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0 Introduction

There are many works on diffusion processes on fractals, but most of them are
confined to finitely ramified fractals (e.g. nested fractals). Exceptions are the works
by Barlow and Bass (e.g. [1, 2]) on diffusion processes in a 2-dimesional Sierpinski
carpet. Barlow and Bass [2] have shown a deep estimate of the resistance, and
the arguments there will work even in the case of fractals embedded in higher
dimensional spaces. However, it seems that the method to show the Harnack
mequality in Barlow and Bass [1] works only for fractals embedded in a 2-
dimensional space.

The aim of this paper is to give a different approach to random walks in (not
necessarily finitely ramified) fractals and to give some complements to the results
of Barlow and Bass. We will mainly consider the “Poincaré constant”. Several
conditions are introduced and we study the relationship between them.

We are thinking of quite general self-similar fractals. However, using a regular-
ity property of harmonic functions, we can handle the case when the fractal has
plenty of symmetry and “recurrence” properties. In that case, partly supported by
Barlow-Bass” “Knight Moves” argument, we can prove that there exists a non-
degenerate self-similar diffusion process on such a fractal (Sect. 7).

* Partly supported by the JSPS Program
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Concerning the 2-dimensional Sierpinski carpet, our results are almost con-
tained in Barlow-Bass’ results. The only new point is the existence of a self-similar
diffusion process on the fractal. However, we believe that our approach also works
for carpets with holes in higher-dimensional spaces, provided the holes of a carpet
are large enough (so that the “spectral dimension” is less than 2). This will be
demonstrated in Sect. 8, Example 3. Since we start from random walks, which are
0-dimensional objects, we can keep the advantage that the “spectral dimension” is
less than 2.

We are strongly influenced by Barlow and Bass [1, 2] and Moser [6]. In [6],
Moser considered the opposite case when the dimension is greater than 2. However,
we cannot show any kind of regularity property of harmonic functions in this case.

Since we introduce a large number of assumptions and show many results, we
summarize the relations between them here in the remainder of this Introduction.
The basic assumptions (A-1)—(A-4) are introduced in Sect. 1. These assumptions
are geometrical, and it is easy to check them in each fractal. We keep these
assumptions throughout the paper. The results in Sects. 2 and 3 follow from those
assumptions alone. In Sect. 4 we introduce assumption (B-1), which will be as-
sumed until Sect. 7. This assumption is analytic and is not easy to check in general.
However, in Sect. 8 we show that it can be verified for a fractal which has enough
symmetries (Proposition 8.1).

In Sect..5 we introduce assumption (B-2), which is rather bad because we do not
know how it can be verified in general. In Sect. 6 we introduce assumption (GB),
which is geometrical and easy to check. We show that there exists a self-similar
local Dirichlet form under assumptions (A-1)-(A-4), (B-1), (B-2) and (GB)
(Theorem 6.9). The problems with this theorem are the difficulty to verify assump-
tion (B-2) and to prove the regularity of the Dirichlet form.

A partial solution to the above problems is given in Sect. 7, where we introduce
assumptions (R), (KM) and (LS), and show that assumption (B-2) and the regularity
of the Dirichlet form follow from them (Theorem 7.19). Assumption (R) is very
strong. Roughly speaking it means that “the spectral dimension” is less than 2, so it
is not satisfied for Sierpinski carpets in more than 2 dimensions (see Example 2 in
Sect. 8). Assumption (LS) is essentially geometrical and therefore easy to check.
Assumption (KM) is also strong and not so easy to check in general. However,
Barlow and Bass [1] used a clever idea to verify it for the Sierpinski carpet in
2 dimensions. We believe that their idea works even in other fractals, though this is
not shown in the present paper.

1 Basic assumptions, Poincaré constant and other constants

Leta>1land I ={1,..., N}. Let {i; ieI} be a family of o-similitudes in R?, i,
;s are maps on R satisfying |¥(x) — ¥;(y)| = &~ '|x — y| for any x, ye R,
Then it is well-known that there is a unique non-void compact set E in R”
satisfying E = | J,_,¥(E). For example, if D =2, N =3 and ¥(x) = 3 x, Y2(x)
=4 (x — (1, 0)), ¥3(x) = 3(x — (3,*2)), xeR?, then /s are 2-similitudes and the
set E is called the Sierpinski gasket. :
Let us assume the following.

(A-1) (The open set condition) There exists a non-void open set V" such that
U, (V) = V,and §(V) (V) = ¢ for any i, jeI with i % .
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Then /s, i€ I, have distinct fixed points, and the Hausdorff dimension of the
set E is d;, where d, = (log @)~ ' (log N). Moreover, d -Hausdorff measure of E is
finite and non-zero. Let v be the normalized d -Hausdorff measure on E. For any
x=(xy,...,X,)el" let s, denote the map ¥, o ...y, in R”

Then we have the following.

(1.1) Proposition. M, =sup {#({ye IV (E)ny, (E)Y £ lin=1,xel"} < .

Proof. Let V be a non-void open set in R” as in the assumption (A-1), Let d be the
diameter of the closure of V. Also, let B(r, &), r > 0, £ e RP be a ball of radius r with
a center ¢ in RP, It is easy to see that 1f Y AEYN Y, (E) =+ ¢, x, yel”, then the
diameter of Y. (V)N i, (V) is less than or equal to 2da™". So for any xel”,
U, (V) yel", Y, (E)ny(E) + ¢} is contained in B(chx‘”, ¢) for some ielRD.
So we see that

#{yel" Y, (E) YL (E) + ¢}
=@ "IV O,V vel Yy (E)n Y (E)+ ¢}
<|V|7'BQd; ).

This proves our assertion.

Let y,€[0,dy). This y, is fixed throughout this paper. For each n = 1, we
introduce a relation ~ by x~y if the Hausdorff dimension of the set
Y (EYyny,(E) is greater than or equal to yo. Also, we define ¢, x, yeI”, by
g% = 1,if x » y, and ¢%) = 0 otherwise. Also, we define ¢%, x, yeI", by ¢ = 1, if
x ~ ¥, and ¢% = 0 otherwise.

Remark. It is obvious that the relation +« depends on the choice of y,. The
assumption (GB) to be introduced in Sect. 6 depend on the relation ~ strongly,
and so we sometimes have to choose vy, cleverly.

We assume the following furthermore.

(A-2) The matrix (q%) ;v is irreducible for any n = 1.
(A-3) There are m, = 1 and &, > 0 satisfying the following.
(1) U ek and [£ | Sgoa™" nz 1, then there are x,, . . ., X,,, 1" such
that Eey, (E), ey, (E)and x; g 3 x,i=1,..., mo.
(2) x,yel"and Y, (E)ny,(E) = ¢, then | & — &| > &y o " for any £ ey (E) and
S ey, (E).

From the assumption (A-2), we see that the set E is connected.

For any x=(xq,...,x,)¢I" and y=(yy,..., ym)€lI™ x-y denotes the
element (xy, . . ., Xp5 Y1, - - -5 Y) In 1" Then we have the following.

(1.2) Proposition, Let x, yel” and z, we I™
(1) If x-z, ~,yw, then x + y.
(2) x-z,~,xw,ifand only if z 5 w.

For any subsets 4, B of I", we write 4 - B if there are x& 4 and y € B such that
x +~ y. We denote by A - B the subset {x-y; xe A, ye B} of I"*™ for any subset 4 of
I" and subset B of I". Let %, ,={{x"I"}; xeI" "}, 0<m < n For any
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k=m, ..., n and BeA,, ,, B, (B) denotes the set in %, ;, which contains B. For

each n = 1, éI" denotes the set of points x in I" such that there are m = 1 and

y,zeI™ with y & z and . . (E) n{r,(E) * ¢. It is obvious that 0I" & ¢, n > 1.
Now we assume the following assumption.

(A-4) There is an n > 1 such that oI" & I".

This assumption can be verified by the following condition.

(1.3) Proposition. Suppose that there is a non-void open set V such that
Uit < VoV (V) = ¢, i, jel, i+ j, and VA E % ¢. Then the assump-
tion (A-4) holds.

Proof. By the assumption, we see that there is an n =1 and xeI” such that
Y(E)c V. Let y,zeI™ with y % z. Then we see that y(V)ny, (V) = ¢ and so

Uy (VY (E) = ¢. Since ry.x(E) =y (V), we have ¥,..(E)ny,(E) = ¢. This
proves that xeI"™\oI".
For any subset 4 of I", let £, 4 be a symmetric bilinear form in C(I"; R) defined

by
Eual )= Y g8 @x) —u(y) 0(x) —v(y), u,veCUI%R)

x,ye A

We denote &,, ;- by &,. Let up, denote #(4)™1. ), _ u(x) for any finite set 4 and

ue C(4; R).
Now we introduce the following Poincare constant which plays a key role in
this paper.

{(1.4) A, = sup{ Y (w(x) — <udp)* ue CU% R), &,(u, u) = 1} , n=1l.

xeln

Then we have the following.

(1.5) Proposition. (1) Y’
Bym ond ue C(I" R)
(2) Kupg — {uppn)* S N~ "* 14, &,(u, u) for any Be B, ,—, and ue C(I"; R).
(3) 1<udp, 09 — Ws,, 09| S ANT*T1Jie g, 0, ) } 112
foranynz=1,k=1,...,n xel"and ues C(I*; R).

Proof. The assertion (1) is obvious. Let ue C(I"; R) and Be %, ,_,. Let fe C(I"; R)
such that f(x} = 1, xe B, and f(x) = 0, xe I"\B. Then by Schwarz’ inequality we
have

(u(x) - <u>B)2 S im éan,B(u’ u) fOl" a”y n g m g 17 BG

xeB

2
N2=2((upp — {uypm)? = { > ) (ulx) — <u>1n)} SN 1,80, u)
xeln
This implies the assertion (2). The assertion (3) is an easy consequence of the
assertion (2).
This completes the proof.
For any subsets 4 and B of I" with A" B = ¢, let

(1.6) R,(A, B) = min{&,u, u), ue CU", R), ul, =0, ulg=1}"".
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This is the effective resistance between 4 and B in the network constructed by

using the relation 4 . For any subset 4 of I", C, ,,(4), m =0,...., n, denotes
U (BB m; (U, W<EN (1, g¥=(E)) + ¢}. Also, let us define R,,, m = 0, by
(1.7) R,, =inf{R,(B, I"\C, ,(B);n = m, BERB, »n} .

For any B, B' €%, ., with B;B, let o, ,(B, B') be given by
(1.8)  0,(B, B') = sup{N"({uyp — {upp)*; ue C(I" R) 6 pup(t, u) =1} .
Also, let ¢,,, m = 0, be given by
(1.9 O =SUp{G, n(B,B)Y,n=mv 1, B,Be#, n, BiB'},
and let A2, n = 1, be given by
(1.10) AP = sup{N " (udin; ue C(I"; R), ul» =0, &,(u, u) = 1} .

The quantities ¢, and 1%” are kinds of Poincare constants.

2 Basic estimates

The purpose in this section is to prove the following.

(2.1) Theorem. There is a constant C > 0 such that

(2.2) MW <C-A,, n=1,

(2.3) A (N"R)ZLC hyim, Bm=1,
(2.4) Apm 2 C- A0, nam=1,
(2.5) Opom=C0,0,,, nL,m=1,
and

{2.6) (>N )< C-R,, n=1.

To prove this theorem, we have to make some preparations.

(2.7) Proposition. There is a constant C > 0 such that R,, = C-(x*N )" for any
m = 0.

Proof. Let BE B, m, Ko = U {Y(E); xe B} and K; = U {Y.(E); xeI"\C, .(B)}.
Then by the assumption (A-3) (2), we see that dis(Kg, K;) = g, a2~ ®"™, where
dis(K, K') = inf{|x — y|; xeK, yeK'} for any subsets K and K’ of E. Let
fR?” >R be given by f(&)= {dis(Ko, K;)7! dis(&, Ko)} A 1, €eRP. Let
u:I"—>TR be given by u(x) = N""- [, ;) f(£)v(d¢). Then it is easy to see that
ulp =0 and u|nc, 8 = 1. Moreover, we see that for x, yeI" with x ~ y,

lu(x) — u(y)| < o~ "(dis(Ko, K1)~ !-2- diameter (E))

< o~ ™2-diameter(E)-gq 1) .
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So we have

Eusw) =2 Y Y gl ulx) —u(y)?
xeCpn(B)yel®

<o *mN™8ME- diameter(E)? g5 2) .
This proves our assertion.

(2.8) Lemma. Let ¢, C(I"*™ [0, 1]), xeI", such that Y, _. 0x =1, ¢.(2) =0,
2"\ Cppmm(x - I™), xeI" For each ue C(I"; R), let ie C(I"*™; R) be given by
H(z) =Y . u(x)@i(z), zeI"*™ Then we have

édn+m(ﬁa ﬁ) é (2m0 + 1)2 (M0)4m0+2 ’ <maX gn—km(qoxa Q%c)) ’ éan(ua ”) .
xeln

Proof. For any z,z'el"™™™, let S(z,z')={xel" ¢.(2) + ¢.(z’) >0} and
v(z, 2') = {u)s(, ;. Then we see that

gn+m(a: 11)

=2 X X qum(a) - i)

xeln zex-I™ z'e]"™™

2
X X X { 2 ,qé@*m’(u(y)—v(z,Z’))(qoy(Z)—qoy(Z’)}-
ye

xelnzex-I™ z'e]"™™ S(z, z')

Yy Y ¥ [{ y q;zrm«u(y)—v(z,z'»z}

xeln zex-I™ z'e]I"*™ yeS(z, z')

IA

X{ Y q(z"zT'”’(%(Z)—%(Z’))ZH-

yeS(z, z')

From the assumptions and the assumption (A-3), we see thatifzex-I™,z, ~ 7/,
and yeS(z, z'), there are Xq,. .., Xom, + 1€1" such that x = xo, ¥ = X, +1 and

Xi_1 X, i=1,...,2my+ 1. So we have for zex-I™ and z'eI"*™,
Y autmw(y) — vz ) 9% Y w(y) —ux)?
yeS(z, z') yeS(z, z')

<(@mo + 1) f(x)

Imo + 1 2mg + 1
were o= % (T awm) (78 e -t ).

"
Xisn ooy Xomr1 €1 i=1

By Proposition 1.1, we have
> S(x) = 2mo + 1) (Mo)*™ & (u, u) .

xeln
So we have
£n+m(a> ﬁ)
2mg + 1
<@mo+ 1) Y f(xo){ > > > ( I1 qgc"ff?)
xoel” zexg 1™ 27el™™ X, .., Xomger €1" i

=1
X q(z'éfm) (@xz,,,uﬂ(z) T Dxagn (Z,))Z}
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2my + 1 \
sem+ § o] Y (T )

"
xpel® see o Xamg+1 €1

x gn+m(@x2,"o+la (meoﬂ)}

< @mo + 1) (Mo)*™* 2+ &,(u, ) (me}x Erenl@ss <px>) .

This proves our assertion.

(2.9) Lemma. There are a constant C and a map T, .- C(I"; R) — C(I" "™ %, R),
n,m, k = 1, such that

gn+m+k(Tn,m,k”’ Tn,m,ku) é C'NZk'R;tl .gn(ua M)
and
(Toym ) (z) = u(x), xel” yel™\oI* ze(x y)- 1™,

for any ue C(I" "%, R), n,m, k = 1.
Proof. For any xelI”** let v,e C(I"***™; [0, 1]) such that

Uelxrm =1, vglpeeemic i ey =0,
and

gn—‘rk—#m(vx, Ux) = Rn+k+m(x'1m7 In+k+m\cn+k+m,m(x. [m))~1 .
Then we see that &, 4 4m®y, 1) < R
Let w=) .0, Then w=1 Let ¢,eC(I""*™R) be given by
@ = w1 v,. Note that

(0x(2) = 0:(z")) = (W(2w(2)) " {w(2) (0:(2) — :(2")) — v2(2) (W(2) — w(z))} .
Let S(x) = {yel""* v.(z) g% ™ (v,(2) + v,(z')) > 0 for some z,z'el" ™}
Then we see that #(S(x)} < M3™*Y So we have

§n+k+m(q)x: (Px)

§2{<§n+k+m(vmvx)+ ) q(z'f?“'"’vx(z)z(w(z)—W(Z’))}

z Z'eln+k+ln
5

N 2{£n+k+m(uxa vx) + q(zr:;k-}-m) Ux(Z)2< z (Uy(z) - vy(zl))>2}

TRtk yeS(x)

z,z'e
< 2(M3mo+ D 4 )R .
Now let ]N"n,k:C(I"; IR} — C(I"**; R) be given by fn,ku(z) = u(x),zex I* xel" for
any ue C(I"; R). Then we see that
Evarl Tty Ty i) € N2, (u, 1), ue CU™ R) .
Let T, i C(I"; R) — C(I"*™*¥; R) be given by

(Tn,m,ku)(Z) = Z (Tn,ku) (x)(Px(Z), sertktm

xeln+k

Then we have by Lemma 2.8
éﬂn+m+k(Tn,m,ku= Tn,m,ku) é 8(7}’[0 =+ 1)2M8m0+2(Mg(m0+1) + I)NZerrTl(g)n(ua M) .
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On the other hand, it is easy to see that if xeI”, yelI*\6I* and ze(x-y)-I™, then
Tn,m,ku(z) = M(X)
This proves our assertion.

(2.10) Proposition. There is a constant C such that
Dems Z C-(N 7253 (I*\OI*))(N"Rp) A
for any n,m, k = 1.

Proof. Let uoe C(I"; R), such that &,(ug, 1) =1 and ) __ . (uo(x) — {uoym)?
= A,. Let u = T, ,, xUo. Then we see that

£n+m+k(ua u) é C.NZer;l .
On the other hand, we have
Z (u(z) - <u>1"+k+m)2 = N™ Z Z (o (x) — ttg D pn)?

zelntk+m xel? yeIk\oIk
> #(I*\oI*)-N™ 4, .
Therefore we have
T @) = Wprerrm) 2 (N"Ry) 2 N2 (IO C E ot )

zentk+tm
So by Proposition 1.5(1), we have our assertion.
(2.11) Proposition. A{? < 4,.,,n=1.

Proof. Let ue C(I";R) such that uls» = 0, &,(u, u) = 1 and N™- (udi. = 2P Let
y,y'el with y=+y and let veC(I"";IR) be given by v(y-x)=u(x),
o(y - x) = —u(x)and u(z-x) = 0,zeI\{y, y'}, xcI" Then we see that (v)+: =0,
Epr1(v,v) =2 and

2
Eﬂ W) = {Oypmer)? = 2( Zn u(y)2> = 2N‘“< ZI u(X)) =22P.

This proves our assertion.

(2.12) Lemma. Let S, ,,: C(I""™ R) - C(I™ ) be given by (S, nt)(X) = {t).pm,
xel™ ueC(I"*™; R). Then we have

En, a(Snmths Suymtt) £ 2MoGp N7 Cpi, (U, 1), ueC(I"*" R),
for any subset A of I".
Proof. Note that
En, 4(Sn, m Sy, mU) = Z (Kupp — wp )

B.B'eBpimm
BUB c A - I, ByTwmB’

éam'N_m Z gn*—m,BuB'(u’u)
B, B €Brsmm
BUB < A I"™,B,TmB

< 2M00m-N"'"~é",,+m,A_m(u, u) .

This proves our assertion.
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(2.13) Proposition. (1) 4,1, < 4, +2My 4, 0, 121, m=0.
{2y There is a constant C >0 suck that Jysem < C Ao, n,m = 1.
(3) There is a constant C > 0 such that 6,4, £ C- 6,0, n,m = 1.

Proof. (1) Let ueC(I"*™ R) such that &n,(wu)=1 and )
— (W mim)® = Apsem. Then we see that

(ulx)

xelntm
}~n+m = Z Z (ll(X) - <u>3)2 +N™- Z (Sn,mu(x) - <Sn,mu>1")2 .
BeBysmm xeB xeln

By Proposition 1.5(1), we see that

Z Z (M(X) - <u>B)2 é j'm'(”@n'#m(l”a u) -

BeByimm xeB

So by Lemma 2.12 we have
Anm S Am + Ay N™ (S mtty Spymtt) S Ay + 2My - 4,0, .

This implies our assertion (1).
{2) From Propositions 2.7 and 2.10, we see that there is an »' = 1 such that
Auem 220, nZz ', m= 1. So from the assertion (2), we have our assertion.

The assertion (3) follows from Lemma 2.12 by a similar argument to the proof
of the assertion (1).

This completes the proof.

Theorem 2.1 follows from Propositions 2.7, 2.10 and 2.13. This completes the
proof of Theorem 2.1.

3 Nash type estimates and smoothness of measures
Now let L™ be a linear operator in C(I"; R) given by

(3.1) Y (L") (x)v(x) = — &Eu(u,v), u,veC(I"R).

xeln

Alsolet P{” = exp(t- L™),¢ 2 0. Then {P™},5 is 2 symmetric Markov semigroup.
Let p,: [0, o) x I" x I" be given by

(3.2) Y paltyx, p)uly) = (PPu)(y), ueC(I%R).

yeln

Then by using the similar arguments in Carlen-Kusuoka-Stroock [3] or in
Nash [7] we have the following.

(3.3) Theorem. There is a constant cq > O such that
pn(co'/’{maxay)éN*ma X,J)EIn

Foranyn=zlandm=0,1,...,n—1.
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Proof. Let feC(I1%[0,00)) with Y _ f(x)=1 Let u(t,x)=(P"f)(x) and
g(t) =7, .ult,x)*. Then it is obvious that ) __,, u(t, x) = 1. Also, we have

d
dtg

xeln

(t) -2 gn(u(t)s M(I)) é - 2( Z gn,B(u(t» ')a M(t, )))

BeBym

A

— 2'/1,;1{ > < Y uft, x)* — N’”<u(t,-)>§>}

Be#, ., \xeB

=2 A1 Y Zu(t,x)z—l—Z-/l,;l-N_’"(( Y Zu(t,x)>2>

BePBym xcB Be#,, xeB
=—2Jn(glt) = N"™).
So we see that

_d
dt

Let t,, =min{t 20, gt) S N ™'}, m=0,1,...,n Ifr,, > 0, then we have

2 A Htm — ty-1) < — log(g(tm) — N7") + log(g(tm-1) — N™™) S log(N + 1) .

log(g(t) = N™™) 224, ', if g(t) > N ™.

So we see that
(3.4 by~ tmo1 = (An/2) log(N+ 1), m=1,...,n.
(3.4) holds, even if t,, = 0. Also, we see that t, = 0. By Theorem 2.1, we have

S Galiw) < C( » (NkRk)*) < CZ( 5 a) — -0
k=1 k=0 k=0

So if we let ¢ = C*(1 — 2~ %) '(log(N + 1)/2), we have

k=1

b < ﬂ( 5 ww) (10g(N + 1)/2) < ¢ dy .

So we see that g(cA,) SN ™ m=0,1,...,n This proves that
| P, 1175 ,2 < N™™*1 where ||, -, denotes the operator norm for linear
operators from /*(I") into ¢*(I"). Since P is symmetric, we see that
[Pt ope S NPP o2 | PPl aspe = | P72 So by Theorem 2.1 we
have our assertion. -

This completes the proof.

(3.5) Proposition. For each y > 0, there is a constant C,, such that
sup{fzexp(—s|& —q|")v(dn);, (cE} < C, s 47!

Proof. Let E = U,—, ¥ *(E). Note that there is a measure ¥ on E such that
¥(A) = limy, , & v(E n (Y% (4)) for any Borel subset 4 of E. Then we see that
C, = sup{[zexp(—|& — n|")¥(dn); € E} < . For any se[ 4", ), ke Z, we have

[ exp(—s|& —nl")v(dn) < [ exp(—s|& — 1[")¥(dn)

,s>0.

= N5 fexp(—a ™ s|a* —n")i(dn) £ C,- N 7%

So we have our assertion.
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By using the argument in Nash [7], we have the following.

(3.6) Lemma. Let r,(x, y) = o' max{|& — &', Eey (E), Eey (E)}, x, yel"” Then
for any y > 0, there is a constant C, > 0 such that

Z (% YV PalCo” Ams X, ¥) 2 CY' o

yeln
foranyn=1,xel”,and m=0,...,n— 1
Proof. Let  h(t) = hy(t,x) = — Y _.pa(t, X, ¥)-logp,(t, x, ), and M(t)=
Zyeln (%, Vpa(t, x, v). t 20, n 2 1, xeI". Then by Theorem 3.3, we see that
3.7 hco m) Z Y, 10g(N™): pu(Co” Ams X, y) = m-log N .
yeln

Notice that u-logu + s-u = —exp(—(s + 1)), 4, s > 0, we have
—h(t) +aM(t)+ b

= 3 {palt, x, y) log pu(t, x, ¥) + (@ 1a(x, y) + b)palt, X, y)}

yeln

—TEHD Y exp(—a-r,(x. 3)Y)

yeln

[\

v

—GM(bH)N"'SUP{ISXP(—Q‘(“"'W—’1|)y)v(d17); (e}
E

2—C, e tretgi!
for any a,b > 0. Letting a = M(t) ' and b = — d;y" ' -loga, we have
—h(t)+d;y tlogM(t) 2 — C,re” ! — 1,

which implies that M(¢) = exp(d; 'y(h(t) — C, e~ * — 1)). Combining this with
(3.7), we have our assertion.
For any signed measure p in I" let |ul, ., 0 < k < n, be given by

1/2
(3.8) |u|n,k={ Y u(B)Z} :

Be%,
Then we have the following.

|
(3.9) Lemma. | { udy — <udp-p(1")

In

=1

= { > (/-Lk'N_k)1/2|.uln,k—l}'6mn(u7 u)t/?
K

for any signed measure y on I" and ue C(I"; R).

Proof. From Proposition 1.5(3), we have

< [ (<), 0 — <u>Bn,k_l<x>)M(dX)) S N T (BN - 6, 5w, u)
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for any ueC(I1"; R), Be %4, and B' €%, ,_, with B = B. So we have

(I (Kups, 0 — <”>B,,,k_1(x))#(dx)> S LNTF
B

> M(B')z) * 6,8, 1)
Be#, -1
B B

foranynzmz1,k=1,...,m BeB, n, and ue C(I% R). This and Schwarz’
inequality imply that

2
< | Kuyp, 09 — <“>Bn,k_1(x))ﬂ(dx)> < AN ptlyio - Enlu, u) .
I'l’l

This implies our assertion.

(3.10) Proposition. |u(x) — u(y)] £ 2-{37_ (A N5} &(u, w)'? for any ue
C(I™% R) and x, yeI" such that there is a Be #, ,, with x, ye B.

Proof. Let u be a signed measure on I" given by u = §, — J,. Then we see that
e =0, k=m, m+1,...,n and |y, <2, k=0,1,...,m This and
Lemma 3.9 implies our assertion.

(3.11) Proposition. Let A be a subset of I". Assume there are £€{0,1, ..., n},
ve[0, 17 and r = 1 such that

#(A) g r—lN{’Nv(n—f) ,
#(A(‘\B)=N_f#(A)> Begn,n—f’

#ANB)<r N™, Be#,n,, m=0,1,....,n—7¢,
and

#({BEBym; ANB* ¢}) S p- NIVF30mm -y =0, 1,...,n— 7.

Then we have

n—¢
[Kupq — <uppml (1 + 73)N_y"/2'{ > (;tk'N_(l_Y)k)l/z}'gn(% u)t’?
k=0

for any ue C(1" R).

Proof. Let u be a signed measure on I" given by (mudu = (u)y — {udm, ue
C(I"; R). Then we have

lulp=0, k=n—¢,n—=¢+1,...,n,
and
1/2 1/2
|:u]n,k§(#(A))_1{ > #(AﬂB)Z} +(#(I"))'l{ > #(B)z}
BeB, Be®,,

p3 NTYmR2 N ek

A

< (1 + P¥)N-H=bi2

This and Lemma 3.9 implies our assertion.
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4 Tightness of semigroups

In this section and in the next section, we assume the following assumption
furthermore.

(B-1) There are Ce(0, ) and k = 0 such that ¢, < C- i, for all n = 1.

This assumption can be verified for good fractals (see Sect. 8).
By the assumption (B-1) and Theorem 2.1, we have the following.

(4.1) Proposition. There is a constant C such that

4.2) C ', sMP<Ch,, nxt,
(4.3) C '=20,£Chy, n21,
and

(4.4) Jpim S C Ay, nom= 1.

Let {P); xeI"} be a Markov process on 7, whose generator is L. Let @4
denote @ N [0, o). Let us take an x, € E and fix it. Let ™ be the probability law of
(Vi (x0), €@y} under N7 P¥(dw). Then Q", n Z 1, are probability

measures in EQ+. Since the space E?+ is compact, we see that {Q®; n = 1} is tight.
Our main result in this section is the following.

(4.5) Theorem. For each cluster point 0 of {QM 1= |, there is a strongly continuous
symmetric Markov semigroup {Q,}>o in L*(E, dv) such that

ECL fuw(to)) fiw(ts)) - -  fuw(z,))]
= (an—tn—1(f;i*1(an—1_tn—2(f;l‘*2( e (Qtl—lofo) Lo ')afn)LZ(E,dv)

forany0=t, 26, 2. .. Sty tos .-, 0,€Qrandfy, . . ., f,€ C(E; R). Moreover,
we have

19/ 2g,aw S € N fllrzgan, t20,

for any fe L*(E, dv) with [ fdv = Q.

To prove this theorem, we need some preparations. Let ¢, € C(I"; IR) such that
Oulorn = 0, (@, > = 1 and N* {0, 5 = )P &(0,, ¢,). Then we have the follow-
ing.

(4.6) Proposition. (1) ¢, = 0 and LW, |pm o = — (AP)7 1.
(2) AP0, (x) AP -G x) foranyn =1, xel” iel.
(3) sup {@u(x); xel”, nz 1} < 0.

Proof. It is easy to see that L®g,| rmor 18 constant, say ceR. Then we have
N = JiP 80, 0n) = — AP 0u(x) = — ¢ AP N". So we have the asser-
tion (1).

Let 74(w) = min{t = 0, w(t)e A}, and let P2 u(x) = EP[u(w(t)), t < 151,
t >0, ueC(I"; R). Then we see that 1 ¢, (x) = |5 (P ")(x) dt. Since the law of
w( A T;.5») under P2"* 1 and the law of i- w(- A T5) under P2" iel, xeI" are the
same, we have the assertion (2).
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Note that for any ue C(I"% R) with u|;. =0,
Y u(x? <2 { Y () — <uppm)® + N"<u>n} < 20 + AP)E (1)
xeln xeln
So we have
1/2
{ Y (Pr’”"i)(X)z} S exp(— QU + A7) 11) .
xeln

Then by Theorem 3.3, we have

/I(D)q) _‘J.PDnldt<C0 An 1+P001n 1<5Pt1)’nldt>
0

S Cotdp—y + (NTMTHY2 <I exp(—(2(4, + ﬂ»ff’)))_lt)dt)N"/z
0

=co Ay—y + 2N, + 2P .
So we have the assertion (3).

(4.7) Proposition. Let g(s) =sup{N " #({xel"; @,(x) < s}) n=1}, se(0,00).
Then we see that there are constants Cye(0, 1) and C4, so€(0, o0) such that

g(s)éCO'g(CIAmS)'i_Cl'(RmNm)_la mg 19 SE(Oaso] .
In particular, g(s)— 0 as s | 0.
Proof. Since &,(p,, ¢,) = N"(A)~1, by Proposition 1.5(1) we see that
N—(n+m) ( Z ((pn+m(x) - <(pn+m>B,,+myn(x))2> é /ln(lgﬂzm)—l s n, m g 1 .
xelntm

So we have

N7 Y (NT™ Y @uemlxey) — 12 S (25271

yeln xelm
This implies that

N~ # ({yel"; N7 Y @um(x-y) £ 1/2}> <4 2,(0P)7 .

xelm

Let k = sup{@,(x); xeI", n = 1}. Then x = 1. Note that if
N_m'ZxEI"‘(er—m(x.y) g 1/2’ then N—vm' #({xelm: (Pn-f—m(x'y) é (4K)_1}) é CO-

1
H Co=1——.
ere Cy I

Also, by Proposition 4.6(2), we have

Ouemx-¥) Z APAR)  T0u(y), xelI™ yel”, n,mz1.
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Therefore we see that for se(0, (4x)™ 1),
N™eTm- g ({ze ™™ @yrmlz) < s}
= N~ g ({6, eI X I pam(xy) £ 5, 0u(y) < A8 (D)L}
S Co N7 #({yel”; 9u(y) £ 5 An(i) 1)
+ NTOFmL () eI™ <IN N Y @pemlx-y) £ 1/2,

xelm
Ou(y) £ 5 2R OD) 1}
S Co N™" #({yel” ou(y) £ s 22,071 )) + @LAR) 1) .
So we have the first assertion. From this, we have

lim g(s) < (1 — Co) " 'Cy(R,N")"1 .
slO
By Theorem 2.1, we see that R,,N™ — co as m — cc. So we see that lim, | o g{(s) = 0.
This completes the proof.
(4.8) Proposition. lim Lim N™" Y PP [, < AP T]=0.
T|0 n—o xeln

Proof. Let e, ,(x) = E™*[exp(—a(A) ‘tam)], x€I”, a >0, xeI™ Then we see
that ((A”) ™' — L™)e, ol o = 0 and e, ,|or» = 1. So we have

@ X7 Y, nu¥ou(x) = 3 (L™ (e~ 1))(X)00(%)

xelr xeln
= 2 (@nox) = DILP9,)(x) = 4P Y (1 — ey 4(%)) -
xeln xeln

So we see that

N7 Y PPlum < AP0 ]S e N7 ) e u(x)

xeIn xeln

<e {(aN")‘1 “ Y ena®)u(X) + N7 #({xel” @,(x) < 6})}

xeln
SefemlaT 4 N7 #({xel” 0,09 < &)

for any g,a >0 and n = 1.
So by Proposition 4.7, we have our assertion.
The following is an easy consequence of Proposition 4.8.

(4.9) Proposition.

lim lim sup {#(B)“l Y POIw(d,t)el"™\BL t€(0,T], BEBpm n = m} =0.
TI0m-x xeB

For each n = 1, let ﬁ,,:Ll(E, dv) - C(I" R) and 1,: C(I*; R) — L®(E, dv) be
given by

Pofoy=v(pEN ' [ f(Ov(dE), xel” feL'(E, dv),
W (E)
and

u{l) = ulx), if Eep (E), xel” ueCU%R).
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Let Q" = 1,0 P o P, t >0, n 2 1. Then we see that {Q"},5 is a semigroup of
symmetric Markov operators in LZ(E dv) for each n = 1, which is not necessarlly
strongly continuous. Let P, = 1,0 P,,n = 1. Then P, is an orthogonal projection in
L?(E, dv) whose range is finite dimensional.

(4.10) Lemma. (1) [|(I — P)t,ullf2@y < An-mN " Ep(u, ), ue C(IL Ry, nZm = 1.
(2) There is a constant C(0, o0) such that
I(I — Pp) Q[ 2@y r2wy = C(N"R,) "1t ™2 t>0,nzmz1.

(3) Iim lim {|f — Q[ | 12w n 2 1} = O, for any fe C(E; R).

t|0n—=>ow

Proof. Note that [[(I — Pp)1,4 |72y

=N"" ( Z Z (u(x) — <u>B)2>, ue C(I% R). So we have the assertion (1)

nnm

from Prop0s1t10n 1. 5(1) The assertion (2) follows from Theorem 2.1, Proposition 4.1
and the fact that &,(Pinu, Piou) < (26)"1(Y, . u(x)?), n = 1, ueC(I” R). The
assertion (3) follows from Proposmon 4.9 and the fact that

1f = QF Z2ay
=N Y B E{Paf)x) = 2 EF[(Py ) w(het)]

+ EPR[(P, f)(w(2A,1)1} .

Proof of Theorem 4.5 Suppose that {n;} is a subsequence such that Q™ — 0 as
probability measures in E2+. By Lemma 4.10, we see that there is a semigroup
{Q,;te@Q.} of symmetric Markov operators in L*(E, dv), if necessary taking
a subsequence, such that Q™ — @, strongly as k — oo for any te @, . By Lemma
4.10(3), we see that lim:q || f — O, f lL2@w = 0, fe C(E; R). So we can extend the

semigroup {Q,; te Q.. }teto a strongly continuous symmetric Markov semigroup
{Q:; te[0, 0)}. This implies the first assertion of Theorem 4.5.

It is obvious that ” an)f”LZ(E,dv) =< e’ “f||L2(E,dv) for any fE LZ(E, dV) with
{efdv = 0. So we have the latter assertion of Theorem 4.5.

This completes the proof of Theorem 4.5.

5 A remark on the domain of Dirichlet forms

In this section, we assume the assumption (B-1) and the following assumption.
(B-2) There is a p > 0 such that 0 < infp "4, <supp "4, < 0.

(5.1) Remark. (1) By Proposition 4.1, we see that p = lim,_ ., (4,)'"" exists and
inf, p "4, > 0, if the condition (B-1) holds.

(2) We do not know how to prove this condition (B-2) in general, even if our fractal
has a lot of symmetry as Sierpinski carpets. However, we can prove this condition
in the recurrent case (see Sect. 7). So 2-dimensional Sierpinski carpet etc. satisfies
this condition. In the case of 2-dimensional carpet, this has been essentially proved
by Barlow and Bass [1, 2].
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Let &™), n = 1, be a Dirichlet form in L?(E, dv) given by
&M (f,9) = p"N""-&(Pof. Pag), f, g€ L*(E, dv).
Then we have the following,

(5.2) Proposition. There is a constant C such that &™) (f, f) £ C-&""™(f, f) for
any n,m = 1 and fe L*>(E, dv).

Proof. By Lemma 2.12, we see that
ENLS) S Molp™"0n) "™ (£ f), feL?*(E,dv).

This implies our assertion.

Let 9¢#4 be the set of Dirichlet forms associated with the cluster points of
{1, and let 9, = { fe L*(E, dv); sup, &™(f, f) < oo}.

Then we have the following.

(5.3) Proposition. fe ;e 9, for any fe D, and iel.
Proof. This follows from the fact that

EMV(LNZpNT T EN(Sf i fo )

iel
The following is a main result in this section.

(5.4) Theorem. (1) Dowm(8) = Dy for any & € Dch.
(2) There are constants cqg, ¢, > O such that

co sup &L f) £ E(ff) S ex lim £7(S f)

n— 0

for any & € Dk and fe Dy.

Proof. Let & € Des and {Q,},» o be the associated Markov semigroup in L*(E, dv)
with the Dirichlet form &. Also, assume that Q™) converges as k — oo to the
associated probability measure with {Q,};5 .

Let R™W=T(1/2)-{5t"*?e7'Q{™dr. Then we see that (p~"A,)
EMW(RM LR Y < || f 328 avy» f€ L*(E, dv). Therefore by Proposition 5.2, we
see that there is a constant C such that

(5-5) FORMTML RO ) < C | flIE2 g an)

for any n,m = 1 and fe L*(E, dv).
Let R=T(1/2)"' {5t "?e™'Q,dr. Then we see that R™ — R, k— oo,
strongly in L*(E, dv) and so we have

(5.6) EW(RLRA) = C | fllfamany, n2 L feL?(E, dv).

Therefore we have

sup E(LNHSCLEL N+l Ewan)s feDom(S).

So by Theorem 4.5, we see that
(5.7) sup 8™ (f, f) £ 2C-6(£ f)
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for any fe Dom(&) with [ fdv = 0. Since ™ (1, 1) = 0 and &(1, 1) = 0, we see that
(5.7) holds for all fe Dowu(&).
On the other hand, for any fe L*(E, dv), we have

tNf = Qi e@an = Im 71~ Q™ £ )2z, an

k— oo

< lim (p™"2) EW(f f), t>0.

n-=> oo

So letting C = sup, p~"4,, we see that
(5.8) im ™' (f— Q. f 2 p.av) = C- Sup EM(f f), feL*(E,dv).
t10
By Proposition 5.2, we have
(5.9) sup EM(ff)SC-lim EM(S, f), feL*(E,dv).

(5.7), (5.8) and (5.9) imply our assertion.

6 Fractal with good borders and the existence of self-similar local Dirichlet forms

Let D, = {(x,y)el"xI" x~y, x#y}, n21. For any (x,y)eD,, n=1, let
Ay ={zel™; x z,~,y- 1"}, m 2 1. Then the following is obvious.

(6.1) Proposition. (1) A%""' = 4%"- 1, x,yeD,, n,m 2 1.
(2) X An mel = {é An+m 1 éex Axy ,Hey: Ayx P (é: ”)eDn+m} fOT‘ any X, ye
D, nm > 1.

Let o/, = {A%"; (x, y)eD,, n = 1},>,. In this section, we assume the follow-
ing.
(GB) (1) There is an M, = 1 satisfying the following. For any (x, y)eD,, n= 1,
#(A%) = M, and there is a unique ze A}," with y-z, ~, x-w for each weAQ’yl.
(2) There is an m; satisfying the following.
(i) For any A €., ¢, there is a unique A’ € «#,, with 4 = A’ I, for each m = m;.
(iii) For any A € .o/,,, there is a unique A’ € &/, wWith 4" = A1, for each m = m;.
(6.2) Remark. Nested fractal always satisfy the condition (GB). Also, Sierpinski
Carpets satisfy the condition (GB) when we take suitable y, (see Sect. 8).

(6.3) Proposition. Suppose that the condition (GB) holds. Then for any (x, y)eD
n=1, and m = 1, we have the following.

(1) #(A%™ = M7, and #((x A" C) = Oor M%,CeByimik=0,1,...,m
{2) There is a unique ze A} With y- 2,5, x*w for any we A%,
B) Kuppm — (upapr| = 2'M1'"’2{ Y. (ANTEMY)H2 }'@@m(u, u)'?

k=0

for any ue C(I™; R).
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(4) 1<u>x~A§‘;y"‘ - <“>y~A§;m !2 é Mfm'£n+;n, (x~I'")u(y~I"‘)(u: u)
for any ue C(I"™™; R).
(5) [<u>x~l"‘ - <u>y-1”‘|2

= [24(;me—m){ i [(}um_kN"(mﬁk)M'I”*k)/(AmN*mMT)]1/2 }2
k=0

+3 M1 Ensm (ermyoiy (W 1)
for any ue C(I"*™; R).

Proof. The assertions (1) and (2) hold when m = 1 by the assumption {(GB). By
using Proposition 6.1(2), we can easily show these assertions for m = £ + 1 under
the assumption that these assertions hold for m = . So by induction we have the
assertions (1) and (2).

The assertion (3} follows from the assertion (1) and Proposition 3.11. The
assertion (4) is obvious from the assertions (1) and (2). The assertion (5) folilows from
the assertions (3) and (4).

This completes the proof.

1
(6.4) Proposition. Assume that (GB) holds and that lim —logR, + log M, > 0.

Then there is a constant C > 0 such that 0, £ C- 1, n = 1.

Proof. Note that Z;‘;l(RnM ")"! < oo. By Theorem 2.1, we see that there is
a constant C > 0 such that

(Vi NTOME) Qg NTMT) < C (R M), mz k20,

and
(AuN"™HM{™) =2 C™ - R,MT .

So by Proposition 6.3(5), we have our assertion.

1
(6.5) Proposition. Assume that (GB) holds and that lim —logR, + log M, > 0.
Then U

im (<P fanp — <P f Yars| =0

n,r = oo

lim l<ﬁn+mf>X'A§'ym - <ﬁn+mf>y'A;;m! =0

"t — W

for any (x, y)eD,, n = 1 and fe L*(E, dv) with sup,, A, N ™&u(P, [, P, [) < .

and

Proof. Let m < r and u be a signed measure on I” given by
Judp = Cudynp prom — Cudyny, ueCUIR).
IV

Then we have (<P, [ > axr — <P f gyl =1 B fdpl.
Note that |ul,, =0, k=r—m,and |p|?2, <4 M7 P k<r—m
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Therefore by Lemma 3.9, we have

fudp

Ir

2 r—-m+1 2
é4'{ ) ukN"‘M;“*“”)“Z} ()

k=1

r—1

2
§4M1{ ) [(/lr—kN""")M?"‘)/(irN"M’l)]”2} A N7 (u, u).

k=m-1

Then by the similar argument of the proof of Proposition 6.4, we have the first
assertion. The second assertion follows from Proposition 6.3(4) and the Proof of
Proposition 6.4.

This completes the proof.

Let o, = {{Ap} Fom; AmE A, Ays1 < A I, m = my }. Then the following is
an easy consequence of Proposition 6.5.

(6.6) Corollary. Assume that (GB) holds and that

lim %ban +logM; > 0. Let {A,} 8 €A o. Then lim (P, f>, exists for
any fe L*(E, dv) with sup 2, N "&,(B.f. B, f) < o0

Now we assume t}r;le assumptions (B-1), (B-2) ad (GB), and assume that
Y—0.2n,0blim — log R, + log M; > 0 throughout this section. We use the notion in

n—ow

Sect. 5.
By Corollary 6.6, we can define K: Zoxo/, >R by K(f,{An}w=m,)
=1lim s o <P f> 4,,- Then we have the following from Theorem 5.4.

(6.7) Proposition. (1) There is a Ce(0, o) such that

2
< C-lim &™(f,f) for any fe Dy and ac oA,

n— o

{fdv— K(f, a)

(2) K(fo lﬁx: {A;cl’ym}:=m1) - f l//ya {A }m m1) fEQOa X, yeDna n > 1
Now let &: Dy x Zy — R be a bilinear form given by

Efipy= 3% <K(ﬂa)—§de><K(g,a)—{_gd\/>, f9e, .

AEA o

Also let &™: Dy x D, - R, n = 1, be a bilinear form given by

EM(fg)=p"NT" 3 E(foVngovs). f9€%s.

xeln

Then we have the following.
(6.8) Proposition. There is a Ce(0, o) satisfying the following.
(D) EMNLNHSCosup 8L f), feD, nz 1.

2 EMLNSCEMLS), feDo, nz 1.
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Proof. By Proposition 6.7, we see that
EW(LL)Ep' N Y C-lim 8™ (fo e, foibh)

xeln m—r

< Csup &L )

This proves the assertion (1).
By Proposition 6.7(2), we have

E(f )= LN Y (ff ey = [ wv)

(x,¥)€Dn

ézp"N_"' Z (_ffo l//xdv_K(fo l//xa{Agaim}ror?=m1))

(x,y)eDy E
<2:8L 1)

This proves the assertion (2).
The following is the main result in this section.

(6.9) Theorem. Assume that the assumptions (GB), {B-1) and (B-2) hold, and that
1
lim —logR, + logM, > 0. Then there is a local Dirichlet form & in L*(E, dv)

satisfying the following.
(1) Dom(E) =Gy = {feL*(E,dv); sup &M (f, f) < 0 }

2 Ef,)=p N Y 6oV govs). fgeDom(8).

Proof. Let us take an & € De4 and fix it. Then Dy = Dowm(&,) is regarded as
a separable Hilbert space with an inner product (-, *)12(g qvy) + €o(*, *). Let & be
a Q-vector subspace of Z, for which % is dense in Z,. Let &, be a bilinear form in
9, given by

=Ir—‘

FO(f )= z EW(fg). fgeDs.

Then {é”(") (9,9)}n =1 is a bounded sequence for any ge%. So by diagonal argu-
ment, we see that there is a subsequence {n, } &, such that £)(g, g) converges as
k— oo for any ge%. By Theorem 54 and Proposition 6.8, we see that

colimy_ o EN( S ) S C-Eolf.f), f€Dy. So we see that €7 (f, f) converges as
k— oo for all fe G,. Let &: Dy x Do — R be a bilinear form given by

&(f,9) = Z lim (E™(f+g.f+9) —E™(f—9.f—9), f9eDs.
k— 0

Then by Theorem 54 and Proposition 6.8, we see that c¢o &(f, f)
S C-Elf,f)EC? ;- E(Sf), feD,. Therefore we see that & is closed. It is
obvious that & has the Markov property. So & is a Dirichlet form in L?(E, dv).

Since E*V(f,f)=pN~1> M (o, foy;), we have the assertion (2).
The locality of the Dirichlet form & follows from the assertion (2).

This completes the proof.
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7 Recurrent case

Theorem 4.4 guarantees that there is a strongly continuous symmetric Markov
semigroup on L?(E, dv). But this does not imply the existence of a good diffusion in
E. To prove this, we need strong estimate like a Harnack inequality given by
Barlow and Bass [1]. We cannot prove such results in general. But we will give
some conditions which lead to such results. First, we think of the following
assumption.

1
(R) lim Eloan > 0.

n—

1
(7.1) Remark. By Theorem 2.1, we have lim —logR, = 2-loga —logN. So if
d; = (loge)~*(log N) < 2, the condition (R) is satisfied.
Let r,(x, y) = o max{|& — &'|; £y (E), &'y, (E)}, x,yel”, as in Lemma
3.5. Then we have the following.

(7.2) Theorem. Assume the assumption (R). Then for any
1
ﬁe((O, lim —log R,,)/(Z-Iogoc)), there is a constant Cy > 0 satisfying the

following.n o
|u(x) — u(¥)| £ Co (a7 (X, Y { (2N ") &, u) } 12
for any ueC(I"; IR), n= 1, and x, yel”.
Proof. Let 6 = B(2-loga). By Theorem 2.1, we see that there is a ¢ > 0 such that
(7.3) (IaN""E™ < ¢ (AgsmN ™M)

for any n,m = 1. So by Proposition 3.10, we see that

m

lu(x) — u(y)| §2< ) ((f"e_"‘”_"))m){inl\f_”(g’n(u,u)}”2

k=0
<2(c(l —e )y Y2 g Bmm ) N~ & (u, u)}'?

for any ueC(I";R) and x, yeI" such that there is a Be#, , with x, yeB.
Therefore by the assumption (A-3) (1), we have our assertion.

(7.4) Corollary. Let {Q,; te[0, )} be the symmetric Markov semigroup in
L?(E, dv) as in Theorem 4.5. If the assumption (R) is satisfied, then the image of Q,,
t > 0, is contained in C(E; R).

Proof. Since 1,N " &,(P,0" £, P,0" ) £(26)"* | f | Z2cavy» fEL*(E, dv), by
Theorem 7.2, we see that there is a constant C > 0 such that

QM F(&) = QM ) = Ct7Y2(1E =l + C-a™P | fllLa(av

for any n = 1,fe L*(E, dv), ¢, n€E and t > 0. Since there is a subsequence {n,}
such that Q{™) — @, strongly as k — oo for any ¢t > 0, we have our assertion.
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(7.5) Lemma. Let f, ge C*((0, o0); R) such that | f'(s)| > 0,5€(0, 00}, g'(s) = | f'(s)[*
and (;((?)) >0, se(0,00). If ueC(™(0, ), neCU"R) and
7(x)? (L("’u)(x) (u(x)) = 0, xeI", then

Y a8 (m(x)? A (u(x)) = fu(y)?

x,yeln

" w. g(u(x)) )2 ( g(u(y)))2 3 >2 .
SR ((f’(u(x)) Y\ gy ) 0100 1)

Proof. For any veC(I";R) and x, yel”, let v,(t) =t-v(x) + (1 — t)o(y), te
[0, 1]. Then we see that for any ve C(I"; (0, 0)), o C(I"; R) and x, yel”

1 d 2
Jou(0)? | 3 (fom (0] do

i d
.[di Qny(Z) glvx,(t))) ( Ux)(t)>
0

d d
- 2{ @xy(t)' ( Ei—t @xy(t)> 'g(ny(t)) ( ai ny(t)>dt
= (v(x) — o(¥N(@(x)?g(v(x)} — @ (¥)*g{v(y)))

i (d (9 ()\ [ d
-2 {‘ny(t) <dtf(vxy(t)> <f/(vxy(t))> (dt (ny(t)>dt~

Note that <M>2 < <M>2 v <g(v(y))>z, te[0, 1], because

f(oe(t) )~ \ S (0(x)) S (w(y)
%(J}g_’%} =0, se(0, o). So we have
(7.6) Z; q%- < | 0.()? %(f (v, (1)) dt> — &,(v, 9*-gov)

2 1/2
dt}

. g(v(X))>2 <g(v(y)))2> B 2}”2
{Zq ((Feep) v (Fop) oo —om

for any v e C(I"; (0, «0)) and ¢ € C(I"; R). Since
Enl,n?gou) = — 3 LPu(x) 7(x)*g(u(x)) £ 0, we have

xel?®

=24 5 a8 Jon 07| 5100

x,yeln

1 d 2
Y I ne®? g/ e®)] dt
x,yel” 0

"y o g(u(x)>>2 ( g(u(y»)Z) N
4 2 @ <<f’(u(x)) Y\ Fatyy) )01 =)
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By Schwarz inequality, we have

S aB009° A a0~ FWO) S T Ta?| 0 0)

x,yeln

So we have our assertion.
(7.7) Corollary. If ue C(I"; (0, 0)), ne C(I"; R) and n(x)*(L™u)(x) £ 0, xeI", then
Y. aRm)* A n(y)*)logux) —logu(y))* =4- Y g8 ((x) ~n(y)?.

x,yeln x,yeln
Proof. Letf(t) =logtand g(t) = — ¢t~ %, t€(0, o). Then we have our assertion from
Lemma 7.5.

We say that a subset G of I, £/ = 1, is /-connected, if there are n = 1 and
Zg,. ., Zz€G such that zy =x, z, =y and z; _5z,i=1,...,n for any x, yeG.

(7.8) Lemma. Suppose that the assumptions (R) and (B-1) are satisfied. Let £ = 1,
Go be a {-connected non-void subset in I, and G, be non-void subsets of I? with
Go N Gy = (. Suppose moreover that there is a C; > 0 such that

(7~9) /'Ln+/§Cl'Nn+/Rn+/(GO'In;G1'In)

for any n=1. Then there is a 6 >0 satisfying the following. If n=1, ue
C(I"*%;[0,0)) and L™+ Dujpnieig,.1n < 0, then

(7.10) 0. max u(x) < min u(x).
xeGy- I" xe Gy I"
Proof. Let n,e C(I"*7,[0,1]), n = 1, be such that MalGo-1n = 1, MalG,-1» =0 and
,,+g(11n,17,,): n+/(G0 I"G,-I")™' Then it 1is easy to see that

SUP, Ay ([N ~0F) 8, +;(11,,, M) < 00. Since L My|pmss 6 . < 0, by Corollary
7.7 we see that for any ¢ > 0 and n = n,,

(7.11) En+¢,6,-1(l0g(u + &), log(u + ¢))
< Y qBm(x)? A na()*)(og(u(x) + &) — log(u(y) + €))*

x,yeln

<4-EnyMpynn) S4C- A7, NTE

Let u,eC({I";[0,0)), zeGy, be given by u,(x)=u(z-x), xeI”. Then by
Theorem 2.1, we see that

g N~ &, (log(u, + ¢),log(u, + &)< 4:-c71C,C-(R;'N?).
So by Theorem 7.2, we have
(7.12) max log(u,(x) + &) — min log(u.(x) + &)

xelr xeln
< 2C, - diameter(E)*(c; 1C1C-a,)1? .

Also, if z,, z; € Gy and zg ~ 71 then there are x,, x; €I" such that ZoXo,~ , Z1 X1

¢
Then we have
(7.13)  |log(uz(xo) + &) — log(u,,(x1) + &)l

< En s t,6o 1 (log(u + &), logu + ))? < 2(Cy - A f N2
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Since sup {4, ' N";n 2 1} < oo, we have our assertion from (7.12) and (7.13).
This completes the proof.

(7.14) Lemma. Suppose that the assumptions (R) and (B-1) are satisfied. Let £ = 1,
G, be a {-connected non-void subset in I/, and G, be a non-void subset in I’ with
Gon Gy = 0. Assume that

(7.15)  inf{PY T TP [1, <16, pn];2€Go I, x€Go ["TH n 2 1} >0
for any k = 0. Then there is a C > 0 such that
Inve S C'Nn+{Rn+/(GO'In, G- I"), nz1.

Proof. Let ¢,, n =1, be as in Sect. 4. LLet &,e C(I" "%, R), n = 1, be given by
Eaxy) = 0u(¥), xe Gy, yel”, and &,(z) = 0, zeI" T?\(Gy- I"). Then by Proposi-
tion 4.6, it is obvious that

&gy =1,

and
sup 4, + /N _(n+{)éan+t’(ém En) = #(GO)N—Z'SUP ;Vn+t’()~r(lm)~l < 0.

So we see that max,.q,.;»€,(x) Z 1. Also, by Theorem 7.2, we see that there are
f >0 and C > 0 such that

lén(x)— 5n(y)| =< C'(a_n_('rn—{-/()@y))pa nz 1: x,ye]”+/ .

Let us take k = 1 such that C- o *(2 - diameter(E)) < 1/2. Then we see that there is
2,€ Go-I*, for each n = k, such that

inf{&,(xynzk xez, 1"} > 1/2.
Let n,e CI"*7; [0, 11), n = k, be given by
Ha(x) = PUTO[1, v < 16,.p], xel"*7.
Since &£,(x) =0, xe G- I", we see that
Ens tns 1) S By (20, 28,) = & #(Go) NG L.
By the assumption, we see that

c=inf{n,(x); xeGy-I",n2k}>0.
So we have
Ry 1 ¢(Go- I, Gl'In)_l = é"n+/(cﬁ17’lmc_1”ln)

<472 #(Go) NP

for any n = k. This implies our assertion.

This completes the proof.

Now we assume the following which can be proved by “Knight Moves”
argument in Barlow and Bass [1].
(KM) For any £ = 1, any /-connected non-void subset G, of I and any non-void
subset Gy of I, if dis(| ) xeqo V2(E), | xeq, ¥x(E)) > 0, then

inf{P"+ [, p<16,1];2€Go, xeGo I, n =1} >0,
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Also, we assume the following local similarity assumption.

(LS) There is an ko = 0 such that
Rm = min{Rm_{_k(B,Im-’—k\Cm_‘_k,m(B)); k = 1, “ ey ko, Beﬁ'mﬂ,,m}, m g ]. .

(7.16) Theorem. Assume that the assumptions (R), (KM), (LS) and (B-1) are satisfied.
Then there are p > 0 and ¢, ¢y €(0, 00) such that

(7.17) co N""p" <R, Zci;N"" n=1,
and
(7.18) CopEhScip”, nzl.

In particular, the assumption (B-2) holds.

Proof. By Lemma 7.14 and the assumptions (KM) and (LS), we see that there
i3 a constant C > 0 such that 1, < C-N"R,, n = 1. Then combining this with
Theorem 2.1 and Proposition 4.1, we have our assertion.

By combining all results in this paper, we have the following.

(7.19) Theorem. Assume that the assumptions (R), (KM), (LS), (GB) and (B-1) are
satisfied. Then there is a regular local Dirichlet form (&, Do (&)) satisfying the
Jollowing.

(1) Dom(&) = Dy = C(E; R).
2) E(f,9)=pN"" Y E(fVi, gows) for any f, g€ Dom(8).

iel .
(3) Let L be the associated generator with the Dirichlet form (&, Down(&)). Then for
any connected open sets G, G, in E with Gy © G,, there is a 6 > 0 such that

¢ -max f(x) < min f(x)

xeGy xeGy

Jor any fe Dom(&) with f|g, >0 and Lfls, < 0.

Proof. The assertions (1) and (2) follow from Theorems 6.9, 7.2 and 7.16. If
u,€C(I" [0, 11)), n = 1, and sup, 4, N ~"&,(u,, u,) < o, then by Proposition 5.2
and Theorem 5.4, we see that any cluster point of {1,u,}>; in L*(E, dv) with
respect to the weak topology belongs to &,. So we see that if K, and K, are
connected compact sets in E with K, n K; = 0, then there is an fe 2, with f|g, = 0
and f|g, = 1. Therefore the assertion (3) is proved by a similar method to the proof
of Lemma 7.8. Also, we have the regularity of the Dirichlet form.
This completes the proof.

8 Examples

Example 1 (Sierpinski carpet). Let D=2, N=8 and o=3. Let x;eR?
i= 17 e 8 be given by = (09 0): Z; = (02%)a Z3 = (09 1)3 Zg = (_lia 1)7 Zs = (15 1)9
26 =(1,%), z;=(1,0), and zg=(%0). Let y;, i=1,...,8 be given by
¥i(z) =% (z — z;) + z;, ze R2. Then the associated set E is called Sierpinski carpet.

Let yo = 1. Then q,(:;,’, x, yel", n = 1, are determined. It is easy to check that the
assumptions (A-1)—(A-4), (GB) and (L.S) are satisfied. By Barlow and Bass [1], we
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also see that the assumptions (KM) is satisfied. Since d, = (log3)~ ' (log8) < 2, the
assumption (R) is satisfied.

Now we will show that the assumption (B-1) is satisfied. This is essentially
proved by Barlow and Bass [1] and [2] relying on a Harnack inequality. But the
proof here relies only on a symmetry and it works for a lot of fractals.

(8.1) Proposition. Thereisa C > Osuchthato, = C- AR5, n = 1, for Example 1. So
the assumption (B-1) holds.

Proof. et B=1-1"and B’ =2-]". Then B,B'e€%,., , and B, 3B’ Note that
0n = Ops1.4(B, B'). Sothereisaue C(Bu B’; R)such that &, . 1 5, p U u) = land
(Kuyp — {upp)® = N "o,

Let T:R?->RZ% i=1,2, be given by T;(¢;,&)=(3—¢&,&) and
T(E,, &) = (61,5 — &), (&1, E)elR? Then it is easy to see that there are
S;BUB —BuUDB,i=1,2, such that Y5 y(E) = T;(y.(E)), i = 1, 2. We may as-
sume that u(S;(x)) = u(x) and u(S,(x)) = — u(x), xe Bu B'. Also, we may assume
that u(x) = 0, xe B'.

Let voe CI" - R) be given by ve(x)=u(2-x), xeI". Then we see
that &,(v0,v0) S Eys1popu v O,uv 0 <1 and {vodf=7"N""0, Let
T:R*->R? i=3,4, be given by T, &) =(6.¢), and (¢, &)
=(1—¢&,,&), (&1,&)eR2 Then there are S;:I"— 1", i=3,4, such that
Ys,(E) = Ti((E)), xel”, Now let v;e C(I"; R), i = 1, 2, be given by

_ {Uo(ss(x)) if Y (E)c {(¢1,E)eR?E +E,2 1)
vy(x) =

vo(x) otherwise ,

and

_ {00(54(x)) i Yo(E) = {(£1, &)eRY & =6
vy (x) = .
vo(x) otherwise .

Then one can see that v; = 0 and &,(v;, v;) £2-8,.{vg, vg), i = 1, 2. Now let ve
C(I"*?; R) be given by v(8-3-x) = vy(x), v(8 4" x) = vo(x), v(8- 5 x) = v,(x), and
u(y-x)=0, yelI*\{(8,3),(8,4),(8,5)}. Then we see that v|s-=0, {vdjmz >
N_2<UO>12" =% N—n~20.m and gnJrZ(Ua U) é 5'£n+ LLBUER's (M Vv 0> uv 0) é 3.

This implies our assertion.

So by Theorem 7.19, we see that there is a self-similar regular local Dirichiet
form in L?(E, dv) and its domain is contained in C(E, R). So there is a good
self-similar diffusion process on E.

As far as we take yo in (0, d), the relation ~ is the same, and so conclusions are
the same. However, if we let yo = 0, then the relation ~ has changed and the
assumption (GB) fails in this case. This shows that the assumption (GB) is rather
unstable. Probably we have to replace this assumption by more stable assumption
to handle more general fractals.

Example 2 Let D 2 3,1 =(0,1,2}"\{(1, 1, 1)} and « = 3. Let ¢;: R® > R?, ie],
be given by y,(z) = 3(z — 3-1) + %-i. Here we regard I as a subset of R”. In this
case d; = (log3)"*(log(3” — 1)). Let yo =D — 1. Then the assumptions (A-1)-
(A-4), (GB) and (LS) are satisfied. We believe that the assumption (KM) can be
verified by Barlow Bass® “Knight Moves” argument and that the assumption (B-1)
can be shown by the similar argument to the proof of Proposition 8.1. However, the
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assumption {R) fails in this case. We do not know how to check the assumption
(B-2) and the regularity of the Dirichlet form in Theorem 4.5.

Example 3 (Carpet with holes). Let D >3. Let /,m=>=1 and I ={ie{0,...,
@ +m—-DP #(lk=1,...,D;/<i, </ +m—1})< 1} Let y;: RP > RP,
iel, be given by Yi(z) =2/ +m) 'z -2 +m—1)" i)+ 2 +m— 1),
zeR?. Then d,=(log2/ + m)) *(log((2¢)° + D-(2£)° " 'm)). Let 9y,=
(log(2¢ + m))~ t(log((2£)°~ 1 + (D — 1)-(22)?"2m)). Then the assumptions
(A-1)-(A-4), (GB) and (LS) are satisfied. By using comparison argument for resist-
ance, one can see that the assumption (R) is satisfied if

m(20)~ P~V 1 20 {2 + (D - DR Im} T > 1.

So we see that there is a good self-similar diffusion process on E in this case, if we
check the assumptions (KM) and (B-1). But we believe that one can verify them by
using Barlow-Bass’ idea and the proof of Proposition 8.1.

"~ Example 4 1f a nested fractal satisfies the assumptions {A-3), then it is easy to check
the assumptions (A-1)—-(A-4), (B-1), (KM), (GB) and (LS). The assumption (R) holds
in general. But we do not know how one can check it without using Lindstrem’s
result in general. In the case that it is embedded in 2-dimensional Euclidean space,
we can check it easily. So our approach gives a new proof for the existence of
self-similar diffusion processes on certain nested fractals like a snow-flake fractal,
although Lindstrem’s proof in [5] is much more elegant.
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