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1 Introduction 

Let (Mt)t>=o be a uniformly integrable (UI) martingale and let M t ~ s u p  { M , : u  
< t} be its supremum process. The fact that M is a martingale imposes certain 
distributional constraints on the laws of Moo and 2 ~ ,  and these have been 
investigated by a number of authors: see, for example, Blackwell and Dubins 
[3], Dubins and Gilat [4], Az6ma and Yor [2], Perkins [7], Kertz and R6sler 
[6], Vallois [10]. If v denotes the law of Moo, then it was shown by Blackwell 
and Dubins that 

(1.1) v~_ P(Mioo s')<_ v*, 

where <_ denotes stochastic ordering of probabilities on IR (so that v 1 M-v2 means 
that vl((a, oo))<_v2((a, oo)) for all aEN), and v* denotes the Hardy transform 
of v. (Recall the definition of v* in the case where v has no atoms: if 

(1.2) b~(x)_ 
j yv(dy)/v([x, oo)) if v([x, oo))>0; 

Ix, oo) 
x if v([x, oo))=0 

is the barycentre function of v and if Z has law v, then v* is the law of b~(Z).) 
Kertz and R6sler went on to prove that if  2 is any probability on IR satisfying 

(1.3) v~-2~- v*, 
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where v has a finite first moment, then there exists a UI martingale such that 
the law of Moo is v and the law of M~ is 2. Vallois [10] subsequently character- 
ised those laws 2 which could arise if M was assumed also to be continuous. 

While these earlier works have discussed only stochastic inequalities between 
M~ and 2~r ,  in this paper, we characterise the possible joint law of the variables 
(~ro o , M~). The characterisation which we obtain is extremely simple, and allows 
many of the earlier results to be deduced as corollaries. Suppose that # is the 
law of (M~, ~r - M ~ ) ;  thus # is a probability measure on N x N  +. If we 
define 

~ (x -y )#(dx ,  dy)/#((s, oo) x N~ +) if #((s, oo) x l R+ ) > 0  
(1.4) c(s)- ~s,~)• 

s if not, 

then c has the interpretation 

(1.5) c(s)=E(Moo 12~oo >s). 

It is easy to see that c(.) must be increasing and c(s)>=s (Proposition 2.1), so 
that the conditions 

(1.6. i) f ~ l x -  yl #(dx, d y) (= E [ Moo]) < oo 

(1.6. ii) c(') is increasing; 

(1.6iii) c(s)>=s for all s 

are necessary for # to be the joint law of (Mo~, M ~ - - M ~ )  for some UI mart- 
ingale: the first result of Sect. 2 is that conditions (1.6. i-iii) are also sufficient 
for # to be the joint law of (M~o, Mo~- M~) for some UI martingale M (Theorem 
2.2). On the way to proving this, we establish the useful result (Lemma 2.3) 
that if X is an a.s. convergent continuous local martingale, Xo=0 ,  then X 
is a UI martingale if and only if 

(1.7.i) EIX~o[< oo; 

(1.7. ii) EX~ =0;  

(1.7. iii) lim aP(sup Xt > a) = 0. 
a~oo t 

If we now restricted attention to UI martingales M such that M o = 0, the law 
# of (Mo~, M ~ -  Moo) would have to satisfy the further obvious conditions 

(1.6. iv) # is concentrated on IR + x IR + ; 

(1.6. y) ~ ( x -  y) #(dx, dy)(= EMoo) = O. 

The second result of Sect. 2 (Corollary 2.4) is that conditions (1.6. i-v) are sufficient 
for # to be the law of (M~, IVIoo-Mo~) for some UI martingale M vanishing 
at O. 

The hard part of the proofs, the sufficiency, requires construction of a mart- 
ingale, given the law # satisfying (1.5) and (1.6). The construction used is a 
variant of the Az~ma-Yor [-2] embedding (see also Rogers [81). It magically 
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produces the 'r ight '  martingale, and can be applied to prove the result of Kertz 
and R6sler in a few lines. The proof makes essential use of excursion theory. 

Section 3 of this paper concentrates on the continuous case with Mo =0. 
While the problem sounds similar to that of Sect. 2, the methods used are 
different. The first result characterises the possible laws g of (Moo, 2~oo--M~), 
where M is a convergent continuous local martingale (equivalently, a Brownian 
motion stopped at a finite stopping time T.) We prove that the condition 

(1.8) /~((t, a o ) x ~ ( + ) d t -  > ~ yl~(dt, dy) 
(0, Oo) 

is necessary and sufficient for # to arise in this way, and that equality holds 
for a UI martingale. The proof is based on compensating a jump down from 
the maximum, and is given in Sect. 3. 

Finally in Sect. 4 we use the earlier methods to characterise the joint laws 
of (Moo, 3doo-Moo) for uniformly integrable continuous martingales vanishing 
at 0, and deduce from this the characterisation due to Vallois [9] of all possible 
laws of Moo in that case. 

2 The uniformly-intcgrable case 

We begin this section with a simple result of interest in its own right. 

Proposition 2.1 Let M be a uniformly-integrable martingale, and define 

(2.1) 
/f P(M~ >s)=0"  

Then the function c(') is increasing, and c(s)> s for all s. 
Proof We take x < y  and prove that c(x)<=c(y). If P(Moo>y)=0,  then c(x)<=y 
and there is nothing left to prove, so we suppose that P(Moo>y)>0.  Now 
define for each aelR 

%-~inf{u: M,>a}  

and observe that {h4oo >x} = {%< oe}, and 

c(x) =-E(Moo [ ]~oo > x ) =  E(M(%) 1% < oo)>__x 

by uniform integrability. The statement that c (s)> s is now obvious. 
Let X < Y be two random variables, X e L  1, such that for all t eN,  

E(XI Y>t)>_>_t. 

Then if x < y and we define A = { Y > y}, B = {x < Y =< y}, we have the estimates 

E(X:A)+E(X:B)  
E(X] Y > x ) =  

P (A) + P (B) 
E(X:A) + yP(B) 

< P(A)+P(B) 
E(X:A) 

<= P ( A ) '  

since E(X:A)>yP(A).  Taking X--Moo and Y=2~oo yields the desired result. [] 
The principal result of this section is the following. 
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Theorem 2.2 In order that the probability measure # on IR x ]R + should be the 
law of (hi~, l f l~-- Moo) for some UI martingale M, it is necessary and sufficient 
that 

(2.2. i) [. [. [ x -  yl #(dx, dy)< oo; 

(2.2. ii) c (') is increasing: 

(2.2. iii) c(s)>s for all s, 

where c is defined in terms of # by 

JS (x -y )p (dx ,  dy)/#((s, oo) • ]R +) /f #((s, oo) •  
(2.3) c(s)= ~,~• 

V not, 

Proof The necessity of (2.2. i) is obvious, and the necessity of (2.2. ii-iii) follows 
from Proposition 2.1. 

For the converse, suppose given (X, Y) with law # satisfying (2.2. i-iii). By 
shifting the law # in the x-direction, we may and shall assume that 

(2.4) S~ (x-- y) #(dx, dy)= O. 

The proof now consists of three main steps: 

Step I Reduce the problem to the situation where for some function v: N ~ •+, 

y = v (x) #-a.e.; 

Step 2 Construct the martingale by embedding in a Brownian motion; 

Step 3 Confirm that the martingale constructed has the desired properties. 

The heart of the proof, Step 2, is a modification of the Az6ma-Yor Skorokhod 
embedding [2]. 

Proof of Step 1 Let #(dylx) be a regular conditional distribution for Y (to 
be thought of as ~ r _  Moo) given X = x. Let 2 be the marginal law of X (to 
be thought of as M~), so that 

(2.5) #(dx, dy)= 2(dx) #(dy l x). 

Define also 

(2.6) 

This allows us to express c as 

(2.7) c(s) = 

where 

v(x)= ~ y#(dylx) 

= E [ Y I X = x ] .  

j ( x -  v(x)) ;~(dx)/Y4s) 
(s, oo) 

~(s)- 2((s, o0)). 
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We claim that it will be sufficient to construct a UI martingale M with the 
properties 

(2.8.i) /~o  has law 2; 

(2.8. ii) Moo --Moo = v(M~). 

Indeed, suppose that we take such a martingale, and on a suitably enlarged 
probability space we define a new martingale 

[ M(t/(1 -- t)) (0< t <  1) 

Nt= { M~ ( l < t < 2 )  
/ 

(2 < t) 

where the law of Z given (Mt)t>=o is specified by 

(To see that N is a martingale, we need only check 

= M ~ .  ) 

Then we claim that (N~, No~-N~) has law #. Indeed, M ~ - Z _ > 0 ,  so that bT~ 
= M~ ,  and 

P(Noo ~dx, N~o- No~ ~dy)= P(Iffl ~ ~dx, ~I ~ - Z ~dy) 

=),(dx) #(dylx)  

=#(dx,  dy) 

from (2.5). So we may replace #(dx, dy) by 2(dx) 6~t~)(dy), and suppose in addi- 
tion to (2.2) that y = v (x) #-a.e. 

Proof of Step 2 Take a Brownian motion B, Be = 0, and define 

St =- sup B~, 
u~t  

T ~ i n f  {u: B.<h(S.)},  

where h: R + ~ I R  is the function 

(2.9) h(s) = c- 1 (s) - v(c- 1 (s)). 

It will turn out that T <  Go a.s. with this choice of h. 
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F i g .  1 

To give the construction, we define 

(2.10. i) At =~ i I(Bu<c-l(su)~ du, 
0 

(2.10. ii) r t -  inf {u: A, > t}, 

(2.10. iii) Mt = B(zt /x T). 

The process M is a UI martingale with M ~ 2 ,  Moo-M~=v(Moo) .  The task 
of Step 3 is to prove this. 

Explanatory remarks. (i) Az6ma and Yor took h = b ;  -1 and thereby embedded 
the law v: B r a y .  However, in view of the definition of the Hardy transform 
v* of v, we have (at least when v has no atoms) that for the Az6ma - Yor 
embedding 

S T = b, ( B T )  ~ V* 

and the supremum of B T is stochastically as large as it can be! In order to 
embed the given joint law with a stochastically smaller supremum, we cut out 
parts of the time axis so that the supremum of the Brownian motion on the 
part of the time axis which remains is smaller than S. 
(ii) It is not a priori clear that the process M defined by (2.10) is a UI martingale. 
However, we shall prove in Step 3 that B(-A T) is a UI martingale, and it 
will therefore follow that M is a UI martingale. 
(iii) Notice that lim c(s )=0 (in view of the assumption (2.4)), c is right-continu- 

s,~ - oo 

ous increasing and c(s)> s (Proposition 2.1), and most importantly, 

(2.11) M| = c-1 (S(%/x r)). 

Look at Fig. 1, which shows a sample path of (Bt, St). The lower (triangular- 
shaped) shaded region, is never entered, and the process stops when it enters 
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the upper (irregularly-shaped) shaded region. The sample path of the process 
(B, S) consists of lots of horizontal spikes sticking out from the line B = S. Some 
of these are shown; the dotted parts of the lines correspond to parts of the 
sample path that are excised by the time-change ~, because on these parts of 
the path, B > c - 1 (S). Thus the path of the process M as drawn begins suddenly 
at some negative value, from which it reflects like a Brownian motion for some 
time before jumping up to a higher value.) 

Proof of Step 3 The variables M~o and M~ which concern us are functions 
of Sr : 

(2.12) moo=c-l(ST), M~=h(Sr ) .  

Thus from the form (2.9) of h, 

~o-M~ =v(~) 

and so (2.8. i) holds. Next we prove (2.8. ii). From excursion theory, it is immediate 
that 

(2.13) P(Sr> x)=exp ( -  i t_d~th(t)); 

see Rogers [8] for numerous example of such calculations. Notice that each 
side of (2.13) is continuous except possibly at a---inf {x: P(Sr > x)=  0}. The ele- 
mentary implications 

c - l ( S ) > y ~ S > c ( y ) ,  S>c(y)~c-l(S)>=y 

together with (2.13) yield 

P(~I~o > y) <= P(Sr> c(y))= P (Sr > c(y)) < P(M~ > y) 

at least for c(y)+a. Thus we see that we can achieve (2.8) provided we can 
pick h so that 

(2.14) ( exp - =2(y) for all continuity points y of 2; 
0 

In view of the right-continuity of each side of (2.14) it is equivalent to prove 
that 

~(Y) dt 
(2.15) ~ t_c_ l ( t )+v(c_ l ( t ) )=- log2(y)  

o 

for y<a. Since c(y)--*0 as y $ - o o ,  each side of (2.15) has the same value at 
-Go. The two sides of (2.15) jump at the same values of y; if a is some such 
value, the jump of the left-hand side at a is 

c (a) 
dt [_ c~--a+v(a) ]=log [ L - / L ]  

t _  a + v(a) = l~ [ c,_ _ a + v(a) ] 
c ( a - )  
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as is readily confirmed from the definition (2.3) of c. Finally, writing C for 
the set of continuity points of 2, the continuous part of the left-hand side of 
(2.15) is (using (2.6)) 

dc, Ic(t) [ 
Ic(t) ct-- t + v~ -- c t -  t + v~ 

(t-- vt) d2t t- c, d2~] d2t 
2t < ] = Ic (t) ,l~ 

which is the continuous increasing part of the right-hand side of (2.15). Thus 
(2.14) holds, so in particular 

(2.16) P(ST>C(y))=Zy~O as yToo 

implying that P(ST < 00)= 1 = P(T  < o0). 
To confirm that the process Mt-B( 'c tA  T) not only satisfies (2.8) but is 

also a UI  martingale, we invoke the following pretty result. 

Lemma 2.3 Let X be a continuous local martingale, X o =0, {X>~o < oo a.s. Then 
X is a UI martingale if and only if 

(2.17.i) 

(2.17.ii) 

(2.17. iii) 

XooeD; 

E X ~  =0;  

lim aP(Xoo > a) = O. 
a~'oo 

Proof. The necessity of (2.17. i-ii) is evident, and the necessity of (2.17. iii) follows 
since aP(Xoo > a) = E(X~o : Too > a) ~ 0 as aToo. 

Next suppose that conditions (2.17) are satisfied, and define 

for aEIR. Then 

H ~ - i n f  {t: Xt=a} ,  T~-H~AH_~ 

(2.18) O=EX(T~)=E[Xoo: Ta=OO]+aP[Ha<H_a]-aP[H-a<Ha];  

from (2.17. iii), 

aP[H,  <H_j <=aP[H, < oo] <aP[Xoo > a] ---, O, 

and by (2.17.i-ii) the first term on the right of (2.18) goes to 0, from which 
we conclude that 

aP[H-a  <Ha] --+0 

as aToo. But 
aP[H~ <H_a] <=aP[Ha < oo] --+0, 
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so we deduce that aP[H_a< ~ ]  ~ 0 ,  hence that aP[T ,< oo] ~ 0 .  We may now 
invoke the result of Az6ma, Gundy and Yor provided we can check the condition 
sup ElXt] < oc. But 

t 

EIXtAT. I<EIXTol 
=nPUZ,< oo]+E[lXool: r ,=oo] 

_-<EIXo0]+ 1 for large n. 

Hence by Fatou's lemma, E IXt[ <= E lXoo ] + 1, completing the proof. [] 

We apply this to the continuous local martingale B(. A T), noting that T <  oo 
a.s. Since BT = h(ST)= Mo~, and (2~oo, Moo-  Moo) ~# ,  conditions (2.17. i-ii) follow 
from (2.2. i). Next, we have 

c (x) P (St > c (x)) < c (x) P (c- 1 (S r) > x) 

= c (x) p (2~  oo > x)  

= ~ (t-v(t))2(dt) from (2.6) 
(x, oo) 

10 as xToo, 

verifying condition (2.17.iii), at least if c has no jumps. But if for some x one 
had c ( x - ) = a < c ( x ) = b ,  then in the interval (a, b] the functions c -1 and h are 
constant, and so it is easy to see from (2.13) that z P ( S r >  z) is increasing through- 
out the interval (a, b], and so condition (2.17.iii) certainly holds. Thus B r is 
a UI martingale, from Lemma 2.3, and so therefore is M, by (2.10.iii). [] 

The situation where M o = 0 now follows easily. 

Corollary 2.4 A probability # on IR + x IR + is the distribution of  (~1oo, ~1oo- Moo) 
for some UI martingale M with M o = 0 if and only if 

(2.19. i) S~]x- y[ #(dx, dy)< oo ; 

(2.19. ii) c(') is increasing; 

(2.19.iii) c(s)>s for all s; 

(2.19. iv) ~S (x - y) # (dx, dy) = 0, 

where c(') is defined as before by (2.3), 

Proof. The necessity of (2.19.i-iv) is evident. Conversely, assuming condition 
(2.19.i-iv), the construction (2.9) used in the proof of Theorem 2.2 yields a 
UI martingale M with (]~oo, Moo--M~)~#.  [] 

Let us now see how the result of Kertz and R6sler [6] follows from Theorem 
2.2, or, more exactly, from the explicit embedding constructed there. 

We use the Az6ma-Yor stopping time 

T=-inf/{t: Bt < b ;  l(St)}, 

where by is the barycentre function defined by (1.2). Then it carl be shown 
quite easily (see Az~ma and Yor [2]) that the law of ST is V*, and this is 
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also true without the restriction that v should have no atoms. Now consider 
some right-continuous increasing c: IR ~ IR + satisfying 

(2.20) x + <c(x)<b~(x) for all x; 

We carry out the construction (2.9) to build a UI martingale M such that 

Mo~ = BT = b71 (ST), M 0o = C - 1 (ST) . 

Thus whatever c we choose subject to (2.20), the law of Moo is v; the law of 
Moo on the other hand may be any law satisfying the stochastic bounds 

by suitable choice of c! Taking c=b~ gives the lower bound, taking c(x)=x + 
gives the upper bound, for then ffIoo=Sr~V*! Kertz and R6sler's results for 
martingales started at 0 can likewise be easily deduced. 

3 The continuous case 

In this section, we shall prove the following. 

Theorem3.1 The probability measure t~ on IR + x lR + is the joint law of 
(Moo, M~-Moo)  for some almost-surely convergent continuous local martingale 
M which vanishes at 0 if and only if 

(3, Oo) x R  + (0, o0) 

I f  M is also uniformly integrable, then the inequality (3.1) holds with equality: 

(3.2) ( ~ #(ds, dy)) dt= ~ y#(dt, dy). 
(t, ~ )  x~ .+  (0, Oo) 

Proof Firstly, we prove the necessity of the condition (3.1). Without loss of 
generality, we take the continuous local martingale to be B r, where B is a 
Brownian motion, and T is some finite stopping time (see, for example, Theorem 
IV.34.11 of Rogers and Williams [9]). Defining as before H a - i n f { t :  Bt=a}, 
we shall suppose initially that T< TK--HK/x H_K, where K > 0 is large. In this 
case, the key observation is that 

(3.3) B,=B(HtA T) is an (~t)-martingale, 

where ~ - ~ (Ht). Thus if we abbreviate S -  sup {Bt : 0 <_ t <_ T} and define 

then 
4 - ( S - B O I t s  ' ~ ( t ) ,  

~,=(t^S)-4. 
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The process J has a single upward jump of magnitude Y = S - B r > O  at the 
stopping time S. If v is the random measure on IR + x IR + associated with J, 
that is, 

~ O(s, y) v(ds, dy)=O(S, Y) 

and if #=-Ev is the law of (S, Y), then for any non-negative f~C~(IR +) with 
integral F, 

(3.4) 0 = E  ~ f (s)dB~=E f (s )ds- I~f (s )yv(ds ,  dy) 
0 

implying that 

(3.5) EF(S) = E [Yf  (S)]. 

The general stopping time Tno t  constrained by T <  TK can now be approximated 
by T/x Tr; the limiting form of (3.5) is thus 

EF(S) >= E [Yf(S)], 

by Fatou's lemma, with equality if B r is uniformly integrable. The statements 
(3.1) and (3.2)follow immediately since f is arbitrary. 

Now we turn to the more interesting (constructive) part of the proof, showing 
the sufficiency of the condition (3.1). So suppose we are given some probability 
# on ]R + x ]R + satisfying (3.1), and set 

# - - # o + # +  , 

where 

#o =#It0, oo)• #+ ~#[[o, oo)• oo). 

By slightly abusing notation, we shall also consider #o as a measure on ]R +. 
Define 

p(t) == - ~ #(ds, dy)=P(S>t),  
(t, co) x R +  

and let #+ (dy Is) be a kernel from ]R + to R + such that 

S[. 4~(s, .V) #(ds, d y )= [  ds S 4~(s, Y) #+ (dy I s) 

for any ~b~C~((0, oo)x(0, oo)). Such a kernel can be found because of the 
assumption (3.1). Now we define a Markov kernel K(-[-) :~((0,  o o ] ) x R  + 
--+ [0, 1] by setting 

y#+(dyls) j y#+(dyls) 
(3 .6)  K ( A I s )  = h . ._ A 

P(S>s) p(s) 

for any Bore1 subset A ___(0, ~) ,  and to give a Markov kernel, 

(3.7) K ( { ~ }  I s)= 1 --K((0, ~ )  I s). 
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Of course, this definition is meaningless if p(s)=-P(S>s)=O; in this case we 
make the arbitrary definition K(Als)=IA(1). Notice how the condition (3.1) 
enters to allow us to define K;  it also assures us that the integral in (3.6) is 
convergent for a.e. s, and so we may suppose that it is convergent for every 
S. 

Now define the increasing function 

(3.8) Rt=--logP(S>O)+ ~ Ito(ds) ~ 41ogp, , -- logp,_ p@"}, 
(O,t] P s -  O < u < t  '- 

the terms in the sum being easily seen to be nonpositive. This definition only 
makes sense if P(S > t)-= p (t)> 0; we define Rt =- + oo for t such that P (S > t)= 0. 

We are now ready to describe the construction which will realise the law 
It satisfying (3.1) which we were given. Take on some suitable sample space 
three independent random elements: 

(3.9. i) a Brownian motion (Bt) t>_o , Bo =0;  

(3.9. ii) a [0, oe]-valued random variable V with the law 

P (V > t) = exp ( - Rt); 

(3.9. iii) a process {Z~: t>0}  with values in (0, oe], where the Zt are independent 
of each other, and the law of Z~ is K(-It). 

We define 

T+ ---inf {u: Su--Bu>Z(S,)}, 

T o - i n f  {u: Su> V}, 

T - r o A r + ,  

where S u - s u p  B,, as you expected. 

We shall now prove that the law of (S r ,  S r -  Br) is the given law It. To see 
this, we have to analyse the excursion process of Yt -= S t -  Bt away from 0. Accord- 
ing to It6 [5], the excursion process is a Poisson point process in lR+x  U, 
where U - { c o n t i n u o u s  f :  I R + ~ R  + such that for some ~>0,  f - l ( ( 0 ,  Go)) 
= (0, if)}. The expectation measure is Leb x n, where the characteristic measure 
n can be specified in a variety of ways. The effect of introducing the process 
Z is to convert the excursion process in R + x U into an enlarged Poisson process 
in ~,+ x ~, where U---U x(0, oo]. Think of (f, h )eU as an excursion together 
with a height. The excursion will be distributed according to the characteristic 
measure n, and the height will be independent of the excursion, with law K(. I IL 
where l is the local time at which the excursion happens. More formally, if 
A is a Borel subset of U, a > 0 ,  then the number of points of the enlarged 
Poisson process in [0, t] x A x (a, oo] is a Poisson variable with mean 

dsn(A)K((a, ~ ]  Is). 
(0, t] 
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This the number of points of the enlarged Poisson process in C, 
sup f(v)> h, s < t} is a Poisson variable with mean 

IJ 

~{(s, (f. h)): 

Thus 

ds ~ K(dyls)n({supf(v)>y}) 
(0, t] (0, m) v 

= I ds I K(dy]s)y-* 
(o,t] ( 0 , ~ ]  

ds 
= ~ 5 t~+(dyls). 

(o,a p(s) (o, ~) 

P(T+ >Ht)=P(Ct=O) 

=exp  - i p ~  I #+(dy]s)  . 
(0, tl (0, oo) 

More simply, 
P(To >H,)=P(V> t) = exp ( - R , )  

from which by independence 

((3.10) P(T> Ht)-P(ST>t) 

= e x p [ - - R t - -  ~ ds ~ /~+(dyls)] 
(O,tl P s -  (0, co) 

= e x p [ l o g P ( S > O ) +  j" dp,+ 2 ( l o g p . - l o g p . _ - - -  
(o,t] Ps- O<u_<t \ 

=p(t) ,  

using (3.7), the fact that -dp,=t~o(ds)+ds ~ #+(dyls), and It6's formula. 
(0, m) 

Thus the stopping time T constructed has the property that the law of ST 
is --dp. Next we identify the law of (St, Yr) on the set where Yr>O. The only 
way that we can have Yr > 0 is if T+ < To, and from the excursion description 

P(T+ < To, Sr+ eds, Yr+edy)=e-R(~) exp [ -  i dv 
Pv (o, oo) 

1 y~+(dyls) =p(s) ds, 
y p(s) 

= #+ (ds, dy). 

] 1 
u+ (dy I v)] 7 K(dyls) ds 

using (3.6) and (3.10); 

Lastly, we must check the law of (St, Yr) on the set where Yr=0. But the 
only way Yr = 0 can happen is if T o < T§ and 

{ i  ds } 
P(S(To)~dt, T o < T + ) = - - d ( e x p ( - R t ) ) e x p  -- - -  ~ #+(dyls) . 

0 P s  (0, m) 
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If is a continuity point of R (equivalently, of p or/~o), then this is easily seen 
to be #o(dt), as at (3.10). If t is a jump time of R, it is easy to calculate the 
jump of the right-hand side (again using (3.10)); it is simply A #0 (t). Hence 

P[STC-dt, Yr=0] =/~o(dt). 

Remarks. (i) The assumption M o = 0  is not essential to Theorem 3.1; the result 
still holds without it, but the notation is more untidy, so we have only dealt 
with the case M o = 0. 
(ii) The condition (3.1) is necessary but not sufficient for M to be UI, as is 
demonstrated by the example of Brownian motion stopped when it reaches 
- - 1 .  

4 The continuous uniformly-integrable case 

Having characterised the possible joint laws of (~f o~, M~o - M  ~) for a continuous 
local martingale M (M o =0, { M ) ~  < oo a.s.), we now aim to study the laws 
of ( ~ r ,  ] ~ r _  Mo~) for a uniformly-integrable continuous martingale M, M0 = 0. 
Of course, Lemma 2.3 is the complete answer to the question at one level, 
but there remains the interesting question 'What  are the possible laws of ) ~ r  
in this case?' Vallois [10] has answered this question completely by a direct 
approach using stochastic calculus, and the aim of this section is to prove and 
interpret his result in the light of the characterisation of the joint laws which 
we have given already. 

The result we shall prove is the following. 

Theorem 4.1 (Vallois) Suppose that F is a probability measure on IR +, written 
as F(dt)=p(t)dt + c~(dt), where ~ is singular with respect to Lebesgue measure. 
Then F is the law of the supremum of some continuous UI martingale M, Mo = O, 
if and only if the following conditions hold." 

(4.1. i) p(t)>O forall t < a - s u p { u : F ( u ) < l } ;  
(4.1. ii) lim tF(t)=O, where F( t ) -  l--F(t); 

t---~ oo 

oo oo 

(4.1. iii) [. t~(dt)+ ~ dt l tp( t)-F(t) l< o~. 
0 0 

Proof. Suppose that F is the law of M~ for some continuous UI martingale 
M vanishing at 0. Then (4.1.i) follows from (3.2), (4.1.ii) follows from the result 
of Az~ma et al. [1], and (4.1. iii) follows because 

EIM~[ = I ~ l s - y l  I~(ds, dy) 
cJo 

= y S#o(ds)+ySIs-yl #+(ds, dy) 
0 

0 s = 0  y = O  

= S o(ds)+ S Is /(s)-F(s)l as, 
0 0 
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where 7(t)dt- ; #+(dt, dy). If now we write #o(dt)=e(dt)+(o(t)dt, so that 
y = 0  

y (t) = p (t)-- q5 (t), we have 

oo>EIMool>= ~ s~(ds)+ sd?(s)ds+ ~ Isp(s)-sO(s)-F(s)lds 
0 0 0 

which implies (4.1. iii). 
For the converse, we suppose given F satisfying (4.1. i-iii), and shall exhibit 

a probability # on N + x IR + satisfying (3.2), the integrability condition 

(4.2) 

and 

(4.3) 

S~ls- yl #(ds, dy)< co, 

#j dy). 
(t, oo) x R +  

From these, it follows that 

(4.4) ~(s-y) #(ds, dy)--O; 

indeed, using (4.2), (3.2), and (4.1. iii), we have 

S5(s- y) #(ds, dy) = lim ~ (s- y) #(ds, dy) 
N ~ o o  [0 ,N]  x R +  

N N 

= lim 5 sF(ds)- ~ F(s) ds 
N ~ o o  0 0 

= lim -NF(N) 
N--* Oo 

=0.  

Thus if # satisfies (3.2), it is the law of (Moo, M~o-Moo) for some continuous 
local martingale M vanishing at 0, by Theorem 3.1; and if it also satisfies (4.2) 
and (4.3), it satisfies (4.4) and therefore (Lemma 2.3) is the law of (~7[oo, 2~oo -Moo) 
for some UI martingale M ((2.17. iii) being the same as (4.1. ii)). 

We construct # = # o + # +  by defining #o=~,  and #+(dx, dy) 
-p(x) P(dylx)dx, where P(dylx) is a Markov kernel with the properties 

(4.5) F(x)=p(x)SyP(dy[x ) (x<a) ,  

and 

(4.6) 
0 0 0 

Condition (3.2) then follows immediately from (4.5) and condition (4.3) follows 
from the definition of #, so # has the properties demanded. We shall achieve 
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(4.6) by ensur ing  that  for each x, P ( . Ix )  is concent ra ted  either on (0, x] or 
on  [x, Go), which makes 

I x - y lP (dy l x )=  ( x - y ) e ( d y l  
0 0 

= I x -  F(x)/p (x) l 
using (4.5). Thus  

0 0 0 

by assumpt ion  (4.1.iii). The choice of P ( ' l x )  to ensure (4.5) and  (4.6) is easy 
to make;  if F(x)/p(x)~=x, then we take P ( ' l x )  to be concent ra ted  on [0, x] 
in such a way that  

yP(dylx) = F(x) 
p(x) ' 

and  similarly if F(x)/p (x) > x. 
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tive reading of the paper, which resulted in many improvements. 

References 

1. Az6ma, J., Gundy, R.F., Yor, M.: Sur l'int6grabilit6 uniforme des martingales continues. 
In: Az6ma, J., Yor, M. (eds.) S6minaire de Probabilit6s XIV. (Lect. Notes Math., Vol. 
784, pp. 53-61). Berlin Heidelberg New York: Springer 1980 

2. Az6ma, J., Yor, M.: Une solution simple au probl6me de Skorokhod. In: Dellacherie, 
C. et al. (eds.) S6minaire de Probabilit6s XII. (Lect. Notes Math., Vol. 721, pp. 90-115). 
Berlin Heidelberg New York: Springer 

3. Blackwell, D., Dubins, L.E.: A converse to the dominated convergence theorem. Ill. J. 
Math. 7, 508-514 (1963) 

4. Dubins, L.E., Gilat, D.: On the distribution of maxima of martingales. Proc. Am. Math. 
Soc. 68, 33%338 (1978) 

5. It6, K.: Poisson point processes attached to Markov processes. In: Le Cam, LM. et al. 
(eds.) Proc. 6th Berkeley Syrup. Math. Stat. Prob., vol. 3. Berkeley: University California 
Press 1971 

6. Kertz, R.P., R6sler, U.: Martingales with given maxima and terminal distributions. Isr. 
J. Math. 69, 173 192 (1990) 

7. Perkins, E.: The Cereteli-Davis solution to the HLembedding problem and an optimal 
embedding in Brownian motion. In: ~inlar, E., Chung, K.L., Getoor, R.K. (eds.) Seminar 
on Stochastic Processes, 1985, pp. 172 223. Boston: Birkhfiuser 1986 

8. Rogers, L.C.G.: Williams' characterization of the Brownian excursion law: proof and appli- 
cations. In: Az6ma, J., Yor, M. (eds.) S6minaire de Probabilit6s XV. (Lect. Notes Math., 
vol. 850, pp. 227-250) Berlin Heidelberg New York: Springer 1981 

9. Rogers, LC.G., Williams, D.: Diffusions, Markov processes, and Martingales, vol. 2. Chi- 
chester: Wiley 1987 

10. Vallois, P. : Sur la loi du maximum et du temps local d'une martingale continue uniform6- 
ment int6grable. (Preprint 1992) 


