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Summary. We say that the disc D(~) ~ R 2 of radius c~, located around the origin is 
p-covered in time T by a Wiener process W ( ' )  if for any z e D(c 0 there exists 
a 0 < t _< T such that W(t) is a point of the disc of radius p, located around z. The 
supremum of those cCs (~ > 0) is studied for which D(e) is p-covered in T. 
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1 Introduction 

Let X1, X2 . . . .  be a sequence of independent, identically distributed random 
vectors taking values from Z z with distribution 

P{X~ = (0, 1)} = P{X1 = (0, - i ) }  = P{X~ = (1,0)} 

= P { X ~ = ( - 1 , 0 ) } = I / 4  

and let 

S o = 0 = ( 0 , 0 )  and S , , = S ( n ) = X I + X 2 + . . . + X ,  ( n = 1 , 2  . . . .  ) ,  

i.e. {S,} is the simple, symmetric random walk on the plane. Further let 

~(x, n) = # {k: 0 < k < n, S~ = x} 

(n = 1 , 2 , . . .  ; x = (i,j); i,j = 0, _+1, _+2 . . . .  ) be the local time of the random 
walk. We say that the disc 

Q(N) --- {x = (i,j): IIx[I = (i N +j2)~/2 =< N} 

is covered by the random walk in time n if 

~(x, n) > 0 for every x s Q(N) , 

Let R(n) be the largest integer for which Q(R(n)) is covered in n. We quote a few 
known properties of R(n). 
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Theorem A. ([-2] Theorem 22.1) For any 0 < ~ < 1 and C > 0 we have 

(a) R(n) < exp(2(log n)l/210g3 n) a.s. 

for all but finitely many n, 

( 1 - e  ) 
(b) R(n) > exp k ~  (log n log3 n) 1/2 i.o.a.s. 

(c) R(n) < exp(C(logn) t/z) i.o. a.s. 

(d) R(n) > exp(Oogn)l/aOog 2 n) -1/2-~) a.s. 

for all but finitely many n. 

Here and in what follows logp is the p-th iterated of log. 
It is natural to study the analogue properties of a Wiener process { W(t) 

R 2, t ~ 0}. We say that the disc 

O(~) = {z = (x, y): Ilzll = ( X2 -~ y2)1/2 ~ ~} c R 2 

is p-covered by W(.) in time T if for every z ~ D ( ~ - p )  there exists 
a 0 < t = t(z, p, o9) < T such that 

W(t) eD(z ,p )  = {u: IIz - ul[ _-< p } .  

Let R = R(T, p) = R(T, p, co) be the supremum of those r's (r > 0) for which O(r) is 
p-covered in T. We prove the following analogue of Theorem A. 

Theorem 1. For any p > 0 and 6 > 0 there exists a To = To(p, 6, co) > 0 such that 

exp((log T)l/Z(logz T)-1/2-~) < R(T, p) < exp(2(log T) 1/a log3 T) 

for all T > To. 

It is also natural to ask whether the above lower estimate of R remains true if 
p is replaced in it by a function p(T)  $ 0 ( T ~  oe ). The following two theorems give 
answers of this question. 

Theorem 2. Let 

p(T) = p(T, Y) = exp(-( log T) 1/2-~) (0 < 7 < 1/2). 

Then for any 6 > 0 and 0 < y < 1/2 there exists a To = To(6, 7, co) > 0 such that 

R(T, p(T)) > exp((log T)l/a(log2 T)-1/2-~) 
for all T > To. 

Theorem 3. Let 

p l (T)  = pl(T,y)  = exp( - ( log  T) 1/z+~) (y > 0). 

Then there exist a To = To(?, co) > 0 and a 

z = z(T, ?, co) e O(1) 
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such that 
P { W( O C D (z, p l ( T) ) for all 0 < t < T and T >  To} = 1. 

In order to illuminate the meanings of Theorems 2 and 3 it is worthwhile to recall 
a theorem of Spitzer (1958). 

Theorem B. Let g(O be a positive, nonincreasing function. Then 

II W ( T )  II > T1/2g(T) a.s. 

for any T big enough if and only if 

~. (kl logg(k)l)- l  < oo . 
k = l  

Note that the function 
g(T) = T -0~ 

satisfies the above conditions if and only if/3 > 0. Hence a Wiener process will meet 
the disc D (T 1/2g (T)) in time T i.o. if and only if fl __< 0. However Therorem 3 claims 
that within the unit circle D(1) there exists a disc of radius p~(T) ,> T1/2g(T), 
(fl = 0) not visited by W(. ) till T. At the same time Theorem 2 tells us that any disc 
of radius p(T)  within D(1) or even within 

D(exp((tog T)U2(log2 T)-  1/2-~)) 

will be visited by W(.)  before T. 
In [3] and [4] we investigated the radius of the largest disc (not necessarily 

around the origin) covered by the random walk in time n. Formally speaking let 
u = (ul, u2) ~ Z 2 and define 

Q(u, N) = {x = (i,j): IIx - ull 2 = (i - UxY + ( j  - u2)  2 5- N 2 } - 

Let r(n) be the largest integer for which there exists a random vector u = u(n) E Z ~ 
such that Q(u, r(n)) is covered by the random walk in time n i.e. 

~(x,n) > 1 for every x e  Q(u,r(n)).  

On the limit behaviour of r(n) we proved 

Theorem C. 

n 1/5~ <= r(n) <-_ n 0"42 a.s. 

for all but finitely many n. 

In order to study the analogous properties of a Wiener process we say that the 
disc 

D(~, u) = {z:t{ z - u 11 =< c~} 

is p-covered by W(.) in time T if for every z ~ D ( e - p , u )  there exists 
a 0 < t = t(z, p, co) < T such that 

IF(t) ~ D(z, p) . 

Let r(T, p) be the supremum of those r's (r > O) for which there exists a random 
vector u = u(T, co) such that Q(u, r) is p-covered by W(-) in time T. On the limit 
behaviour of r(T, p) we present our 
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Theorem 4. Let  x = ~ = 0.005. Then 

r ( T , T  - ~ ) >  T ~ a.s. 
i f  T is big enough. 

Unfor tuna te ly  I cannot  characterize the domain  of the points  of  (~c, ~5) for which 
the above  inequali ty holds true. The  choice ~c = ~ = 0.005 is just  one of the 
possibilities. 

C o m p a r i n g  T h e o r e m  4 with our  previous  results we can say tha t  the "largest  
black hole" is not  only much  larger than  the "black hole" a round  the origin but  it is 
also "much  more  black". 

Theorem 5. For any f i xed  '9 > 0 we have 

r(T, ,9) < T z 

if  T is big enough and Z > w/~ - 2. 

In  [3] and [4] we presented the 

Conjeeture. There exists a 

such that 

a.s .  

1 
- -  < c~ _< 0.42 
5 0 -  - 

log r(n) 
l i m - - = ~  a.s. 
~_~ logn  

Now,  we present  the following analogue 

Conjecture. There exists a 

such that 
o.005 __< B g v / g  - 2 

log r( T, '9) 
lim - fl 
r-~oo log T 

a.s .  

where fl does not depend on '9. 

2 P roo f  of  Theorem 2 

L e m m a  A. (Knight  1981, Theo rem 4.3.8) Let  0 < a < b < c < oo. Then 

P{in f{s : s  > 0, II W(t  + s)ll = a} < inf{szs > 0, II w ( t  + s)ll = c}[B} 

log c - log b 

log c - log a 

where B = { [] W(t)]l = b}. 
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Definitions. The Wiener path {W(t); 0 < tl < t < t2} is called a 0-excursion if 

(a) I[ W(tl)II = I[ w(t2)tl  = 0 ,  

(b) l[ W(t)[] • 0 (t I <~ t ( t 2 )  , 

(c) ? t : t l  < t < t2, l] w(t) ll >_- NO. 

Let e(T)  = e(T, O) be the number  of 0-excursions completed before 7". 
Let  l = I(0) = t2 - t~ be the length of the first 0-excursion ({W(t); 0 < tl _-< t __< t2} 
is the first 0-excursion). 

Let  v = v(O) = ta - tz be the waiting time between the first and the second 
0-excursion. (t3 is the starting point  of the second 0-excursion.) 
Finally, let 

/5(u, r) = {x ' [ [  x - u II = r } ,  

"c(u,r) = inf{s: W(s) e D(u, r)} . 

The proof  of Theorem 2 is based on quite a few lemmas. Before presenting them in 
detail we give the basic idea of the proof. 
Step 1. We prove that  the number  of 0-excursions completed before T cannot  be 
very small. In fact Lemma  6 tells us that  for any e > 0 

e(T, a) ~ (log T)(log2 T ) - 1 - e  a.s. 
if T is big enough. 
Step 2. We prove that  the probabil i ty  that  a 0-excursion meets a disc D(x, O) 
cannot  be very small (Lemma 7). 

These two facts will imply Theorem 2. 

Lemma  1. Let  u e R 2 satisfying the inequality 

e -T < r < 2r __< Ilull < T */2-a �9 

Then for  any 0 < e < 6 < 1/2 there exists a To = To(z, 6) > 0 and an absolute 
constant C > 0 such that 

1 - ( 1  + 5 )  l~  < l o g T  1 / 2 - ~ - I o g [ l u l l _ e x p ( _ C T a ~ )  
log(T1/2-"r -1)  = log T 1/2-~ - l og r  

-< P { 3 t : 0  <_ t <- T, W(t) e D(u, r)} 

l o g T  1/2+~ - logllull , log(tlu[lr -1) 
---< 1Tg ~ r ~ z 7 1 7 ~ - g ~  + e x p ( - C T 2 ~ )  --< 1 - (1 - ~ ) i ~ ~ )  

if T > To. 

Proof. Clearly we have 

P { ~ t : 0  <- t <- T, W ( t ) s D ( u , r ) }  = P{z(u, r) < T} 

> P{z(u, r) =< z(u, T 1/2-~) <= T}  

_>__ e { ~ ( u ,  r) __< ~(u, T 1 / 2 - ~ ) }  - e { ~ ( u ,  T ~/~-~) > T}  

> log T 1/2 -" -- log I[ u iI _ e x p ( - - C T  2~) . 
= l o g T  a / 2 . ~ -  l og r  
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Fur ther  

P { 3 t : 0  <_ t < T, W ( t ) � 9  =< P{z(u, r) < z(u, T 1/2+~) or z(u, T 1/2+~) < T} 

log T 1/2+~ - log [[ u r[ 
=< i;g Z-_-Toog; + exp(-CT20. 

Hence we have Lemma 1. 

L e m m a  2. For any e > 0 there exist a To = To(e) > 0 and an absolute constant 
C > 0 such that 

2 log 2 log 2 
(1 - 28) log(T0-1)  < (1 - e) - exp( - C T O  -2) = log(T1/2+~O-1 ) 

< P{e(T, 0) = 0} 

log 2 
< (1 + e)log(T~/2+~O_~) + e x p ( - C T O  -2) 

, , ,  2 log  2 
__< (1 + Z Jlo l ) 

if T >  To and e -  r < O< 1. 

Proof  Applying Lemma 1 with ][ u [[ = 20, r = O we obtain 

P{e(T,  0) = 0} = P{W(t)  (0 < t < T) does not  mee t / ) (0 ,  20) or 

it does but  f rom/5(0,  20) it does not return to / ) (0 ,  0)} 

log 2 
< e x p ( - C T O  -2) + (1 + e)log(T1/2_~O_l) 

which implies the upper  part  of our inequality. Similarly 

P{e(T)  = 0} > P{W(t)  + (2,9, 0) (0 < t < T) does not meet/5(0,  0)} 

log 2 
> (1 - e) log(T1/2 +t 0_ 1) �9 

Hence we have Lemma 2. 

Lemma  3. There exists an absolute constant C > 0 such that 

P { v ( 0 ) > u } < e x p ( - C u 0  -2) ( u > O , O > O ) .  
Proof  

P{v(0) > u} < P{ the  waiting time to arrive/3(0,  20) from L)(0, 8) > u} 

__< P f s u p  11W(t),[ < 30~ =< exp( ~ C u  ~ m 2 ~ ~ 

k t < u  J 

Hence we have Lemma 3. 
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Lemma 4. For any 0 < e < 1/2 there exists a uo = Uo(~) > 0 such that 

21og2 2 log 2 
( 1 -  ~)lo~(-~zh) =< P{I + v > u} <= (1 + ~) log(u0_1) 

i f u  > Uo and e x p ( - u / 2 )  < 0 < 1. 

Proof  By Lemmas 2 and 3 we have 

< e = + P  v >  

log 2 
< (1 + e)log(ul/2+~2_t/2_~O_l) + exp( - C u O  -2) 

, , ,  21og2 

and we have the upper part of Lemma 4. Since by Lemma 2 

2 log 2 
(1 - ~ ) l o g ( u 0 _ 1 )  < P{e(2u, 0)  = 0} 

< P f s u p  II W(t)ll < 01 + e { '  > u} 
k t < u  ) 

<= e x p ( - C u O  -2) + P{l + v > u} 

and we obtain the lower part as well. 

Lemma 5. For any e > 0 and 0 < 0 < 1/4 there exists a To = To(z, 0) > 0 such that 

1 - exp( - ( 1  - e)2(log2)x) < P{e(T ,  0) < xlog(T~9-~)} 

< 1 - exp( - ( 1  + e)2(log2)x) 

/ f T >  To,0 < x < (log(T0-1)) 2 and e x p ( - T  1/4-~ < O< e - I  

Proof  Let 

q =- [ x l o g ( T O - t ) ]  + 1, u = Tq -1 

and observe that 

T exp(  xp( 1,) 
< exp - ( 1  - e) 2(log(T0_l))3 < e x p ( - T  ~/4-0) < ~.  



28 P. R6v6sz 

Then by Lemma 4 we have 

( 21~ ) q 
P { e( T, O) > q } > (P { / + v < Tq-1} )~ > 1 - ( l + e ) l o g ( T q _ i 0 _ l )  

> exp(-(1 + 2e)2(log2)x) 

if T is big enough. Which, in turn, implies the upper part of the inequality of 
Lemma 5. 

Let ll, 12 . . . .  be the lengths of the first, second . . . .  0-excursions and let 
v~, vz . . . . .  be the waiting times between the first and second, the second and 
third . . . .  0-excursions. Let Ek (k = 1, 2 , . . . ,  q) be the event that precisely k of the 
variables l~ + v~ (i = 1, 2 , . . . ,  q) are greater than or equal to T, while q - k of them 
are less than T. Then 

q 

{e(T, O) > xlog(TO-~)} c H Ek, 
k = l  

where/~k is the complement of Ek. Hence 

q 

P{e(T, 0) < xlog(T0-1)} >_- 2 P{Ek} 
k = l  

=I- (1 -P{I~+v ,>T})  q__>l- 1 - ( 1 - e ) ] o ~ 1  ) 

1 -- exp(-(1 - 2e)2(log 2)x) 

which implies the lower part of Lemma 5. 

Lemma 6. For any e > 0 there exists a To = To(e, co) > 0 such that 

(log T)(log2 T) -~-~ < e(T, ~) < (1 + 0(2 log 2)-~(log T)tog3 T 

if T > To. 

Proof Let 
T k = e x p ( ( l + e )  k) k = l ,  2 , . . .  

Then by Lemma 5 we have 

P{e(Tk, O) > (1 + 2e)(21og2)-~(log Tk)|Oga Tk} 

( ( 2 )  1 ) <exp  - 1 +  og3Tk < O ( k  -1-~/e) 

and by Borel-Cantelli lemma 

e(Tk, ,9) < (1 + 2e)(21og2)-l(log Tk)log3 TR a.s. 
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for all but  finitely many  k. Let Tk --< T-< Tk+l. Then  

e(T, 0) < e(Tk+~, 0) < (1 + 2e)(21og2)- t ( log Tk+l)log3 Tk+ 1 

<= (1 + 3e)(21og2)- l ( log  T)log3 T .  

Hence we have the upper  par t  of Lemma 6. 
In order  to prove its lower part, let 

Then  
Ti  = exp(ek) �9 

log T;, } < O(k_ l_  0 
P e(T'k, 0) < (log2 Ti) 1+2~ = 

and by Borel-Cantelli  lemma 

log T~ 
e(T'k, 0) > = (logz T~) 1 + 2~ a.s. 

for all but  finitely many  k. Let  T~ _< T_< T~+I. Then  

log T~ log T 
e(T, 0) = > e(T'k, 0) > = (log2 T~) 1+2~ = > (log2 T) 1+3"" 

Hence we have the Lemma.  

L e m m a  7. Let  {W(t); 0 < tl < t < t2} be a O-excursion. Then 

1 log 2 log 2 
< P { 3 t : t l  < t < t2, W ( t ) e D ( x ,  0)} < 

6 log( N x II 0 -  1) . . . .  log( ]1 x H 0-1)  

provided that 20 <= [I x 1[. 

Proof  Let x = ]lx[te i~. Then  by Lemma  A and symmetry reasons the prob-  
ability that  the 0-excursion {W(t) ;0 < tl < t < t2} meets the arc 

It x II ei~ (P - g < c~ < (p + is larger than or equal to 

1 log 20  - log 0 1 log 2 

3 1 o g l l x l l - l o g 0  31og( l ix l l0-1)  " 

(Note that  if z = inf{t:  t > 0, k[ W(t)t1 = 20} then W(z) is uniformly distributed 
on the circle 20e ~ ( - ~  =< (p __< ~).) Since starting from any point  of the arc 

it x IIe '~ ~0 - 5 < ~ < ~0 + the probabil i ty that  W(t) meets / ) (x ,  0) before/5(0,  0) 

is larger than 1/2, we obtain our  lower estimate. 
The upper  estimate is trivial by Lemma  A. 

Proo f  o f  Theorem 2. Let  0 < tl < t2 < t3 < t4 < �9 �9 �9 < t2N- 1 < t2N be the start- 
resp. endpoints  of the first, second . . . . .  N- th  0-excursion of W(') .  
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Assume that 

IIx II _-< exp(N~/2(logN) -~) 
and 

exp(--N1/2(logN) - 2~) < ,9 < 1 . 

Then by Lemma 7 we have 

P{~t:0 <- t <- t2N, W(t) e D(x, ,9)} 

( 1  log2 ~ s_ ( 1 (log2)N "~,2log(],x[l,9_l)j 
< 1-121og(l lxl[ ,9_l)  / < e x p  

= < e x p ( - 1 N ~ / Z ( l o g N ) ' )  

Let x~, x2, . . . ,  xr(N) be a sequence of points satisfying: 

K(N) = [2 exp (2N1/2(log X ) - '  + 2N 1/2 (log N) -  as)-], 

][xi[[ =< exp(N1/2(logN)-~) (i = 1, 2, . . . , K(N)) ,  
K(N) 

D(O, exp(N1/2(logN) -~) ~ [_) D(x,, e x p ( -  N1/2( logN)-  2~)) . 
i = 1  

It is easy to see the existence of such a sequence. 
Then 

P {~si'O <= si < 2t2N, W(si) ~ D(xi, e x p ( - N i / 2 ( l o g N )  -2" 
k i = l  

=< K ( N ) e x p ( - ~ N 1 / 2 ( l o g N )  ~) 

Hence by Borel-Cantelli lemma we have: for any 

x e D(O, exp(N1/2(log N ) - 9  
until t2N the disc 

D(x, e x p ( -  N1/2 (log N ) -  2") ) 

is visited for all but finitely many N with probability 1. 
Let N = (log T)(log2 T)-1-~. Then by Lemma 6 t2N < T with probability one 

for all but finitely many N. Consequently for any 

x e D(0, exp((log T)t/2(log2 T)-1/2-~:) 
till T the disc 

D(x, e x p ( -  (log T)l/Z(log2 T ) - 1 / 2 - 9 )  

is visited. 
Hence Theorem 2 and the lower inequality in Theorem 1 is proved. 

3 Proof of Theorem 3 

Let xl ,  x2, �9 �9 �9 xk e D(1) be such points that the discs Di = D(xi, 3) have no points 
in common. Denote by 

ink(D1, D 2 ,  �9 �9 �9 , Dk; T) = P{Vi = 1, 2 . . . .  , k 3ti, such that 0 < t i <= T, W(t~) E D~} 
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the probabili ty that  all discs are visited until time T. 

Lemma 8. L e t  ~ > 0 a n d  

6 = 6( r )  = 6(T, e) = exp ( - ( l og  T)1/2+'),  

I/x~ - xj[I > exp ( - ( l og  T) 1/2) ( i , j  = 1, 2 . . . . .  k ; i  =}=j) . 

T h e n  

( 1 - e ) 2  , ,'~ 
rag(D, ,  i ) 2 , .  �9 �9 , Dk; T )  <= exp --(log T) 1/2-~ Iogg)  . 

Proo f .  It is easy to see that  

m k ( D t ,  D2 . . . .  , Dk; T )  

= P U {all Dj are visited before T and Di is the last visited disc} 
i = 1  

--< P U {the discs D1,  �9 �9 � 9  D i _  1, D~+ 1 . . . . .  Dk are visited before T 
i = 1  

x max P{Dy is visited before TI W(0) = x} . 
i 4 j  

xeD~ 

Clearly 

P U {the discs D1 . . . . .  D i -  1 ,  Di+ t . . . . .  D k are visited before T . 
i = 1  

k 

< Y', m k - l ( D 1 ,  . �9 �9 , D i - l , D i + l ,  �9 . . , D k ;  T ) - -  ( k -  1)ink(D1 . . . . .  Dk; T )  
i = 1  

and by Lemma 1 (with ltuEI = e x p ( - ( l o g  T)1/2), r = 6) 

max P { D  i is visited before TI W(0) -- x} < 1 - (1  - e) log(exp( - ( log  T)1/2)6 -1) 
i * j  log(T 1/2 +~5-1) 

x~Di 

< 1 -  (1 - 20 (log T )  1/2 -e  �9 

Hence 

m k ( D 1 , D 2  . . . . .  Dk; T )  <= ~ m k - l ( D 1  . . . . .  D i - l , D i + l ,  . . . ,Dk;  r )  
i = 1  

- - ( k - l ) m k ( D l , . . . , D g ;  T ) ) ( 1 - ( 1  - 2e)(log ~1/2_~ ) 

and 

ink(D1,  D2,  �9 . . , Dk; T )  

k 
(1 --(1 -- 2 e ) e ( l o g r )  -z/2+~) '~, mk-~(D1,...,D,-~,D,+~,...,Dk; T) 

i = 1  

1 + (k - 1)(1 - ( 1  - 2e)2(log T) -1/2+e) 
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1 - a  < l - a / k < k - l e x p ( - a / k )  ( O < a < l , k > l )  
l + ( k - 1 ) ( 1 - a ) =  k - 

we have 

ink(D1, D2 . . . . .  Dk; T)  < k -1 e x p ( -  (1 - 2e)2k -1 (log T)  -1/2+~) 

k 

x ~ mk- l (D1 . . . . .  D i - l , D i + l  . . . . .  Ok; T)  
i=1 

and by induct ion 

ink(D1, D 2 , . . . ,  Dk; T)  < e x p ( -  (1 -- 2e)2(log T)-1 /2+~log  k ) ,  

and we have L e m m a  8. 

Proo f  o f  Theorem 3. Let x l ,  x2, �9 �9 �9 Xk be a sequence of points  of D(1) satisfying 
the condi t ions  of L e m m a  8. We can also assume that  k = k ( T ) >  
exp((log T)1/2-~/2). Then  we obta in  

ink(D1, D2 . . . . .  Dk; T)  < exp( -- (1 -- 2e)2(log T)  ~/2 ) . 

Let T~ = e z. The  Borel-Cantell i  l emma  implies that  at  least one D~ is not  visited until 
t ime T~ for all but  finitely m a n y  1. 

Assume that  Tz -< T < Tl+ 1. With  probabi l i ty  1 there is an x ~ D(1) such tha t  
the disc O(x, 6(Tl+ 1)) is not  visited before T. Since 6(T~+ 1, ~) > 6(T~, e/2) we obta in  
the Theorem.  

4 Proof of the upper part of Theorem 1 

L e t  X l , X 2  . . . . .  X k 6 D ( e x p ( ( l o g T ) l / 2 1 o g 3 T ) )  be such points  that  the discs 
D~ = Ddx~, 6) have no points  in c o m m o n  (5 > 0 is fixed). We also assume that  

k = k (T)  = exp((log T ) I / a ) ,  

][x~ - xj][ > exp((1 - e)(log T)1/Zlog3 T) (i,j = 1, 2 . . . .  , k; i :# j )  

with some 0 < e < 1 and 

I[ xi ][ = exp((log T) 1/2 loga T ) .  

Then  repeat ing the p roo f  of L e m m a  8 in the present  case we obtain  

ink(D1,02 . . . .  , Ok; T) < e x p ( -  (1 -- e)2(log3 T)(log T) -1/a log k) 

= e x p ( -  (1 - e)2(log3 T ) ) .  

Let  Tz -- exp(J ) .  The  Borel-Cantell i  l e m m a  implies tha t  at least one D~ is not  visited 
until t ime T~ for all bu t  finitely m a n y  I. Since 

exp((log Tz+ 1)1/21og3 Tl+l)  =< exp(2(log Tl) 1/2 log3 Tz) 

we obta in  our  statement.  



Black holes on the plane drawn by a Wiener process 33 

5 Proof of Theorem 4 

At first we describe the main idea of the proof. 
Step 1. Let WI(') ,  W2('), . . . ,  WErol(') (e > 0) be independent Wiener pro- 

cesses and let ei(T, O) be the number of 0-excursions of W~ completed before T. 
Then Lemma 9 tells us that max~ < ~< r.e~(T p, ,9) is about (log T) 2. (Remember that 
by Lemma 6 el (T  ~, O) is about log T.) 

Step 2. Consider the independent Wiener processes 

Wi(t) = m(iT  1:2 + t) - w ( i r  1/2) (i = 1, 2 , . . . ,  [T1/2]; 0 <_ t < T1/2). 

By Step 1 there exists a (random) io ~ [1, [T1/2]]  such that e~o([T1/Z], ,9) is about 
(log T) 2. Then using a somewhat stronger form of Lemma 7 (Lemma 10) and 
repeating the proof of Theorem 2 for the process W~o(t) we obtain Theorem 4. 

Lemma 9. Let W1 (t), W2 (t) . . . .  be a sequence of independent Wiener processes on 
R z. Let ei(T, O) be the number of O-excursions of Wi(') completed before T. Then for 
any ~, ~, u, e > 0 and 0 < ~ < ~/4 there exists a To = To (~, ~, u, ~, ~/) such that 

P f max e,(T ~, 0) < u(log(T ~ 0-1))2 l ~ exp( - T~(T B 0 -1 ) -  2u(1 +e)log 2) 
k l < i < T  ~ 3 

if T >= To and exp( - T ~/4-~') =< 0 < e-  1. 

Proof. By Lemma 5 we have 

max e,(T t~, O) < u(log(T'O-z))21 <= ( 1 - e x p ( - ( 1  + P e) 2(log 2) u log( T~ O- z ) ) ) T" 
l <<. i <_ T"  ) 

< e x p ( -  T ~ exp( - (1 + e)2(log 2)ulog(Ta0-1)))  

= exp( - T~(TaO - 1)-2,(1 +mog 2) . 

Hence we have the Lemma. 
Let W1 (t), W2 ( t ) , . . .  be a sequence of independent Wiener processes on R 2. Let 

t2N(i) = t2N(i, O) be the endpoint of the N-th 0-excursion of Wi('). Further let 
xl ,  x2 . . . .  , xK<m be a sequence of points satisfying: 

K(N) = I-2exp(2(# + v ) ~ ) ]  (# > 0, v > 0) ,  

II xjll _-< exp(#x//~) (j = 1, 2 . . . .  , K(N)) ,  
K ( N )  

V(O, exp(#v/N))  = ~ O(xj, exp( - vv /N) ) .  
j=l 

It is easy to see that for any # > 0, v > 0 there exists such a sequence. 

Lemma 10. For any # > 0, v > 0, 2 > 0 we have 

P ~) U {~s(i,j):O < s(i,j) < t2N(i), W~(s(i,j))sD(xj, O)} 
i = 1  j = l  

< 2exp \ 6 ( #  + v) 2(# + v)-- 2 

where O > exp( - v~,/~) and L(N) = [exp(2w/N)]. 
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Proof. By I_emma 7 

P{~s:O < s < tzN(i), W,(s)~ D(xj, ,9)} < exp( 

log2 . 
_<_exp 6 ( ~ + ~  x / ~ ) .  

Hence 

fL~ )K(N) } P U {~s(i,j):O < s(i,j) < t2N(i), Wi(s(i,j))ED(xj, ~9)} 
k i = l  j = l  

<= L(N)K(N) exp ( 6(~+_~ x / ~ j l o g  2 . '~ 

log 2 N "~ 
6 log([[xj[[O -~) J 

where 

i.e. 

enough) there exists a 0 < io = io(cO) < ~ such that 

provided that 

t2N(io) _-< ,d~ 

N = [u(log(T1/ZO-1)) 2] = F (1 - e)(1 + 2~c)(log T)21 
L 8 log 2 J (( ;2) 8 log 2 

T = e x p  ( 1 - ~ ) ( 1 + 2 ~ )  

Apply Lemma 10 with the above N. Then we obtain that for any 0 <_ i < L(N), 
0 < j  < K(N) (with probability 1 if N is big enough) there exists a 
0 <= s(i,j) <_ t2N(i ) such that 

Wi(s(i,j)) ~ D(xj, O) 

log 2 
6(# + v) 
- -  > 2(/z + v) + 2 .  

Lemmas 9 and 10 combined claim that there exists a 0 < io = io(~O) < x /~  such 
that the disc D(W(ix/T),  exp(#x/-N))is 0 = e x p ( -  vx/N)-covered by W(. ) pro- 
vided that the above condition holds. 

and we have the Lemma. 
Apply Lemma 9 with 

W,(t) = W(ix/@ + t) - W(ix/@ ) (i = 0, 1, 2 , . . . ,  Ix/T]; 0 =< t =< x/@), 

a = f l =  1/2, 0 = T  -X, x > 0 ,  

1- - r  
U - -  

2(1 + 2K)log 2" 

Then by the Borel-Cantelli lemma we obtain that (with probability 1 if T is big 

= 2e p(-( log2 \6(#+v) 2(#+v)-2)x//-N) 
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Choose  
81og2 ~i/2 

v = ~ c  ( 1 - e ) ( l + 2 t c ) ]  

(in order  to get 8 = e x p ( -  v x / N  ) = T-M), 

1 ( 8 log 2 ~1/2 
2 = ~  (1 - -  e) (l + 2~:)/ 

(in order  to get T 1/2 = e x p ( 2 x / ~ ) ) .  Let 

e x p ( # x / N  ) = T ' 
i.e. 

81og2 "]1/2 

# = r ,~1 - ~)(1 + 2~U " 
] /  

Let 
81og2 )1/2 

A = (t -- e)(1 + 2K)/ = 22 .  

Then  
+ v = (~ + f ) A  

and our  condi t ion formulated with p and K (instead of #, v, 2) is: 

1 log2  1 > 2 0 r  
6 (to + fi)A = 

i.e. 

�9 ~ + f i  log2  
2(~c + fi)2A2 7'- ~ A 2 - - -  <_ 0 

6 - " 

Since ~ = fi = 0.005 satisfy the above inequality (provided that  0 < e < 1/2) we 
proved Theorem 4. 

6 Proof of Theorem 5 

Let 0 < 6 < 1 / 2 ,  e > 0 ,  / ~ > 0 ,  e + f l = l ,  k=[T~O/2-~ 3 
(i = 0, 1, 2 , . . . ,  k). Then  clearly 

0 < u~ < T a/2-a , 

Uj--U i>= [-T M1/z-a)] ( 0 ~  i < j - < k ) .  
Consider  the set 

k 
d = d ( T )  = U D(xi, O) c D(O, T 1/2-~) 

i=O 

where x~ = (u,  0) (i = 0, 1, 2 . . . . .  k). 
Then  we prove the following analogue of Lemma  8. 

and u~ = iT  ~(1/2-a) 
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L e m m a  11. Let Di = D(xi, 8) (i = 1, 2 . . . . .  k). Then for any e > 0 we have 

mk(D1, D2, . �9 . ,  Dk; T)  < T -(1 -~)~pt,-za?/2 

Proof. Just  like in the p roof  of  Lemma 8 we obtain 

mk(D1,D2 . . . . .  Dk;T)<= m k - l ( D , , . . .  , D i - l , D i + l  . . . . .  Dk;T)  
\ i = 1  

-- (k -- 1 ) i nk (D1 , . . . ,  Dk; T ) )  

x max P{Dj  is visited before T[ W(0) = x} . 
i=~j 

xeD~ 

By L e m m a  1 we have 

log(T(1/z-a)e O- ~ ) 
max P{Dj is visited before TfW(0) = x} =< - 1  - (1 - 5) ~ U  

i@-j 
xeD~ 

Hence 

where 
i nk (D1 ,  D 2  . . . .  , Dk; T) < exp( - ~ l o g k )  = k -~  

1 - 2 6  
~0 = (1 - 25) ~ fi 

where 

= ~ ( T )  = U D((0, ui), 0) c D(0, T 1/2-a), 
/ = 0  

k 

g' = cd(T) = U D(( -- u,, 0), O) c D(O, T1/2-a) , 
i = 0  

k 

= @(T) = U D((0, - ui), O) c D(0, T 1/2-~). 
i=O 

Clearly, we say that  the set ag (resp. ~ ,  cg, 9 )  is 0-covered in T if: for any 0 _< i _< k 
there exists a 0 =< h =< T such that  W(ti)eD((u~,O), O) (resp. D((O, ui), ~9), 
D ( ( -  ui, 0)0), D((0, - ui), 0)). Then L e m m a  11 implies 

P { a t  least one of ag, ~ ,  cg, ~ is 0-covered} =< 4T  -K 

(1 - e)cq?(1 - 2~5) 2 (1 - 26) 2 
K = = ( 1  - 5 )  - -  

2 8 

i f ~ = f l = l / 2 .  
Observe that  if x e D(0, T 1/2-~) (or equivalently 0 e D(x, T 1/2-a)) then the disc 

D(x, T 1/2-a) contains at least one of the sets ag, ~ ,  cg, 9 .  Hence 

1 - (1 - 25) 
(1 - 26)fl 

1 + 2 e  

and we have L e m m a  11. 
Let 
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P { a t  leas t  one  of  the  discs  D(u, T1/2-a)(u ~ D(0, T 1/z-a) is 0 - cove red}  < 4 T  -K . 

C h o o s e  
5 F - -  

6 <  - - . / 6 = 0 . 0 5 . . .  

a n d  obse rve  t h a t  

if e is sma l l  enough .  Le t  

23 < K = (1 - 5 ) - -  
(1 - -  2 6 )  2 

2 6 < 7 < K  

a n d  c o n s i d e r  the  p o i n t  W(iT  1-~) (i = 0, 1, 2 . . . .  , I-T~]). 
Le t  D r  be  the  set of  t h o s e  discs  D(x, T 1/z-a) for  wh ich  the re  exis ts  an  

i (i = 0, 1, 2 . . . .  , [-T~]) such  t h a t  

W(iT  ~ -~) E D(x, T 1/2-~) . 

T h e n  we have  

P { a t  l eas t  one  e l emen t  of  D r  is 0 - cove red}  < 4T~T -jr . 

Le t  ~ be  a rea l  n u m b e r  for  which  

z ( K  - y) > 1 

a n d  c o n s i d e r  the  sequence  Tj = j~(j  -- 1, 2 . . . .  ). T h e n  we o b t a i n  wi th  p r o b a b i l i t y  
1 for  al l  b u t  f in i te ly  m a n y  j al l  D(u, TJ/2-a) ~ D r j  will  n o t  be 0 -cove red .  
O b s e r v e  a l so  t h a t  for  all  iT  l-~ <_ t <_ (i + 1)T  I - ~  (i = 0, 1, 2 . . . . .  I T  "~] - 1) we 
have  

W(t) ~ D ( W ( i T  1-~), T I/2-a) a.s. 

for  al l  T b ig  e n o u g h  (since 6 < 7/2). C o n s e q u e n t l y  

r(Tj, O) < T)/2-~ a.s. 

for  all  b u t  f in i te ly  m a n y  j.  Th is  impl ies  the T h e o r e m  i m m e d i a t e l y .  

Note added in proof. As the referee pointed out the 0-excursions { W(t); t21+ 1 < t < t2i+2}i= 
0, 1, 2 . . . .  are non-independent. Hence the application of Lemma 7 in the proof of Theorem 
2 requires some explanation. Observe that the probability that the second 0-excursion 
meets D(x + W(t2),0) (given the first 0-excursion) is also larger than or equal to 
(log 2)(6 log( rl x I[ 0 -1 ) ) -  1 Hence replacing 0 by 2 0 the proof is going smoothly. 

Prof. J.F. Le Gall was kind enough to inform me that his student, T. Meyre, proved 

' (log R(T, p))2 1 
lms2p l o g ~ 3 ~ -  2 => ~-~ a.s. 

R e f e r e n c e s  

1. Knight, F.B.: Essentials of Brownian motion and diffusion. Providence, R.I.: Am. Math. Soc. 
103 (1981) 

2. R6v6sz, P.: Random walk in random and non-random environments. Singapore: World 
Scientific 1990 

3. R4v6sz, P.: Clusters of a random walk on the plane. Ann. Probab. (to appear) (1992) 
4. R6v6sz, P.: Clusters of a random walk on the plane II. (Manuscript) 
5. Spitzer, F.: Some theorems concerning 2-dimensional Brownian motion. Ann. Math. Soc. 87, 

187-197 (1958) 


