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Summary. We study Dirichlet forms associated with random walks on fractal-like 
finite graphs. We consider related Poincar6 constants and resistance, and study 
their asymptotic behaviour. We construct a Markov  semi-group on fractals as 
a subsequence of random walks, and study its properties. Finally we construct 
self-similar diffusion processes on fractals which have a certain recurrence property 
and plenty of symmetries. 

Mathematics Subject Classification: 60 J 60 

0 Introduction 

There are many  works on diffusion processes on fractals, but most of them are 
confined to finitely ramified fractals (e.g. nested fraetals). Exceptions are the works 
by Barlow and Bass (e.g. [1, 2]) on diffusion processes in a 2-dimesional Sierpinski 
carpet. Barlow and Bass [2] have shown a deep estimate of the resistance, and 
the arguments there will work even in the case of fractals embedded in higher 
dimensional spaces. However, it seems that the method to show the Harnack 
inequality in Barlow and Bass [1] works only for fractals embedded in a 2- 
dimensional space. 

The aim of this paper  is to give a different approach to random walks in (not 
necessarily finitely ramified) fractals and to give some complements to the results 
of Barlow and Bass. We will mainly consider the "Poincar6 constant". Several 
conditions are introduced and we study the relationship between them. 

We are thinking of quite general self-similar fractals. However, using a regular- 
ity property of harmonic functions, we can handle the case when the fractal has 
plenty of symmetry and "recurrence" properties. In that case, partly supported by 
Barlow-Bass'  "Knight  Moves" argument, we can prove that there exists a non- 
degenerate self-similar diffusion process on such a fractal (Sect. 7). 

* Partly supported by the JSPS Program 
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Concerning the 2-dimensional Sierpinski carpet, our results are almost con- 
tained in Barlow-Bass' results. The only new point is the existence of a self-similar 
diffusion process on the fractal. However, we believe that our approach also works 
for carpets with holes in higher-dimensional spaces, provided the holes of a carpet 
are large enough (so that the "spectral dimension" is less than 2). This will be 
demonstrated in Sect. 8, Example 3. Since we start from random walks, which are 
0-dimensional objects, we can keep the advantage that the "spectral dimension" is 
less than 2. 

We are strongly influenced by Barlow and Bass [1, 2] and Moser [6]. In [6], 
Moser considered the opposite case when the dimension is greater than 2. However, 
we cannot show any kind of regularity property of harmonic functions in this case. 

Since we introduce a large number of assumptions and show many results, we 
summarize the relations between them here in the remainder of this Introduction. 
The basic assumptions (A-1)-(A-4) are introduced in Sect. i. These assumptions 
are geometrical, and it is easy to check them in each fractal. We keep these 
assumptions throughout the paper. The results in Sects. 2 and 3 follow from those 
assumptions alone. In Sect. 4 we introduce assumption (B-l), which will be as- 
sumed until Sect. 7. This assumption is analytic and is not easy to check in general. 
However, in Sect. 8 we show that it can be verified for a fractal which has enough 
symmetries (Proposition 8.1). 

In Sect. 5 we introduce assumption (B-2), which is rather bad because we do not 
know how it can be verified in general. In Sect. 6 we introduce assumption (GB), 
which is geometrical and easy to check. We show that there exists a self-similar 
local Dirichlet form under assumptions (A-1)-(A-4), (B-l), (B-2) and (GB) 
(Theorem 6.9). The problems with this theorem are the difficulty to verify assump- 
tion (B-2) and to prove the regularity of the Dirichlet form. 

A partial solution to the above problems is given in Sect. 7, where we introduce 
assumptions (R), (KM) and (LS), and show that assumption (B-2) and the regularity 
of the Dirichlet form follow from them (Theorem 7.19). Assumption (R) is very 
strong. Roughly speaking it means that "the spectral dimension" is less than 2, so it 
is not satisfied for Sierpinski carpets in more than 2 dimensions (see Example 2 in 
Sect. 8). Assumption (LS) is essentially geometrical and therefore easy to check. 
Assumption (KM) is also strong and not so easy to check in general. However, 
Barlow and Bass [1] used a clever idea to verify it for the Sierpinski carpet in 
2 dimensions. We believe that their idea works even in other fractals, though this is 
not shown in the present paper. 

1 Basic assumptions, Poincar6 constant and other constants 

Let c~ > 1 and I = { 1 , . . . ,  N}. Let {0~; iEI} be a family of c~-similitudes in IRD, i.e., 
0~'s are maps on IR D satisfying [Of (x) -  01(y) l = e - l  I x -  y] for any x, y~IRD. 
Then it is well-known that there is a unique non-void compact set E in IR e 
satisfying E = Ui~iOi(E). For example, if D = 2, N = 3 and 0 1 (x )=  �89 ~92(x) 
- ~ (x - (1, 0)), 03(x) = �89 - (�89 ~) ) ,  x~lR 2, then 0i's are 2-similitudes and the 

set E is called the Sierpinski gasket. 
Let us assume the following. 

(A-l) (The open set condition) There exists a non-void open set V such that 
Uieil~i  (g)  ~ V, and ~li(r)v31~tj(V ) = ~o for any i, j e I  with i + j. 
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Then Oi's, i ~ i, have distinct fixed points, and the Hausdorf f  dimension of the 
set E is dy, where dy = (log c 0 -1  (log N). Moreover ,  d: -Hausdor f f  measure of E is 
finite and non-zero.  Let v be the normalized d : -Hausdor f f  measure on E. For  any 
x = (xl . . . . .  x,) e I X, let Ox denote the map  Oxl ~ - �9 . ~ Ox~ in IR D. 

Then we have the following. 

(1.1) Proposition. Mo = sup { # ({y e IX; ~py(E) (~ ~ ( E )  4: q~}); n > 1, x e I"}  < or.  

Proof. Let Vbe  a non-void  open set in IR D as in the assumption (A-l), Let d be the 
diameter of the closure of V. Also, let B(r, 4), r > 0, ~ e IR ~ be a ball of radius r with 
a center ~ in IR D. It  is easy to see that  if ~ ( E ) c ~ O y ( E )  4: ~, x, y e I  n, then the 
diameter of O~(V)r~gJy(V) is less than or equal to 2dc~-". So for any x s I  n, 
w {~y(V); y ~ I", Oy(E)c~ ~x(E) 4 = ~b } is contained in B(2d~-n, 4) for some ~ ~ IR D. 

So we see that  

= (~-"~1 v l )  11 v {q,,(v); y ~I", 0,(E) ~ ~x(E) 4:0}1 

<~ l ml-  l B(Xd; 0)1. 

This proves our  assertion. 
Let 7o e [0, d:). This 7o is fixed th roughou t  this paper. For  each n > 1, we 

introduce a relation T by x TY if the Hausdorf f  dimension of the set 
O~(E) c~ Ipy(E) is greater than or  equal to 7o. Also, we define ,~(') ~ y ,  x, y e I  ~, by 
q(~) = 1, i fx  TY, and q~y) = 0 otherwise. Also, we define q ~ ,  x, y e I  ~, by q ~  = 1, if x y  

x 7 y, and q(~".> = 0 otherwise. Y 

Remark. It  is obvious that the relation 7 depends on the choice of ~o. The 
assumpt ion (GB) to be in t roduced in Sect. 6 depend on the relation 7 strongly, 
and so we sometimes have to choose 7o cleverly. 

We assume the following furthermore. 

(A-2) The matrix (q~y)x,yei o is irreducible for any n > 1. 

(A-3) There are m o >  1 and eo > 0 satisfying the following. 

(1) If 4, ~ ' e E  and 14 - ~'l < eo '~ - " ,  n > 1, then there are Xo . . . .  , X~o~I ~ such 
that  r e Oxo(E), ~' e O~o(E) and xi _ 1 ~' Xi ,  i = 1 . . . . .  too .  

(2) If  x, y e I ~ and ~ ( E )  c~ 0y(E) = ~b, then ] ~ - ~'] > a o ' e - ~  for any ~ ~ 0~(E) and 

~'~ 0,(E). 
F r o m  the assumpt ion (A-2), we see that  the set E is connected. 
For  any x = (x~  . . . .  , x ~ ) ~ I  ~ and y = ( y ~  . . . . .  y m ) e I  m, x ' y  denotes the 

element (x~ . . . . .  x~, YI . . . .  , ym) in I ~+~. Then we have the following. 

(1.2) Proposition. Let  x, y e I  ~ and z, w ~ I  m. 

(1) I f x . z  TmY'W,  then x 7 y .  

(2) x ' z  T x ' w ,  if  and only if  z ~ w. 

For  any subsets A, B of/X, we write A V B if there are x e A  and y ~ B  such that  
x 7 y. We denote by A.  B the subset {x. y; x e A, y e B} of I ~+m for any subset A of 
1" and subset B of Im. Let " ~ . m = { { X ' I m } ;  x e l ~ - m } ,  O<--m<--n. For  any 
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k = m , . . . ,  n, and B e N  . . . .  B,,g(B) denotes  the set in ~n,k which contains  B. F o r  
each n > 1, ~I" denotes the set of points  x in I n such that  there are m > 1 and  
y, z s I  m with y 4= z and 0y .x(E)  n ~ ( E )  4: ~b. It  is obvious  that  0I"  4= qS, n >_ 1. 

N o w  we assume the following assumpt ion.  

(A-4) There  is an n _> 1 such that  ~I" ~ I n. 

This a s sumpt ion  can be verified by the following condition. 

(1.3)Proposit ion.  Suppose that there is a non-void open set V such that 
U i~x~ i (V )  ~ V, ~ i (V)  ~ ~pj(V) = ~, i, j s I, i =[= j, and V ~ E =t = d?. Then the assump- 
tion (A-4) holds. 

Proof  By the assumpt ion ,  we see tha t  there is an n > 1 and x s I n such that  
Ox(E) c V. Let  y, z s I "  with y + z. Then  we see tha t  0y(V) c~ 0~(V) = ~b and so 
@ ( V ) ~  ~ ( E ) =  4. Since ~ty.x(E ) ~ ~ , (V) ,  we have Oy.~(E)~  0 ~ ( E ) =  qk This 
proves  tha t  x s I" \0I" .  

For  any subset  A of I n, let gn, A be a symmetr ic  bil inear form in C(I n; IR) defined 
by 

r V) = ~, q~] (U(X) -- u(y)) (V(X) -- v(y)), U, vsC(I" ; IR) .  
x,y~A 

We denote  C , , I ,  by g , .  Let  (U)A denote  # (A)-  1. ~ a  U(X) for any finite set A and 

u s C(A; IR). 
N o w  we introduce the following Poincare  constant  which plays a key role in 

this paper.  

(1.4) ; ~ , = s U P { x ~ ( u ( x ) - ( u ) x , ) Z ; u s C ( l n ; l R ) , o ~ n ( u , u ) = l }  ' n >  l. 

Then  we have the following. 

(1.5) Proposition. (1) ~ x ~  (u(x) - ( u ) , )  2 < 2m' ~n,B(u, u) for  any n > m > 1, B e  

-~n,m and u s  C(I"; IR) 

(2) ((u)B - @ ) I  n) 2 ~ N - n  + 1.2n. ~n(U ' U) for  any B s .~, , ,_ 1 and u s C (I"; IR). 

(3) I (u)~.,,<x/- (u)B . . . .  (~)1 < { N - k +  1. ,~k "~ u, U)} 1/2 

for  any n >= 1, k = 1 , . . . ,  n, x s I "  and u s C ( I " ;  IR). 

Proo f  The assert ion (1) is obvious.  Let  u s C (I"; IR) and B s ~ , , ,  _ 1- Let f s  C (I"; IR) 
such t h a t f ( x )  = 1, x s B ,  a n d f ( x )  = 0, x s I " \ B .  Then  by Schwarz '  inequali ty we 
have 

N z n - Z ( ( u ) B  -- (u )1 . )  2 = (u(x) -- ( u ) i ,  0 <= g n - l ' ~ n E n ( U , U ) .  
x 

This implies the assert ion (2). The assert ion (3) is an easy consequence of the 
assert ion (2). 

This completes  the proof.  
Fo r  any subsets A and B of I "  with A c~ B = qS, let 

(1.6) R,(A,  B) = min { g ,  (u, u); u s C(I", lR), u IA = 0, U [B = 1}-1 
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This is the effective resistance between A and B in the ne twork  constructed by 
using the relat ion V .  Fo r  any subset A of I", C~,m(A), m = 0 , . . . . ,  n, denotes 
u {B~N, ,m;  (Ux~A~,,(E))  c~ (U:,~nOx(E)) # qS}. Also, let us define R~, m > 0, by 

(1.7) R,, = inf{R,(B, I"\C,,~(B)); n > m, B c ~ , , ~ }  . 

F o r  any B, B ' ~  . . . .  with ByB', let a,,~(B, B') be given by 

(1.8) G,.,,(B, B')  = sup{Nm((u}B -- (u}B,)2; u~C(I"; IR) ,d~,B ~ B,(U, U) = 1} . 

Also, let ~ ,  m > 0, be given by 

(1.9) a~ = sup{r B'); n >_ m v 1, B , B ' e ~  ..... B~B'} , 

and let ,~,:(V),n=> 1, be given by 

(1.10) 2(f ) = s u p { N " '  @ ) 2 ;  u~C(I"; 1R), U]~I. = O, ~n(U, U) ~- 1} . 

The quanti t ies o-, and 2(f  ) are kinds of Poincare  constants.  

2 Basle estimates 

The purpose  in this section is to prove  the following. 

(2.1) Theorem.  There is a constant C > 0 such that 

(2.2) ) (m) < C" 2, n > 1 

(2.3) 2, . ( N ' R ~ )  < C ' )~n+m,  n, m ~ 1 , 

(2.4) 2,+m < C ' 2 . ' c r , . ,  n , m >  1 ,  

(2.5) a , + ~ < C - a , ' a m ,  n , m >  1 ,  

and 

(2.6) (~2 N-  1), < C" R,  , n > 1 . 

To  prove  this theorem,  we have to make  some preparat ions .  

(2.7) Proposition. There is a constant C > 0 such that Rm > C'(~zZN-Z)m for any 
m>O.  

Proof Let B ~  . . . .  Ko = w { ~ x ( E ) ; x ~ B }  and K1 = u {~x(E); x ~ I " \ C  .... (B)}. 
Then  by the assumpt ion  (A-3) (2), we see that  dis(Ko, K 1 ) >  e o ' e  -("-m~, where 
d i s ( K , K ' ) = i n f { [ x - - y l ;  x e K ,  y ~ K ' }  for any subsets K and K '  of E. Let 
f : IRD~IR  be given by f ( ~ ) =  {dis(go,  K1) -1 d i s (~ ,Ko)}  /x 1, ~ l R  D. Let  
u : I " ~ l R  be given by u(x)= N-" .~ (E ) f (~ ) v (d~ ) .  Then  it is easy to see that  
ulB = 0 and  u li"\c,,m(m = 1. Moreover ,  we see that  for x , y ~ I "  with x 7 y ,  

[u(x) - u(y)  l < ~-" (d is (Ko,  K 1 ) -  1 .2 .  d iameter  (E)) 

< e-m(2" d iameter (E)-  eo 1). 
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So we have 

g,,(u, u) < 2. Z Z q?] (u(x) -- u(y)) 2 
x ~ C~,.(B) y ~ I" 

< c~-2~N"(8mg, diameter(E) 2. gO 2) . 

This proves our  assertion. 

(2.8) Lemma.  Let Cpx e C ( I " + ~ ;  [0, 1]), x~I" ,  such that ~ ~  cp~ = 1, (px(Z)= O, 
z ~ I" + ~ \ C, + m, ,, (X" Im), X E I". For each u ~ C (I"; IR), let ~ 6 C ( I"  + ~; IR) be given by 
~(z) = ~ i ,  u(x)cp~(z), z ~ I  "+m. Then we have 

g,,+,,(g, ~) < (2mo + 1) 2 (Mo)'*"~ �9 ( m a x  g,,+,,,((,o~, ,iox)]' 8,,(u, u) . 
~ X E I  n / 

Proof For any z , z ' ~ I  "+r", let S ( z , z ' ) = { x ~ I " ;  (p~(z)+Cpx(Z')>O } and 
v(z, z') = <U)s(~, ~,). Then we see that  

:Z Z Z 
x ~ l  n Z ~ X ' I  m g' ~ I  n+m 

: 2 2  E 
X E I  n z ~ x ' [  m z '  ~ I  n+m 

-<E 2 2 
x ~ I  n Z ~ X ' I  m Z~ ~ I  n+m 

q ( " + " •  (a(z) a(z')) 2 z z "  

{ }2 
2 q~"pm)(u(y) - v(z, z'))(cp,(z) - p , (z ' )  . 

y e S ( z , z ' )  

[{ } y ~ , z ' )  q=' (u(y) - v(z, z '))  2 

x y '  ~,(z'))~}]. { y~S(~, ~,) qZ+ m ~ ( ~ ~  - 

F r o m  the assumptions and the assumpt ion (A-3), we see that  ifz ~ x.  I m, z Tmz" 
and y~S(z,z ' ) ,  there are Xo . . . . .  X z m o + l ~ I  n such that  x = Xo, y = X2mo+l and 
x i - 1 T x l ,  i = 1 . . . . . .  2too + 1. So we have for z ~ x . I  m and z ' ~ I  "+m, 

v.~z,.("+~(u(y) - v(z,  z')) 2 :< ~zz"~~ ~ (U(y) --  U(X)) 2 
y~S( z ,  z ' )  y~S ( z ,  z ' )  

< (2too + 1) ' f (x)  

+1 ) 
where f (xo )  = Z ~,_lX,] (u(xl) - u(xi-1))  2 �9 

x l , . . . ,  Xemo+t6I n \ i = 1  \ i = l  

By Propos i t ion  1.1, we have 

Z f ( x )  < (2too + 1)(Mo)Zm~ u). 
x ~ I  n 

So we have 

r a) 

=< (2mo + 1)' Z f (xo)  E Z 2 ~-,~,"("+") 
x o ~ l  n z f i X o ' l  m z ' ~ [  n+m x t , . . . , X 2 m o + l ~ l n  \ i = i  

,7 (n+m) (rn [Z ] X ~ = .  , . , .x  . . . . .  , , - -  e x  . . . . .  ( Z ' ) ) 2  
] 
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( 2too + 1 \ 
=< (2too + 1)- Z f(xo) E I]  q~,-~,-~"+m~ 

xo~l n Xl,. , .~ X 2 m o +  1 E l "  i= 1 

x G,+ m(~0:, ...... , q)x ...... )} 

< (2too + 1)2 ( M o )  4m~ 2"e , (u ,u ) ' (max  g,+m(~Ox, CPx)) 

This proves our  assertion. 

(2.9) Lemma.  There are a constant C and a map Tn,m,k:C( ln; IR)--+ C(In+m+k; JR), 
n, m, k > 1, such that 

Nn+m+k(Tn,m, k U, T~,m,kU) <--__ C N ak R2,1 . C~(u, u) 
and 

(T~,m, ku)(z) = u(x), x~I" ,  y~IkkOIk, ze (x 'y )"  I m , 

for any ueC(I~+m+k; lR), n, m, k > 1. 

Proof. For  any x ~ I  n+k, let vx~C(In+k+m; [0, 1]) such that  

v~l~.r~ = I, Vxlx ....... \ c  . . . . . . .  (x.:,,,) = 0 ,  
and 

gn+k  +m(Vx, Vx) = Rn+k  +m(X" l m, ~fn+k +rn\ r\,.~n+k +m,mt . i r a ) ) - 1  . 

Then we see that  ~,+k+~(vx, vx) < RL 1. 
Let  w - - ~ x ~ i , + ~ v  ~. Then  w > l .  Let  ~pxeC(I~+k+~;IR) be given by 

cp~ = w-~-v~.  Note  that  

(~o~(z) - ~ o ~ ( ~ ' )  ) = ( w ( z ) w ( z ' )  ) - ~ {w(z)(v~(z) - V x ( ~ ' )  ) - v x ( z )  ( w ( z )  - w(z'))} 
Let S(x) { y e i . + k ;  (.+k +,.~ , = v~(z)q~,~, (vy(z )+vy(z ) )>O for some z,z '~I"+k+~}.  
Then we see that  #(S(x) )  < M~) (m~ So we have 

G+k+~(~o~, q~x) 

=< 2 {g,+k+m(v~,v~) + ~ ~,~,'q(n+k+m)'Vx(Z)2(W(Z ) - -  W(Z'))} 
z,z ,~i  n+k+m 

{ ( /} = 2 gn+k+m(V:~, Vx) + ~ ~,~,.("+k+m)vx(z)2 ~ (v,(z) - vy(z')) 
z ,z 'e I  "+k+'~ y~S(x) 

< 2(M3(mo +1) + 1)Rm 1 . 

NOW let T,,k: C(I"; IR) ~ C(U+k; IR) be given by T~,ku(z) = u(x), z e x  . t  k, x e I  ~, for 
any ue C(I"; IR). Then  we see that  

e.+~( ~.,~u, ~.,~u) <__ N ~ .  G(u, u), u~ C(I~ m .  

Let T,,m,k:C(I"; 1R)--, C(I"+"+k; 1R) be given by 

(L,~,~u)(~) = 2 (~.,~u)(x)~o~(~), z~I ~ 
XEI n+k 

Then we have by Lemma  2.8 

Nn+~+k(Tn,m, kU, Tn,,n,~,u) < 8(too + 1)ZMo4'n~ 3('n~ + 1)NZkR,~G~(u, u) . 
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O n  the o ther  hand,  it is easy to see tha t  if x e I ~, y e I k \ 0I k and  z e (x" y)" I m, then 
r,,,m, ku(z) = u(x). 

This proves  our  assert ion.  

(2.10) Proposi t ion.  There is a constant C such that 

2,+,,+k > C ' ( N - 2 k ( #  (Ik\Olk))(NmRm)2, 

for any n, m, k > 1. 

Proof Let  uo~C(l";IR), such tha t  g,(Uo, Uo)= 1 and ~ > ( U o ( X ) -  @o) i , )  2 
= 2,. Let  u = T.,m, kUo. Then we see tha t  

gn+,,+k(U, U) <= C'N2kRm 1 . 

O n  the o ther  hand;  we have 

E (U(Z) --  < U ) / n + k + m )  2 ~ N m" E E (gO(X) - -  ( U o ) I " ) 2  
eel  n+k+m XeI n yelU\~I k 

>= # (Ik\c~Ik) �9 Nm')~,. 

Therefore  we have 

(u(z) - (u ) I  . . . . .  )2 > (N"R,,))~,. N -  2k( # ( i k \  ~?ik))C. g,+m+k(U, U) . 
gffIn+k+m 

So by P r o p o s i t i o n  1.5(1), we have our  assert ion.  

(2.11) Proposition. 2(, D) =< 2,+1,  n > 1. 

Proof. Let  ueC( I " ;  IR) such tha t  u[ol, = O, g,(u, u ) =  1 and  N ' .  (u)2~ = 2(,vL Let  
y , y ' e I  with y=#y' and  let veC( I"+l ; lR)  be given by v ( y . x ) = u ( x ) ,  
v ( y"x )  - u ( x )  and  u(z .x)  = O, z e I \ { y ,  '~, = y j, x e I " .  Then  we see tha t  (v)~  . . . .  0, 
g, + l(v, v) = 2 and  

Z (v(x) - (v) , .+~)  2 = 2 > 2 N - "  u(x) = 22(, D) . 
x~In+ 1 y y n 

This proves  our  assert ion.  

(2.12) L e m m a .  Let S,,m" C( I'+m; IR) ~ C( I"; IR) be given by (S,,mu)(x) = (u)~.t~, 
x ~ I  ~, u~C(I '+m;IR).  Then we have 

g.,A(S.,mU, S.,mu) <= 2Moam" N -'n" g . + , % ,  (u, u), u~ C( In+m; ]R) , 

for any subset A of l n. 

Proof Note  tha t  

~n,A(Sn, m u' Sn, mU) = E 
B,B' E~an+m, m 

BuB'  c A'Im,BnTmB ' 

<=ore'N-m{ Y, 
B,B'e.~.+m.~ 

BvzB' c A'Im,BnTmB 

<= 2Moam" N-re" 8,+m,A ,~(u, u) . 

This proves  our  assert ion.  

( (u),  - (u)BO 2 

r u) ) 



Dirichlet forms on fractals 177 

(2.13) Proposition. (1) An+,, < 2m + 2Mo ' )~ , ' a " ,  n > 1, m ~ O. 

(2) There is a constant C > 0 such that )~,+" <= C" 2 ,a" ,  n, rn > 1. 

(3) There is a constant C > 0 such that a,+,, < C ' a , a " ,  n, m > 1. 

Proof  (1) Let u e C ( I " + " ; I R )  such that C . + = ( u , u ) = l  and ~x~1.+~(u(x) 
- (u)~.+~) z = )..+". Then we see that 

")'n+" = E E (U(X)- <U)B) 2 -}- N m .  ~ ( S , . ~ u ( x )  - ( S , . ~ u ) , . )  2 . 
B E a n + m ,  m x ~ B  X E I  n 

By Proposition 1.5(1), we see that 

Y Z (u(~) - (u) . ) :  _<_ . ~  G+"(u, u). 
BE.~n+m,  m x ~ B  

So by Lemma 2.12 we have 

�9 ~n+" ~ "~" + )~n Nm" ~n(Sn," u, Sn, mU) ~ 2" + 2Mo "~,am �9 

This implies our assertion (1). 
(2) From Propositions 2.7 and 2.10, we see that there is an n ' >  1 such that 
2,+,, > 22", n > n', m > 1. So from the assertion (2), we have our assertion. 

The assertion (3) follows from Lemma 2.12 by a similar argument to the proof 
of the assertion (1). 

This completes the proof. 
Theorem 2.1 follows from Propositions 2.7, 2.10 and 2.13. This completes the 

proof of Theorem 2.1. 

3 Nash type estimates and smoothness of measures 

Now let L (') be a linear operator in C(In; IR) given by 

(3.1) ~ (L~"~u)(x)v(x) = - ~ . ( u ,  ~), ~, ~ E C(I"; ~ ) .  
x~ l .  n 

Also let Pt (~ = exp(t '  L(")), t = 0. Then {P~')}t~o is a symmetric Markov semigroup. 
Let p~: [0, o v ) x I "  x I" be given by 

(3.2) ~ p,(t, x, y)u(y) = (P~"~u)(y), u~C(I";  IR). 
y E l  n 

Then by using the similar arguments in Carlen-Kusuoka-Stroock [3] or in 
Nash [7] we have the following. 

(3.3) Theorem. There is a constant Co > 0 such that 

p , ( c o ' 2 " , x , y ) <  N - ~ ,  x, y E I "  

For any n >= 1 a n d r e = O ,  1 . . . . .  n -  1. 
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Let f~C(I";[O, oo)) with y . ~ , f ( x ) =  1. Let u(t ,x)=(P[")f)(x)  and Proof 
g(t) = ~ x ~ -  u(t, x) e. Then it is obvious that ~ .  u(t, x) = 1. Also, we have 

dt g(Q = - 2 '  d~n(u(t), u(t)) < - 2 '  N,,B(u(t, "), u(t, ")) 
B ,m 

B n,m \ x s B  

= - 2 " 2 , ,  1" 2 2 u(t,x)2 + 2"2~, * 'N-m y' u(t,x) 
B e ~ n , m  x ~ B  B ,m x ~ B  

= - 2"2m*(g( t ) - -  N - m ) .  

So we see that  

d 
dt log(g(t)  - N -m) > 2"2~, *, if g(t) > N - m .  

Let t m =  min{t  > 0, g(t) < N-m+1} ,  m = 0, 1 . . . . .  n. If tin > 0, then we have 

2 '2~,*(tm--  tin-l) < - log(g(tm)-- N -m) + l o g ( g ( t m - , ) - -  N -m) < log(N + 1). 

So we see that  

(3.4) t m -  tin-, < (2m/2)'log (N + 1),  m = 1 . . . .  , n .  

(3.4) holds, even if tm =  0. Also, we see that  to = 0. By Theorem 2.1, we have 

k = l  k = 0  k = 0  

So if we let c = C2(1 - a - z ) - l ( l o g ( N  + 1)/2), we have 

So we see that  O(C2m)_-<N-m+l, m = 0 , 1 , . . . , n .  This proves that  
]l ("~ 2 N- re+ l ,  P~.z,,lle~_+e~ < where II ' ] le~_~ denotes the opera tor  n o r m  for linear 
operators  f rom (* ( I " )  into ~2(I"). Since P}") is symmetric, we see that  
Ile}")]r~,_~#~ < I]e~")ll~,~e.llp}")l[#z_,#~ = [IP}n)llffl._,g~. So by Theorem 2.1 we 
have our  assertion. 

This completes the proof. 

(3.5) Proposition. For each ? > O, there is a constant C~ such that 

s u p { I e e x p ( - s l ~  - r/l')v(dr/); ~ e E }  < C, 's  -ds''-~, s > O . 

Proof Let /~ = ~ = ~  0i-k(E). Note  that  there is a measure g on /~ such that  
g(A) = limk-,oo C~ k' v(Ec~ (0] (A))  for any Borel subset A of  E". Then we see that 
C 7 = sup { 5;: exp ( - [ ~ - r/r) v (dr/); { e E } < oo. For  any s e [ c~ k~, oo ), k e Z, we have 

I e x p ( - s l ~  - t/r)v(dr/) _-< ~ e x p ( - s l ~  - r/l~)~7(dr/) 

= g - a .5  e x p ( -  a -k~sl~k~ -- r/I')~(dr/) =< C , '  N - k .  

SO we have our  assertion. 
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By using the a rgumen t  in Nash  [7], we have the following. 

(3.6) L e m m a .  Let rn(x, y) = ~ n ' m a x { l ~  - ~'1; ~eOx(E) ,  ~ ' e ~ , ( E ) } ,  x, y ~ I  ~. Then 
for any 7 > O, there is a constant Cv > 0 such that 

~. rn(x, y)'pn(Co" 2m, X, y) > C~" ~" '  
y e I  n 

for a n y n >  1, x e I ~ , a n d m = O , . . . , n -  1. 

Proof. Let h(t) = h,( t ,x)  = - ~ , y ~ i ,  Pn(t, x, y) ' l ogp , ( t ,  x, y), and M ( t ) =  
~y~in rn(x, y)~pn(t, x, y). t > O, n > 1, x s I  n. Then by Theo rem 3.3, we see that  

(3.7) h(co "2m) > ~, log(Nm)'p,(co '2,n,  x, y) = m ' l o g N .  
y E I  n 

Notice  that  u - l o g u  + s . u  > - e x p ( - ( s  + 1)), u, s > 0, we have 

- h(t) + aM( t )  + b 

= ~ {pn(t, x, y) . logpn(t ,  x, y) + (a'rn(x, y)' + b)pn(t, x, y)} 
y E l  n 

> -- e-(b+x). ~ exp ( - -a ' r~ (x ,Y )  ~) 
y e I  n 

_-> - -e- (b+ I'N~" sup { ! e x p ( - a ' ( ~ n ' l ~ -  r/l)')v(dr/); ~ e E }  

> - - C ~ ' e  1.e-b.a-d~.~-~ 

for any a, b > 0. Lett ing a = M(t )  1 and b = - dzT-~ . l og  a, we have 

- h(t) + dz7 - 1 . 1 o g M ( t )  > - C~.e -~ - 1 , 

which implies that  M ( t ) >  e x p ( d 2 ~ 7 ( h ( t ) -  C~.e - ~ -  1)). Combin ing  this with 
(3.7), we have our  assertion. 

Fo r  any signed measure  p in I n, let I~ln,k, 0 _< k _< n, be given by 

)1/2 
(3.8) ]g[n,k = B~;,,,I~(B)2~ . 

Then  we have the following. 

',~ (U)'"'p(ln) t ~ } (3.9) L e m m a .  ~ u d / ~ -  __< (2k 'x-k) l /2 lp l~ ,k_  1 "o~,(U,U) 1/2 
k k = l  

for any signed measure # on I n and ueC( I~ ;  IR). 

Proof. F r o m  Propos i t ion  1.5(3), we have 

((U)n,,.~(x) -- (UFB ..... (~))#(dx) < , )okg-k-1.  ip(B,)12, o~n.B(u, u) 
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for any u~C(In; IR) ,  BsMn,k  and B'~N'n,k-1 with B' = B. So we have 

((u)~,,k(x) - ( u ) ,  ..... (x))#(dx) < ,~kN-k #(B ' )  2 "~r U) 
B' ,~-1 

for any n > m > 1, k = 1 . . . .  , m, B ~  . . . .  and u e C ( I " ;  ]R). This and Schwarz '  
inequali ty imply that  

((U)Bo, dx) -- @ ) 8  ..... (x))p(dx) < 2kN-g lP ln ,k -1 '  ~n(U, U). 

This implies our  assertion. 

�9 m 2 �9 N - k ) 1 / 2  (3.10) Proposition. [u(x) -- u(y)l < 2 { ~ k ~ o (  k } ' ~ ( u ,  u) 1/2 for any u 
C ( I  n; IR) and x, y E I n such that there is a B ~ Nn, ~ with x, y ~ B. 

Proof. Let # be a signed measure  on I n given by p = fix - 6y. Then  we see that  
I#1 , , k=0 ,  k = m ,  m + l  . . . . .  n, and [#In ,k<2 ,  k = 0 , 1 , . . . , m .  This and 
L e m m a  3.9 implies our  assertion. 

(3.11) Proposition. Let  A be a subset o f  I". Assume there are f ~ { 0 ,  1 , . . . ,  n}, 
r e [ 0 ,  1] and r > 1 such that 

# (A) _-> r - 1 N e N V ( ' - ~ ) ,  

# ( A ~ B ) = N  - ~ ' # ( A ) ,  B ~ , ~ _ : ,  

# ( A c ~ B ) < = r ' N  vm, B ~ - ~  . . . .  m = 0 , 1  . . . . .  n - - E ,  

and 

# ( { B e ~ , , m ;  A c ~ B  ~ r  __< r ' N  (1-~V+~(n-m) , m = 0, 1, . . . ,  n - [ .  

Then we have 

[ ( u ) a  -- @) I - I  < (1 + r 3 ) g  -7n/2" (2 k " g - (1 -7)k )1 /2  . O~n(U, u ) l /2  
k 

for  any u~C( In ;  IR). 

Proof. Let # be a signed measure  on I "  given by f i ,  u d #  = (U)A -- @ ) I - ,  U~ 
C(In; IR). Then  we have 

I # l n , k = 0 ,  k = n - - ~ ,  n - d  + l , . . . , n ,  

and 

I#ln, k -<_ ( #  (A)) -~ ~ # (A (5 B) 2 + ( # ( I ~ ) ) - ~  # ( e )  2 
B~f~n, k B n,k 

r 3 . N  -7(n-k) /2  + N - ( n - k ) / 2  

< (1 + r3)N -~("-k)/2 

This and L e m m a  3.9 implies our  assertion. 
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4 Tightness of semigroups 

In this section and in the next section, we assume the following assumption 
furthermore.  

(B-l) There are C~(0,  oo) and k => 0 such that  a,  =< ,~"~" ~w),~,+k for all n => 1. 

This assumption can be verified for good fractals (see Sect. 8). 
By the assumption (B-l) and Theorem 2.1, we have the following. 

(4.1) Proposition. There is a constant C such that 

(4.2) C -  ~),,, < 2(~ D) < C 2 , ,  n > 1,  

(4.3) C - 1 2 , < a , < C 2 , ,  n >  1 ,  

and 

(4.4) 2 , + , , < C ' 2 , 2 m ,  n, m > 1 ,  

Let {P~"); x ~ t " }  be a Markov  process on I ~, whose generator  is L ~.  Let Q+ 
denote I1~ c~ [0, oo). Let us take an xo E E and fix it. Let Q(") be the probabil i ty law of 
{Ow(zn,)(x0), t e Q + }  under  N - " ~ x ~ i ,  PP)(dw). Then QI,), n > 1, are probabil i ty 
measures in E ~+. Since the space E Q+ is compact ,  we see that  {Q("); n > 1} is tight. 

Our  main result in this section is the following. 

(4.5) Theorem. For  each cluster point  O, o f  {Q(")}~= l, there is a s trongly continuous 
symmetr ic  M a r k o v  semigroup {Qt}r>_o in LZ(E, dv) such that 

Ed-[ fo (w( to ) ) f l  (w( t l ) )  . . . f~(w(t,))] 

= ( Q , . - , . - I ( L -  I (Q, . . . .  - , ~  2 ( L - 2 (  . . . ( Q , - , o f O )  . . . ) , L ) L ~ ( ~ , a ~  

f o r  any 0 < to < tl  < �9 �9 �9 < t, ,  to, . . �9 , t ,  ~ (1) + andfo  . . . . .  f ,  ~ C (E; IR). Moreover ,  
we have 

IIQtfllL~(E,a~) < e-tllf[IL2(~,d~) , t > O,  

for  a n y f e L a ( E ,  dr) with ~ E f d v  = O. 
To prove this theorem, we need some preparations.  Let <0,, e C(I";  IR) such that 

P,  lor~ = 0, ( ( 0 , ) ~  = 1 and N"- (cp , )2 .  = L~~ %,). Then  we have the follow- 
ing. 

(4.6) Proposition. (1) q~n ~ 0 and L(n)q)n{i,,\oi. = - -  ( 2 ( 9 ) )  - 1 

(2) 2~D). ~0n(X) =< "~,~(D)+ 1 '"W, + 1 ( i ' x ) f o r  any n => 1, x 6 I " ,  i ~ I .  

(3) SUp {(pn(X); x s I " ,  n >= 1} < oo. 

Proof.  It is easy to see that  L(")cp, lr.\oi, is constant,  say ceIR.  Then  we have 
N" = 2(~~ g,,(%, cp,) = - 2(,D) . ~ r  . c.  (p,(x) = - c. 2(,~ N ". So we have the asser- 
tion (1). 

Let ZA(W) = min{t  > 0, w(t)EA}, and let P~'"u(x )  = EP~[u(w(t)),  t < ~oio], 
~O 

t > 0, u ~ C (I"; IR). Then  we see that 2(, D). ~o, (x) = ~o (P~'" ' )  (x) tit. Since the law of 
w(. /x h-0i-) under  P~;~" + . .  z and the law of / .  w(. /x %x-) under  p~D,~,i~i, x e i , a r e t h e  
same, we have the assertion (2). 
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Note that for any uE C(I"; IR) with ulor. = O, 

u(x) 2 < 2  { ~ (u(x)--(U)l.)2-}-Nn(U)l .} <2(2.+ )~D))g.(u,u). 
x ~ [  n x n 

So we have }1/2 
(P~'"*)(x) 2 < exp(-(2()~, + )Jf)))-*t) .  

x n 

Then by Theorem 3.3, we have 

. ~o.-- P tg ' " ld t<co  2.-1 +o( . )  P~'"Idt 
0 0 

~ C o ' ~ n _  1 +(N-n+l)l/2(iexp(-(2(}~n+)~(nD)))-lt)dt)'N"/2 

= Co'2,-1 + 2'N1/2(2, + 2(f )) �9 

So we have the assertion (3). 

(4.7) Proposition. Let g(s)= sup{N-".  # ( { x ~ I " ;  ~o,(x) __< s}); n__> 1}, s~(0 ,~) .  
Then we see that there are constants CoE(O, 1) and Ca, Sot(0, ~ )  such that 

9(s) < Co'9(Cx2ms)+ Cl"(RmNm) -1, m >  1, s~(0, So]. 

In particular, g(s) ~ 0 as s $ O. 

Proof Since g,(~o,, ~o,) = N"(2(f)) - 1, by Proposition 1.5(1) we see that 

N - ( " + " ) (  ~xd,,+,- (@n+m(X)--(~On+m)B ....... (x))2)~n(,~(nD+)m) -1 , n , m > l .  

So we have 

N-""  ~ (N-""  ~ (Pn+m(X'y) -- 1) 2 < ; ~;(o) ~-1 
y ~ I  n x ~ l  m 

This implies that 

Let ~: = sup{q).(x); xEI" ,  n > 1}. Then ~: > 1. Note that if 

N - " ' ~ x ~ l , . ~ o . + m ( x ' y )  > 1/2, then N -m.  # ({xeI" ;  ~o.+,.(x. y) __< (4~)-1}) __< Co. 

1 
Here Co = 1 - 4 ~ "  

Also, by Proposition 4.6(2), we have 

@n+m(X'fl) ~ )~(D)(,~(O+)m)-l~pn(y), x E I " ,  y~I" ,  n, m > 1 . 
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Therefore  we see that  for s e (0, (41c)- ~ ), 

N -('+"~ # ( { z e I " + " ;  (p.+~(z) < s} 

-- N -("+m)" # ( { ( x , y ) e I m x I " ;  (p.+~(x'y) =< s, q~.(y) =< .~.+mt.~.~W) ~(D)~-lo~.j ~ 

= . = . ~ D ~  / ~ ( z ) ) ~ - ~ } )  < Co N - "  # ( { y e I " ;  cp,(y) < s ,~,,-,,~,~, 

+ N -(~§ # ( { x , Y ) e I m •  N -~"" Y~ ~o.+,,(x.y) __< 1 /2 ,  
x ~ l  m 

= . ) ( O )  / ~ ( D ) ~ - t  

= . = .~(D)c~(D)~-I~ ( 4 2 . ( 2 ( m ) - 1 )  < C o  N - " ' # ( { y ~ I " ; c p . ( y ) < s  .-,,+mt.~. ~ ~ +  

So we have the first assertion. F r o m  this, we have 

lira g(s) < (1 - Co)-~C~(R, .N")  -~ 
s{0  

By Theorem 2.1, we see that  RmN ~ ~ oo as m --* oo. So we see that lim~;o g(s) = 0. 
This completes the proof. 

(4.8) Proposition. lim lim N - "  ~ P(~")[%v, < 2(. D) T ] = 0. 
TJ ,  O n ~ z o  x e l  n 

Proof Let e,,~(x) = EVC2[exp(-c~(2(.m)-1%l.)], x e I " ,  c~ > O, x e t " .  Then we see 
that  (~(2(.D))-1I -- L("))e.,~lr.\ei . = 0 and e.,~lal- = 1. So we have 

c ~ . ) J f ) . ~  e. , . (x)rp.(x)= ~ (L(n)(e.,.-,))(x)(p.(x) 
x ~ l  n x E I  n 

= 2 (e . ,~(x ) -  1)(L("ko.)(x)= 2(f)- ~ ( 1 -  e.,~(x)). 
x ~ I  n x ~ l  n 

So we see that  

N - "  ~ Py)Ezai. _-< 2(.~ -13 =< e ' N - " "  2 e.,~(x) 
X ~ ]  n X~f ,  n 

____< e ' { ( e N " ) - " ~ t , ,  ~ e..~(x)cp.(x)+ N - " "  # ( { x e I " ;  p . ( x ) < e } ) }  

< e- {e-t 'c~ -~ + N - " "  # ( { x e / " ;  (p.(x) < e})} 

for a n y e , ~ > 0 a n d n > l .  
So by Propos i t ion  4.7, we have our  assertion. 
The following is an easy consequence of Proposi t ion 4.8. 

(4.9) Proposition. 

- {  t lim lim sup # ( B )  -~ ~ P(~)[w(2, . t )eI" \B];  ts(O, T] ,  B~r ...... n > m = O. 
T{O m ~  x ~ B  

For  each n > 1, let .P.:L~(E, dr) ~ C(I"; IR) and t.: C(I"; IR) ~ L~176 dr) be 
given by 

_P.f(x) = v(tp~,(E)) -~ ~ f(r x ~ I " , f e r ~ ( E ,  dv) ,  
q,~ (E) 

and 
z . u ( ~ ) = u ( x ) , i f ~ r  x ~ I " , u ~ C ( I " ; I R ) .  
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Let Q~") = z, o P(")z,t ~  t > 0, n => 1. Then we see that {Q~")}t>o is a semigroup of 
symmetric Markov operators in L 2 (E, dr) for each n > 1, which is not necessarily 
strongly continuous. Let P,  = tn o P, ,  n > 1. Then P,  is an orthogonal Projection in 
L2(E, dr) whose range is finite dimensional. 

(4.10)Lemma. (1)II(I P,,,)l,,u 2 -- [[L2(d~) <=2,_~N-n.C,(u,u) ,u~C(I~;lR) ,n>m> l. 

(2) There is a constant C ~ (0, oe) such that 

H(I-- Pm)Q~n)l[L2(d~,)~L2(dv) <= C'(NmRm)-l"t  -1/2 t > 0 ,  n > m > l  

(3) lira lim {l[f-- Q}")f]lL2(d,; n > 1} = O, for any feC(E;  IR). 
t.[ O n~ov  

Proof Note that J[ (I - P,,)z,u r[Z2(d, 

: N - " ' (  ~ ~, ( u ( x ) - ( u ) , ) 2 ) , u ~ C ( I " ; I R ) . S o  w e h a v e t h e a s s e r t i o n ( 1 )  
\ B S ~ n  n-m x e B  

from Propositfon 1.5(1). The assertion (2) follows from Theorem 2.1, Proposition 4.1 
and the fact that g,(P~".)~u, P(")u j =< ( 2 t ) - l ( ~ 1 . u ( x ) 2 ) ,  n => 1, usC(I";  IR). The 
assertion (3) follows from Proposition 4.9 and the fact that 

N f -  (") 2 Qt f IIL~<d, 

= N-" .  ~ (P, f ) (x){( / ; , f ) (x)  - 2. EP~;'[(P,f)(w(2,t)] 
x ~ l  n 

+ E~':'[(P,f)(w(22,t)] } �9 

Proof of Theorem 4.5 Suppose that {nk} is a subsequence such that Q<"~)~ (~ as 
probability measures in E Q+. By Lemma 4.10, we see that there is a semigroup 
{Qt; t e ~ + }  of symmetric Markov operators in Lz(E, dr), if necessary taking 
a subsequence, such that Q}"~) ~ Q t  strongly as k ---, ov for any t e Q +. By Lemma 
4.10(3), we see that limt+o I I f -  Qtfl[L2~d~) = O, f e  C(E; IR). So we can extend the 

teQ 
semigroup {Q,; t e Q+ } to a strongly continuous symmetric Markov semigroup 
{Qt; t e [0, oe)}. This implies the first assertion of Theorem 4.5. 

It is obvious that II Q~")f [IL~(E,d~) < e-t  II f IIL~(E,d*) for any f~  L z (E, dr) with 
~ f d v  = 0. So we have the latter assertion of Theorem 4.5. 

This completes the proof of Theorem 4.5. 

5 A remark on the domain of Dirichlet forms 

In this section, we assume the assumption (B-l) and the following assumption. 

(B-2) There is a p > 0 such that 0 < infp-"2n =< s u p p - " 2 ,  < oo. 

(5.1) Remark. (1) By Proposition 4.l, we see that p = lim,-.~o (2,) 1/" exists and 
inf, p-"2n > 0, if the condition (B-l) holds. 

(2) We do not know how to prove this condition (B-2) in general, even if our fractal 
has a lot of symmetry as Sierpinski carpets. However, we can prove this condition 
in the recurrent case (see Sect. 7). So 2-dimensional Sierpinski carpet etc. satisfies 
this condition. In the case of 2-dimensional carpet, this has been essentially proved 
by Barlow and Bass [1, 2]. 



Dirichlet forms on fractals 185 

Let  g("),  n > 1, be a Dirichlet  fo rm in L2(E, dr)  given by 

N(")(f, g) = p"N-"" C.(P.f, P.g), f, ge L2(E, dr). 

Then  we have the following, 

(5.2) Proposition. There is a constant C such that C(")(f, f )  <__ C.d~ f ) f o r  
any n, m > 1 and feL2(E,  dv). 

Proof By L e m m a  2.12, we see tha t  

E(")(f,f) < Mo(p-mam)'~("+m)(f,f), feL2(E,  dr). 

This implies our  assertion. 
Let  ~ e d  be the set of Dirichlet  forms associated with the cluster points  of 

{Q(")}~=I,  and let 9o  = {feLZ(E,  dv); sup,  g ( " ) ( f f )  < oo}. 
Then  we have the following. 

(5.3) Proposition. f o ~/~ s ~o for any f e  ~o and i ~ I. 

Proof This follows f rom the fact tha t  

~(,+l)(f,, f )  > pN-1.  2 C(")(f ~ ~Pi, f ~ Oi) . 
i ~ l  

The following is a ma in  result in this section. 

(5.4) Theorem.  (1) ~ ( g )  = ~0 for any C ~ e A .  

(2) There are constants Co, ci > 0 such that 

c o ' s u p  g(")(f  f )  <= E ( f f )  < c1" li_m_m g ( " ) ( f  f )  
n n ~ c J o  

for any E e ~cA and f e  @o. 

Proof Let g E ~cA and { Qt }r >__ o be the associated M a rkov  semigroup in L 2 (E, dr)  
with the Dirichlet  fo rm g. Also, assume that  Q("~) converges as k ~  oo to the 
associated probabi l i ty  measure  with { Q~}t ~ o. 

Let  R (") = F(1/2)" o t-~/2e-tQ~ ")dr Then  we that  ( p - " 2 , ) '  . see 
S(")(R(")f R(") f )< IIfll~2<~,d~), f~L2(E, dr). Therefore  by Propos i t ion  5.2, we 
see that  there is a cons tan t  C such tha t  

(5.5) g ~ " ) ( R ( " + " ) f  R(~+m)f)  < C'[I  2 f[[L~(E,a~.) 

for any n, m > 1 andfeL2(E,  dr). 
Let  R=F(1/2)-~.~ot-~/2e-~Q~dt. Then  we see that  R("~)~R, k~oQ,  

strongly in LZ(E, dr)  and so we have 

(5.6) o~(n)( Rf, Rf) < C" 11 2 = f]JL2(E, dv), n > 1, f~LZ(E, dr)  . 

Therefore  we have 

sup g(")(f  f )  < C'{ # ( f  f )  + IIf/I 2 

So by T h e o r e m  4.5, we see that  

(5.7) sup g(")(f f )  < 2 C . g ( f  f )  
i1 
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for a n y f ~  ~ ( ~ )  with ~Efdv = 0. Since C(")(1, 1) = 0 and g(1, 1) = 0, we see that  
(5�9 holds for all fE  ~ o m ( g ) .  

On the other  hand, for any f~L2(E ,  dv), we have 

t - l ( f  - Qtff)L2(e,d~) = lim t - l ( f  - Q~nk)ff)Lz(E,d~) 
k - -+  oo 

< lira ( p - " 2 , ) ' g ( " ) ( f f ) ,  t > O .  
n ~ c o  

So letting C = sup, p - " 2 , ,  we see that  

(5.8) lira t - l ( f  - Q , f  f)L~(E,d~) < C'  sup 8 (" ) ( f  f ) ,  f e L 2 ( E ,  d r ) .  
t $ O  n 

By Proposi t ion  5�9 we have 

(5�9 sup g ( " ) ( f f )  < C. lim g ( " ) ( f f ) ,  f e L Z ( E ,  dv) .  
n ? 1 ~ 0 0  

(5.7), (5�9 and (5�9 imply our  assertion�9 

6 Fractal with good borders and the existence of self-similar local Dirichlet forms 

Let D , = { ( x , y ) ~ I " x I " ;  x T y ,  x + y}, n > l. For  any ( x , y )~D, ,  n > l, let 
�9 m A~'y" = {z~Im; x ' z ,  "TroY I }, m > 1. Then  the following is obvious. 

A n ,  m+ l n ,m .  (6.1) Proposition. (1) . ~ y  ~ Axy I, x, y ~ D , ,  n, m > 1. 
. A n ,  m+1  (2) x ~xy = {~.An+m, 1 . . . . . . . . .  ~ , ~ X  A~y , t l~y  Ay~ , (~, t / )eD,+m} for any x , y ~  

D , , n , m  > 1. 
n ,  tn  , Let d , ,  = {A~y , (x, y ) s D , ,  n > 1},,>1. In this section, we assume the follow- 

ing. 
(GB) (1) There is an M1 > 1 satisfying the following. For  any (x, y )~D, ,  n > 1, 
# ~A"' ~ = M1 and there is a unique z ~ Ay) I with y.  z, ~ 1 x '  w for each w ~ A~} 1 \ x y  ] 

(2) There  is an ml satisfying the following�9 
(i) # (~r = # ( ~ % ) ,  m _>_ rex. 

(ii) For  any A e r i e + l ,  there is a unique A'e~Cm with A ~ A' .I, for each m > rnl. 

(iii) For  any Ae~r  there is a unique A'e~Cm+Z with A' ~ A "I, for each m > ml.  

(6.2) Remark. Nested fractal always satisfy the condit ion (GB). Also, Sierpinski 
Carpets satisfy the condit ion (GB) when we take suitable ~o (see Sect. 8). 

(6.3) Proposition. Suppose that the condition (GB) holds. Then for any ( x, y ) eD , ,  
n > 1, and m > 1, we have the following. 
(1) (" ~ # ( A ~ '  ) =  M~f, and # ( ( x 'A~x ' y " ) c~C)=OorM] ,Ce~ ,+m,k , k=O,  1,. . ,m .  

n m n , m  (2) There is a unique z~Ay'~ with y 'Zn;  m x ' w  for  any w~Axy . 

~ m/2~f ~ (~N-kM~)I/2 }'~m(u, u) 1/2 (3t I (u ) im  - (U)AZ:I _--< 2.~,~, ~ ).k@O 

for any u~C(Im; IR). 
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(4) I ( U ) x . A ~ , y ~  - -  ( U ) y . A ~ , ~  I 2 ~ M (m. do + ,n, ( x ' I m ) ~ ( y ' I ~ ) (  u ,  IA) 

for any u~ C(I"+m; IR). 

(5)  l ( u ) ~  ~,~ - ( u ) , . I  ~ 

< [24(2mg-m)  " [ ( 2 ~ - k N - ( m - k ) M " ~ - k ) / ( 2 ~ g - ~ M ~ ) ]  ~/2 
k = O  

+ 3 " M i - ~ ] ' g , + ~ ,  ( x . I ~ ) u ( y . I ~ ) ( U , U )  

for any u s C ( I " + ~ ;  IR). 

Proof  The assertions (1) and (2) hold when m = 1 by the assumption (GB). By 
using Propos i t ion  6.1(2), we can easily show these assertions for m = # + 1 under 
the assumption that  these assertions hold for m = d. So by induction we have the 
assertions (1) and (2). 

The assertion (3) follows from the assertion (1) and Proposi t ion 3.11. The 
assertion (4) is obvious from the assertions (t) and (2). The assertion (5) follows from 
the assertions (3) and (4). 

This completes the proof. 

(6.4) Proposition. Assume that (GB) holds and that lim -llogR,, + logM1 > 0. 
n ~ o o  n 

Then there is a constant C > 0 such that ~ < C" 2, n > 1. 

Proof  Note  that  ~ , ~ a ( R , M ] ) - ~  < oo. By Theorem 2.1, we see that there is 
a constant  C > 0 such that  

() ,~_kN-("~-k)M'~-k)/()~,~N-mM7 ') < C ' ( R k M ] )  -1 m > k > 0 

and 
( ) . . N - m ) / ( M  fro) > C -  ~ "RmMT . 

So by Proposi t ion  6.3(5), we have our  assertion. 

(6.5) Proposition. Assume that (GB) holds and that 

Then 

1 
lim ~ l o g R ,  + logM~ > 0. 

n ~ o o  n 

lim [(ffmf)A"~" -- (firf)A";~'[ = 0 
m , r ~  oo 

and 
lim [( P,,+mf)x.a,2y~ - ( Pn+mf)y  A~.'Z] = 0 

m---~ co 

for any (x, y )eD~,  n => 1 and f ~ L 2 ( E ,  dv) with supra 2,~N-mG~(/~mf fire f )  < 00. 

Proof  Let m < r and/~ be a signed measure on 1 ~ given by 

y u d p  = ( U ) A ~ 7 .  I . . . .  (U)An,~, , u ~ C ( l l ; I P ~ ) ,  
I r 

Then we have [( /~mf)A,7 -- ( f f r f ) a ~  r [ = [$I~/~r fd/~ [. 
Note  that  ]ff]~,k = 0, k ~ r -  m, and [#[~,k -_< 4"M1 -(~-k), k =< r -  m. 
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Therefore by Lemma 3.9, we have 

<4" ~ (2kg-kM[(~-k+l))  1/2 "~(U,U) 
k = l  

i t <4M1 2 [('~r-kN-(r-k)M]-k)/(2rg-rMrl)] 1/2 "2rN-rg~(u,u)" 
k = m - 1  

Then by the similar argument of the proof of Proposition 6.4, we have the first 
assertion. The second assertion follows from Proposition 6.3(4) and the Proof of 
Proposition 6.4. 

This completes the proof. 
A co . Let ~ = { { ~} . . . . .  A,, ~ d , , ,  Am+l c A,, ' I ,  m > ml}. Then the following is 

an easy consequence of Proposition 6.5. 

(6.6) Corollary. Assume that (GB) holds and that 

lim -1 logR,  + logM~ > O. Let { A~} . . . .  00 ~ r  . Then lim (P , , f )A~  exists for 
n ~ CO ~q~ m ~ ct ) 

any fEL2(E,  dr) with sup )~mN-"~m(fimf Pro f )  < w. 
m 

Now we assume the assumptions (B-l), (B-2) ad (GB), and assume that 

Y--0.2n,0blim _1 log R, + log M~ > 0 throughout this section. We use the notion in 
/// 

n ---~ o o  

Sect. 5. 
A By Corollary 6.6, we can define K 9oX~r ~ I R  by K ( f  { ,,} . . . .  ) 

= limm~ ~ (Pmf)A~. Then we have the following from Theorem 5.4. 

(6.7) Proposition. (1) There is a C~(O, 0o) such that 

2 

f d v  - K ( f  a) < C" lira g ( " ) ( f f ) f o r  a n y f ~ 9 o  and as~r . 
n---~ 9o 

n ,  m ~ oo (2) K(ToO~,{A~y } . . . .  )=K(U~ m} . . . .  ), f 6 ~ o ,  x, yeD, ,  n >  1. 

Now let ff: 9o x 9o ~ IR be a bilinear form given by 

aEJ~ t~  E 

Also let J("): 9o • 9o ~ IR, n > 1, be a bilinear form given by 

J ~ " ~ ( f , g ) = p " N - " "  ~, ~ ( f o ~ x ,  go~x), f g ~ 9 o .  
X ~ I  n 

Then we have the following. 

(6.8) Proposition. There is a C e (0, o~) satisfying the following. 

(1) gTr =< C 'sup  Cr f e g o ,  n => 1. 
m 

(2) E~" ) ( f f )  =< C'~r f e g o ,  n => 1. 
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Proof. By Proposition 6.7, we see that 

~ ( ' ) ( f f )  < p ' U - "  ~ C" lim g ( " ) ( f o  ~ , f ~  
~r ~ I n m -~ co 

< C ' sup  g(n+m)(f,,f). 
m 

This proves the assertion (1). 
By Proposition 6.7(2), we have 

# ( " ) ( f , f )  = ~. y, ~fo t~.dv - S f  o ~,dv 2 
( x , y ) ~ D n  E E (! )2 

n ,  m co fo  O~dv - K(fo  ~x, {A~, } . . . .  ) 2p~N -~. 
( x , y ) ~ D r ,  

< 2. ~ ( ' ) ( f  f ) .  

This proves the assertion (2). 
The following is the main result in this section. 

(6.9) Theorem. Assume that the assumptions (GB), (B-l) and (B-2) hold, and that 

lira -1 logRn + logM1 > 0. Then there is a local Dirichlet form g in LZ(E, dv) 
n_+ cr n 

satisfying the following. 

(1) ~z~cn(C) = ~0 = { f sL2(  E, dr); sup g ( " ) ( f f )  < Go }. 
/1 

(2) g ( f g ) = p ' N - l ' ~ , o 1 # ( f o t p z ,  go~bi), f g ~ ( g ) .  

Proof Let us take an 5~ c~cA and fix it. Then ~o = @~m(#o) is regarded as 
a separable Hilbert space with an inner product (., *)L2(Z,~) + g0(',*). Let ~ be 
a Q-vector subspace of ~o for which ~r is dense in ~o. Let #, be a bilinear form in 
~o given by 

~(~ 1. ~ #(~)(f,a) f , g~o  
n k = l  

Then {~7(,)(g, g)),>- ~ is a bounded sequence for any g ~ .  So by diagonal argu- 
n o3 ment, we see that tlaere is a subsequence { k}k= ~ such that ~7(,,~)(g, g) converges as 

k ~  c~ for any g ~ .  By Theorem 5.4 and Proposition 6.8, we see that 

co" lira k ~ ~ #("~(f, f )  < C'#o(f , f ) ,  f~  ~o. So we see that # ( ' ~ ( f i f )  converges as 
k ~ ~ for all f ~  ~o. Let r ~o • @o ~ IR be a bilinear form given by 

# ( f g )  =_1. lim ( g ( ' ~ ) ( f + g , f + g ) - - g ( ' ~ ) ( f - - g , f - - g ) )  f g ~ o  
k___to ~ ' �9 

Then by Theorem 5.4 and Proposition 6.8, we see that c o ' g ( f , f )  
< C ' g o ( f f )  < C2"c l "# ( f f ) ,  fE~o.  Therefore we see that # is closed. It is 

obvious that # has the Markov property. So # is a Dirichlet form in L2(E, dr). 
Since #("+ z ) ( f f ) =  pN-~.  ~i~z ~(,)(fo ~i,fo ~), we have the assertion (2). 

The locality of the Dirichlet form # follows from the assertion (2). 
This completes the proof. 
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7 Recurrent case 

Theorem 4.4 guarantees that there is a strongly continuous symmetric Markov 
semigroup on L 2 (E, dr). But this does not imply the existence of a good diffusion in 
E. To prove this, we need strong estimate like a Harnack inequality given by 
Barlow and Bass [-1]. We cannot prove such results in general. But we will give 
some conditions which lead to such results. First, we think of the following 
assumption. 

(R) lim -1 log R, > 0. 
tl ---~ oO n 

(7.1) Remark. By Theorem 2.1, we have lim -1 logR, > 2.1og:~ - logN. So if 
n ~ o o  n 

d s = (log c~)-1 (log N) < 2, the condition (R) is satisfied. 
Let r~(x, y) = c~"'max{l~ - ~'1; ~ 0 x ( E ) ,  ~ ' ~ y ( E ) } ,  x, y~I  ~, as in Lemma 

3.5. Then we have the following. 

(7.2) Theorem. Assume the assumption (R). Then for any 

/ ~ ( ( 0 ,  ,--2~lim l l o g R , ) / ( 2 . 1 o g c ~ ) ) , n  there isaconstantCo>Osatis fyingthe 

following. 

lu(x) - u(y)l <_- C o ' ( ~ - " r . ( x ,  y ) / "  {(;~.x-")'r u)} 1/2 

for any ueC(In; IR), n >= 1, and x, y~I ' .  

Proof. Let ~ = fl(2.1og,). By Theorem 2.1, we see that there is a c > 0 such that 

(7.3) ()~nN-")e m~ < c'(2,+mN -~+m)) 

for any n, m > 1. So by Proposition 3.10, we see that 

, u ( x ) -  u(y), < 2 (  k=o ~ (c'e-~("-k))l/2 ) {2"N-~ ' (u 'u)}  l/2 

< 2(c(1 -- e-a) -1) 1/2. e-p(,-m){2,N-"N,(u,  u)} a/2 

for any u~C(I";IR) and x, ye I"  such that there is a Bs N , ,~  with x,y~B. 
Therefore by the assumption (A-3) (1), we have our assertion. 

(7.4) Corollary. Let {Qt; te [0 ,  oo)} be the symmetric Markov semigroup in 
LZ(E, dr) as in Theorem 4.5. I f  the assumption (R) is satisfied, then the image of Q, 
t > O, is contained in C(E; IR). 

Proof. Since )~,N-"'g,(ff,,Q}")f ff, Q~")f) <(2t)-l l l f l l  L~a~), f~L2(E, dv), by 
Theorem 7.2, we see that there is a constant C > 0 such that 

IQ}")f(~) - Q~")f(r/)l N C . t - 1 / 2 ( I  ~ - rll -Jr- C'O~-n)'~[[fl[L2(dv) 

for any n >= 1,f6L2(E, dv), 4, t /6E and t > 0. Since there is a subsequence {nk} 
such that Q~"~) ~ Qt strongly as k ~ oo for any t > 0, we have our assertion. 
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(7.5) Lemma. Let f 9 ~ C2((0, c~); IR) such that If'(s)l > 0, s E (0, oo), g'(s) = lf'(s)l 2 

[ d ( g ( s ) ~  >0 ,  If ueC(In;(O,m)), r/EC(I ' ;1R) and and ~ \f'(s)/[-- SE(0, 00). 
*l(x)2(L(~Ju)(x)g(u(x)) >= O, xEI n, then 

~, q~)OT(x) z A~(y)2)(f(u(x))--f(u(y))) 2 
x , y ~ I  n 

< 4. ~ q,, t t S ~  v \ f (u(y))  (rl(x)-,7(y) �9 
x , y ~ ]  n 

Proof For any vEC(I';IR) and x, yEI', let v~y(t)= t.v(x)+ ( 1 -  t)v(y), tE 
[0, 1]. Then we see that for any veC(I'; (0, or)), ~pEC(I';IR) and x, yEI" 

t dt (f(v~,(t)) dt ! cp~y(t)- d 2 

= i ~ (4o~,(t)2 g(v~y(t)))'( dv~,,(t) )dt  

- 2i ~ox,(t)'( d~o~y(t))'g(v~,(t))( dv~y(t))dt 

= (v(x) - v(y))(q~(x)ag(v(x))- r 

\f'(Vxy(t)) ] \ dt m~y(t)) dt. 

I d (g(s) > So have O, S~(0, O0). 
d-s \f '(s) = 

we 

/o(~(~n'~/~t ~, tel-O, !], 
v \ f  (v(y) because 

/ 

< 2" y' q(,y). 2 d dt 
x ,  y E I  n 

{ (n)" / /  g(lJ(X))~2 (r~7(To(Y)) ~2 ~ (lO (y)) 2} 1/2 
• tti ) v v: J 

for any v e C(I"; (0, co)) and q~ E C(t'; IR). Since 

#,(u, r/2gou) = - ~ L(n)u(x)'rl(x)2g(u(x)) < O, we have 
x ~ I  n 

2 d dt x.y~p, i rlxy(t) -dTf(Uxy(t)) 2 

(,).[/[" g(u(x))'~ z ( g(u(y)) \2"~ 
<=4" 2 qx, t t f ~ ) )  v t ~ )  ) (tl(x)-tl(y))2" 

x , y ~ l  n 
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By Schwarz inequality, we have 

E (n) 2 q~r(O(X) A q ( y l 2 ) ( f ( u ( x ) ) - - f ( u ( y ) )  2 < 
x , y ~ I  n 

So we have our  assertion. 
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i0xy(t) 2 d f ( u ~ y ( t ) ) 2 d r .  
x , y ~ I  n 0 

(7.7) Corollary. I f  u ~ C (I"; (0, oo)), 0 6 C (I"; IR) and 0 (x) 2 (L (") u) (x) <- O, x ~ I ", then 

Z (n) 2 qxr(tl(x) /x O(y):)( logu(x)  -- logu(y) )  2 < 4" ~ q(~'~)'(0(x) - -  0 ( y ) )  2 ~--- y �9 
x ,  y e [  n x , y ~ I  n 

Proo f  Le t f ( t )  = log t and g(t) = - t -  1, t 6 (0, ~ ) .  Then we have our  assert ion f rom 
L e m m a  7.5. 

We say tha t  a subset  G of I:, # > 1, is f-connected, if there are n > 1 and 
Zo, �9 �9 z , 6  G such that  Zo = x, z, = y and zi _ lyzz, i = 1 . . . .  , n, for any x, y ~  G. 

(7.8) L e m m a .  Suppose that the assumptions (R) and (B-l) are satisfied. Let  f > 1, 
Go be a f -connected non-void subset in I:, and GI be non-void subsets o f  I :  with 
Go n G1 = O. Suppose moreover that there is a C1 > 0 such that 

(7.9) 2 n + :  < C1 " N " + : R , + : ( G o ' I  ", G1 "I") 

for  any n > l. Then there is a 6 > 0  satisfying the following. I f  n > l, u6  
C(I  n + :; [0, ~ ) )  and L (n + :)u]i"+:\61 .t" ~< 0, then 

(7.10) c5. max  u ( x ) <  rain u(x) .  
x~Go.I" x~Go.l" 

Proof  Let q , ~ C ( I  n+:, ]-0, 1]), n > 1, be such that  0n]Co.r = 1, ~/,[cl.r  = 0 and 
g n + : ( 0 n , 0 n ) = R n + : ( G o ' I  n,G~'In)  -1. Then  it is easy to see that  
sup ,  2,  + : N  - (n + :). gn + :(0, ,  t/n) < or. Since L (~ + : )u lr  + :\GI. r < 0, by Corol la ry  
7.7 we see that  for any  e > 0 and n > no, 

(7.11) gn+: ,co . r ( log (u  + e), log(u + e)) 

< E (n) 2 = q~y(O,(x) /x On(y)2)(log(u(x) + e) - log(u(y) + e)) 2 
x , y ~ I  n 

< 4"gn + :(r/n, qn) < 4 C ' 2 ~ ) - :  N n + :  

Let u ~ C ( I n ; [ O ,  oo)), z ~ G o ,  be given by u ~ ( x ) = u ( z . x ) ,  x ~ I  n. Then by 
T h e o r e m  2.1, we see tha t  

2 n N - " "  gn(log(u~ + e), log(u~ + e)) < 4 ' 6 1 - 1 C 1 C ' ( R ~ - 1 N : ) .  

So by Theorem 7.2, we have 

(7.12) max  log(u~(x) + e) - rain log(uz(X) + e) 
x ~ I  n x ~ I  n 

=< 2Co" diameter(E)~(c~ i C1 C" or:) 1/2 . 

Also, if Zo, Zx ~ Go and Zo "7 zl ,  then there are Xo, x~ ~ I  n such that  Z o X % T : z ~ x l .  

Then we have 

(7.13) ]log(u~o(XO) + e) - log(u~(x l )  + e)l 

< d~n + :, 6o r' (log(u + e), log(u + e))1/2 ~ 2 ( C 1 .  }~-1 : N  n + :)i/2 . 
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Since sup{2~-lNn;  n > 1} < ~ ,  we have our  assert ion f rom (7.12) and (7.13). 
This completes  the proof.  

(7.14) L e m m a .  Suppose that the assumptions (R) and (B-l) are satisfied. Let  d > 1, 
Go be a d-connected non-void subset in i f ,  and G1 be a non-void subset in I s with 
Go c~ G1 = O. Assume that 

(7.15) i n f { P O ~ + t + k t [ r z . i . < Z G l . r + ~ l ; z ~ G o ' l k ,  X ~ G o ' H + k , n >  1} > 0  

for  any k > O. Then there is a C > 0 such that 

2 ~ + e _ _ < C . N ~ + e R , ~ + : ( G o . H ,  G1-H) ,  n >  ! .  

Proo f  Let qo,, n > 1, be as in Sect. 4. LLet  ~, ~ C(I n + ~, IR), n > 1, be given by 
~n(x 'y)  = (p,(y), x ~ G o ,  y ~ I " ,  and 4n(z) = 0, z ~ H + : \ ( G o . H ) .  Then  by Propos i -  
t ion 4.6, it is obvious  that  

<4n>Go-r = 1 ,  
and 

sup 2, + eN - (~ + E)gn +/ (4 , ,  4,) = # (Go)N - ~" sup 2~ + ~(2(,m) - 1 < oe . 
. n 

So we see that  maxx~Go.r  ~,(x) > 1. Also, by Theo rem 7.2, we see that  there are 
fl > 0 and  C > 0 such tha t  

] 4 , , ( x ) - 4 , ( y ) l  < C ' ( c ~ - ~ - ~ ' r ~ + ~ ( x , y ) ) ~ ,  n >  1, x, y E H  +~ 

Let us take k > 1 such that  C . , - k ( 2 .  d iameter (E))  < 1/2. Then  we see that  there is 
z,  ~ Go" I k, for each n > k, such that  

inf{~,(x); n > k, x e z , . I  " -k}  > 1/2 .  

Let r / , ~ C ( H  +~; [0, 1]), n => k, be given by 

r/.(x) = P(x'+~')[z~ .i,-~ < ZG~.r], X ~ I  '~+~ 

Since ~ ( x )  = O, xsG~ .P, we see that  

~ + ~(t/., 17.) < C,, + ~(24., 24.) = 4. # (Go)" N " ( 2 f ) )  -~ . 

By the assumpt ion ,  we see that  

c = i n f { t / , ( x ) ; x ~ G o . H ,  n >= k} > 0 .  
So we have 

R ~ + l ( G o ' I " ,  G1 "H) -a  =< En+E(C-lt / . ,  C-i t / . )  

< 4c -2" #(Go)"  N"(2.(m) - 1 

for any  n > k. This  implies our  assertion. 
This completes  the proof.  
N o w  we assume the following which can be p roved  by "Knigh t  Moves"  

a rgumen t  in Bar low and Bass [1]. 
(KM) F o r  any d > 1, any  d-connected non-void  subset Go of f f  and any non-void  
subset G1 of if ,  if d i s ( ~ G o  0~(E), ~ ) ~  ~ x ( E ) ) >  0, then 

inf {P(~ + t) [z~. r < VG~. I" ] ; Z ~ G o ,  x ~ a 0 " I n, n > 1 } > 0 . 
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Also, we assume the following local similarity assumption. 
(LS) There is an ko > 0 such that 

Rm= min{Rm+k(B, Im+k\Cm+k,m(B));k= 1,. . . ,ko ,  BE~m+k,m}, m >  1. 

(7.16) Theorem. Assume that the assumptions (R), (KM), (LS) and (B-l) are satisfied. 
Then there are p > 0 and Co, cl ~(0, oo) such that 

(7.17) c o ' N - " p ' = < R , _ - < c l ' N - " p " ,  n >  1,  

and 

(7.18) co 'p"< 2,<=c1"p", n >  1. 

In particular, the assumption (B-2) holds. 

Proof By Lemma 7.14 and the assumptions (KM) and (LS), we see that there 
is a constant C > 0 such that 2, < C . N " R , ,  n > 1. Then combining this with 
Theorem 2.1 and Proposition 4.1, we have our assertion. 

By combining all results in this paper, we have the following. 

(7.19) Theorem. Assume that the assumptions (R), (KM), (LS), (GB) and (B-l) are 
satisfied. Then there is a regular local Dirichlet form (g, @o~(g))  satisfying the 
following. 

(1) ~ ( ~ )  = ~ o  = c ( ~ ;  ]P.). 

(2) g ( f g )  = p N - ~ .  ~, g(fo~b,  goO~)for a n y f g ~ @ v ~ ( g ) .  

(3) Let L be the associated generator with the Dirichlet form (g, ~ o ~ ( g ) ) .  Then for 
any connected open sets G1, G2 in E with Ga ~ G2, there is a • > 0 such that 

6 . max f (x) < minf(x)  
xeG1 x~G1 

for a n y f e ~ v ~ ( g )  with fiG2 > 0 and Lf[G2 <= O. 

Proof The assertions (1) and (2) follow from Theorems 6.9, 7.2 and 7.16. If 
u,~C(I"; [0, 1])), n > 1, and s u p , 2 , N - " g , ( u , ,  u,) < ~ ,  then by Proposition 5.2 
and Theorem 5.4, we see that any cluster point of {t,u,},%~ in L2(E, dr) with 
respect to the weak topology belongs to ~o.  So we see that if Ko and K~ are 
connected compact sets in E with Ko c~ K1 = 0, then there is a n f s  ~o  withfIKo = 0 
andfIK~ = 1. Therefore the assertion (3) is proved by a similar method to the proof 
of Lemma 7.8. Also, we have the regularity of the Dirichlet form. 

This completes the proof. 

8 Examples 

Example l (Sierpinski carpet). Let D = 2, N =  8 and e =  3. Let Nil:IN 2, 
i = 1 , . . . ,  8 be given by zl = (0,0), zl = (0,�89 z3 = (0, 1), z4 = (�89 1), zs = (1, 1), 
z6 =(1,�89 z7 =(1,0) ,  and zs =(�89 Let 0i, i =  1 . . . . .  8, be given by 
Oi(z) = �89 - z~) + zi, z e 1112. Then the associated set E is called Sierpinski carpet. 

Let 7o = 1. Then q(~, x, y ~ I", n > 1, are determined. It is easy to check that the 
assumptions (A-1)-(A-4), (GB) and (LS) are satisfied. By Barlow and Bass [1], we 
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also see tha t  the assumpt ions  (KM) is satisfied. Since d: = (log 3) Z(log 8) < 2, the 
assumpt ion  (R) is satisfied. 

N o w  we will show that  the a s sumpt ion  (B-l) is satisfied. This is essentially 
proved  by Bar low and Bass [1] and [2] relying on a H a r n a c k  inequality. But the 
p roof  here relies only on a symmet ry  and it works  for a lot of fractals. 

(8.1) Proposition. There is a C > 0 such that a~ =< ~c'. ,~,+2, ~(e) n => 1,for Example 1. So 
the assumption (B-I) holds. 

Proof Let B = 1' I"  and B' = 2" I". Then B, B'  ~ N ,  + ~,,~ and B~ ~_ 1B'. No te  that  
a ,  = a ,+ ~,,(B, B'). So there is a u ~ C(B w B'; IR) such that  g~ + 1, B ~ B,(u, u) = 1 and 
( ( u ) ~  - ( u ) ~ , )  ~ = N - " ~ . .  

Let T~: IR2~IR2,  i =  1, 2, be given by T x ( ~ , ~ 2 ) = ( ~ - ~ l , ~ 2 )  and 
T 2 ( ~ 1 , ~ 2 ) = ( r  ( r162 2. Then it is easy to see that  there are 
S~: B w B ' ~  B w B', i =  1, 2, such that  OS~(x)(E)= T~(O~(E)), i =  1, 2. We may  as- 
sume tha t  u(Sl(x)) = u(x) and u(Sz(x)) = - u(x), x ~ B  w B'. Also, we m a y  assume 
that  u(x) > O, x ~ B'. 

Let Vo ~ C ( I " ~  IR) be given by vo (x )=u(2 . x ) ,  x e I". Then  we see 
that  N,(Vo, Vo)<N~+I,B~,B, (uvO,  u v O ) < I  and ( V o ) i Z . = � 8 8  Let 
T~:IRz---rlR 2, / = 3 , 4 ,  be given by T 3 ( r  and T4(~ ,~2)  
= ( 1 - - ~ 2 , ~ 1 )  , (~I,~2)E:]R 2. Then  there are S~ : I" --+1", / = 3 , 4 ,  such that  
Os,(~)(E) = T~(O~(E)), x~I" .  N o w  let v ~ C ( I " ;  IR), i = 1, 2, be given by 

vo(S3(x)) if Ox(E) c { ( ~ , ~ 2 ) e i R 2 ; ~  + ~ 2  > 1 }  
v~ (x )=  Vo(X) otherwise ,  

and 

~vo(S,(x))  if tPx(E) ~ {(~1, ~2)~IR2; ~J. ~ ~2} 
v2(x) = (Vo(X) otherwise .  

Then  one can see tha t  vi > 0 and g,,(vl, vl)<= 2"d~ vo), i =  1,2. N o w  let v e  
C(I,+ 2;IR) be given by v ( 8 . 3 . x )  = v l (x), v ( 8 . 4 . x )  = V o(X), v (8 .5"x )  = va(x), and 
v ( y . x ) = O ,  y s I 2 \ { ( 8 ,  3), (8, 4), (8, 5)}. Then we see that  v101.=0, (v)[.+2> 
N- i<vo>~.  = �88 N -n-2Gn, and #,+2(v,  v) < 5"4~ + 1, BuB% (U V O, U k/ O) ~ 5. 

This implies our  assertion. 
So by Theo rem 7.19, we see that  there is a self-similar regular local Dirichlet 

form in LZ(E, dr) and its domain  is contained in C(E, IR). So there is a good  
self-similar diffusion process on E. 

As far as we take 7o in (0, d:), the relat ion ~ is the same, and so conclusions are n 
the same. However ,  if we le t  7o = 0, then the relat ion ~ has changed and the t/ 
assumpt ion  (GB) fails in this case. This shows that  the assumpt ion  (GB) is rather  
unstable. P robab ly  we have to replace this assumpt ion  by more  stable assumpt ion  
to handle  more  general  fractals. 

Example 2 Let D > 3, I = (0, 1, 2}~  1, 1)} and ~ = 3. Let  0~: IRe ~ IRe, i~I ,  
be given by Oi(z) = �89 - �89 i) + �89 i. Here  we regard I as a subset of 1R e. In this 
case d: = ( log3) - l ( log(3  e -  1)). Let  7o = D -  1. Then the assumpt ions  (A-1)- 
(A-4), (GB) and  (LS) are satisfied. We believe that  the assumpt ion  (KM) can be 
verified by Bar low Bass'  "Knight  Moves"  a rgument  and that  the assumpt ion  (B-l) 
can be shown by the similar a rgument  to the p roof  of Propos i t ion  8.1. However ,  the 
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a s sumpt ion  (R) fails in this case. We do not  know how to check the a s sumpt ion  
(B-2) and the regulari ty of the Dirichlet  form in T h e o r e m  4.5. 

Example 3 (Carpet  with holes). Let D > 3. Let # , m  > 1 and I = { i e { 0 , . . . ,  
(2~ + m -  1)}D; # ( { k  = I , . . . , D ; E  _-< ik < E + m -  1}) < 1}. Let  O i : I R D ~ I R ~  
i~I, be given by Oi(z) = (2E + m ) - l ( z -  (2E + m -  1)-1"i)  + (2~ + m -  1)-1. i ,  
zeR  D. Then  d I = ( log(2f + m) ) - l ( l og ( (2 ( )  D + D.(2f)~ Let  Yo = 
(log(2Y + m) ) - l ( l og ( (2 ( )D-1  + (D - 1).(2g') D-zm)) .  Then the assumpt ions  
(A-1)-(A-4), (GB) and (LS) are satisfied. By using compar i son  a rgumen t  for resist- 
ance, one can see that  the assumpt ion  (R) is satisfied if 

m(2~) -~D-~) + (2C){(2E) D-* + (D - 1) (2E)D-2m}-I  > 1 . 

So we see that  there is a good  self-similar diffusion process on E in this case, if we 
check the assumpt ions  (KM) and (B-l). But we believe that  one can verify them by 
using Bar low-Bass '  idea and the p roof  of P ropos i t ion  8.1. 

Example 4 If  a nested fractal satisfies the assumpt ions  (A-3), then it is easy to check 
the assumpt ions  (A-1)-(A-4), (B-l), (KM), (GB) and  (LS). The  a s sumpt ion  (R) holds 
in general. But we do not  know how one can check it wi thout  using Linds t rom's  
result in general. In  the case tha t  it is embedded  in 2-dimensional  Eucl idean space, 
we can check it easily. So our  app roach  gives a new p roo f  for the existence of 
self-similar diffusion processes on certain nested fractals like a snow-flake fractal, 
a l though Linds t rom's  p roof  in [5] is much  more  elegant. 
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