a ~ each product  containing at least s - n  factors. But each moment of the 
a ~ can be written as a sum of products of moments of the a~. Together with 
the n factors (b(a~(1))... (b(a~(,)) this gives the assertion. []  

Lemma 2 shows that admissible products have a representation with exactly 
s factors. The next lemma shows that for non-admissible products there is a 
representation with at least s + 1 factors for each summand. 

soy Lemma4.  Consider a non-admissible product a = a l . . . a m s  i=lo~ with aie,fgCk~ 
for all i and ki4=k24= ... 4=k,,. Then (~(a) can be written as a sum of products 
of elementary moments of the ai, where each summand contains at least s + 1 
factors, where s:= ~ {kl ,  ..., kin}, 

Proof It is sufficient to consider a=al . . . am,  a~e~Ck, with each k~ occurring 
at least twice. Consider now the factorization 

O(a)= ~ O(a,~(i))...O(a,~l,)) ^ o o (p(a~(i)...a~,,_,)). 
7C, G 
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Regard  one fixed term of  the sum: Then  either all the k~( 0 are distinct and 
{k~(1) . . . .  , k~(,,_,)} = s or  k~(o = k~o) for some pair  (i,j) and 
{k~(~) . . . .  , k,(,,_,)} > s - ( n -  1). Because of L e m m a  3 we have a representat ion 

of * o ~o(a~(t)...aO(rn_n)) with summands  containing at least 4t: {k~(~), . . . ,  k~(~_,)} 
factors. This gives the assertion. [ ]  

Example. Let  a e d l ,  be~r Then  

~b (a b a b) = ~P2 (b) ~b (a ~ a ~ b ~ + q) 1 (a) ~3 (a ~ b ~ b ~ + q) 1 (a) qo a (a) ~b (b ~ b ~ 

+ q)2 (b) q~2 (b) ~3 (a ~ a ~ + q~l (a) q) 2 (b) q~l (a) (P2 (b) 

= qh (a) rp 1 (a) q)2 (b b) + q)l (a a) (o2 (b) (P2 ( b ) -  q) l (a) @ 1 (a) q~2 (b) ~o z (b) 

L e m m a  2 and L e m m a  4 will be used decisively in the p roof  of our  limit 
theorem in the next  section. 

4. Limit Theorems 

We can now make  precise the concept  of free white noise. 

Definition. A n-dimensional free white noise ((g, p,(c~ . . . .  , c7)i~) consists of 
(i) a C*-algebra (g with 1, 

(ii) a state p on oK, 
(iii) a finitely addit ive mapping  9t ~ (g", I~-.(c} . . . .  , cT) 
such that  with the following nota t ion  

%,=c*O,c~li=l, ...,~) 

pi =p/% 

we have: 
(i) ((gh,Pil), " " , ( (g l r ,Pr )  are freely independent  for all r e N  and disjoint 
11, . . . ,  Ir~91, 

(ii) the dis tr ibut ion Pr depends only on 2(I). 
We present  now a limit theorem for freely independent ,  identically distr ibuted 

r a n d o m  variables. Later  we will specialize this to a central  limit theorem for 
free Gauss ian  dis tr ibut ion and a limit theorem for free Poisson distribution. 
Afterwards we will see that  free white noises necessarily possess (under some 
cont inui ty  assumption)  distributions t reated in our  limit theorem. 

We are only interested in the moment s  of the distributions. We call the 
rule for calculating them also the combinator ics  of the distribution. 

In the tensor  case the calculat ion of moments  in the limit is carried out  
with the help of part i t ions of sets (see, e.g., [GvW]) .  This is similar here, but  
in contrast  to the tensor  case, we will have to consider only special parti t ions, 
called admissible. 

They  are defined in the following way. 
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Definition. Let Y/~ = { 1/1 . . . . .  V~} be a part i t ion of the set {1, .. . ,  r}, i.e. the V~ 

are ordered and disjoint sets and {1, . . . ,  r} = U Vii. Then Y/~ is called admissible 
i=1 

if for all i , j = l  . . . .  ,s  with Vi=(Vl . . . .  ,v,) ( v l < . . .  <vn) and Vj=(wl,  ...,Wm) 
(wl < ... <w,,) we have 

Wk<Vl<Wk+I"e~Wk<V,<Wk+I ( k = l  . . . .  ,m- - l ) .  

Otherwise the part i t ion is called non-admissible. 
We will denote the set of all parti t ions of {1 . . . . .  r} by ~(1  . . . .  , r) and the 

set of all admissible parti t ions by ~,(1, . . . ,  r). 
We can reformulate the definition of 'admissible '  in a recursive way: The 

parti t ion ~ = {V1, . . . ,  V~} is admissible if at least one of the V~ is a segment 
of (1 . . . .  ,r), i.e. it has the form V ~ = ( k , k + l , k + 2 , . . . , k + m )  and 
{V1 . . . .  , V~-I, V~+I, ..., V~} is an admissible part i t ion of {1, . . . ,  r}\V~ (interpreted 
in a canonical way). 

In a more pictorial language: If we build bridges by connecting in 1 2 3 ... r 
the numbers belonging to the same V~, then a part i t ion is admissible if it is 
possible to build the corresponding bridge in such a way that  the lines do 
not  cross. 

Example. {(1, 3, 5), (2), (4)} and {(1, 5), (2, 4), (3)} are admissible parti t ions of 
{1, 2, 3, 4, 5}, non-admissible are {(1, 3), (2, 4, 5)} and {(1, 4), (2), (3, 5)}. The respec- 
tive pictures are 

2 3 4 5 1 2 3 4 5, 

and 

1 2 3 
I 

4 5 1 2 3 4 5. 

(Admissible) products are connected with (admissible) partit ions in the fol- 
lowing way: Let a product  a = a 1... a~, be given with die sdk,. Wi thout  restriction 
let {kl . . . . .  kin} = {1, . . . ,  s}. Then define ~. '={ilk~=r}.  

The product  a is admissible if and only if the part i t ion Y/~ = {V1, .. . ,  V~} 
is an admissible part i t ion of {1 . . . .  , m}. 
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Example. Let a ~ sr b e sCz, c E ~r The admissible product b a a b c b corresponds 
to the admissible partition {(1,4,6),(2,3),(5)}. The non-admissible product 
a bc a c corresponds to the non-admissible partition {(1, 4), (2), (3, 5)}. 

The general setting for our limit theorem is the following: Let the pair (N, q~) 
consist of a C*-algebra N with 1 and a state (p on N and for each i e N  let 
(Ni, qh)"=( N, 9). Let (~, ~b):=.~= 1 (Ni, 9i) be the reduced free product of the pairs 
(~i, ~oi) with the canonical embeddings Ji: Ni ~ ~ .  

Theorem 2 (limit theorem). For each N e N  let n elements b~v . . . .  , b}er be given. 
I f  for all r e N  and k(1) . . . . .  k(r)~{1 . . . .  , n} 

Q ( k ( 1 )  . . . . .  k ( r ) ) . - =  l i r a  N .  ( p ( b ~ ( 1 ) . . .  b k(~)) 
N--+ co 

exists then we have for the sums 

S k.'=j~ (b~)+. . .  +jN(b~) 

for all r s N  and k(1) . . . .  , k(r)e{1, ..., n}" 

lim (b(S~m... S~ (*)) = ~ ~ Q(V1)... Q(Vp), 
N--* o9 p =  1 {VI . . . . .  V p } ~ a ( 1  . . . . .  •) 

where the sum runs over all admissible partitions {1/1 . . . . .  Vp} of the set {1 . . . .  , r} 
(1 =<p_-< r). There Q(V) stands for Q (k(vl), . . . ,  k(vm)) if  V= (v 1 , . . . ,  Vm). 

Proof. In the following r and k(1), ..., k(r) are fixed. We have to calculate the 
following expression for N ~ oe : 

M~:= r (S~")... S~,(') 
= r [(Jl (b k(1)) + . . .  +JN (bk(~))) �9 �9 �9 (J 1 (b~ (*)) + . . .  +JN (bk(')))] 

N 

= ~ ~b (J,l)(b~('))...ji(,)(bk(*))). 
i(1) . . . . .  i ( r )=  1 

We now make use of our correspondence between products and partitions and 
collect these summands which belong to the same partition in the same class. 
Thus we will get an equivalence relation on the set of the r-tuple (i(1) . . . .  , i(r)): 

(i(1), ..., i(r)) ~ (j(1), ... ,j(r))~*~ {i(k) = i(1).~j(k) = j  (/)} 

The equivalence classes are in a one to one correspondence to the partitions 
of {1 . . . . .  r}. Because of the invariance of the reduced free product under permu- 
tations the expression 4)(j,1)(b~"))...ji(r)(b~'))) has the same value for all 
(i(1) . . . . .  i(r)) that belong to the same equivalence class. Thus this vatue depends 
only on the corresponding partition ~---{V1 . . . . .  Vp} and on N and may be 
denoted by ~b(~; N)=  (~(V1 . . . . .  V/N).  (example: ~b ((1, 2), (3), (4); N) 

* " bk(~) �9 b k ( 2 )  �9 bk(3) �9 bk(4) ^ " bk(1) �9 bk(2) - bk(3) bk(4) =~o(j~( N )J~( ~ )J3( N )J2( N ))=~o(j7(  N ) I7(  ~ )J2( ~ )J3( N ))). T h e  
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equivalence class corresponding to ~ = { 1/1 . . . . .  Vp} contains exactly 
Ap, N.-= N (N - 1 )... (N - p + 1) element s. S o we h ave 

MN = ~ A,.N ~ (~(V1, ..., Vp;N). 
p =  1 {V1 . . . . .  V p } e ~ ( 1  . . . . .  r) 

We claim that in the limit N ~ o e  only the admissible partitions survive and 
that these give the asserted expressions. 

Let "ff = {Va . . . .  , Vp} be a non-admissible partition. Then we have 

g5 (~K'; N ) =  gS(ji(1)(bkN(1))...ji(~)(b~(~))), 

�9 ~ b k O ) ]  with Ji(1)t N ,"'Ji(r)(bkN (r)) being a non-admissible product. According to Lem- 
ma 4 we can write ~b (V;  N) as a sum of products of moments of the b~ (~) with 
respect to go, where each product contains at least p + l  factors. Then 
Ap,N.~(~U;N) goes to zero for N ~ o c  because of A p , N = N . . . ( N - p + I )  and 
because of the assumption Q(k(1), ..., k(r))= lim N.  go(b~ (1) ... b~(~)). Thus 

N--* oo 

n 
lim MN = lim ~, Ap, N ~ (o (V~, ..., Vp; N). 

N ~ o o  N ~ o o  
p =  1 {V1 . . . . .  V v } e ~ ( 1  . . . . .  r) 

For  an admissible partit ion ~ = {V1,..., Vp} the corresponding representative 
ji(1)(b~(1))...ji(r)(b~(r) ) is an admissible product. So we can calculate 
~(V1, ..., Vp; N) according to Lemma 2 as go(V1; N). . .  go(Vp; N). The expression 
Ap, N. go(Vt ; N) -.. g0(W; N) converges for N ~ oe to Q(V1)... Q(Vp). [] 

It is easy to see, that an analogous limit theorem is true in the tensor case; 
the only difference is that the sum over all admissible partitions is replaced 
by a sum over all partitions. The combinatorial part of the proof  is the same 
and we can stop at 

MN = ~ Ap, N ~, (9(V1 . . . . .  W;N), 
p =  1 {V1 . . . . .  V p } e ~ ( 1  . . . . .  r) 

because in the tensor case (~(Vt, ..., Vp;N) is equal to ~0(V1; N)...go(Vp;N) for 
all partitions. 

The combinatorics of the distribution in the limit N ~ oo does only depend 
on Q: V~-*Q(V). Therefore it is justified to call Q the generator of the limit 
distribution. 

Remark. For  the relation between ~b and Q we will write symbolically 

lim gb(s~ = e x p .  Q. 
N ~  

This is justified by the validity of the formal equation 

(exp. Q1)* (exp. Qa)--exp.(Q1 + Q2)- 
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For an exact formulation of this statement we need an extended frame: Let 
(~, q~) be as before and (~, q?)=(~, ~o),(~, q0) with the canonical embeddings 
il and i2. We take ( ~ , ~ i ) = ( ~ , ~ )  for all i and (~,~b)=*~~ 0~) with the 
canonical embeddings Jk: Nk ~ .  For each N e N  let again n elements 
b~, ..., b } e ~  be given. Define 

S k :=j~ (i~ (b~)) +J2 (il (b~)) + . . .  +jN(i~ (bk)) 

T k,=j~ (iz (bk)) +J2 (i2 (bk)) + . . .  +JN (i2 (bk)) 

and 

k k .'=sN + TL 

Assume that 

lim 0(sN/=exp, Q1 and lim (~(T~/=exp, Q2. 
N--*~ N ~ o o  

Then 

(exp, Q0*(exp,  Q2) = lim 0(vN)=exp,(Q1 +Q2). 
N---~ co 

The validity of the last equality sign is easily seen with the help of Lemma 3. 
For n = 1 the generator Q was also introduced by Voiculescu in a more 

abstract way. Our Q(1, ..., 1) corresponds to Rr(~) in [Voi 1]. 
r times 

We will now specialize our limit theorem to analogues of a central limit 
theorem and a limit theorem for Poisson distribution. 

Theorem 3 (free central limit theorem). Consider n elements b t . . . .  , b ~ e N  with 
q) (b*) = 0 for  all k = 1 . . . .  , n. Then we have for  the sums 

S~ ,= .j ~ (bk) +""  + j~ (bg) 

for  all r ~ N  and all k(1), ..., k(r)~ {1, ..., n}" 

lim r S k(~)) 
N ---~ oo 

=/O, r odd 
Z q)(bk(e')bk(z~)) ... q)(bk(er/2)bk(zr/2)), r e v e n  

[ {(e~, z~) . . . . .  (e~/2, z~/2)} 
I . e ~ a ( 1  . . . . .  r) 
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Proof Consider b k,=~NN, bk" Then 

lim N. qo (b~) = 0 
N - *  oo 

lim N. (p(b k(1) b k(2)) -- (p(bk(1)bk(2)) 
N ~ , o o  

lim N.q~(b~(~)...b~(~))=O (r>3). 
N ~  

[] 

The analogous situation for the tensor case was treated by Giri and yon 
Waldenfels [GvW], compare also [Cul l ,  Coi l ,  Heg]. We want to show the 
combinatorial difference between the tensor case and the free case by an example: 
The moment of S~ (1~ ~'N~k(~) ~'N~k(3) sk~4) in the limit N ~ oo in the free case is given 
by 

mv = Q (i(1), i(2)) Q (i(3), i(4))+ Q(i(1), i(4)) Q (i(2), i(3)) 

(corresponding to the admissible partitions {(1, 2), (3, 4)} and {(1, 4), (2, 3)}), 
whereas in the tensor case it is given by 

mavw =my + Q (i(1), i(3)) Q (i(2), i(4)) 

(with the additional non-admissible partition {(1, 3), (2, 4)}). 
For  n = 1 and b = b 1 selfadjoint the tensor case reduces to the classical central 

limit theorem in the following weak form: the moments of S~ converge to the 
corresponding moments of the Gaussian distribution. 

For n = 1 and b--b 1 selfadjoint the 'free Gaussian' case was treated by Voicu- 
lescu [Voi 1]. It is easy to see that the moments do belong to 'Wigners semicircle 
distribution' p = f 2  with density 

f (x) = ~ ~ l  - (x/a)2 g(- ~, ~)(x). 

It may be interesting to note that this Wigner distribution appears also as 
the normed distribution of the eigenvalues of large symmetric random matrices 
(compare e.g., [Wig]; see also [Voi2]). 

The moments of the Wigner distribution can be easily calculated explicitly: 

0, n odd 
E[X"] = 1 /2k\ 2 k 

a " - - -  1 �9 3 .5 .7 . . . (n- -  1).a", n = 2 k  (k+a (k+l)! 

For comparison: The moments of the classical Gaussian are given by 

{•'. 3.5.7 n odd 
E [X"] = ... ( n -  1)- a", n even 
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T h e o r e m 4  (limit theorem for the free Poisson 
b N e N ( N E N )  with 

lira N .  ~o !bN... bN! = ct 
N ~ ao r times 

independent of r for all r~N. Then we have for the sums 

SN:=jl (bN) + ' "  +jN(bN) 

for all r: 

distribution). 

lim ~!SN...SN!= ~, 2 c~P" 
r t i t h e s  p = 1 {V1 . . . . .  V p } ~ , ~ a ( 1  . . . . .  r) 
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Consider 

Proof We have for all r E N :  

Q(1, . . . , 1 )=~ .  [] 
r t i m e s  

In the tensor case the analogous theorem gives a limit theorem for the 
Poisson distribution. Because of this analogy we call a distribution with the 
above combinatorics a free Poisson distribution. For  illustration we compare  
the first few moments  of the Poisson and the free Poisson distribution: 

Classical Poisson 

a 2 + ~  

C~3+3~X2+~ 

~5 + lO~z4 + 25 c~3 + 15cd +~z 

~6 + 15~5 + 65~4 +90c~3 + 31o~2 + a 

Free Poisson 

o~ 

ct2+~ 

~3+3~24c~ 

~4+ 6c~3 +6c~2+~ 

c~ 5 + 10a 4 +20~z 3 + 10~ 2 + 

~X6 + 15~X5 + 50~4  + 50~X3 -t- 150~2 + ~ 

Remark. Let X ,  be a r andom variable distributed according the Wigner distribu- 
tion with variance o .2 and Y~ a random variable distributed according a free 
Poisson distribution with expectation e. Then we have E[Y(]=E[X2r]. This 
allows the calculation of the free Poisson distribution Vl of I71 : 

v j - - g . 2  w i t h d e n s i t y  g ( x ) = ~ ~ l Z ( o , 4 ) ( X  ). 

For  e 4 = 1 the calculation is more tedious. It was done by Bozejko and Leinert 
[-BoLl and the measure has the form 

v~ = a~. 3o + ~ ,  
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where g, is absolutely continuous with respect to the Lebesgue-measure 2. The 
same measure v~ also appears as the distribution of the eigenvalues of the square 
of rectangular matrices (compare, e.g., [-Voi2], Sect. 3.6.). 

We will now examine the combinatorics of free white noises. 

Theorem 5. Let (cg, p,(c~ , . . . ,  c~)i~) be a n-dimensional free white noise and define 
k k 6 :=CEo,o for all k =  1, . . . ,  n. Assume that 

l imp (c)U)... ct a')) ~ 0 
t ~ 0  

for all r e N  and all k(1), ..., k(r)~{1, ..., n}. Then there exist generators Qt, such 
that for all r ~ N  and all k(i) . . . .  , k(r)e{1 . . . . .  n} we have: 

p(4 ")--- = Z Z 
p =  1 {V1 . . . . .  Vp)~#~(1  . . . . .  r) 

where the sum runs over all admissible partitions of the set {1, ..., r} and Qt(V) 
denotes Qt(k(vO, .. . ,  k(Vm) ) if  V=(Vl . . . .  , vm). Furthermore Qt is linear in t, i.e. 

Q t=t .Qa .  

Thus the combinatorics of  the free white noise is completely described by the 
generator Q1. 

Proof. We first note that the continuity of all moments at to = 0 implies the 
continuity at all to. 

We will now show that c~ can be identified for all N ~ N  with a sum S~ 
of our limit theorem: Write 

N - 1  

4= Z 4, 
/ = 0  

with It = [1. t/N,(1 + 1). t /N) 

k have the same distribution and are freely independent and note, that c~, and cr,, 
for 14=m, i.e. c~, can be identified with jl(C~/N) in the notation of Theorem 2 
(with ~ = C* (c~/N[ k = 1 . . . .  , n)). 

Therefore the first assertion follows, if we show the existence of the limit 

Q t ( k ( 1 ) ,  . . . ,  k(r)) ,= lim iv" p tct/N'=k(1).., c~/([v)). 
N ~ o o  

This is done by induction on r. 

r = 1 : We have for all N 

p(c~(,))=p , . k O )  =N.p(c~/~)). t - ' [ l . t /N ,  (1 + 1).t /N) 
l 

Thus Qt (k (1)) = p (c~ (1)). 
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r >  1: We will only treat an example, because this saves us a lot of indices 
and illustrates the procedure sufficiently. Let r = 2. 

/ N - 1  N - 1  
c k O )  + 

l' = o ~[l ' .  t /N, (l' + 1). t /N)]  

= N (N - 1) p (ctk/(~)) p (c~/~)) + N p (ckt/(~) .k(2)~ t ' t /N 7" 

Taking the limit N ~ oo and regarding our knowledge about p for less than 
r arguments we get: 

Qt(k(1), k(2))= p (ct k(1) ct k(2)) -Qt(k(1)) Qt(k(2)). 

From the remark after our limit theorem we get 

Qt+s=Q,+(L. 

This gives the linearity in t, because the continuity of all moments implies also 
the continuity of t ~ Qt. []  

Remark. According to our earlier remark we can write 

P(ct~ = exp,  (tQ 1). 

The classifying of all free white noises or equivalently of all processes with 
stationary and freely independent increments is thus reduced to the classifying 
of all generators Q1. It remains to decide, which conditions Q1 has to fulfil 
in order to be a possible generator, especially under which conditions the func- 
tional exp,(tQ1) is positive for all t. This will be done in a forthcoming publica- 
tion [GSS]. 

Like in the tensor case, we will now look for 'simple'  explicit models of 
the free Gaussian and the free Poisson distribution, i.e. we look for operators 
c 1, ..., c n and a state on the operator  algebra generated by these operators, 
which gives the combinatorics of Theorems 3 and 4. Furthermore,  having pro- 
cesses in mind, we will look for such operators cl . . . . .  c7 for each I~9l  such 
that c~, and c~2 are freely independent for I1 ~ I 2 = 0 .  All these demands can 
be fulfilled in the full Fock space which we present in the next section. 

To recall the corresponding situation for the tensor case: The combinatorics 
of the tensor case is given by creation and annihilation operator (Gaussian 
distribution) and by Pt = At + at + at + + t. id (Poisson distribution) in the symmet- 
ric Fock space ~(L2(IR)) (compare [HuP]) .  Furthermore,  operator  algebras 
to disjoint time intervals are built together as tensor products, i.e. they are 
independent in the classical sense. We will see that we have the analogous 
results for the free independence if we replace all operators by their counterparts 
on the full Fock space. 
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5. The Full Fock Space and the Cuntz Algebra 

Let J4~o be a Hilbert space. Then the non-symmetrized or full Fock space of 
~4~o is the Hilbert space 

~ ( ~ o ) ' = r  | @ ~o*" 
n = l  

with scalar product ( f ,  gi e ~Co) 

{fl|174174174 
{o,o}=1. 

The vacuum expectation state is given by 

p: B(Y) ~ C 

x~G?,  xP). 

For each f e ~  o we define the left annihilation operator l(f) and the left creation 
operator l* (f) by 

l(f)fl | ... |  <f, f~ } f2 |  |  

l*(f)fl N... |  Nf~ | Nf.. 

The operators l(f) and l* (f) are bounded and mutually adjoint. Furthermore 

II l(f)ll = II/*(f)lr = IIf II~eo. 

We now take ~0 = L 2 (I) for I e 9t and define 

0 (I) .'= C* (1 (f)l f e  L 2 (I)) c B (Y) 

as the C*-algebra generated by all annihilation operators adapted to I. Then 
O(I) is as a C*-algebra isomorphic to the Cuntz algebra 0oo rCun, Eva]. It 
is characterized by the relations 

l(f)/*(g) = {f, g ) l  for f, geU(I) 

and 

~l*(ei) l(ei) < 1 
i = 1  

Furthermore we define 
r e  B (L 2 (IR)) by 

for each CONS {el} in L 2 (I). 

the analogues p(T) of the gauge operators for 

p(T)~=o 
p(T) (A | | | f.)= (Tf~) | | | 
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They are bounded:  Ilp(Z)]lB(~)= L] TIhB(L2(a)). We will only need p(h):=p(Th) for 
multiplication operators Th with h e L  ~ (IR): Th(f)= h f  Thus we define 

0(I)  :=C* (p(h), l(f)l f e L2 (I), he L ~ (I)). 

We will work on 0 OR) and 0 (N.). The subalgebras O (1) and 0 (I) may be regarded 
as a filtration�9 

That these operator algebras are the right objects for our studies is justified 
by the statement, that 0(11) and O(Ia) are freely independent with respect to 
the vacuum expectation for I lC~Iz=0:  Let Pore be the vacuum expectation 
restricted to 0(I). Then we have for disjoint 11,12: 

(0 (11 u 12), Po al ~, ,:)) = (0 (I i), Po (,,)) * (0 (12), Po u2)) 

and the same for 0 (compare [-Voi 1]). 
Therefore processes which are defined as linear combinations of the basic 

processes 13.'= l()/(o, 3)), l* := l* 0~(o, 3)) and Pt"=P (Z(o, 3)) have freely independent and 
stationary increments. Thus their increments are free white noises and have 
the combinatorics of Theorem 5, i.e. they are determined by a generator Q1. 

We now try to identify free Gaussian noise and free Poisson noise�9 

Theorem 6. Let G :=10~(o,t)). Then c3 and c* have with respect to the vacuum expec- 
tation p the combinatorics of Theorem 3, i.e. (with cl, = c3 and c 2 = c*) 

p ( c k ( 1 ) . .  C k(r)) : { 0 ,  r odd 
�9 Z Qt(Vl)... Q,(V~/2), r e v e n .  

{Vl . . . . .  V r / z } ~ a ( 1  . . . . .  r) 

The matrix Qt is given by 

Proof According to Theorem 5 the combinatorics of ct, c* is given by a generator 
Qt because (O(IR), P,(l(zx),/*(Xl))/e~) is a free white noise. We only have to calcu- 
late 

Q3(k(1), k(r))= lim N.p(c~/(~ ) ,a(~)~ �9  ~ �9  L,3/N ]. 
N --* oo 

It is easy to see that the limit is only different from zero for r = 2  and that 
it gives for r - -2  the asserted matrix�9 [] 

Remark. It is also not very hard to see the following more general assertion: 
Let c. '=/(f)+/*(g).  Then c and c* have with respect to the vacuum expectation 
p the combinatorics of Theorem 3, i.e. (with c1= c and c2= c*) 

P (ck(1) " . ck(r))  = { 0 ,  r odd 
�9 ~ Q(Vt).. .  Q (v,/2), r even. 

{Vx . . . . .  Vr/2}~,~(1 . . . . .  r) 

The matrix Q is given by 

Q=/<:g> 
\ (g,  g} (g , f }]"  



158 R. Speicher 

Example. 

p (c c c* c) = <f2, ( l ( f )  + l* (g)) ( l ( f )  + I* (g)) (l* ( f )  + l(g)) ( l ( f )  + l* (g)) (2) 

= <~2, t ( f ) l* (g ) l (g ) I* (g)  f2> + <f2, l ( f ) l ( f ) l * ( f ) I * ( g )  g2> 

= < f g >  < g , g ) + < f f )  < f g >  
=p(cc )  p(c* c) + p(cc*) p(cc). 

Theorem 7. Let c t :=Pt + It-k- lt* + t" id. Then ct has with respect to the vacuum expec- 
tation p the combinatorics of  Theorem 4, i.e. 

p(c,.., cO= Z Z 
r t i m e s  p = 1 {V1 . . . . .  V p } s ~ a ( 1  . . . . .  r )  

t ~. 

Proof  We already know the existence of Qt according to Theorem 5 because 
(O(N), P,(P(ZI)+ l(z~)+ l* (Z~)+ 2(I). id)x~) is a free white noise. It is easy to see 
that 

Qt(1, ..., 1)= lim N.p(ct/u...ct/N)=t 
�9 N - * o 0  �9 -, 

v t i t h e s  r ti~mes 

for all r c N .  []  

These two theorems show that the processes It, l* and Pt + It + l* + t . id  are 
the free analogues of the corresponding processes at, a + and At + at + at + + t . id 
on the symmetric Fock space. Especially, It + l* is a model for the free analogue 
of the Wiener process and Pt + It + l* + t. id is a model for the free Poisson process. 

In [GSS] we will show that all free white noises can be modelized as a 
sum of creation, annihilation and gauge processes on a more general version 
of the full Fock space. This is analogue to the situation for the tensor case 
(compare [-Sch]). 
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