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0 Introduction 

The following is a paraphrase of part of the introduction to Kallenberg and 
Stzencel (1991). "A familiar result (see Rogers and Williams (1987, p. 77)) states that 

P(sup{lM~]: t > 0} > r) < 2 e x p { - r 2 / 2 }  (0.1) 

where M is a continuous real-valued martingale, with Mo = 0 and quadratic 
variation [ M , M ] t <  1. Applying (0.1) componentwise to a martingale 
M = ( M 1 , . . . , M  r~) in IR m with [M, M]t  = [ M  1,M~l~ +" �9 �9 + [ M ' , M " ] t  < 1 
gives the bound 

P(sup{[Mtl :t > 0} > r) < 2 m e x p { - r a / 2 m }  (0.2) 

which turns out to be of completely the wrong order, since (0.1) is in fact true in 
arbitrary (even infinite) dimension, possibly apart from a numerical factor outside 
the exponential." Kallenberg and Stzencel (1991) go on to derive such dimension- 
free estimates, valid even for discontinuous martingales. (Note that other dimen- 
sion-free estimates for continuous martingales are found in Jacka and Yor (1990).) 

The present paper attempts to isolate the geometric aspect of Kallenberg and 
Stzencel's striking results for continuous martingales in Euclidean and Hilbert 
spaces, in such a way as to extend them to martingales in a Riemannian manifold 
(V, 9) (see Emery (1989) for basic stochastic calculus on manifolds, and Kendall 
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(1990) for some applications of these martingales). The main result (Theorem 2.1) is 
of the following form: if X is a martingale on (V, g) started at p, with Riemannian 
quadratic variation (explained below) IX, X]t  _-< t, and if r(a) is the first time 
X leaves the geodesic ball of radius a about p, then 

P('c(a) < t) < 4P(Z  > f(a)/x//tt) < x~t e x p { _  f(a)2/2t} (0.3) 
= = P ( Z  > 1) = ~ 2 ) )  

where Z is a Normal(0, 1) random variable, 7 = 4/P(Z > 1)x//~, andf i s  a "persist- 
ence function" determined by the geometry of (V, g); Kallenberg and Stzencel 
(1991) studied the Euclidean case where f ( a ) =  a. Using comparison techniques 
similar to those used by Ichihara (1984) and others, this functionfcan be computed 
explicitly (Theorem 2.3). For example, if the sectional curvature in planes including 
a radial tangent vector is bounded below by - c  z, then (0.3) holds with 

f(a) 2 = 2c- 2 log cosh(ac) . (0.4) 

In Sect. 3 we consider the special case of Brownian motion on a Riemannian 
manifold. The resulting estimates (Theorems 3.1, 3.2) do not appear to be con- 
tained in the extensive literature on the heat kernel on a Riemannian manifold (see 
e.g. Chavel (1984), Li and Yau (1986), and Davies (1989)); it is conjectured, however, 
that they are not the best possible estimates for small t. Note that for Brownian 
motion, mean exit times from geodesic balls in a Riemannian manifold were 
calculated by Gray and Pinsky (1983), exponential estimates for P(r(a) < t) were 
given by Hsu and March (1985) and by Hsu (1989), and asymptotics for P(z(a) > t) 
as a--* 0 were given by Karp and Pinsky (1987). 

1 Geometric preliminaries 

Suppose (V,g) is a smooth Riemannian manifold, possibly with boundary, 
modelled on m-dimensional Euclidean space IR m, and let p e V. If N[0, r] denotes 
the closed ball in Tp Vof radius r about 0, and ~[0 ,  oo] is interpreted as the whole of 
Tp V, it is well known that there exists 0 < b < oo such that the exponential map 

�9 t c  exp/TpV ~ Visa  diffeomorphism from Yr b] onto its image N _ V. By deleting 
the parts of V outside ~ '  if necessary, and identifying T v V with IR", we suppose 
henceforward that the polar co-ordinate map 

~ : I o x S m - l - * V - { p }  (1.1) 

defined by O(r, v) --- expp(rv), is a diffeomorphism, where lo = (0, b] (or (0, re) if 
b =  oo). 

Definition 1.1 We shall say that (V, g, p, b) is a regular Riemannian ball if the 
situation described in (1.1) holds. 

According to the Gauss Lemma (see Gallot et al. (1990, p. 89)), the metric g may 
be expressed in geodesic polar coordinates by 

g = dr | dr + g(,, o (1.2) 

where 0~.v) is the metric induced by g at tp(r, v) on O({r} x S ' -  1), and r also stands 
for the function on V such that r(O(s, v)) = s. Let ~ denote the "radial" vector field 
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on V - {p}, which is the push- forward  under  r --* ~(r, v) of the vector  field O/dr. The  
radial curvature means  the restr ict ion of the curvature  function to all the planes in 
T~ V containing ~?(x). See Greene  and W u  (1979) for more  details. Fo r  any smoo th  
f u n c t i o n f o n  V, the second covariant derivative, or Hessian, of f a t  x is the symmetr ic  
form 

Vdf(x)(u ,  w) = U ( ( d f  W)x)  - ( d r  Vv W)x  (1.3) 

where U and W are vector  fields whose values at x ~ V are u and w respectively, 
( . , . )  denotes  the duali ty between 1-forms and vector  fields, and V stands for 
covar ian t  differentiation with respect  to the Riemannian  connection. 

Definitioll 1.2 If  I = [0, b] ,  or [0, ~ )  if b = oo, we say that  f :  I ~ [0, oo) is a persist- 
encefunction for (V, g, p, b) if the following condit ions hold: 
(i) f (0)  = 0 , f i s  C 2 on I , f ' (O) <= 1 , f ' (x )  > 0 a n d f " ( x )  < 0 for x > 0. 
(ii) If  t > 0, r(x) = t, w E T~ V, and g(w, 0) -- 0, then 

Vdr(x)(w, w) < _ _ 1 .  (1.4) 

g(w, w) = f ( t ) f ' ( t )  

The reason for the term "persistence funct ion" will become clear in Theo rem 2.1. 
Examples  will be given in Sect. 4. The relat ionship of persistence functions to radial 
curva ture  is clarified by the following result. As before I = [0, bl ,  or  [0, oo) if 
b = ~ .  

Proposit ion 1.3 (Compar i son  Theorem)  Let (V~, g, Pl, b) and (V2, h, P2, b) be regu- 
lar Riemannian balls, and assume that for all geodesics Yl: I -~ V~ and ?a: I --, V2, 
parametrized by arclength, with yi(0) = Pi, and for all t ~ I, 

each radial curvature at yl(t) N each radial curvature at y2(t) �9 (1.5) 

l f  f : I -* [0, oo) is a persistence function jbr (V~, g, Pl, b), then it is also a persistence 
function for (V2, h, P2, b). 

Proof. As in (1.2), express the metrics g and h as 

g = dr | dr + g(r,,,), h = ds | ds + h(,.,~) 

where r and s denote  the radial  distance functions on V~ and �89 respectively. We 
shall abusively use the same symbols  ~, 8 and V as above  on bo th  Vt and V2. Let 
t ~ [0, bl; according to the Hessian C o m p a r i s o n  Theorem of Greene  and Wu (1979, 
p. 19), if wl ~ To(t~,) V1 such that  g(wl,  8) = 0 and ~(~,~)(wl, wl ) = 1, and w2 ~ T~(t, ~) V2 
such that  h(w2, (?) = 0 and ~t,~)(w2, w2) = 1, then 

0 =<_ Vds(w2,  w2)_-< Vdr (wl ,  Wl) . 

Since f is a persistence function for (//1, g, p~), 

f ( t ) f ' ( t ) V d r ( w l ,  w:) < O<t,~)(wl, w~) = 1 . 

Sincef ( r )  > 0 and f ' ( r )  > 0 

f ( t ) f ' ( t ) V d s ( w 2 ,  w2) <-_f(t) f ' ( t)Vdr(wl,  w:) = 1 = h(t,~)(w2, w)_), 

and the result clearly extends by linearity to tangent  vectors w2 which are not  of  
unit  length. [] 

The following l e m m a  will be useful for the study of mart ingales  on (V, g). 
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Lemma 1.4 For all x E V = { p}, and every vector field U on V, 

Vdr(x)(0, U) = 0 .  (1.6) 

Proof. There is a direct proof in local coordinates, but the author is indebted to 
M. Emery for the following concise proof, which is equally valid in infinite 
dimensions. First note that the vector field grad(r), denoted Vr, is the same as t?. 
Take f =  r and W = 0 = Vr in (1.3), to obtain 

V dr(x)(U, 0) = U(fdr, Vr}x) - <dr, Vv(Vr)}x 

= U(g(Vr, Vr))x - �89 U(g(Vr, Vr))x = 0 (1.7) 

since g(Vr, Y) = (dr, Y )  for any vector field Y, and g(Vr, Vr) -= 1. [] 

2 Passage time estimates for martingales 

Let (V, g, p, b) be a regular Riemannian ball. Let (Q, ~ ,  P, (~t), __> 0) be a filtered 
probability space satisfying the usual conditions. Our reference for manifold- 
valued processes is Emery (1989), from which we recall the following definitions. 
A continuous V-valued process X is called a semimartingale if fo X is a real 
semimartingale for all smooth f :  V ~ 1R. For a semimartingale X on V, there exists 
a unique linear mapping, denoted 

fl ~ ~ fl(dX, dX) (2.1) 

from the space of all bilinear forms on M to the space of real continuous processes 
with finite variation, such that for all smooth functions f and g on V, 

I (f f l)(dX, dX) = S (f~ X)d(I fl(dX, dX)) (2.2) 

(d f |  dg)(dX, dX) = [fo X, go X] (2.3) 

where [ Y, Z]  denotes the usual joint quadratic variation of continuous semimar- 
tingales Y and Z. The process ~ fi(dX, dX) is called the fl-quadratic variation of X. 
When fl is chosen to equal g, the metric tensor, we call the process the Riemannian 
quadratic variation, denoted 

IX, X]  = ~ g(X)(dX, dX) (2.4) 

whose expression in local coordinates is simply y gii(X)d IX i, XJ]. 
A V-valued semimartingale is called a martingale on (V, g) (or more strictly, 

a F-martingale, with respect to the Riemannian connection F) if for all smooth 
f :  V--* IR, 

fo X - f~  Xo - �89 ~ V d f (X) (dX ,  dX) e J'/foc (2.5) 

where ./~oo denotes the set of continuous local martingales, and V df i s  as in (1.3). 
Henceforward in this section we shall study a martingale X on (V, g) by 

projecting X onto I x S "-1 using the inverse 0 - t  of the map ~, mentioned in (1.1). 
We shall write X in terms of its radial and angular parts as follows: 

(Rt, Or) =- O-l (Xt)  on {Xt "l = P} (2.6) 
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and R ~ -  0 on {Xt = p}; it is not necessary to define O, on {X~ = p}. In other 
words, Rt is the Riemannian distance from Xt to p. Some more notation: 

cr denotes the stopping-time inf{t:Rt = b}; 
It* denotes sup{t Y~] :0 < s < t}, for any real stochastic process Y; 
7 = 4/P(Z > 1 ) x / ~ ,  where Z is a Normal(0, 1) random variable. 

Theorem 2.1 (Generalized Kallenberg-Stzencel estimate) Let X be a martingale on 
( V, g), with Xo = p and [ X,  X ]t = t /x  a (see (2.4)), and suppose that f is a persistence 
.function on (V, 9, P, b). I f  B denotes a Brownian motion on lR started at O, then the 
radial part of X satisfies 

P(B* > f(a)) < 7min x / t ,  exp{ - f (a )2 /2 t } ,  as(O,b) .  (2.7) 
P(R* > a) < P(B~ > 1) = 

Remarks. (a) Now it should be clear why f is called a persistence function; the 
greaterfis,  the smaller is the bound on the right side of (2.7), and so the more likely 
the martingale is to "persist" in the vicinity of where it started. Loosely speaking, 
the tendency to persist increases as sectional curvatures increase, as the next 
corollary shows. 

(b) Cranston and Hsu point out that the restriction of this result to geodesic 
balls is unnatural, because existence of a cut locus can only reduce, not increase, the 
probability on the left side of (2.7). Unfortunately the present proof in Sect. 5 seems 
to depend on existence of V dr(x) for x # p, and so the generalization of Theorem 
2.1 to an arbitrary Riemannian manifold must await a different proof. 

(c) For  applications to Brownian motion on manifolds, see Sect. 3. 
(d) To see how sharp this estimate is for various kinds of martingales, consider 

the situation where (V, g) is flat Euclidean space 1R m, and sof(a)  = a (see Example 
4.3(a) below). (This remark relates to a question of Sznitman (Zfirich).) 

Case (i). Let 3r be one-dimensional Brownian motion run along one of the 
coordinate axes, and so P(/~* > a) = P(B* > a); this shows that (2.7) is sharp up to 
a constant factor. 

Case (ii). Let Jf~ - W,/,,, where W is Brownian motion on IRm; if v(a) denotes the 
first exit time from the ball of radius a, so P('c(a) < t) = P(/~* > a), then the mean 
exit time is 

IE[v(a)] = a 2 = S P(/~* < a)dt 
0 

which is the same as in Case (i). It is easy to see, however, that the exit time z(a) has 
a lower variance in Case (ii). It follows that, for fixed a, there exist 
0 < t l  =<a 2 < = t 2 < 0 0  such that 

P(/{* > a) > P(/~* > a) 

P(/{* => a) < P(/{* => a) 

for t < tl 

for t > t2 �9 

Since the upper estimate for P(/{* > a) is sharp for all t (up to a constant factor), it 
follows from the second inequality that the upper estimate for P(/{* > a) is sharp 
for large t; however (2.7) is not very informative when t > a 2 (orf(a)Z), because in 
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that case the right side is approximately 1. This suggests that Theorem 2.1 is likely 
to be most useful in the case where the martingale is quite dissimilar to Brownian 
motion, in the sense of having anisotropic local characteristics. See also Problem 
6.1 below. 

Corollary 2.2 Suppose (V1, g, Pl, b) and (V2, h, P2, b) are Riemannian balls satisfying 
the conditions of Proposition 1.3, i.e. the radial curvatures of V2 are bounded below by 
those of VI. I f  f :  I --* [0, oo) is a persistence function for (V1, g, Pi, b), and if X is 
a martingale on (VE, h), with Xo = P2 and IX,  X] t  = t A ~, then the radial part of 
X satisfies (2.7). 

In the following theorem and corollaries, we assume that X is a martingale on 
(V, g), with Xo = p and IX, X] t  = t/~ a. 

Theorem 2.3 Suppose (V, g, p, b) is a Riemannian ball such that every radial curva- 
ture at x e V -- {p} is bounded below by K (r(x) ), where K : I ~ ( -  o% oo) is the radial 
curvature of some rotationally symmetric Riemannian manifold, with the property 
that: 
(i) I f  u : I  ~ [0, oe) satisfies u(O)= 0 and u ' =  1 + Ku 2, then u' is positive and 
nonincreasing. 

Then (2.7) holds for the function f (x) = x/2 ~o u(r) dr. 

Remark. Note that (i) holds if K is nonpositive, nonincreasing, and piece- 
wise constant; for if K ( r ) =  - c  z for r e ( a l ,  a2), then u'(r)= sech2(l + cr) and 
u(r) = c -~ tanh(l + cr) on (al, a2), for some constant l; thus u' is positive and non- 
increasing on (al, a2). Since K is nonincreasing, u ' (=  1 + Ku 2) must also be 
nonincreasing across the junction of two intervals on which K is piecewise 
constant. 

Corollary 2.4 I f  the radial curvatures of(V, g, p, b) are bounded below by - c  2 < O, 
then the radial part of X satisfies 

P(R* > a) < P(B* >= c-l~f21og(cosh(ac))) ae(O, b) 
P(B 1 >= 1) 

< P(B* > min{0.688a, 3 x / ~ }  ) 
= = , ae(0,  b).  (2.8) 

P(BI >-_ 1) 

Remark. The usefulness of this kind of result is as follows: if the martingale 
X appears as the solution of some stochastic differential equation on V, then (2.8) 
can be used to prove nonexplosion, i,e. that the solution exists on Vfor all time, a.s. 

Corollary 2.5 I f  the radial curvatures of(V, g, p, b) are nonnegative, then, for ? as in 
(2.8) 

P(R* > a) <= P(B1 > 1) < ? min , exp(--a2/2t), a E (0, b). 

Remark. The first inequality is best possible, up to a multiplicative constant. To see 
this let e: ( - b ,  b) --. V be a geodesic parametrized by arc-length, with c~(0) = p, let 
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B' be a Brownian motion on IR started at 0, and let X be the martingale c~ o B', 
which satisfies IX, X]t  = t; see Emery (1989, p. 40). Clearly the right side of (2.7) is 
exactly P(B1 > 1)-i  times bigger than the left side for all t and a. 

Theorem 2.6 (Law of the iterated logarithm) Let  X be a martingale on (V, g), with 
Xo = p and I-X, X ] t  = t / x  o, and suppose that f is a persistence function on 
(V, 9, p,b). Then as t ~ O ,  

f ( R , )  
lim sup -< 1 a.s. (2.9) 

x/2t  log I log t] - 

and the same holds as t ~ vo, provided a = ov a.s. Moreover this bound is sharp. 

Remarks.  (a) Theorem (2.6) is almost a restatement of part of Theorem 4.6 of 
Kallenberg and Stzencel (1991). 

(b) For  the hyperbolic space of constant negative curvature - c 2 <  O, 

f ( r )  ~ 2 x / ~  as r ~ oo (see (4.6)), so the Law of the Iterated Logarithm implies 

e t 
l imsuPt logl logt l  < c a.s. as t -*  oo . (2.10) 

3 Application to Brownian motion on manifolds 

If Wis a Brownian motion on (V, 9), started at p, then [W, W]~ = mr, where m is the 
dimension of V (see Emery (1989, p, 64)). It follows that the results of Sect. 3 apply 
to Xt  - Wt/,n, since it is a martingale on (V, g) with I-X, X]t  = t. However it follows 
from the properties of Brownian motion (see Emery (1989, p. 62)) that, for this X, 

V d r ( X ) ( d X ,  dX) = 1 Ar(X)  
m 

and careful study of the proofs in Sect. 5 shows the functionfappearing in Theorem 
2.1 need not be a persistence function, but merely a "A-persistence function" which 
is the same as in Definition 1.2, except that inequality (1.4) is replaced by 

dr(x) < 1 

m = f ( r ( x ) ) f ' ( r ( x ) ) '  x ~= p .  (3.1) 

Greene and Wu's (1979) Hessian Comparison Theorem may be replaced by their 
Laplacian Comparison Theorem (p. 26) in Proposition 1.3, and consequently radial 
curvatures by Ricci curvatures of the form Ric(6, ~) in condition (1.5). Similar 
methods were used by Debiard et al. (1976) and Ichihara (1984) in solving other 
problems about Brownian motion on a manifold. Using these geometric ideas, and 
the obvious Brownian rescaling, we may weaken the conditions of Theorems 2.1 
and 2.3 as follows. Let v(a) denote the first exit time of W from the ball of radius 
a around p, and let 0 be the radial vector field as before. Note that an estimate of the 
following kind also appears in Hsu (1989, p. 1252). 
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Theorem 3.1 Let W be a Brownian motion on (V, 9) started at p, and suppose f is 
a A-persistence function on (V, g, p, b). I f B  denotes Brownian motion on 1R started at 
0, and 7 is as in Theorem 2.1, then for a ~ (0, b), 

P ( r ( a ) < t ) < P ( B * > f ( a ) / x / ~ )  < T m i n {  = P(B1 > I) = f - ~ - ' ~ / ~ 2 }  exp{- f (a)2/2tm} (3.2) 

Theorem 3.2 Suppose (V, 9, P, b) is a Riemannian bail whose Ricci curvatures satisfy, 

Ricci(0, ~)(x) 
(3.3) 

for some function K : I --, ( -  c~, oo'), with the property: 
(i) I f  u :I ~ [0, oo) satisfies u(O) = 0 and u' = 1 + Ku 2, then u' is positive and 
nonincreasing. 
Then (3.2) holds for the function f (x) = x/2 ~o u(r) dr. 

Remarks. (a) See the remark after Theorem 2.3 for instances when (i) holds. 
(b) When t is fixed and a ~ 0, Pinsky has pointed out that, by results of Karp 

and Pinsky (1987), there exist constants Cl < 0 < Co, depending only on m, such 
that 

{( 0t P ( ~ ( a ) > t ) ~ e x p  t - ~ - 7 + c l a + O ( a  z , a s a ~ 0 ,  

where o- is the scalar curvature at p. This is an improvement on (3.2) for small a and 
fixed t. On the other hand, for fixed a and small t, the discussion in Remark (c) 
following Theorem 2.1 suggests that (3.2) is not the best possible estimate; see 
Problem 6.2 below. 

(c) When K ( r ( x ) ) -  0 in (3.3) (i.e. radial Ricci curvatures are nonnegative), 
then we obtain an estimate analogous to Corollary 2.5. Likewise when 
K(r(x)) - - c  2 < 0 in (3.3), we obtain as in (2.8) the estimate 

P(z(a) < t) < 7 e x p ( -  min{0.47a 2, 3a/2c}/2tm), a~(O, b) . (3.4) 

Note that the well-known result of Yau (1978), that no explosion for Brownian 
motion is possible if the Ricci curvature is bounded below by a constant, follows 
easily from (3.4); the sum over n > 1 of P(r(n 2) < n) is seen to be finite, so r(n 2) > n 
for all but finitely many n a.s., by the first Borel-Cantelli Lemma, which implies 
nonexplosion. 

4 Examples of persistence functions 

To calculate a persistence function for an arbitrary Riemannian manifold could be 
difficult. Fortunately Proposition 1.3 and Corollary 2.2 allow us to use a persist- 
ence function calculated on a suitably chosen "comparison manifold", such as one 
with rotational symmetry. 
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We shall say that  (V, g, P, b) is a model if every linear isometry  t: T p V ~  TpV is 
realized as the differential of an i sometry  7*' V ~  V, i.e. 7*(p) = p and Tp7* = 1. In  
this case (see Greene  and W u  (1979)), the metr ic  in (1.2) takes the form 

g = dr | dr + 0(r,v) = dr (g) dr + (p(r)20v . (4.1) 

It  is well known  (see Stoker  (1969, pp. 179-183)) tha t  ~0(0) = 0, (p(r) > 0 for r > 0, 
and (p'(0) = 1. Let  K(r) denote  the sectional curvature  of any two-dimensional  
subspace of T,(r, ~)V containing 8, the radial vector  field; this satisfies the Jacobi  
equat ion  (p"(r) = -K(r)q~(r) .  Define f to be the nonnegat ive  function such that  

f ( t )  2 = i 2p(r)  dr (4.2) 
o qr 

We shall see that  this f satisfies (1.4) with equality; the main  question is whether  
f " ( x )  is nonposit ive.  

Proposit ion 4.1 I f  K(r) is non-positive, the functionfdefined in (4.2) is a persistence 
function if and only if u 2 > 2u' ~ u, where u -~ ~o/(p' and ~ u is short for ~o u(r)dr. In 
particular, if u' is positive and nonincreasing then f is a persistence function. 

Corollary 4.2 Suppose that whenever u(r) satisfies u' = 1 + K U  2 and u(O) = O, then 
u' is positive and nonincreasing, where K denotes the radial curvature function K(r). 
Then the nonnegative function f such that f (x) 2 = ~o 2u(r)dr  is a persistence function. 

Proof. First  we check condi t ion (i) of Defini t ion 1.2. The Jacobi  equat ion implies 
(p" > 0, and so (p' > 0; (4.2) implies f (r) f '  (r) = qo(r)/q/(r), s o f t ( r )  > 0 when r > 0. 
Clearly f (0)  = 0 by (4.2), and f ( r )  > 0 for r > 0. Since (p(t) = t + O(t  2) as t -~  0, 

i +o(t2) f ( r )2  = 0 1 + O(t) dt = t .2 + O(r3), as r - +  0 ,  

and s o f ( r )  = r + o(r) as r -+ 0, so f t (0 )  = 1. It  only remains  to prove  t h a t f " ( r )  __< 0 
for r > 0. Differentiat ing the identity f(r)f '(r)(p'(r) = (p(r) gives: 

f"(r)  f (r) = 1 - f ' (r )  2 - (p"(r)~o(r)/ep'(r) 2 , 

so it suffices to p rove  that  ( f , )2  > 1 - (p'qo/(ep') 2. Since ( f , )2  = (cp/qo,)Z/~ 2(p/ep', 
this is equivalent  to 

(p2 > [-((p,)2 _ q~cp,,] j- 2r 

�9 ~ u 2 > 2 ( q / ) 2  _ (p(p,, 
((p,)2 j" u = 2u' 5 u .  

Observe  also that  u' posit ive and nonincreasing implies 

u(r)u'(r) > u(r)u'(x) for 0 _< r <_ x ,  

0 0 

~ f " ( x ) < 0  f o r x > 0 .  



146 R.W.R. Darling 

Condition (ii). For  this f Greene and Wu (1979, p. 30) show that if r(x) = t > O, 
w ~ T~ V, w 4= 0, and 9(w, 0) = 0, then 

V dr(x)(w, w) (p'(t) 1 

g(w, w) (p(t) f ( t ) f ' ( t )  

which verifies (1.4). [] 

Proof of the corollary. Since ~0" = -Kep and u = ~o/~o', 

(p' qo(p" 
u' = . . . . .  1 - -  U 2 (,O"/(p = 1 + K u  2 . q?, ((p ,)2 

Thus u(r) satisfies u' = 1 + K u  2 and u(0) = 0, and so u" < O. Hence the conclusion 
follows from the last sentence of the proposition. [] 

Examples 4.3 (a) Euclidean space. When (V, 9) is IR m with the Euclidean metric, 
with a pole at 0, then (p(r) = r, u(r)= r, u' = 1, andf(r )  = r is a persistence function. 
Theorem 2.1 is now exactly the same as Theorem 4.5 of Katlenberg and Sztencel 
(1991), namely 

P(B* > a) a e (0, oe). (4.3) 
P(R* >= a) < P(B~ >= 1)' 

(b) Spaces of constant negative curvature (e.g. hyperbolic spaces). Note that, by the 
theorem of Hadamard-Car tan  (see Gallot et al. (1987)), any simply-connected 
manifold with non-positive sectional curvatures has a global geodesic polar coordi- 
nate system. If all sectional curvatures equal - c  2, for some c > 0, then the metric 
g can be expressed in geodesic polar coordinates (see Spivak (1979, vol. 2, p. 327)) as 

g = dr | dr + ~2 sinh2(cr)(d0) 2 

where (d0) z denotes the induced Riemannian metric on the geodesic unit sphere. 
Here rp(r)= sinh(cr)/c, u(r)= tanh(cr)/c, u'(r)= sech2(cr) which is positive and 
decreasing in r on [0, o~), and consequently 

f(r) = c-  ix /2  log(cosh(cr)) 

is a persistence function. Here Theorem 2.1 gives 

(4.4) 

Note that f(r) ~ x ~ / c  as r ~ o% and f(r) ~ r as r ~ 0. By the concavity of log, 
and the inequalities coshx > 1 + xZ/2, coshx > eX/2, applied on the intervals 
(0, log 161 and (log 16, oo) respectively, we deduce that 

f ( r )  > rain 0.688r, (4.6) 

(c) Spaces of constant positive curvature. A manifold V where all sectional cur- 
vatures equal c 2 > 0 does not possess global geodesic polar coordinates. However 

P(R* > a) <= P(B* > c-lx/21~176 a t (0 ,  00) . (4.5) 
P(B~ > 1) 
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i fp  ~ V, then the geodesic ball about  p of radius a < n/(2c) excludes the cut locus of 
p. The metric g can be expressed in geodesic polar  coordinates  (see Spivak (1979, 
vol. 2, p. 327)) as 

t 

g = dr | dr + ~sin2(rc)(dO) 2 
c -  

where (d0) 2 denotes the induced Riemannian metric on the geodesic unit sphere. 
Here (p(r) = sin(cr)/c, u(r) = tan(cr)/c, u'(r) = sec2(cr), but  formula (4.2) no longer 
yields a persistence function, because u' is an increasing function a n d f " ( x )  fails to 
be nonpositive.  The linear func t ionf ( r )  = r is a persistence function by Proposi t ion  
1.3 (Hessian Compar i son  Theorem),  and the au thor  is not  aware of any other  
persistence function which exceeds it. 

5 Proofs  

Before proving the theorem and corollaries, we shall need some preliminary results. 
The  following result is similar to a theorem of Kendall  (1987). 

Lemma 5.1 There exists ~ ~ S/Z~or such that 

1 {R + 0} dR = d~ + �89 I{R :v 0} v dr(X)(dO, d O ) .  (5.1) 

Remark. In local coordinates,  writing Xt as (Rt, Off . . . . .  O~'), formula (5.1) be- 
comes 

dR, : d~t + kagjk/ar(X<)d[OJ, Ok], on {Rt * 0} . (5.1') 

Proof The function x ~ r(x) 2 is smooth  on V, so R 2 is a semimartingale, and by 
(2.5) 

R 2 - R 2 -- �89 ~ Vd(r2)(X)(dX, dX) = ~ JZ~oo �9 (5.2) 

It follows from (1.3) that  Vd(r2) (x)  = 2rVdr(x) + 2(dr | d0(x)  on {x # 0}, and 
by writing Vdr(X)(dX,  dX)  in local coordinates,  Lemma 1.4 shows that 
Vdr(X)(dX,  dX) = V dr(X)(dO,  dO). Since S I{R = 0} d[R,  R3 = 0, we obtain from 
(5.2): 

R 2 = R g + ~ -}- JR ,  R3 + ~ l{R+o}RVdr(X)(dO, d O ) .  

Given e > 0, take a smooth  function h : ]R ~ lit such that h(x) = x / x  on [~, oo), and 
apply It6's formula to h(R); this yields 

Since this holds 
formula. [] 

1 {R __> ~} dR = �89 1 (R _> ~} {R - 1 d( + R-  1 d JR, R ] + V dr (X) (dO, d O) 

- - �88 R2]} 

= �89 I{R > ~) {R-  1 d(  + V dr(X)(dO,  dO)} . 

for all e > 0, setting ~-= �89 ~ l { R , 0 } R - l d (  gives the desired 
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Let us now restrict to martingales X on (V, 9) with the time scaled such that the 
Riemannian quadratic variation process is equal to t /x a. By the Gauss Lemma, 
referred to in (1.2), 

IX, X] = JR, R] + [O, O] (5.3) 

where [O, O] = S O(X)(dO, dO). The expression [R, R] makes sense, as the pre- 
ceding Lemma shows. The following result and part of the proof are modelled on 
Theorem 4.4 of KaUenberg and Sztencel (1991). 

Proposition 5.2 In the situation of Theorem 2.1, define At-= So I{R ,0}d[R, R]. 
Then there exists a Brownian motion B such that 

f ( R * )  <- B *o At + x / t  - At (5.4) 

f ( R * )  <= sup{IB~[ + x / t  -- s:s <= At} . (5.5) 

Proof Step I. For simplicity, assume a ( - i n f { t : R t  = b})= oo a.s.; the general 
case involves notational changes only. Le t fbe  a persistence function for (V, g, p, b), 
and let 

Ht - f ( R , )  - x / t  - At.  (5.6) 

We may define a predictable process (at), with 0 __< st < 1, by 

(~t)2dt = I{R. 0}d[R, R]t = dAt .  (5.7) 

Observe that, since f(0) = 0 andf(x)  > 0 on (0, b], it follows that R t > 0 on the set 
{Hi > 0}. LetdH~ + denote the positive part of H, and define an increasing process 
J, which increases only on {H = 0}, by 

1 , 2 1 1-c~  2 ) 
J~-= H + - i l{t~(O>o} f ' (R t )dR,  +-~ f  (Rt)at dt ~ - - - - -  d t~ .  

o x / t - A t  J 

The third integrand on the right is understood to be 0 if At = t. So by (5.1), if ~ is the 
local martingale part of R, we may write in stochastic differential notation 

dHt + = 1 {H(t)> 0}f'(R,)d~ - 

{H(0 > 0} )X/ t  AI clt - f ' ( R t ) V  dr(Xt)(dO, dO)t - f"(Rt)c~ fi dt + d Jr 

= dYt - dVt + d J, (5.8) 

where Ye J/dfor and the quadratic variation of Y satisfies 

t 

[Y, r ] t  = S l{n(,)> 0}c~2f'(R~) 2 ds (5.9) 
o 

Step II. Next we will prove that V, appearing in (5.8), is an increasing process. 
Using the Definition 1.2 of persistence function, we see that, o n  {R t > 0}, 

f ' (R t )Vdr(Xt ) (dO,  dO)r <=f(nt) - id[O,  O]t = (1 - -  a2)f(Rt)  -1 dt (5.10) 
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where the last equali ty follows from (5.3), (5.7), and the assumption that 

iX, X ] t  = t. Using the fact that f (R , )  > x / t  -- At on the set {Ht > 0}, we obtain 

2dVt = l{H(t)> 0} ( x / t  _ At 

f 

- -  dt - f ' (R t )V  dr(Xt) (dO,  dO)t - f " ( R , ) c ~  2 dt} 

- - d r  - (1 - a2) f (R t )  -1 dt - f"(Rt)c~ 2 dr} 

t ,  2 > -- l{H(0>0}f  (Rt)ct, dt > 0 

where the last inequali ty follows from Definition 1.2(i). 

Step I I I .  Since Ro = 0, we may assume that  the processes Y, V and J appearing in 
(5.8) satisfy Yo = Vo = J0 = 0. By Skorohod 's  lemma (see Rogers and Williams 
(1987, p. 117)), 

Jt = s u p { -  ( o / ,  (~ - Vss) : o -< s _< t} 

= -inf{(Y~ - V~):0 _< s _< t} 

since already ]1o - Vo = 0. So 

H + = Y~ - 14, - inf{(Ys - V~)' 0 < s _< t} 

= s u p { Y t - -  V~-- Y~+ V j : 0 _ < s _ < t }  

_-< s u p { Y t -  Ys:0 -< s < t} + sup{V~-  V~:0 <_ s _< t} 

= Y~ - inf{ Y,:0 _< s _< t} 

using the fact that  sup { Vs - Vt:0 _< s _< t} = 0, since V is increasing by Step II. 
Since Y~,/r Y~ = N'o [Y, Y]t  for some Brownian mot ion  N', and by L6vy's 
theorem, there exists ano ther  Brownian mot ion  B such that 

B ; -  inf{B;:0_< s_< t} = INtl. (5.11) 

Hence 
H + < B ' o [ Y ,  Y ] ~ - i n f { B ' , ' O < _ s <  [Y, Y],} = ]Bo [Y, Y] t ] .  (5.12) 

By Definition 1.2 , f " (x )  < O, and consequently 0 < i f ( x )  < i f ( 0 )  < 1 for xe (0 ,  oo). 
It follows from (5.9) that  [ K  Y]t < A,. Combining (5.6) and (5.12) gives: for 
O < s < _ t ,  

f ( R s )  < H 2 + x / s  - As 

< ]Bo [I", Y]s] + , f s  - As. (5.13) 

Since f (x )  is increasing in x, and sup{lBo [Y, Y]s] ' s  < t} < sup{ !NoAs] 'S  < t}, 
this implies 

f ( R * )  < B*o A, + x / t  - A t .  

Moreover  since (s - A J  is increasing in s, (5.13) also implies 

f ( R * )  <__ sup{[Ssl + x / t  - s : s  < A t }  . [] 
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Proof of  Theorem 2.1 (taken directly from Theorem 4.5 of Kallenberg and Sztencel 
(1991)). By (5.5), since At < t, 

f (R*)  <= sup{lBsl + x / t -  s:s < t} . (5.14) 

Fix a ~ (0, b) and a time t > 0, and define 

r - inf{s e [0, t] "Bs + x / t  - s > a} 

where inf{0} = oe. Since f i s  monotone increasing, 

P(R* >=f-l(a)) = P( f (R*)  > a) 

_-< P(sup{lBs[ + x / t - -  s 's  <= t} > a) 

__< P(sup{Bs + ~ / t - -  s:s < t} > a) + P( sup{ -Bs  + x / t -  s:s <__ t} > a) 

= 2P(v < t). 

By Brownian motion scaling, and the Strong Markov Property of B at ~, 

P(B* > a) > 2P(Bt > a) 

> 2P(Bt -- Be > ~/t -- r, Be + x/ t  -- ~ > a) 

= 2]E[P(Bt - Be > x/ t  - z ] ~,~r Be + x/ t  -- v _-> a] 

= 2P(B1 = > 1)P(~ = < t) 

>_ P(B, > 1)P(R* >~ f-Z(a))  

which proves the first inequality in (2.7). By the Reflection Principle and Brownian 
motion scaling, 

P(B* > f(a)) < 4P(Bt > f(a)) = 4P(B, > f(a)/x~tt) . 

Now use the standard estimates 

1 e x p { _ x 2 / 2 } d x <  1 ~ 1 {_s2/2 } = xexp{-x2 /2}  s ~/q-2_expx/z~c 
X 

and 

( ~ e x p { _ x 2 / 2 } d x )  2 1 ~ < a ~,/~ rexp{ - - r 2 / 2 }  d r  = e x p { - s  2 } 
S 

4 
P(B* >= f(a)) < ~ mln ~ f - ~ ,  exp { - f (a)2/2t}  

which yields the second inequality of (2.7). [] 

Proofs of  2.2 to 2.5 Corollary 2.2 is immediate from Proposition 1.3 and Theorem 
2.1. Theorem 2.3 follows from Corollary 2.2 and Corollary 4.2. Corollaries 2.4 and 
2.5 follow from Theorem 2.3 and the fact, proved in Examples 4.3(a) and (b), that 
f(r) = c-lx/21og(cosh(cr)) and f (r)---r  are persistence functions for the hyper- 
bolic space of constant curvature - c  2 and for Euclidean space, respectively. The 
second inequality of Corollary 2.4 follows from (4.6). [] 
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Proof of Theorem 2.6 Write 

L(t) = x/2 t l log l logt [ ] ,  t > 0 

and recall f rom the law of the iterated logar i thm for one-dimensional  Brownian 
mot ion  that, as t --+ 0 or 0% 

B,* 
lim sup ~ = 1 a.s. 

N o w  (2.9) follows f rom (5.5) in Propos i t ion  5.2, and the bound  is at tained if the 
process e = 1 (i.e. X is Brownian mot ion  run along a unit speed geodesic through p, 
started at p). [] 

6 Unsolved problems 

Problem 6.1 
A continuous martingale with fastest rate of escape. Let Z denote the set of continu- 
ous local martingales X in IR" with Xo = 0 and [-X, X ] t  = t. I f R  denotes the radial 
componen t  of X, then define 

hx(t, a) = P(R* > a), a, te(O, oo) . 

Does there exist g s z  such that  hr(t, a) -~ sup{hx(t, a ) :X~) (}  for all a, t~(0, oo), in 
other words a "fastest escaping mart ingale"? Remark  (c) following Theorem 2.1 
suggests that  a possible candidate is of the following type. Let B and W denote 
independent  Brownian  mot ions  in IR and IR" respectively, let ~(a) = inf{t : 1Bt] = a}, 
and fix c > 0; now take 

f (Bt, 0 . . . . .  0), for 0 _< t _< ~(c) 
Y(t) 

[, Y(f(c)) + W(t/m) - W(~(c)/m), for t > f(c) . 

The conjecture is that  this Y solves the problem for a suitable choice of c (approx- 
imately a2). If  so, this may  generalize to martingales on manifolds. 

Problem 6.2 
Best estimates for exit probabilities for Brownian motion on a manifold, for small t. It 
seems likely that  the estimates for Brownian mot ion  in Sect. 3 can be improved in 
something like the following way. If  radial Ricci curvatures are non-negative (i.e. 
K(r(x)) - 0 in (3.3)), then for each ~ > 0 there may  exist a constant  A, depending on 
s, a and m, such that  

P(~(a) < t) < A ~ t e x p [ - a 2 / 2 ( t  + s)], for t > 0 . 

Likewise if K(r(x)) - - c 2 < 0 in (3.3), then for each e > 0 there may  exist a con- 
stant A, depending on e, a and m, such that 

P(z(a) < t) < A{exp[ -a2 /2 ( t  + s)] + exp[ -a / c ( t  + s)]}, for t > 0 .  
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