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range 

Summary. We consider the nearest particle system which gives birth rate 2 to each 
vacant interval, concentrated on the interval's midpoint(s). We prove that a critical 
value for ,~ exists and equals one. The proof extends to a large class of nearest 
particle systems. This paper solves a problem suggested by Liggett (1985). 

In the following we deal with nearest particle systems { flt:t > 0}. These can be 
described as particle systems with the following flip rates: 

f o r q ( x ) = l ,  c ( x , o ) = l  

for t/(x) -- 0, c(x, tl) = 2fl(Ix, rx) 

where l~ for a configuration q is the smallest positive 1 so that fl(x - l) = I and r~ is 
similarly the smallest positive r so that t/(x + r) = 1. For  a survey of the important 
properties and results see Liggett (1985), Chap. 7. In this paper we will be 
concerned with the question of survivability of infinite systems. In this paper we say 
the process survives if P l(th(0) = 1) is bounded away from 0 (here and throughout 
the paper p l( ) will refer to probabilities starting with it(x) - 1). 

Our ideas will apply to a wide range of nearest particle systems, but for 
concreteness we will consider the "midpoint" nearest particle system for which 

2 for l = r  
p( l ,  r )  = 

2/2 f o r l l - r j =  1 

and/?(l, r) equals zero in all other cases. For  notational simplicity we will assume 
that we happen to only be dealing with intervals of even length so that the birth 
rate is always concentrated at a single point in an interval. This tidying assumption 
will not affect the validity of the proofs. We prove 
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Theorem 1. The midpoint nearest particle system survives for 2 > 1, but not for 
2-<1.  
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Remark. It  will be clear that the methods used are equal to proving that if a nearest 
particle system has birth function 2fl(l, r) where, for each ~ > 0, there exists a Z > 0 
with 

liminf ~ fl ( l, r) > 1 - 8 ,  
n ~ o o  l + r = n , l , r > z n  

then the particle survives for 2 > 1. 
It  is worth noting that in the non-attractive case such as with the "mid-point" 

nearest particle system it is not apriori obvious that a critical value of 2 exists. 
Another difference between our "midpoint" nearest particle system and attractive 
nearest particle systems is that our process is not Feller. That is given a continuous 
function f the function Pt f ( t l )  is not necessarily also continuous. (Here Pt denotes 
the particle system semi-group.) This is because the flip rate at a site x is sensitive to 
the configuration spins a long distance away if it is contained in a large vacant 
interval. Given that our process is non-Feller it is not immediate from Theorem 
One that a non-trivial invariant measure exists. For instance the usual step of 
taking the limit of some sequence of Cesaro averages as in Liggett (1985), is not 
open to us. Nonetheless we can prove 

Theorem 2. Under the conditions of  Theorem One there exists a non-trivial invariant 
measure. 

We define b(n) as Y',~+r=,fl(l, r), the total growth rate over an interval of length 
n divided by 2. Theorem 5.5 of Liggett (1985), Chap. 7 states that if b(n) < 1 for 
each n, then the NPS does not survive for 2 < 1. This completely general fact 
ensures that the particle system of Theorem One cannot survive if 2 < 1, and so it 
only remains for us to establish survival for 2 > 1. 

A natural  question arising from Theorem 5.5 of Liggett (1985), and raised there, 
was whether this bound was the best possible or, equivalently, whether b(n) < 1 for 
each n implied that the NPS does not survive for all 2 < 2o for some 2o strictly 
greater than 1. This question was resolved in a recent paper, Bramson (1989), where 
it was shown that for each 2' > 1 there is a NPS, with b(n) < 1 for each n, which 
survives for 2 > 2'. Using some of the ideas of this paper, Mountford (1991) showed 
that the "uniform" nearest particle system, for which flU, r) = 2/I + r - 1, survived 
if and only if 2 > 1. This work used the attractive property of the "uniform" nearest 
particle system extensively. This paper is an at tempt to adapt  the ideas therein to 
a non-attractive setting. 

Throughout  the paper we will treat a configuration ~ alternately as a subset of 
Z, as a member  of {0, 1} z or as a mapping from Z to {0, 1}. When thinking of 
a configuration as a subset we will use phrases such as "there is x in t / t . .  ", we hope 

n [x, y]  and [tt[ will cause no confusion. 
We will be dealing with 2 strictly greater than 1. We will reserve e as a short- 

hand for 2 - 1. 

Section one 

In this section we introduce "Integer Splitting Processes" (ISPs) which may be 
thought of as an offshoot of the interval splitting processes studied in Peyriere 
(1979) and used in Mountford (1991). 
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An ISP  with index c~ for c~ < 1, ( ISP(e) )  is a M a r k o v  chain N ,  : n >__ 0, which 
takes values in Un > o (Z+)" .  Its t ransi t ion probabil i t ies  are as follows: 

a. I f n e A = {  ~) {(z l , z2r>o . . . .  z r ) ~ ( Z + ) r a n d m i n z i < 5 }  ' t h e n p ( n - ' n - ) = l " T h a t i  

is all points  in A are t rap  points. 
b. If  n is in ( Z  + )r but  not  in A then for j ~ { 1, 2, 3 . . . .  r }, p(_n, _n j) = 1/r,  where for 

n - (nl ,  n2 . . . .  n,), n j = (n'l, nh . . . . .  n ;+l )  where 

for i < j ,  n} = ni 

t ! nj = nj+1 = [~nj] + 1 

for i > j  + 1, n; = ni-1. 

T h r o u g h o u t  this paper  T will denote  the first hitt ing t ime of the t rap  set A defined 
above.  F r o m  the definitions given above  we note  that  if_No is in (Z  + )~ and T is at 
least n then _ N , ~ ( Z + )  ~+". 

Fo r  any posit ive integer r and  _n = (nl ,  n2,. �9 n r ) ~ ( Z + )  r we define ]_n-it to be 

~ 1 .  The  following l emma  has a simple p roof  which is entirely along the lines of 
j = l  n j  

the p roo f  of L e m m a  2.4 of Peyri6re and L e m m a  2.2 of Moun t fo rd  (1991). 

L e m m a  1.1 Let _N, be an ISP(cQ process and let Tbe the first hittin9 time of the trap 
set A described above. I f  fl is at least 2/e - 1 then for n > 1 

M ,  = H (1 + B/i) I_N211 
i = 1  

is a super-martingale. 

A cont inuous  t ime M a r k o v  chain is a cont inuous  integer splitting process with 
pa ramete r s  c~, 2 or  C I S P  (c~, 2) if its embedded  discrete t ime M a r k o v  chain is an 
ISP(~)  and  its t ransi t ion rates at points  in (Z  +)r equals r2, We can think of an ISP  
as a collection of integers such that  at integer times a r andomly  chosen integer 
splits into two smaller integers. We can then view a C I S P  as a collection of integers, 
each one of which independent ly  of the others splits into two smaller integers at 
a fixed rate cons tant  over  all integers. 

L e m m a  1.2 below is this paper ' s  analogue of L e m m a  2.4 of  Moun t fo rd  (1991). 

L e m m a  1.2 Let _Nt be a CISP(~,  2) process and let T be the first hitting time of the 
trap set A of Lemma 1.1. Suppose _No = (nl, n2 . . . .  nr) and ni > 2m for each i. Then 
P I T <  ~lm] < Cr2-~m for some C and cq dependin9 on ~, 2 but not on m or r. 

Proof We can consider a CISP(e ,  2), _Nt with _No~(Z+)  r as r independent  pro-  
cesses with _N o e Z +. So wi thout  loss of  generali ty we will suppose that  r = 1 in the 
p roof  of this lemma.  

Fix fl > 2 /e  - 1, v < 1/fl, and e < log(2)v/2 . 
Let  _N;, be the ISP(cQ process embedded  in -Nt. Let  T '  be the first hitting t ime of the 
t rap  set A by this embedded  process. If  T is  less than  cm then either T '  < 2 m" or the 
n u m b e r  of j umps  of _N, by t ime cm is greater  than  2 "~. On  the event { T '  < 2~} ,  

M r ,  mus t  assume a value greater  than  1 (1 + fl/i) > H2  -"~r for some 
5 i = 1  
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constant H not depending on m. Using Doob's optional sampling theorem and the 
supermartingale of Lemma 1.1, we see that for fixed constants C and K 

I C 2-mva ] P I T '  < 2 m~-] < P sup M. > ~- < K2m~P/2 " 
n 

while 

P [ #  of jumps of N_t by time cm > 2" ' ]  __< E [ #  of jumps of_N, by 

time c m ] / 2  "v < ecmZ/2"L 

It is clear that any ex < min(1 - vfl, v - c2/log(2)) will satisfy the requirements of 
the lemma. [] 

Lemma 1.3 Let  N_ t be a CISP(~, 2) process and let S be the f irst  hitting time of  the set 
U,  {(nl ,n2,  . .  �9 n~)e(Z+) ' :  minini < 23"/4}. Suppose N_o = ( n l , n 2 , . .  n,) and 
ni > 2"for each i. Then P [  S < ~l m] < Cr2-~lm for  some C and ~1 dependin9 on ~, 2 
but not on m or r. 

Sketch o f  Proo f  

As with the previous lemma we may assume that r - 1. Again following Lemma 1.2 
we take S' to be the first hitting time of the set U ,{ (n l ,  n2 . . . .  n,)E 
(Z +) ' :mini  ni < 2a"/4}. 

P [ S ' < 2 " ~ ] < P I s u p M , > C 2 - " * P ] < K 2 " v P / 2 m / 4 " ,  

So the previous argument works with c and v reduced by a factor of 4. 

Section two 

In this section we introduce the coupling which will enable us to relate the 
behaviour of CISPs to that of various NPSs. We first require some definitions. 

We are dealing with a specific nearest particle system which is defined for 
configurations containing infinitely many ls. Af in i t e  NPS will be a particle system 
taking its value from the set of configurations with finitely many ls and with flip 
rates equal to zero on infinite vacant intervals. Such a process must eventually be 
trapped by the identically zero configuration. The following lemma is obvious. 

Lemma 2.1 Consider an initial configuration tlo (finite or infinite)for the NPS t/t. 
Let xl < yl < xz  < �9 �9 �9 < x ,  < y,  be integers. Then there exist independent f inite 
NPSs rl~ so that 
(i) For each j tlJo = tlo c~ [x j ,  yj]. 

(ii) For all time U~=I t l l =  qt. 

We shall introduce for comparison purposes the continuous time birth and death 
process { B ( t ) : t  > 0} which has transition rates q(n ,n  + 1) = 2 ( n -  1), 
q(n, n - 1) = n for n greater than one, q(n, n + 1) = 0 for n = 0 or 1 and q(1, 0) = 1. 
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Note  that if t/t is a finite NPS, then until the first time that r h contains adjacent 
points, I~,1 can be thought of as a version of B(t). This is one of the key ideas used in 
Bramson (1989). 

The lemma underneath is precisely Lemma 3.2 of Mountford (1991) and so no 
proof  will be given. 

Lemma 2.2 For each 0 < 6 < e = 2 - 1 there exists a positive constant ca such that 
for  all t sufficiently large 

P [ B ( t )  > e a'] > ca 

The following coupling is fundamental  to our proof o f  Theorem one. 

Lemma 2.3 Consider an initial configuration tlo so that qo(x) = tlo(y) = 1 (assume 
x < y). There exists a coupling between {B(t): t > 0}, a CISP(1/4, 2) process N_t and 
a NPS- l ike  process Ot so that 
1 For all t < T, the stopping time for  N_t referred to in Lemma 2.1, 0, c r h. 
2 O o = { x , y } , N _ o = y - x  
3 For t < T, B ( t )  = [0(t)]. 
4 For t < T, we can write 0,  as {zl < zz < " �9 " < zm,)} so that there exist distinct 

nil in Nt_ so that Zj+ 1 -- Zj ~_~ nil. 

Proof  We first describe the process 0~. We will define 0 in such a way that if 
t/o = {x, y} (as opposed to simply {x, y} c t/o), then for all t, 0t = t/t. The process 
0 is introduced because this may not be the case. Suppose that many sites around 
(x  + y ) / 2  were occupied by t/o or even that I-x, y]  itself was occupied. Then there is 
no birth rate at all for t / in the interval [x, y],  or there is a birth rate but far away 
from (x  + y)/2. Our solution to this is (adjoining an independent Poisson process 
of rate 2 if necessary) to say that if there is no birth rate for r/ on [ 3 x / 4 +  
y/4, x / 4  + 3y/4], then there must be a site in this interval occupied by t /but  not by 
0. So at a "birth" time for 0 we just pretend that a particle has been born at a site in 
[3x/4 + y/4, x / 4  + 3y/4] which was previously occupied by t / bu t  not by 0- We 
maintain this approach for larger configurations of 0. We hope this preamble will 
help the reader make sense of the formal definition for 0. Let 0t equal 
{x~ < x2 < "" .x,} for some n. We then define for i < n 

= 2 : t/,(k) = 1 

= inf { k > xi -~ Xi+ 1 } zi = 2 "th(k) = 1 . 

We now define wi. There are three cases to consider: i fyi > 3/4xi + 1/4xi+ 1 then wi 
is defined to be equal to yi. If Yi is too small for w~ to be defined in this way but 
zi < 3/4xi+, + 1/4xi then we define wi to be equal to zi. If  both these conditions fail 
we define wl = 1/2yi + 1/2zi. Here we are assuming for notational convenience that 
Yi + z~ is even. 
We give our 0t process transition rates 

q(Ot, O t u { w l } ) = 2  for e ach i  

q(Ot, Ot/{xi}) = 1 for each i 
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It must be stressed that for each i, w~ depends on th and that w, may change while 
~, does not. Given these rates it is clear that ~, q and B may be coupled in the way 
demanded by the lemma. We now detail how the CISP process N_t is constructed: 

At all times N_, will consist of a list of integers (nl ,  n2 . . . . .  n " )  each integer n~ 
will either be identified or unidentified. The unidentified integers evolve (split) at 
rates independent of ~, the identified integers correspond in a one to one and onto 
way to the vacant intervals between two occupied sites of ~, so that if n~ corres- 
ponds to the interval [xj,  x j+ ~ ], then n / <  xj+ 1 - xj. We couple the split rates of n~ 
with the birth rates on [x  j, x~ + 1 ] so that n~ splits into n,,, and n~, b at the identical 
time that [x~, xj+ 1 ] splits into [xj,  x ]  and [x, xj+ 1 ]. The new integers are identi- 
fied and correspond with the new intervals in the obvious manner. When a particle 
xj dies, so two vacant intervals of ~ are merged into [x  j_ ~, xj+ 1 ], we simply let n~ 
be identified with the new interval and make the identified integer of _N, corres- 
ponding to [xj_ 1, x j] into an unidentified integer. This specifies our coupling of 
~9 and _Nt. [] 

Corollary 2.4 Let  x and y s Z  1 satisfy y - x > 2". Consider a finite NPS qS~ so that 
(ao( X ) = (Oo(y) = 1. Then for  some positive c~ i not depending on m, P Ices ~ O for  each 
s in [0, e i m ] ]  _-> c(e) for  some strictly positive function c. 

Proof  Clearly it serves to establish the existence of an el which works for all 
m large. We use the coupling of the previous lemma. 

P[qSs # 0Vs~ [0, 0~lm]] ~ P [ 0 s  4: 0Vs~ [0, cqm]]  

> P [ B ( s )  > 0Vs] - P I T <  0qm] . 

The result follows from Lemma 1.2 and Lemma 2.2. [] 

Definition A, will denote the interval [ - 2 " , -  3/42"],  B, will denote the interval 
[3/42", 2"]. For  one of the intervals, I, defined above, we say t/is in state 1 with 
respect to I, if q c~ I, contains a subset C of cardinality 2 log a n so that every point in 
C is at least 23"/4 apart  from the rest of C. 

Notation. From now on I. will refer to either of the above two intervals. The 
following plays the same role as Lemma 3.7 in Mountford (1991). 

Corollary 2.5 Let  tlo be in state 1 with respect to I,. Then for  ~1 the constant o f  
Corollary 2.4, P i t h  =~ O for each t in [0, cq 3n/4]]  > 1 - e -k(~)l~ 

Proof. By the definition of state 1, there exist xi < Yl < x l '  �9 �9 < X~og2, < Ylog2n 
SO that for each i tlo(Xl) = rlo(yi) = 1, y~ > xi + 23n/4 and xi+ l > y~ + 23"/4. By 
Lemma 2.1 we can couple independent processes t/~ so that 
a. For  each t w t/i c ~ and 
b. For  each i, rlio c [xi,  Yi]. 

Now ~t will be non-zero for all t in [0, el 3n/4] if the same is true for one of the 
tfs. Given the independence of these processes and Corollary 2.4, it follows that 

Pl-there exists t in [0, e l3n/4]  so that th = 0] < (1 -- c(e)) 1~ 

and the result follows. [] 
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Section three 

Define the stopping time Tx. to be the first time that ~b, is in state 1 with respect 
to I,. 

Lemma 3.1 Let tlo(X) = tlo(Y) = l for x, y s  I ,  with y - x > 2"/32. Then there exists 
k > O, not depending on x, y, n so that P[Yl51oglog(n)/e-1 is in State 1] > k. 

Proof. This result follows from the coupling of Lemma 2.3 with Lemma 2.2 and 
Lemma 1.3. [] 

Lemma 3.2 The events 

C, = {for each t in (0,,~-s thc~A,+l + 0} 

c~ {for each t in (O, x f  n ) throB.+ 1 + 0} c~ {TA. > x/n} 

and 

D, = {for each t in (O,x/n) thc~A,+ 1 4= 0} 

c~ {for each t in (0, x /n)  rhc~ B,+ 1 4= 0} c~ {TB, > ~ }  

have probability less than e-k(~)'/~/l~176 for n large enough. This bound is uniform 
over all initial configurations. 

Proof. Obviously it suffices to prove the bound for C, only. It is clear that given 
only qo c~ A,+I and q0 c~ B,+I # 0, there is a constant e > 0 so that 

P [ t h  contains two points in A, more than 2"/32 apart] > e .  

By Lemma 3.1 and the Markov property this gives P[tlSloglog(n)/~ is in State 
1] > ck. Using the Markov property again, we see that P [ C , ]  < 
( 1  - -  Ck) e'/'~/51~176177 l. [] 

Using the strong Markov property and Corollary 2.5 we obtain the following 
corollary 

Corollary 3.2 For all t and for all n large enough, the event 

D.,, = {for each s in (t, t + .~/-s tl~ c~ A.+ I * 0} 

{for each s in ( t , t  + x/-s tlsc~B.+l 4= 0} 

c~ {there exists s e ( t  + x / n , t  + x/-s + x / n - 1 ) s . t .  

t/s c~ A, = 0 or t/s c~ B, = O} 

has probability bounded by e -k(a)l~ Again the bound is uniform over all initial 
configurations. 

Section four (Proof of Theorem one) 

Recall the definition of the event D,,t given in the statement of Corollary 3.2. Our 
strategy is to use (and reuse) Corollary 3.2 to complete the proof of Theorem one. 
Corollary 3.2 says that if there are occupied sites in A,+ 1 and B,+ 1 during a time 
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period (s, s + w/-n), then with large probability there will be occupied sites in A, and 

B, throughout the interval (s + x/-n, s + ~ + w / n -  1). Iterating this we will 
show that with non-negligible probability there is at time of the order s + ~7= 1 w/~, 
a particle oft/close to the origin. Let us fix N so t h a t , , ,  =>Ne -k(")l~ < 1/3 for k(e) 
the constant given by Corollary 3.2. Now for t large enough we can find an n (>  N) 
so that 

t= ~ m t /Z+s+l  
m=N 

and ~ < s < (n + 1)/28 - w/-n. Define the constants 

j = n +  l - i  

Suppose t/~_ 1 ~ AN = 0 or q ~_ 1 c~ BN = O. Then one of the following must have 
occurred: 
a. There exist a time v before ( s + x / ~ )  at which either t/~C~An+l = 0  or 

r/~ nBn+x = 0 or 
b. There exists a j  among {1, 2, . . .  n - N + 1} so that D,+l-~,s+1~ occurs. 

Now it is easy to see that the probability that q ~ n An + ~ is empty for some 

v __< s + x/~ __< (n + 1)/28 is less than the probability that 2 "+ ~/4 independent mean 
one exponential random variables are all less than (n + 1)/28. This probability is 
less than (1 - e -(n+ ~/28)z-+ ~/4. Thus the probability of the event "a" is more than 
exponentially small. On the other hand by Corollary 3.2 the probability of "b" is 

~--'n e - k ( ~ )  log2 m less than Z,m=n , which by our choice of N is less than 1/3. Thus (for 
t large enough) the probability that at time t - 1 q t ~_ 1 has occupied sites in AN and 
BN is greater than 2/3. It is clear that if qo(X) = qo(Y) = 1, then with nonzero 
probability, depending only on I x -  yl, all sites in Ix, y] are occupied by q~. 
Therefore by the strong Markov property we can find c(N) so that for all t large 
enough P[r/~(0) = 1] > c(N). This completes the proof of Theorem one. [] 

Section five (Proof of Theorem two) 

In this section we seek to establish the existence of a non-trivial invariant measure. 
In our previous paper we dealt with the attractive case and survival in the sense of 
Theorem one of this paper guaranteed the existence of an invariant measure. We 
have shown that the measures P~ on {0, 1} z are such that there exists a strictly 
positive c so that P~ I-r/(O)] > c. Thus any weak cluster point #, of the measures 

1 t 

u,(A) = 7 f e~ [A]ds 
o 

must have #[q(0)]  > c, and hence must be non-trivial. Unfortunately it cannot be 
immediately deduced that any such measure is invariant for our process, since the 
semi-group is not Feller, as noted in the introduction. We will now fix a sequence ti 
tending to infinity so that #, the weak limit of #n exists. The rest of the paper will be 
devoted to showing that # must be invariant, which by the foregoing discussion will 
establish Theorem two. 
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We will be done  if we can show that  for any positive integer r and any cylinder 
funct ion f depending on {0, 1} [-r'rJ we have 

#(P,(f))  = la(f) . (*) 

We now fix r and f We shall now without  loss of generality assume that  the L ~ 
n o r m  of f is bounded  by 1. Our  problem is that  Pt(f)  is not  necessarily cont inuous  
so that  while 

lira #t i (Pt( f ) )= lim t t t i ( f ) =  # ( f )  
i ~ o o  i "-* oo 

it is no longer obvious that  the first limit above should equal #(Pt(f)). We are 
forced to use the following "link" functions (defined for n greater than r) 

f , , t (q) = En[f(th); 3i~[--2n,  --n] s.t. 

qs(i) = 1Vs~[0, t];  3ie[n,  2n] s.t. r /s(i)= 1Vse[0,  t ] ] .  

These linking functions are useful since they are cont inuous and also they are close 
to the function Pt( f )  in the following sense. 

L e m m a  5.1 For any measure v, 

I ~f,,r(q)v(dq) - ~Pt(f)(tl)v(d~l)l <= ~Pn[ViE [ - 2 n ,  - n]  3s~ [0, t ]  s.t. 

~s(i) = 0 or  Vie[n, 2n]3se[O, t] s.t. ~( i )  = 0Iv( i t ) .  

2 n  If  we define nl(t/) to equal ~ f 2 _ z ,  tl(j) and n2(t/) to be y ' j= , r / ( j ) ,  then the right 
most  integral above is majorized by 

~(1 -- e-t) n~tn) + (1 - e-t)nztn)v(dtl) . 

P r o o f  is clear. 

L e m m a  5.2 Let nk(~l) be as defined above then 

sup ~(1 - e- t )  "'(") + (1 - e-t)"2~n)P~(dq). ~ 0 as n --* oo . 
$ 

Proof It  is sufficient to establish that  for any 6 > 0 and all s sufficiently large, there 
is no such that  for all s sufficiently large and n > no 

~(1 - e-~) "~(") + (1 - e-')"~(")P~(dt/) < 6 .  

Recall that  n~01) depends implicitly on n. 
Fix 6 > 0, and integer r. We choose N so large that  the asymptotics  of 

Corol lary  3.2 hold and 2n=N e-k(~)l~ < 6/2r. Then it is easy to see that  the 
arguments  of Section four show that  for s sufficiently large, P~[3eAN,  s.t. 
(q~(i) = 1] > 1 -- 6/2r. The measures #~ are all translation invariant  so it follows 
that  for s large enough for the above to hold and n > r2 u, we have P~[nl(q~), 
n2(t/~) > r ]  > 1 - 6. Therefore for s and n as above 

~(1 - e-~) "'(") + (1 - e-t)"~(")P~(dq) N 6 + 2(1 - e - ' )  r . 

Since 6 are r are arbitrary,  the p roof  is complete. [] 

We are now ready to show ( , )  and thus complete the paper: 
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Proof of Theorem two 

As was stated in the opening paragraphs  of the section we merely must  show that  
#(Pt(f)) =/~ ( f ) .  It follows from Propos i t ion  5.1 that  uniformly for v in {#s, s > [ 
0, #} we have ]'(1 - e- t )  "1~) + (1 - e-~)"2(~)v(dt/) ~ 0. In  particular we have 

#(Pt(f)) = lim #(f , , t )  
n --+ o o  

by the continui ty of the latter integrand this is equal to 

lim lim #,,(f,,~) 
n - * o o  i ---r 0 0  

invoking the uniform convergence once more  we see that  the above equals 

lim lira /~t,(f, , ,)= lira #,,(Pt(f)). 
i --+ ~X3 n ~ oO i "-* o 9  

As noted above this limit equals (by the definition of  the #t s and weak convergence) 
# ( f )  and we are done. []  

The author wishes to thank Tom Liggett and Glen Swindle for their help in clarifying the 
arguments of the paper. I am also grateful for their pointing out a major error in an earlier draft. 
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