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Summary. We study symmetric exclusion on a random set, where the underlying 
kernel p(x, y) is strictly positive. The random set is generated by Bernoulli 
experiments with success probability q. 

We prove that for certain values of the involved parameters the transport of 
particles through the system is drastically different from the classical situation 
on Z. In dimension one and r : =  lim [([x[-llogp(O,x))[>llog(1-q)[ the 

transport of particles occurs on a nonclassical scale and is (on a macroscopic 
scale) not governed by the heat equation as in the case: r <  ] l o g 0 - q ) [  on a 
random set, or in the classical situation on Z. 

The reason for this behaviour is, that a random walk with jump ratesp (x, y) 
restricted to the random set, converges to Brownian motion in the usual scaling 
if r <  [log O -q)[  but yields nontrivial limit behaviour only in the scaling 
x~u-ax,  t---> u 1 + ~t (~ > 1) if + ~ > r > [log (1 -q)[ .  We calculate ~ and study the 
limiting processes for the various scalings for fixed random sets. We shortly 
discuss the case r = + Go, here in general a great variety of scales yields nontrivial 
limits. 

Finally we discuss the case of a "stat ionary" random set. 

A. Motivation and main results 

O. Introduction 

In the last years the theory of particle systems with spatially inhomogeneous 
evolution mechanism has attracted attention for its significance in application and 
for new interesting phenomena occurring. The interest has focused so far on various 
types of Branching processes (Dawson and Fleischman [1], Greven [5, 6]) or the 
contact process (Bramson, Durrett, and Schonmann; Liggett). Here we focus on a 
different type of question: we are interested in the transport properties of particle 
systems evolving in an inhomogeneous medium, that is with spatially varying con- 
ductivity. This will lead to a problem for a random walk in random environment, 
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which is of interest in itself. We have to extend work of Kawazu-Kesten [8] to more 
general situations, that is non-nearest neighbour models. Compared with [8] or 
Sinai's work [15] also some new phenomena occur. 

Consider the following evolution on a subset of Z d: Given is a random set A of 
accessible sites. We define a Markov process evolving on {0, 1 }A according to the 
following rule: Particles move from x to y at an exponential rate given below 
provided the system is in the state t/~ {0, 1 }A: 

(0.1)  ( l a (x )p  (x, y )  I a (Y)) tl (x)  (1 - 11 (y ) )  . 

(Here r/(y)= 1 or 0 depending wether site x is occupied or empty.) 
The set A is generated by a random mechanism but is then fixed throughout all 

time. We are always interested in the evolution for given random environment. 
In principle there are two main problems of interest: 
(A) Suppose the process starts in an inhomogeneous situation for example: 

one half space occupied, the other one empty. Now analyse the flux of particles 
on a macroscopic scale, that is: study in a first and main step the rescaled function 
u (t, x) = E(~t~ (x)lA). 

(B) Take the process in equilibrium, tag a particle and analyse its motion on a 
macroscopic scale. 

We start in this paper the analysis of question (A) for the case where: 

(0.2) p ( x , y ) = p ( y , x ) ,  p ( x , y ) = p ( O , y - x ) ,  p (x , y )>O V(x,y)~2g~xZ ~ 

p(O, y)y2 < oo. 
Y 

In the classical situation where A = ~U we have the situation that the path of the 
tagged particle tends in the usual scaling to Brownian motion and the density of 
particles u(t, x) = E(rlt(x)) fulfills in the scaling x ~ E -  ix, t--*a-2t in the limit e ~ 0  the 
heat equation: 

~ ~(t,x) = 1 ( ~ x )  2 (0.3) ~t - 2 ~ fi(t, x).  

We shall show in this paper that in dimension d-- 1 and for random sets A generated 
by Bernoulli experiments with success probability q, we have the classical picture as 
far as problem (A) is concerned for almost all realizations of the random set if: 

(0.4) lim ((Ix[)-ll logp(0, x)[) < [log (1 -q) [  
[xt--,~ 

but something drastically different in the case where the relation above is violated. 
Then the particles move at a slower speed and the motion depends also in the 
macroscopic picture on the random environment o9 defined by A. 

The basic tool in studying this problem is the fact that problem (A) leads to a 
problem for a random walk on a random set. To see this make the following 
observations: 

The density/~(rh(x)) of particles at x at time t is given by: (/~:= E(-IA)) 

(0.5) E(rh(x)) = ~" P,(x, y)~(r/o(y)), 
y e A  

Pt has generator 1A(x)(p(x, y ) -  6(x, y)) l a (y  ) . 
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Therefor our problem (A) leads us in the symmetric situation to the study of a 
random walk on a random set. (For proofs of  (0.5) see Liggett [1 ~ ].) On the other 
hand due to the duality relations, it suffices in the symmetric case to treat the 
n-particle problem. The n-particle problem however is straightforward once the one 
particle problem is solved. We formulate for that reasons our results as results on 
random walks in random environments. But note that this reduction is valid only in 
the case of  symmetric exclusion processes. 

Problem (B) is more difficult especially in the subdiffusive situation where quite 
some additional work has to be done. We focus in this paper solely on problem (A) 
even though our techniques will be useful for problem (B) too. 

The organization of the paper  is as follows: In Sect. 1 we formulate and explain 
our results on a continuous time random walk on a random set which appears in 
problem (A). In Sect. 2 we show how to reduce our problems to problems for 
discrete Markov chains on 2g. Section 3 prepares the important  tools of  our 
analysis: we construct certain random harmonic and subharmonic functions h (x), 
f ( x )  for our chain and analyse their asymptotic behaviour for Ix] ~ oc. In Sect. 4 we 
apply these results to the diffusive case and finally in Sect. 5, 6 to the subdiffusive 
case. In both cases it is the main point to get control over the behaviour of  the 
Markov  chain introduced in Sect. 2. Finally in Sect. 7 we put everything together to 
prove our theorems. We exploit a point of  view on the ergodic theory of Markov  
chains developed by the author in [4]. 

The main work has to be done to deal with the fact that the restricted chain can 
not be reduced to a model with nearest neighbour jumps or a model where 
jumprates are assigned to the bonds. Models of  the last mentioned type have been 
treated in the literature, see for example Kawazu and Kesten [8] for a rigorous 
treatment and an extensive list of  references especially to the physics literature. 

la. The model 

We start by introducing the ingredients we need to define our random walk 
precisely. 

(i) Suppose {Z(x)}xEZd are i.i.d. Bernoulli-variables with: 

(I.1) Prob (Z(x) = + 1) = q .  

A realization of (Z(x))x~Zd we shall denote with co. 
The random set A on which our process will move is defined as: 

(1.2) A = {xlZ(x) = + 1). 

(ii) Furthermore we have a Mark ov transition kernel p (x, y) on Zd x Zd with the 
properties stated in (0.2) (i. e. homogeneous, symmetric, strictly positive transition 
matrix, finite variance). 

Now we are ready to define the process (X( t ) ) t~+ we are interested in as 
follows : 

Def in i t ion  1. (X(t))t~+ is a continuous time random walk on 7Z d with generator L 
defined on L ~ (Zd) as follows: 

(1.3) (Lf ) (x)=~,  (p(x, y ) - f ( x ,  y))la• y ) ( f ( y ) ) ,  choose X ( O ) = x ~ A .  
Y 

Our main interest is focused on the behaviour of  X(t) as t ~  ~ and the question 
whether we can rescale time and space so that we obtain a limiting process. 
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Furthermore in which cases do we get Brownian motion as the limiting process? 
What is the structure of the limiting process in the subdiffusive case ? We organize the 
results in a such a way that we start with results carrying over to more general 
situations and then proceed to results ( Theor. 3) which depend on the very special form 
of the model. In this paper we are concerned with the one dimensional situation. 
Throughout the paper we assume (0.2) and d =  1. 

lb.  The results 

The behaviour of the process X(t)  can be described very well provided the tails of 
p(0, .) behave fairly regular. The important requirement for a detailed analysis is 
that the following limit exists: 

(1.4) r:=lxl_.~olim ( ~  logp(0, x)) (+~ inc luded) .  

We denote by Y~(t) the Brownian motion with variance o-, with ~ ( X )  the law of X. 

Theorem 1. 

Case 1. r<] log(1-q)]  

with ~ positive and independent of  co. 

Case 2. r> l log(1 -q ) l  or: r=Llog( l -q) [  and p(O,x) ~ce-rlxl 

Remark. Case 1 and 2 can be distinguished for generalp(x, y) fulfilling (0.2) by the 

criterion: ~ (l - q)n(.p (0, n))- 1 < oe or + oe. Studying the second case further, 
n = l  

requires necessarily regularity assumptions for transparent results. Therefore we 
focused here already on cases were (1.4) holds. 

Remark. For a one can give a representation (see Coroll. 6 in Sect. 4) but no simple 
formula. 

The Theorem 1 raises of course immediately the question: what is the right 
rescaling in the second case where the motion is slowed down too much by the gaps 
in the thinned out random set. 

The results do depend very much on the form of the tails of p(0, .) if we are in the 
subdiffusive case. If we want to see something in a deterministic rescaling we have to 
have subexponential tails of p(0, -). Our techniques work for quite general p(0, -) 
we focus however here on assumptions which allow transparent results. Very 
concise results can be given if we assume that the tails behave asymptotically 
exponential. For convenience only we shall assume in the sequel even: 

(1.7) p ( O , x ) = c e x p ( - r l x [ ) ,  c= p(O,x) . 
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A remark on terminology and notation. We call a measure trivial if it is concentrated 
on the points O, respectively the process ~ O. With weak convergence of a sequence 
we mean convergence as processes if we write the sequence as ~ ((Xt)t~ ~) and weak 
convergence of the marginals if we write 5r (Compare [2], Chap. 3.) 

Theorem 2. Assume that (1.7) holds. 
a) For ov > r >  Ilog (1 -q ) l  we have with ~=rl(log(1 - q ) ) - i  I" 

(1.s) 
t~R+ n6~q+ nontrivial. 

For r--  [log (1 - q)[ we have: 

tE~ + t~N nontrivial. 

b) We obtain in (1.8) and (1.9) convergent subsequenees i f  n runs through any 
subsequence (ni(k ))k~N with the property: ([x] denotes the largest integer smaller 
than x.) 

(1.10) ((([log (1 _ q ) [ ) - i  logni (k) )_  [([log (1 _q) [ ) - i  log (ni(k))]) ~ i~ [0 1). 
k-'-~ ~o 

For subsequences with different i we obtain in (1.8) different limits. [] 

Remark. If we replace n 1 + �9 by a function f (n) ~ n 1 + ~ ( >> n' + ~) we obtain 6o as a limit 
(respectively the sequence is not tight). 

The theorem above tells us roughly how fast the particle can move, but we 
would like to have some information what happens for f ixed co, at least if we exclude 
co in a set with small probability. This point of view is analogues to the procedure in 
Sinai's work [15]. Furthermore we want to know what is the structure of the limit 
processes. Both questions require a fairly complex analysis and we need to introduce 
various quantities : 

The subdiffusive behaviour is due to the fact that the process needs too much 
time to cross large gaps ( =  consecutive points ~ A) when r is too big. It is therefore 
important to store the information about location andsize of  the large gaps. In our 
situation it turns out that large gaps at the level n of rescaling are gaps of size: 

(1.11) [(]log (1 - q)l) - - 1  log (n)]. 

since the expected waiting time for a jump across such a gap is of order n" and on the 
other hand the occurrence of larger gaps in [ - n ,  n] has probability tending to 0 as 
n - - - ,  (30 .  

We define therefore first the following sequence ( l~ , (X))x~rt  of processes. 
These processes store all information about large gaps, namely their location and 
size. 

Here is the definition: Denote by ((x~,,))i~e the location of points such that a 
block not belonging to A follows to the right which has length: 

(1.12) [([log(1-q)])- l logn]-a~ with - o o < a ~ <  [l~ and 6 < 1 .  
r 
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Define (e=i log ( 1 - q ) l - l r  as before, e=(1  + e - ' ) ( 1 - e - ~ )  -1 as in (1.7)): 

(1.13) ~2o(x) : = 
n ~ ~ ce ra~ I(x)={ilxf,,e[O,x)mA}, x > 0  

ieI (x) 
-n~ Z cer4 I(x)={ilx~,,e[x,O)c~A}, x<O. 

iaI (x) 

Different from a walk with jumps to nearest neighbours only we have also to take 
into account that the behaviour of our process will be different in the following two 
situations: 

�9 . . ( x x x x )  . . . .  x . ( x x x x ) ' x .  

t 
large gap large gap 

In words: The local structure of A close to the large gap influences the time the 
process needs to cross this gap. 

We shall show that we can find a jump process (gy)y ~ m with jumppoints x~___ 2g 
and values iy E [c, g] s > 0, g < oo which describe this effect. In our special situation 
where p(0, x ) = c e  -rIll we can give the following explicit formula: 

( -oo ) l + e - ~  G = ~  e_rky,, 
(1.14) g y = ( ( I + F G ) F )  -1, F= 1+ ~ erky, 1 - e  -~' 

k= -1 k=l 

y k = t l { k e A _ [ y ] } ,  k < 0  

{1 {keA -z},z=inf(xeAlx>y), k > 0 .  

Remark. A general device to find this process (gy) is to construct a harmonic 
function for the jumpchain of our process (which can be uniquely determined by 
some additional requirements: it will be constructed in Sect. 3) and setting" 

(1.14') ~y=(h(z)-h(y))p(y,z) p(y,x) for y = x  i, where 

z=inf(xeAIx>x~),  {xi}i~z: {xe~lx~A,  x + l  ~A}.  

The information about large gaps and the local structure around them, is 
condensed in the following processes: 

(1.15) W s  6 d V C : A y ) ,  ~ .  
0 

Since in the end we want to study the properly rescaled process we introduce 

(1.16) W~,o (x) = n- ~ W~ o~ (nx) c~ - Ilog (1 - q) l- l r .  

Now we re ready to introduce the crucial process Z ,  ~ (t, co) which gives on level n a 
good approximation for the behaviour of X(t) for given co and n large (provided co 
isn't in a certain exceptional set with small probability and 6 is small enough): 

(1.17) z.~(t,~o) ~ - '  : = (w , ; , , ~ )  ( r ( v s  
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here 
Y(t): Brownian motion with variance ~ (o- is chosen later). 
V,,o,a(t) : = ~ L(t,  W~o(x))dx, L (t, x) is the local time of Y(t). 
For h nondecreasing we set h - i (u) = inf(tlh (t) > u). 

Three questions have to be answered: does Z~,(t, co) approximate n-lX(nl+~t),  
does Z,  z (t, 6o) converge for n ~ ~ ,  6 ~ 0  and finally what is the structure of that limit ? 
The answers are given in a), b), c) of the theorem below. The theorem has a form 
analogues to Sinai's result for a walk in a random potential: (A nicer looking though 
less informative consequence is formulated in a Corollary below.) 

Theorem 3. Assume that p(O, x ) = c e x p  ( - r [x[)  and ~=r(l log (1 _q) [ ) - i  > 1, and 
set/~=E(.]co). 

a) There exists aE(0, oo) such that Vr/>0, e > 0  and f ~Cgo(]R ) exist n o, 6o>0 
such that: 

(1.18) Prob (co E f ( 1 X ( n ~ + ~ t ) ) - - E f ( Z , ( t , o ~ ) ) l < ~ ) > l - r l  

V n > n o , 6=<3 o . 

b) Suppose (ni(k ))k~N is a sequence such that: ([x] = largest integer smaller x)  

(1.19) ( ( l o g ( 1 - q ) ) - l l o g n i ( k ) ) - [ ( l o g ( 1 - q ) ) - ~ l o g n ~ ( k ) ]  --~ ie [0 ,1) .  
k---~ oo 

Then the approximating processes (Z~,~k~(t, o)))t ~ +  have the following asymptotics 
for k--*oo, g~O:  

(1.20) ~((ZO,,{k)(t, co))t~+) ==> ~((Z~(t)) ta~+) Vie [0, 1), 
k ~ c o  

(1.21) ~'((Z.a, (t))teR+) ~ ~((Zi(t))t~R+ ) Vie  [0, 1). 

c) (Z~(t)), (Z~(t)) with i~ [0, 1) have the following structure.. 
(o0 Zi(t) is given by 

(1.22) Z i (t) = Wi- 1 ( y(vii-1 (t)) , 

where the ingredients are defined as follows.. 
(i) Y(t)  is Brownian motion with variance ~ (the same as in a), 

(ii) Vi(t)= S L(t,  Wi(x))dx with L( t , x )  the local time of  Y(t). 
t 

(iii) W~(t)=S eydY~=(y). 
0 

Here the ( Yi ~ (y))y ~ a~ are stable processes with positive increments and with index 
~-1 uniquely determined by: 

cn -~ ~ (p (x ,y (x ) ) ) -~e(x ) l~(x )  ~ ~e(V(y)) 
x = O  y e n  + 

n ~ o o  

with: m =_ N~ 
l + e - r  

y ( x ) = i n f ( z l z > x , z ~ A ) ,  e(x)=  ~ p ( x , y ) ,  c = - -  
y ~ a  1 - - e  - r  
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The (Cy)y~ form a jump process with values in [c, 6] and common jump points with 
(Yi ~ (Y))y E ~. If (Yk)k~i denotes thejumppoints of Yi ~ then ~ ((Cy~)k~1l(Yk)k~ I) is i. i. d. : 

~LP(Co)= Sf ( ( l  +(l  +k~=l e-'kBk) ~ (k=-~_t e+'kBk))-l (l  +k~l e-rkBk) -1) 

with 
~C,(~((Bi)iez)= @ ~(l ,q) ,  c=(1 --e-r)-I (1 + e - r ) .  

Z 

(fl) To obtain Zr replace in (1.22) simply Yi ~ by Yt ~'~ with: 

Y~'a(t)-  Y"O(t_)= Y~( t ) -  Y~'(t_)I{v(0_V(t_)__>~ }. [] 

Another, though less informative, way to phrase our result above is: 

Corollary. With the assumptions and notations as in Theorem 3 we have: 

(1.18') ~ ( (  l n . ~  X(n~+~(k)t)~jt~ +l:::~lk-~oo ~'~((Zi(t))te'+)' Vie [0, 1) 

Zi(t ) is selfsimilar with index (1 + a ) - i  for all i and has continuous path. 

The second line follows from (1.22) with Lemma 3, 4 from [8]. 

Remark. We can consider (Z,(t))t~+ again as a process in a random medium 05 
defined through a realization of ((Y~ (t))t ~ ~, (Cy)y ~ ~). This process can be viewed in 
a sense as an Ornstein-Uhlenbeck process in the random potential 

y 
U(y)=~ e~dYi'(x), that is as solution Xt of dXt=dY~- U'(Xt)dt. 

o 

Then ~(t  -m +~Xt)= ~(X1) ,  that is on the macroscopic scale diffusion occurs at 
speed t all +~ 

Remark. The (cr) appearing in (1.22) represent the effects of the unboundedness of 
the range of the jump rate of the walk restricted to A. Otherwise the form of the limit 
process is similar to the one found in [8]. 

Of course one could ask now what happens in the case when r = + ~ .  The 
behaviour in this case is very complex in the sense that there exist typically various 
scales in which we obtain nontrivial behaviour even for fixed co but typically these 
scales are not comparable. We also have localization. 

As an example take p (0, x) = c exp ( -  x 2). Consider the scales (corresponding 
to gaps ~(llog(1 -q ) l  - t  l o g n - f l ) ) :  

(1.23) fa(n):=nb~l""'n -2Bb , b = ([log (1 - q)l) -1 , f l e N  

and define T, = inf(tLX t r [ -  n, n]). Then we have : 

Theorem 4. 

for all j~ < ([log (1 - q)[)-2 = b 2 
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(1.25) 

(1.26) 

For every fl ~ N: 

{ ~ ( ~  X(nf~(n)t))} is weakly compact with nontrivial 
hen weak limit points. 

For every f l ~ N :  

I sup  sup o as 
T ~ R  + \n~oo  \ t < T  [n 

s 1 
(1.27) ( l~gn l~ ~b2. [] 

Remark. The effect in (1.25), (1.26) above is simply that the walk is trapped between 
gaps of size ([log ( i -  q)l)-t log n - / 7  i (i = 1,2) with/7i</7. 

Remark. This result says especially that it is in the case r = + oo not possible to find 
a scale independent of  the realization of  the medium, which still gives a reasonable 
picture of the motion of the particle. The motion is on different scales in different 
parts of space, and the various parts have random extensions. So we have in fact 
three regions in parameterspace with qualitative very different behaviour of the 
random walk: r < Ilog (1 - q)[, oo > r > [log (1 - q)[, r = + oo. 

lc. Outlook 

We conclude with some remarks on a more general form of the random medium. 
Consider a stationary ergodic process of  the form (T~ 1, T~2)iEz with T~ 1, Ti2,N - 
valued random variables. With T~ x we describe the length of strings of points 
belonging to A and with T~ 2 the length of  strings not belonging to A. Assume that at 
0 a string belonging to A starts. If we have Eo,((p(0, To2+1))-1)< 0% then the 
random walk on A behaves diffusive (o-a. s. and there is no difficulty to adapt our 
methods of proof. The behaviour in the subdiffusive situation can be described via 
a co-independent rescaling essentially only in the case where the (T~2)i~ are 
independent and the Prob (To (2) > n) behaves fairly regular. We don' t  have the space 
to go into detail, however the methods we develop in this paper suffice to treat the 
general model and the reader having a special situation in mind won't have any 
problem in working out this case along the line of our arguments. Note however that 
the limiting processes in the subdiffusive case do depend on the special form of 
p(0, .) and A~ ! We shall work out some cases in a forthcoming article. 

The case of  higher dimensions shows different features and our methods have to 
be refined substantially, we cannot discuss details here. 

B. Basic tools 

Let us shortly summarize the idea behind our approach. In order to study X(t) we 
should investigate the following random times: Consider an interval I and define 
T x (I) -- exit time from L when the process X(t) starts in x. Controlling the behavi our 
of these random variables should be the core of the problem. In order to study T x (/) 
we need to know at least three things: What are the probabilities to leave the interval 
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I to the left or the right, how often do we visit a point y e I befor leaving I and how 
much time do we spend in the average in a point. 

The first two properties are properties of the jump chain only. Our first idea is 
that we can separate the analysis of the jump chain from the question how long it 
takes to make n-jumps as n ~ ~ (Sect. 2 a). Our second idea is to control the number 
of points visited befor T~(I) and the exit probabilities to the right, left with (random) 
subharmonic respectively harmonic functions and this way turn our problem into 
a potential theoretic one, namely to estimate these (sub)harmonic functions 
(Sect. 2b, 3). The chapter B turns these ideas into mathematics. 

2. The embedded jump chain and the resistance between points 

This section especially part b) is basic for the rest of the paper, it introduces the 
important discrete time chain ( )~ , )n~ on ~. The first purpose of this section is to 
prove that it suffices to study a discrete time Markov chain on A, the jumpchain. 
Next we relabel points in A by ~ in order to obtain a new random Markov kernel 
fi(x, y) on 72. For  this kernel we define the notion of resistance and derive basic 
properties of that quantity which is crucial in the study of (X,)n~N, as n ~  ~ .  

a) Reduction to a discret time problem: the embedded jump chain. The first step 
towards proving our theorems consists in reducing our problem to a discrete time 
problem. 

Definition 2. ( X , ) ~  is the jump chain belonging to (X( t ) ) t~+.  This chain has 
transition kernel/5(x, y) : (on A x A) 

(2.1) f i(x,y):=(p(x,y)IA• -1 , e(x) :=  ~ p(x,y) .  
yeA 

We define a measure H( . )  with support on A by setting: 

(2.2) H ( B ) = ~  e(x) VBc_A, H ( z ) = 0  f o r z C A .  [] 
x e B  

The following proposition tells us in (2.4) that it suffices for our purposes to study 
(X,),~N instead of (X(t)) t~+ and that the chain (X,),sN is reversible with respect 
to 11. 

Proposition 1. For every kernel p (x, y) on Z a which is symmetric and strictly positive 
for x + y the following holds for the jump chain of the walk restricted to A (as defined 
in (2.1)): 

a) 1I is a reversible invariant measure of fi for every A. 
b) 
(i) For every realization of A: 

/ ,+1 ) 
(2.3) s ; N(t)=inf~nl ~ Ti>t , 

where conditioned on (XOieN the (T~)ieNare independent with ~(T~+ 1) = exp (e(Xi)). 

(ii) Consider now for given o9 the normed sum of the jump times T i belonging to 
(x(t))~+: 

(2.4) n - i  T/ ~ (E~, (e (0))) -1 og-a.s. 



Symmetric exclusion on random sets 317 

Proof o f  Proposition 1. a) For each x, y e A we check the detailed balance conditions 
as follows: 

e (x)fi(x, y) = e (x)p (x, y) (e (x))- 1 =p (x, y) =p (y, x) = e (y)p (y, x) (e (y))- 1 

= e(y)F(y, x). 

b) The part (i) is of course an immediate consequence of the Definition ofe(x). 
More interesting is part (ii). Here we shall adapt an idea of Papanicolaou and 
Varadhan in [14] for our purposes, that is : study the medium as seen from the wal- 
ker, use for this process Birkhoffs ergodic theorem and then derive the conse- 
quences for the problem in question, The details of that program require some 
work: 

Step 1. Note first that conditioned on co and (Xi)i~N, the (Ti)i~ u are independent and 
exponentially distributed with E(T/+ 11o), (Xi)i~u) = (e(Xi))- 1. 

Therefore we shall study first the quantity ~ (e(Xi)) -1 and prove that: 
i=1 

(2.5) 1 s (e(Xi))_ 1 ~ (Eo~(e(0)))_l. a.s. 
F/ i=1 n--* oo 

For that purpose we consider the Markov process Zk on {0, 1 }Z", which is defined on 
the joint probability space generated by co = {Z(x)}xsZ, and (X.)neN, through the 
following relation: (Xk is the medium seen from the walker at step k) 

+1 on A - X .  
(2.6) Z," = 0 elsewhere 

a(j',cp):= p(j,k)l{~(k)=+, } ; j e~ .  e, ~0e{O, 1} z~. 

With this definition we can write: (using the homogeneity ofp(x ,y))  

(2.7) 1 ~, (e(Xk))_ 1 1 ~ a(O, Zk) 
H k = l  -- / ' /  k = l  

Suppose now that we could find a measure # on {0, 1} zd such that: (Such a/~ is 
automatically unique !) 

(2.8) # is invariant measure of the Markov process Z. 

p is equivalent to (~) ~q and shift-ergodic. 
X ~ Z  d 

( ~ .  : ---= q ~ l - k  ( I  - - q ) 6 o ) .  

In this situation the ergodic theorem for stationary processes would imply that 
(a(0, . )=0!)  

-s (@ =.~-a.s. (2.9) nl k=O a(O, Zk),_,o~--* EU(a(O, .)) \x~Z ~ / 

Assuming (2.8) we could conclude the proof as follows: 
We can assume without loss of generality that for the jumpratesp (x, y) we have: 

p(x, x) __> 6 > 0! Note that given (e(Xi)) the T~ (Xi) are independent and exponentially 
distributed, therefore by conditioning on {e(X~)}i= 1 ...... a straightforward calcu- 
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lation using an extended law of large numbers [3] page 243, shows that (2.9), (2.7) 
imply 

a . s .  

(2.10) -1 T i ~ E"(a(O, .)) for fixed co, co-a.s. 
H i = 1  n--+ cc 

Step 2. Now it remains to construct # and to evaluate E"(a(O, .). 
The measure # will be obtained as a weak limit of a sequence/~N of probability 

measures with support on periodic continuations of elements in {0, 1} E~' with 
E~r = ( - N ,  N] ~. In order to define #N we shall need the kernels pu(x,y) obtained 
from the walk induced by fi(x,y) on A n E  u as follows: Denote by 
A s = {y[y mod (2N) ~ A nEN } and define/~s (x, y) as the walk fi(x, y) restricted to 
A s as in (2.1) and then projected on the restclasses mod (2N). 

(2.11) eu (x ) :=  ~, fi(x,y)la(x), SN:= ~ eN(X), 
y E A ~ - - x  x ~ E N n A  

(2.12) HN(B) "-~-(x~B eN(X)) (SN)-I ; B~-A~EN" 

Note that H N is a reversible invariant probability measure for fiN. 
Let ()(~m)k~ N be the stationary Markov process on ENnA with marginal HN and 

transition kernel/~ N (., .). Now define/z N as follows: (Denote by'c x the shift by x ~ EN 
and by con = {Z(x)}x~EN, respectively by o5 N the periodic continuation of co N to a 
{0, 1}-valued function on Za). 

(2.13) #N : = Aa (z2~,)cou) V k e N ,  ~N(CO)::#N((CO[EN))I{oj=(r31~)}. 
The next observation is now that (the details of the proof  are straightforward and 
left to the reader): 

(2.14) e,(x) ~ e(x) co-a. s. ; sup l e (x ) -  e.(x)l --+ 0 co-a.s. Va < 1 

S,(2n) -a ---> E,o(e(O)) co-a.s. 
n ~  o~ 

Let b( . )  be a bounded and local functional of Z. Then we calculate using (2.12) 
and (2.14): 

(2.15) E~,(b)=E~ ~ ~ - b ( z ~ a S , ) = E o ,  ~ e,(x)b(z~c3,) 
xeEn x~En 

Suppose we can show that then the first factor is uniformly integrable which will be 
done in step 4. A minute's thought shows that then the relation above implies with 
the second part of (2.14) and the L ~-ergodic theorem for stationary fields indexed by 
7z d, that we can define # as follows: 

(2.16) ~. =:> /~, /~ is translation invariant, # is )~-invariant. 
n--* oo 

Since (according to (2.14)) S~((2n)dE~(e(O))) -1 ~ 1 co-a.s., we have especially: 
n---~ oo 

( 2 . 1 7 )  E u (a ( 0 , . ) )  = ( E,o (e (0 ) ) )  - ~. 



Symmetric exclusion on random sets 319 

Step 3. It remains to show that # is shift-ergodic and equivalent to (~) ~q, this 
x ~ Z  a 

measure we abbreviate by v. The relation # ~  v implies of course that # is 
shift ergodic. 

We show first that/~ ,~ v. First observe the following facts: fi(n, x, .), the n-th 
power offi, is equivalent to counting measure, e N (x) < 1, and S, ((2n)aE~ (e (0))) -1 ~ 1. 
Therefore looking at (2.12) shows us that, we have the following estimate for the 
density ~b u of H u with respect to the normalised counting measure on E N : 

Define c, (co) = S, (2n)- d, then: 

1 eu(co ) ~ E~,(e(O)) ~)  ~,-a.s. (2.18) 

We shall prove in step 4 that 

1 1 
( 2 . 1 9 )  - -  v .  

N-oo E~,(e(O)) 

This implies with (2.13) and the second part of (2.18) that: (" as i (2.13)) 

(2.20) ~ ~ /xmdr 1 for some rn~IR + , vN=~e,,(~) ~q. 

Since a v-nullset can be approximated by a set M with v(M)<~ and such that M 
depends only on a finite number of  sites and furthermore fiN(M)~#(M), we can 
conclude from (2.20): 

(2.21) ~ ,~ v. 

In order to obtain the relation v ~ #  we use the fact that ffU(n,x, . )~count ing  
measure on E N for every n ~ IN. The argument then is word by word the same as in 
Papanicolaou, Varadhan [14], p. 551, we refer the reader to that paper for details. 

Step 4. Now we prove (2.19). Our chain is derived as jumpchain of a continuous time 
process, we are therefore allowed to assume w.l.o.g, that: p(x,x)>6>O. This 
implies especially that ~6N(x, X)> 6 for all Ne]N. Therefore we have the estimate 

(2.22) cN(co)(2N) d= ~ eN(x)>61AnEul. 
XEEN 

Note that we are only interested in those co where IAc~Eu[ > 0. Observe furthermore 
that for those co: 

(2.23) 1 - - ~ <  (2N)d6-1 :=-N 
e (co) 

Now consider the following two events: (e > 0, e < q) 

(2.24) C 1 :=  {col ]A nEN] > ~" (2N) d) 

Cz : = {col0 < IAnEN] < ~" (2N) a} 

and estimate with (2.22) and (2.23) as follows: 

(2.25) E~,(cu-~)<E~,(N1c2)+E,o(c- ~ l c l ) .  
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Since we have by (2.18) and (2.22): 

(2.26) E~o 1 lcl Eo,(e(O)) , (Prob(C1) ~ 1 for e<q[)  
N--+ oo 

and by the large deviation principle for Bernoulli-variables: 

(2.27) Probo~(lAc~ENl<e.(2N)e)<=e -o(~)m with 3(e)>0 for ~<q 

we obtain from (2.25) immediately the assertion (2.19) with the Lemma of Fatou (by 
observing that we can make e arbitrarily small, so especially smaller than q). 

b) The induced chain on 7/.. In order to study the chain (X,) it is convenient to 
relabel the points in A by Z d, so that we obtain a new chain (J(n) on ~d. This chain 
will be the main object for our analysis in the next chapters. We focus on d =  1 from 
n o w  o n .  

Definition 3. (_~n) is a Markov chain on Z with transition kernel fi(x,y) with 

(2.28) ~(x, y): =:(j, k), 

where 
j :=inf(l l  ~ {m cA,  0 < m < l }  >x) 

for x ,y>O 
k :=inf(ll ~ {m~A,  O<m<l}  >y) 

similar for x, y < 0. [] 

The qualitative behaviour of (J?,)nsN is, in the case of dimension 1, determined 
to a large extent by a quantity c~, r which we call (stressing the metaphor somewhat) 
the resistance between x and y. 

1 
(2.29) c~,y'= ~ f i ( Z , Z + I ) '  y > x .  

x<_Z<_~--i 

In the case y < x we replace fi(2, z + 1) by fi(z, z -  1). 
In the next step we investigate the behaviour of the resistance c~, v f o r l y - x r  ~ ~ .  

Proposition 2. Suppose d= 1 and p (x, y) fulfills (0.2). 

a) Case 1. E~ < + o~. 

Then: 

(2.30) 21y I C_y,r r-*~ E~o co-a.s. 

Case2. I f  E~o(^,,, , , ~ =  +oe,  we consider the case where lim (,~l,]logp(0, x),~ 
',ptu, I U  x-+oo \I-~I ) 

= r  ~( l log( l -q) l ,  oo). 
Define f l=l log(1-q)I r  -1. Then we have 

(2.31) lim ( ~  ) { + o o  , > f l  
lyl ~ ~  C_y,y "~- 0 ~)<fl 

b) I f  we have p(O,x) ~" ce-~l~l for some r with r> [log0 -q) l  then: 
txl~oo 

)} (2.32) ~LP c_y,y y~n is weakly relative compact.The weak limit 
points are stable laws on lR+with index [3. 
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Furthermore we have as criterion for converoence alon9 a subsequence.- 

(2.33) ~ c_r~,r ~ =:> stable law with index fl 
k--+ cjo 

~((1ogyk) -- [1ogyk] ) converges for k ~ oo 

For every possible limit of (log y k - [lOg yk])k~ we obtain a different weak limit point 
for the law of the resistance alon9 that subsequence. (They differ by a scalefactor only, 
of course). 

Proof. a) In case 1 we apply simply the strong law of large numbers for i.i.d. 
integrable random variables. Note that in this case a stationary ergodic random set 
would give the same result! We treat case 2 under point b). 

b) The assumption on p(0, x) implies the following relation for/~(.,  .): 

(2.34) P r o b o ~ ( ~  >er")=(1-q)"-l=e-"l~~ -1 

1 
- (er.)~ (1 - q ) - 1  

The assertion (2.31) follows now from Stout [17], p. 130-132 by straightforward 
arguments. 

Now note that for x between n and n + 1 the quantity (e rx) -a varies by a factor 
/ X  

between 1 and era. That means that the Laplacetransform F(s)o f  ~ (_~h-qV} 
obeys according to (2.34) above (see [3]): ~4,tv, 1)/  

1 - F ( s )  - -  1 - F ( s )  
(2.35) O < c < l i m ( - - y U - ] < _ l i m ( ~ - - ~ < ? <  

-~-~0\  s / - ~ - ~ 0 \  s / -  

which immediately implies 

(2.36) O<e-;~-<= lim (F(2n-a/t~))n<- lim (F(2n-1/P))"<e - ~ .  

The standard continuity theorem for Laplace transforms yields now that the 

sequence ~o c_r,y is weakly compact with nontrivial weak limit points. 

To proceed further note that (2.34) implies for a sequence ykC_N with: 
[1ogyk] -- 1ogy k converges as k ~  oo, that: 

~(0C, 1) >exp  ( r l ~  (2.37) Prob~ Yk) ~ const (exp (rlogyk)) -p- 
k---* oo 

An explicit, but tedious calculation shows now that this implies for the Laplace 

transform F(s)of  s ( ~ ) t h a t :  

(2.38) 1 - F(sy~ ~/~) ~ const sPy~ 1. 
k ~ o o  
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It is then a standard calculation to show that (compare [3]): 

(2.39) ~ c_y~,y~ stable law with index ft. 

This finishes the proof  of (2.33) and (2.32). 

A. Greven 

3. A harmonic function and an associated martingale 

The basic idea of our approach to Theorem 1, 2 is to use martingale central limit 
theorems, and potential theoretic arguments in order to study 5Y(n-rk , )  and exit 
times from intervals as n ~  oo. 

For  that purpose we shall first construct a harmonic function h for the kernel 
fi(x, y) (unbounded of course !), so that Y , :=  h()?,) is a martingale. The next step 
will be to analyse h (x) as Ix[ ~ oo in order to be able to use information about I1, to 
conclude something about J?.. Since the ideas behind these constructions work in 
more general situations, we state and proof  first general results: in Sect. a) existence 
of a suitable h, in b) asymptotic properties of h and then we show in Sect. c) how they 
apply in our situation. Essential is the proper use of the potential theory for discrete 
time Markov chains. 

a) Construction of  an unbounded harmonic function for certain Markov chains. 
We start by proving a crucial fact about Markov chains on • (our Prop. 3). Here we 
use many ideas from [4] and [12]. We shall use especially the fact that a recurrent 
chain with kernel P on Z has up to multiplicative constants a unique o--finite positive 
invariant measure H and the equation (.)  ( I -  P)  = fix - 3y has a solution bounded by 
multiples of H and all solutions of that kind differ only by a multiple of H (see for 
example [4], Theor. 2). Furthermore we shall need the potential kernel K(x, y) 
constructed in [12]. 

Consider a Markov kernel P on ~ with the following four properties: 
(i) P is recurrent and irreducible. Fix an positive a-finite invariant measure H. 

(ii) Let t/be a solution of the Poissonequation (.)  ( I -  P)  = 3 x - by (x > y), which 
is bounded by a multiple of the invariant measure H of the chain. 

Now we require that for each pair x,y exist a+,a - sIR such that: 

(3.1) lim (tl(z)-a+H(z))=O lim (tl(z)-a-I-l(z))=O. 

We shall denote by ax, y,A+ ~,y the numbers defined by (3.1), when t/is the minimal 
positive solution of ( . ) ( I - P ) =  6 x - 6 y  and by a + y, a], y the equivalent numbers if t/ 
is choosen as (6 x - 6y)Kwhere Kis a potential kernel of P in the sense of [12]. Note 
that a + y-a~. y is independent of the choice of K and equal to ~+ y -  ~72. r. 

' / /  ' , ] 

(iii) [cxy denotes the resistance between x and y '  2 - - - - - -  
\ ' p ( z , z + l ) }  

(3.2) ~ P(x,y)cx, y<oo VxeZ, ~ P(x,y)lYl<Oo VxeTZ, 
Y Y 

(iv) The invariant measure H ofthe chain P is bounded by a positive multiple of 
the counting measure from above and from below. 

Remark. Note ax, y+'- depend on the choice of H! 
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Proposition 3. I f  P is a Markov transition kernel on • which fulfills (i)-(iv) above then 
there exists a (unique)function h : Z ~ ] R  such that for a given choice of  1-1: 

(3.3) (~) P * ( h ) = h  

(/~) h (0) = 0 

(7) h(x + l ) -h (x )=(a~+l ,~ -a~+l , x )  = ^+ + (ax+l,x-ax+l,~).  

Remark. The point of  this construction or choice ofh  is the representation (?) ! It is 
based on the "renewal property" (ii). We do not use (?) as definition since the h we 
construct exist also in cases where (ii) does not hold, so that we have ~) t )  but not ?) ! 

q _  b _ _  

Remark. We have not yet excluded that h = 0 that is a~+ 1,x - a~+ 1,~- 0 for all x e 71,. 
We will show in Proposition 4, 5 that for our application h # 0. 

Our method of proof  allows to show with minor modification the existence of  
certain subharmonic functions, which also allow a representation in terms of a~, y. 
We shall only prove Proposition 3 in detail. 

Proposition 3'. Suppose (i)-(iv) of  Proposition 3 are fulfilled. We can construct a 
function f > 0 such that: 

(3.4) (P* - I ) ( f ) = 2  "1{o} ( f  is subharmonic) 

f(0) =0, 
A+  A - -  

(3.5) f (x)=(a~,o+ax,  o)C f ( x )=c(a+o+a~,o -2 (K(x ,O) -K(O,O) ) )  

f (x + 1) - f  (x) = c (a++ 1, ~ + a;+ 1, ~ - 2 (K(x + 1, O) - K(x, 0)) c-1 ) 

( f ( x +  1 ) - f ( x ) )  '~ + - ^+ ^- c(a~+l,~- ax+ 1,~) = (a~ + 1, ~ -a~+a,~)c 
X ~ q - o O  

f ( x -  1 ) - f ( x )  ~ - + ^- ^+ c (ax-x ,~ -a~- l ,~ )=(a~- l , x -a~- l ,~ )c  
2 r  ~ - -  o 0  

c=n(o) .  

Furthermore we can write f in the form: 

(3.6) f = f +  + f -  f + ' - > O  

( P * -  I ) ( f  + - )=  l{o} 

f + (x)=a+o c f - (x)=a~oC. 

Proof o f  Proposition 3. First we shall define a sequence of functions ( h , ) n ~ ,  
harmonic except at the two points - n ,  n. And later we shall show that this sequence 
has a limit h which has the desired properties. Step 1 introduces h,, step 2 derives 
properties, step 3 yields h and step 4 finally shows that h is harmonic. 

Step 1. The sequence h, is uniquely defined through the following properties: 

(3.7) P*(h.)  - h ,  = ~{-n}- ~{n} ~{a} = l{a}" (//(a)) -1 

h.  (0) = 0 

h .eL~176  
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n(x) 
To see this define a Markov transition kernel P(y,x)=P(x,y)  - H ~ '  where H 

is a a-finite positive invariant measure of P (which exists due to the fact that P (., .) 
is recurrent, see for example [4]). 

This kernel/5 is recurrent (easily checked using (iv) and the Lemma of Harris 
quoted in [4]) and the same measure El is an invariant measure. Define for given 
function f a new function f ( x )  = f ( x )  (El(x)). Then we can rewrite (3.7) as follows: 
(use (iv)!) 

(3.8) (h , )P-h ,  = 5~_,)- 6~,) 

~.(0) = 0 

h, dH < C '  counting measure. 

Now standard theorems about solutions of the Poisson equation yield the assertion 
that h, is determined by (3.7). (See for example Greven [4], Neveu [10]). 

Remark. In the same fashion we can turn a Poissonequation with P for a measure 
~ ' ( q ) ( I - P ) = 3 ~ - 6 r  into one for functions and for/5:  

(3.8') ( I - P ) ( ~ ) = l ~ - i / ,  ~, f ( . ) = f ( . ) ( I I ( . ) )  -1, f ( . ) = f ( . ) E l ( . ) .  

This fact will be used later frequently. 

Step 2. Now we shall derive a bound on sup []hn(x)[] and a representation for hn(x). 
n 

For this purpose we introduce first some notation: Let t /be the minimal positive 
solution of the equation ( - ) ( I - P ) =  6 x -  60. There exists a number b, such that: 
(see [4]). 

(3.9) t /<bx . /3  

where H denotes the invariant measure normalized with/3({0}) = 1. We shall see 
below that this allows us to estimate Lh,(x)l as follows: 

(3.10) Ih,(x)l <2b~(/3(n) v / 3 ( - n ) )  ( i n f  (/3(x))- 1~. 
\xeTZ / 

To prove this we calculate as follows: (The forth equality uses a basic property of 
potentials see [12], p. 109). 

(3.11) h, (x )=h, (x) -h , (O)=(h , ,6~-6o)=(h , ,  -~IP+tl) 

= - ( P *  (h.) - h . ,  t/) = ( f ( .~-  f~_./, t/) 

= ~ ( { n } ) ( n ( n ) )  - 1  - ~ ( {  - n } ) ( n ( -  n ) )  - 1  

So that by (3.9) and by El(x)>->C -1 >0 we can conclude from (3.11): 

(3.12) [h,(x)l <= C(~l( {n}) + tl( { -n}  )) < Cb~(El (n) + El ( -n )  ) 

<2b~C(H(n) v n ( - n ) ) .  

Step 3. By our Assumption (iv) we can conclude from (3.12) that: 

(3.13) sup []h, (x)[] < C2b~ sup (El(n)) < oo. 
n n 
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This means that we have via assumption (ii) and (3.11): 

(3.14) hk(X) ~ h(x) V x ~ Z ,  Ih(x)l<b~C Vx~2~, 
k---r oo 

(3.15) h(x)=(a+o-a~,o)=(d+o -d~,o) 

h ( x + l ) - h ( x ) -  + - ^+ ^- - (a~+ 1,~-a~+1,~) = (a~+l,~ -a~+l,~) .  

The last equality proves the assertion (7). 

Step 4. In order to prove the remaining point (cr we observe that due to 
P * ( h , ) - h , =  ~_ ,} -~+,}  and (3.13) it suffices to show that: (apply dominated 
convergence theorem) 

(3.16) ~ P(x,y)lh(y)l < ~ Vx~7] 
Y 

P(O,x)b~< ~ .  
x 

Note that the second inequality implies the first one. 

Since ~/ is the minimal positive solution of the Poissonequation we obtain 
>=o!) 

(3.17) bx< inf / / (x)  ~ sup[tt,,,_~(z)] Vx>O. 
0 < y < x  z 

On the other hand we shall show below that the following estimate holds for the 
effect r/y,y_ 1 of  the (~y,by_l)-Fi l l ing scheme (=minimal  positive solution of  
( . ) ( I - P )  = by-by_ 1) which amounts in this case (discrete state space) to saying 
qx, x_l(A)=E@(visi ts  of  (Xff))keN to A before first reaching ( x - l ) )  ([4], 
Lemma A) : 

(3.18) ~l,,y_ t (. ) < (-l ~ (  (yY~ Y ~ ) )  ) (lI ({y}))- l H (. ) . 

This implies due to assumption (iv) together with (3.17) that: 

�9 _ ~- <const'Cxo. (3.19) bx<= c ~ p ( y , y _ ~ ) j  , 
0 < y < x  

Now our assumption (iii) gives immediately the assertion (3.16). 
In order to prove (3.18) above, note first that: (Lemma of M. Kac quoted in [4]) 

(3.20) E( @ visits of Xff } in A before the first return to x ) = / I ( A )  

and 

(3.21) 

: 

E(@ visits of X~ x~ to x before a jump from x to x - 1  occurs) 

1 - P ( x ,  x -  1) 
P(x, x -  1) 
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Proposition 

a) IfE~ 
we have 

(3.22) 

Both (3.20) and (3.21) together give immediately the desired inequality using that 
r/x,~_ 1 (A) is equal to the expected number of visits in A starting in x before first 
hitting x - 1. 

b) Asymptotic properties of harmonic functions. In this section we prove a result 
about the asymptotic behaviour ( ] x l ~ )  of harmonic functions as constructed 
in Proposition 3. Here we consider a general class of random transition kernels 
with certain properties. That this class contains our kernels fi(x,y) is nontrivial 
and shown in part c. The strategy in this section is to compare h(x) with the re- 
sistance Co,~ employing the representation ofh  given in (3.3) (7). Via (3.5) line three 
this yields automatically information about the subharmonic functions f with 
( P - I ) ( f )  = 1~ too. 

in this section we consider an ergodic stationary process with values in M 1 (TZ), 
which is denoted by {P(x, ")}xeg. We assume that Y(P(x ,  .)) = S (P(x ,  - .)). As- 
sume also that for almost all realizations the assumption (i)-(iv) of Proposition 3 
are fulfilled, where (iv) holds uniformly in co. Choose the o--finite positive invariant 
measure which is only unique up to multiplicative constansts / /  for each co such that 

lim F/ (x)= lim II(x)= 1. Now it makes sense to talk about E,o(a~,o), Eo,(a~,o), 

since we fixed / /  and we fixed it such that (II(x))x~z is stationary. Assume 
furthermore E~,(a~,o) 4: E~(a~,o). 

Denote by h the harmonic function constructed in the last paragraph, 
respectively f the subharmonic function constructed in Proposition 3' with 
( P * - I ) = 2  1~o~, and c~,y is the resistance between x and y ((2.29)). 

4. In the situation described above the following holds.. 

~ oo then wefindcslR + independentofcosuch thatforB=ch 

~(x)/x - ~  1 co-a .s .  
Ixl-* co 

/ \  

b) I f  E ~ o ( ~ )  = +oo we consider the case where the following additional 

assumptions hold: 

(3.23) { ~e (co,x/Ixl~) } x~r~ is weakly relative compact with 
only nontrivial limit points. 

(3.24) P(x,y+z)<=P(x,y)P(y,y+z) co-a.s., for y > x ,  z > 0  

o r y < x ,  z < 0  

(3.25) P is reversible with respect to the invariant measure 1-1 co-a.s. 

Then h respectively f have the property: 

(3.26) {~(h(x)/Ixl=)}x~Z'~ is relatively weakly compact and all weak limit 
(3.27) ( ~ ( f  (x)/lxl~)}x~Z) r points are nontriviaI. 

f(y)4=O for y~O co-a.s. 

Note that in b) h(x)x -~ does not converge co-a.s. ! 
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Proof o f  Proposition 4. a) The general strategy is to use 3.3 (?) to represent h in terms 
+ ' -  and then to apply the ergodic theorem. Here are the details: of the ax+l,x 

Step 1. Due to a result of Neveu [12] we can construct a potential kernel K(x, y) for 
P, that is we have especially 

(3.28) (K(x, . ) - K ( y ,  . ) ) ( I - P ) = 6 x - 3 y  K(x, . )<~'11  for some c ~ N  + . 

Due to our assumption (ii) we have then automatically: 

(3.29) [(K(x, z) - K(y, z)) - a + y 11(z)] --* 0 
z---~ § oo 

[ (K(x , z ) -K(y , z ) ) -a2 , , r l ( z ) ]  --* O. 
Z - - - ~  - -  O 9  

With the representation for h derived earlier in (3.3) (y), we know that whatever 
~r-finite invariant measure we select, h has the property: 

(3.30) h ( y + l ) - h ( y ) = c ( a + §  for some eelR.  

We can represent h(y) therefore in the form: 

(3.31) h(y)=c  ~ (ax+,~_l-a~,~_l) 
0 < x < y  

Note that a +, a -  depend on the choice of / / .  The point now is that 11 is choosen here 
in a translation invariant fashion. This is the case because we have choosen 11 for 
each co such that lira sup 11(x) = lim sup/7(x) = 1 and then we have that (/7(X))x ~ z is 

stationary and ergodic (for the latter use (3.20)!). So having chosen 11: 

( 1 ) stationaryergodic. (3.32) h (y )=  ~ (a~+,~_~-a~-,~_l), ~ x~Z 
O < x < y  

The + (ax_l, ~-a~_l,x)x~Z form a stationary lR-valued process, since the difference 
a~_l ,x-a~_l ,  ~ +  - is independent of the choice of the special function in the 
construction of K(. ,  .) and since {(11(x))-l)x~Z is stationary! (See [12] or [4], 
Theor. 2, for the fact that two admissible solutions of the Poissonequation differ by 
a multiple o f /7  only !) 

The underlying process {P(x, ")}x~z is ergodic so that the sequence 
(a~ +- ~,~-ax--1, ~) is also ergodic, since the tail field of that sequence is contained in 
the tailfield of {P(x, .)}x~ z. The proof of that fact is based on an identity we shall 
prove later namely (3.53). The details are straightforward and omitted here. Note 
that by assumptions Eo~(a~,o)=~E,(a~,o). 

Provided we can show that Eo,(la~,o-a~,o[)<~ , the ergodic theorem for 
stationary processes and (3.32) tells us that: 

(3.33) h(y)/y ~ Eo~(a~,o-a~,o)=~O og-a.s., q.e.d. 
y--~ + ~o 

Step 2. In order to verify that the expectation above is finite we shall use the 
following fact, which can be found for example in [4], Theorem 2: Ifr/x,y denotes the 
effect of the 6x, fy-Fillingscheme (or equivalent the minimal positive solution of 
( . ) ( I - P ) = 6 ~ - f y )  then we have: 

(3.34) rlx,y-l-rly, x=ax, y .11, ax, yE lR + . 
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This implies with (3.1) that 

(3.35) d+x+d~,x<2ax,  y (for notation see (3.1)). 

With the same considerations as in (3.18)-(3.21) in the proof of Proposition 3 we 
derive the estimate: 

c / _ 1 1 "~ (3.36) ai,o < . ~ 0 0 ~ + ~ )  for some CelR + independent of co. 

Now (3.35) and (3.36) yield immediately that E~(]a~, o -ai-,ol)< 0% since a ~ o -  a~ o 
- a + ^- and by definition fi~o, fii-,o > 0 and Eo,((P(O, 1))- ~) - -  1 , o  - - a l , o  

=E~((P(1, 0)) - t )  < c~ by assumption. 
Y 

b) The starting point here is again the representation h (y) = ~ a § ( x,x-1 -a2 ,~-1)  
0 

obtained in (3.32). The task is to relate the sum on the right to the resistance between 
0 and y (which was denoted by co,y ) and then we can use Proposition 2b in order to 
obtain our assertion. 

Step 1. We saw already that (see (3.35) and (3.36) above) 

(3.37) ~ + [ ~ (  1 1 ) 
( a ~ ' ~ - i - a ~ ' ~ - l ) < C "  i P ( x , x - 1 )  ~ P ( x - I , x )  

= C(eo,y+Cy,o), with C independent of co. 

Since on the otherhand the invariant measure/7 is bounded below and above by the 
counting measure and P is assumed reversible with respect to/7 in this part we have: 

(3.38) + (a~,,~-i < C -  =C"  - P(x ,  x -  1) c~ 

C independent of co. 

Step 2. It remains to obtain a corresponding estimate from below. It suffices to 
know something for y very large, since we want only to assert something about the 
behaviour of h(y) /y  ~ for y ~  oo. 

We know from the ergodic theorem that for all s > 0 and e > 1 the following 
holds: 

(3.39) P ( x , x - 1 )  l{e(x,x-l)>=~} Y-~ ~ 0 co-a.s. 
x = O  y--~ or 

so that it suffices to prove for some s > 0 an estimate of the form: 

y Y 1 
(3.40) Z + - (ax '~- i -a~"~ ' - l )>s  ~ P ( x , x - 1 )  l{p(x,x-1)Z~}, c>O 

X = 0  X = 0  

This will be done in the next Lemma below. 
First we finish the proof of Proposition 4 assuming (3.40) to be true. Consider 

first part one of assertion (3.26) dealing with h. Having (3.38) and (3.39) combined 
with (3.40), the assertion (3.26) follows immediately with (3.31) from the 
assumptions about the behaviour of the resistance in (3.23). For the first part of 
assertion (3.27) about f we use (3.5) instead of (3.31). 
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The second par t  ( f ( y ) > 0  for  y + 0 )  works  as follows: 
The relat ions ( P * - I ) ( f ) = 2 1 ~ o  ~, f__>0 imply tha t  either l~x_<o~f=0 or:  f ( y )  

= 0 ~ y  = 0. l~x ~ o ~ f - 0  would however  imply according to the relat ion (3.5) and 
(3.40) tha t  P(x, x + 1) > 6 > 0 Vx e Z -  for some 6 > 0, where 6 can be chosen (due to 
the ergodicity of  {P(x, ")}xEZ) independent  o f  co. This in turn  means  that  

E,o ~ oo in contradic t ion to our  assumption.  Therefore  (3.27) par t  two 

holds. 
We turn  back  to p rov ing  (3.40). It  suffices to prove:  

L e m m a  3.1. Suppose that a transition kernel P(x, y) fulfilts the conditions (i)-(iv) of 
Proposition 3 together with the followin9 conditions for some c e ~ + : 

(3.41) ~ P(x,x+_-k)<cP(x,x+_l) V x e Z ,  
k = 2  

(3.42) P ( y , x - l ) / P ( y , x ) < c ' P ( x , x - 1 )  V y > x  

P ( y , x ) / P ( y , x - l ) < _ c ' P ( x - l , x )  V y < x ,  

Then we have the followin9 estimate: (e,c depending only on c and inf II(x))  

1 
(3.43) 3 : + c>o (a~'~-i - a ~ ' ~ - l ) >  c" P ( x , x - 1 )  l{p(x,x-1)<<_~}l{p(x-J,x)<=~}. 

2>0 

Remark. (i) In our  case P ( x -  1, x) < CP(x, x -  1) as ment ioned  in (3.37) before!  
(ii) The assumpt ion  (3.24) of  Proposi t ion  4 implies of  course (3.41), (3.42). 

Proof. First  r emember  tha t  + - ~+ ^- ax, ~ _ a - a~, ~ _ 1 = ax, ~ _ ~ - ax, ~ _ 1 where the ^-quantities 
are derived f rom the minimal  posit ive solution of  ( . )  ( I -  P )  = 6~ - 61 _ 1. Denote  this 
solution again with t/~,x_ 1 ( ' ) "  Then  we know t/~,x_ 1 ( A ) =  E4~ {visits o f  Xk ~l to A 
before reaching ( x -  1)} ([4] I, L e m m a  A). Therefore :  

(3.44) t/~,~_ 1 (x - 1) = 0. 

To  prove  (3.43) we shall proceed in two steps: first est imate q~, ~_ 1 (x) f rom below 
and then in the second step use the fact tha t  qx,~_ ~ (x - 1) = 0 to obta in  a result  abou t  
(a+~-1 -d~ ,  ~_ 1) by passing to the dual  chain and applying the opt ional  s topping 
theorem for  marginales.  

Step 1. Let (X,),=o, 1 .... be the M a r k o v  chain with transi t ion kernel  P. With  
P r o b ~  ( . )  we denote  the probabi l i ty  measure  for  the corresponding process start ing 
in point  x. 

In order  to write down our  est imate we shall need the following quant i ty :  

(3.45) fl(x) : =Prob~x~ (The chain X, hits ( x - 1 )  before 

x and X1 r { x -  1, x}).  

Then with the same a rgument  as in (3.19) to (3.21) we have:  

- p ( x ,  x -  ~ ) -~ (x )  1 - p ( x ,  x -  1)~(x) 1 
(3.46) t/~,~_ ~ (x) > 

~(x)+p(x,x-1) p(x,x-1) ~(x)' 

with T(x) = (fl(x)/p(x, x -  1)) + 1 
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Suppose we can show that" 

(3.47) 7(x) < K  

then we can write for  some e s (0, K - 1 ) :  

Vxe7Z 

- K p ( x , x - 1 )  I 1 
- - > O  (3.48) r/x'~-l(x)>=l p ( x , x - l )  K = - p ( x , x - 1 )  l{p(x,x-1)<=~} 

The estimate on  7(x) we obta in  as follows: 
oo 

The fact that  ~ p(x ,x -k )<=cp(x ,x -1)  leaves us with finding a bound  
k = 2  

f rom above on 7' (x) : -- fi'(x)/p (x, x - 1) with: (denote with B x = {X~ ~ > x before it 
hits x - 1  or x}) 

(3.49) [3'(x) :=Prob(x  ) ((the chain X, hits ( x - l )  before it hits x)~Bx). 

In order  to get control  over this quant i ty  we introduce:  

(3.50) cy = Prob{x} (Bxn(the  last point  before X, hits { x -  1, x} is y)) .  

F rom here we obtain our  assertion (3.47) by applying to the relation above our  
assumption (3.42) to obtain:  

P ( y , x - 1 )  < , 
(3.51) fl'(x)< ~ ey _ c p ( x , x - 1 )  

y>=x+l P(y,x) - 

Step 2. Having (3.48), we are left with the task to estimate ( d ~ _  1 -dZ,  x-1 )by the 
quant i ty  r/x, x - 1 (x) - r/x, x - 1 (x - 1 ) = r/x, x- 1 (x). Compare  (3.44)). 

/ 

For  that  purpose we define the quantities: ()Tk: process with kernel P(x, y) 
n(y)~  k 

= e ( y ,  x)  j 

(3.52) /~y(x, x -  1)= Prob{y~()(k hits {x, x - 1 }  first in x) .  

Since r/x,x_ ~ is the minimal positive solution for the Poissonequat ion ( . ) ( l - P )  
- - -3x-Sx_l ,  we can obtain with the same manipulat ions as in (3.7), (3.8') an 
Poissonequat ion in terms of  P. Then we have by the well known optional  stopping 
theorem for martingales:  

(3.53) ^+ ^- (ax,~_ 1 - a x ,  x_l )  = lim (/q+r(x, x - 1) 
y'-* oO 

- B _ , ( x , x -  l ))n~,~_~ ( x ) ( n  (x))  -~ . 

If  we plug (3.48) in (3.53) and use/-/(x) =< Cwe see that  our assertion (3.43) is proved 
if we can show that :  

(3.54) ( f f I+,~(x,x-1)-n_~(x,x-1))>=6>O 

provided:  P(x, x -  1) + P(x - i, x) <= ~. 

But this is an immediate consequence of  our  two assumptions (3.41), (3.42) and 
assumption (iv) in Proposi t ion 3 because they imply for sufficiently small 
(depending on c in (3.41), (3.42)) that  for some 6 > 0 :  H_~(x ,x-1) )<=l /2-5 ,  
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/~+ o~ (x, x-1)__>(1/2)+6. The straightforward details are left to the reader (com- 
pare technique leading to (3.51)). 

c) The Application to the Case o f  a Walk Restricted to a Random Set. In this section 
we shall investigate the question whether our random kernel fi(x, y) introduced in 
paragraph2b)  fulfills the assumptions which were needed to construct the 
harmonic function h (of Prop. 3) and whether Proposition 4 on the asymptotic form 
of these functions is applicable. 

Proposition 5. Consider our original kernel p (x, y). Assume that we have in addition 
that: 

(3.55) Ixllim-* ~o (Ix~ l~ (0' x))  > - ~  

Denote by Y the point which is mapped onto x relabelling A with Z. 
Then we have: 
The {fi(x, ")}x~Ttform a stationary and shift ergodic process with the following 

properties: 
(1) fi(x, y) satisfies the assumptions (i)-(iv) of  Proposition 3 for almost all 

realizations of  the random set A. 
(2) We can choose a reversible invariant measure with weights ~(x) 

/ x 

= (  ~ p(~, y ) )  and with that choice the process {~(X)}x~zis stationary ergodic with 
k, y e A  / 

+ - ^ < , ,  ^ 

Eo (al. o) 4: E~, (al, o) and p (x, z) = p  (x, y)p (y, z) for z > y > x. Therefor ,s Prop. 4 
applies to f i( . ,  .). 

,ha,  e . h e r  + or Corollary for some r .  

Then for fi(x, y) exists for almost all co an harmonic function h,o ( .)  with h,o (0) = O. It 
is determined uniquely by requiring (3.3) (7) and choosin# I I (x )=d(x) .  It has the 
property that Proposition4 holds. Furthermore {xl Iho(x)[<2} is compact for 
every 2 ~ IR. 

In the sequel we shall assume that we have choosen this harmonic function h for 
each co and in the notation we suppress the dependence on co for convenience. 

Proof o f  Proposition 5. The fact that {13(x, ")}xsz is stationary follows fromp(x,  y) 
= p  (0, y - x )  and ~ (A - x )  = ~ (A), (A = random set). The ergodicity follows from 
the ergodicity of {1A(X)xeT/} and p(0, y) ~ 0. 

We startprovin9 assertion (1). (i) Sincep (x, y) > 0 it is clear that/~(x, y) > 0 on A x A 
and thereforefi(x, y) > 0 on Z x Z which implies of course thatfi( . ,  .) is irreducible. 
In order to show that/~(.,  .) is recurrent we observe first that this is the same as 
showing thatf i( . ,  .) is recurrent. Since bo thp( . ,  .) andfi( . ,  .) are reversible we can 
apply the Nash-Williams recurrence criterion, ([11]), to show that /7(., .) is 
recurrent. 

Define 

(3.56) a(x, y) = 1 "p(x, y) 

a(x, y) = e (x)fi(x, y) = e (x) 1 a (x)p (X, y) 1A (Y) 

and note that c~___<a. 
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Then the Nash-Williams criterion tells us that the recurrence o fp  (-, .) implies 
the recurrence of p ( . ,  -). (Compare [11 ].) 

(iv) Note that the assumption p(x ,x)>6>O is no lost of generality here 
since p is kernel of the jumpchain of a continuous time process. We have then the 
estimate: 

(3.57) O<6=p(x ,x )<e(x)<l  Vx~A ,  lim e (x )=  lim e ( x ) = l  a.s. 
X ~ - - a o  X--* + ao 

which proves immediately the assertion. 

(iii) As long as E~ ~ )  < oo we know that for almost all o), we have for o) 
fixed: 

(3.58) Co, x < const "lxl 

and the assertion is therefore implied by our assumption ~ p ( x ,  y)y2 < oo. 
Y 

In the case where Eo, -- + o% we know from our additional assumption 

(3.55) that: 

1 ^ <; (3.59) p(O,x)=c o ~ V~<oe .  

So that in the cases where r < o% Proposition 2 tells us that the assertion holds. 
(Since then Co,x=0(x ~) for some ~ > 0, compare Prop. 2, (2.31).) 

(ii) We fix co throughout this section. We observe first that by the same 
manipulation as in (3.7)-(3.8'), we can (by introducing the dual chain/5 again) 
transform assertions about solutions of ( . ) ( I - P ) =  f ix-~r  into assertions about 
(/5* - I ) ( f )  =9. 

We shall need the following quantities for the dual chain (J?k) (compare (3.52) 
for the definition): 

(3.60) /qr(B, z)" =P rob  (J{ffl hits B first in point z). 

We see (using the translation mechanism mentioned above) that the convergence of 
(K(x, z ) - K ( y ,  z))(II(z)) -1 for z--* + 0% - o o  (here K ( . , - )  is the potential kernel 
for P)  is implied by showing that the bounded solutions f of ( / 5 " - I ) ( . )  
= l~x~- T~r~ ( j(x)  :=  9 (x)(fI(x))) have the property that f ( z )  converges as z ~  + oo, 
- oo. This in turn is equivalent to showing (by the martingale optional stopping 
theorem, see (3.53)) 

(3.61) /lr(B, z) converges for y ~  + oo, y--+ - oo for finite sets B. 

This last fact is implied by a Coupling-result. Suppose we can define ()?ff- x})k e ~ and 
(J?ff~)kE Z on a joint probability space such that with S, Tdenoting the hitting times 
of B for the two processes: 

Prob(X} = X r  ) ~ 1 uniformly i n z < 0  (3.62) -{Y~ -~Y-~ _ 
y ~ - - a O  

then (3.61) would hold. 
It is known that (3.62) above holds for classical random walks ([4] Theorem 1 

and Corollary or [13]). In order to get it for our random walk simply note that we 
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can find, for almost all realizations of A for every n, m s N points zl, z 2 such that: 

(3.63) ;gc~(zl-n, z l )~A,  7Zn(Zz,Z2+n)gA, zl<=-rn and z2>m. 

So that we can deduce (3.62) from the result for classical random walks with 
standard analysis. 

Next we prove assertion (2) of Proposition 5. The first part of assertion (2) of 
Proposition 5 is trivial due to Proposition la, so is the subexponentiality of ft. The 
proof  of the second part of assertion (2) about + Eo(al,o-aZ, o) is somewhat more 
involved, even though the fact itself is intuitively obvious. We start for a warm up 
and for showing the spirit of  our approach by showing that 

(3.64) Prob,o(d~, o > 0) > 0 (for notation see Prop. 3') .  

For  that it suffies to consider co such that [ - n ,  n] _cA, where we shall choose n in a 
minute. 

For a random walk on 2~, which is recurrent and fulfills ~p(x,  y)(y)a < ov we 
y 

have due to a result of Ornstein [13] that ~1+o > 0 = a~0. The ~ indicates that we talk 
about the unrestricted walk p(x, y) here rather than about 13(x, y). It is now of 
course standard analysis to show that for an e > 0 we can choose n such, that (r/is the 
minimal positive solution of (-) ( I -  P)  = 61 - 6 o again). 

(3.65) lim (tl(x)(H(x))-l)>d~,o-e for co with [-n ,n]~A.  

This proves (3.64) by choosing e = 1/2d~, o . Now note that (3.64) implies according 
to Proposition 3' that f +, f -  constructed there are not identically 0, for co with 
[-n,n]~_A. 

Now we start with proving Eo~(a~,o)+Eo~(a~,o). We do this by showing Eo(a(,o) 
=E~,(a/,0) leads to a contradiction. 

Step 1. We know Eo~(a~,o)=Eo(a(,o) implies ((3.33)!) that h(x)=o(lx[) co-a.s., 
with h defined through (3.3). Therefore with f defined by (3.5) in Prop. 3' 

(3.66) Eo(a~,o)=Eo~(a~,o ) implies: f(x)=o(lx]) co-a.s. 

since the representation formula (3.32) for h implies together with (3.5) that 
f(x)~c[h(x)[ as ]x]~oo, with 1 - > c > 6 > 0  uniformly in co. 

We shall show now that forp (x, y) =p(y, x) and ~p(x,  y)y2 < oo (note d =  1 was 
Y 

already used in (3.64) above) the kernel p(x,y) has the property that the 
subharmonic function f from (3.5) fulfills: 

(3.67) f (x) > c (co)[x[, Prob (c (co) > O) > O. 

Of course (3.67) and (3.66) together show that E,~ (a~, o) = E,o (a~, o) is impossible in 
our model. 

Step 2. It remains therefore to show that (3.67) above is true. For  that purpose 
observe first that for given n ~ N the points x such that [ x -  n, x +n]  c~Z _~ A have 
positive density. 
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Since ~fi(x, y)y2 <=c ~p(x,  y)ya < oo, we can choose for e fixed m(n) such that 
Y 

for n>n o and some ae(0 ,  1): 

^ 
(3.68) ~ p(O,m(n)+k)<~2 and m(n)<=an 

k > O  

(useChebychev:P(X>=n)<n-2~xZP(dx)=~ 

The idea is now to show that f ( . )  grows at least linear in [x - n + m, x + n - m], 
which would immediately give (3.67). Note first that for 6 > 0 small enough and 
m(n) choosen such that (3.68) holds 

(3.69) lim Prob [.1?~ x} makes a jump >m(n) before time C]rt 2] < 1. 
n - - *  oo 

Now fix n and therefore m (n) such that the probabilities above are less than 1 - e '  
and (3.68) holds. We write m for re(n) now. 

If (J(~X}) doesn't make jumps > m during a time period it looks like a symmetric 
random walk till it leaves [ x - n  +m, x + n - m ] .  It therefor has the property that 
(I: = [ x - n + m ,  x+n-m])  

(3.70) E(Ti)>constn z where Ti=inf(kLX~X}r 

This implies that j~x} needs in the average a timespan bigger than c(co)K 2 to leave 
[-K,K], where c(co) depends on the density of points such that [x-n+m, 
x +n-rn]~_A. 

We shall show that this implies that: 

(3.71) d+o+dZ, o>COnStc(~o)[x[ or a+x,o+~7_~,o>COnStc(co)lxl 

which finishes the proof  of (3.67) using the representation in Proposition 3'. 

Step 3. The last implication can be seen as follows : The chain starting in 0 will have 
the property that (by (3.70)) it visits points in ( - K ,  K) in the mean at least c(co)K 2 
times before leaving this interval1. Denote by 4 the minimal positive solution of: 

(3.72) ( .)  ( I - /~ )  = 260 - (6_K+ 6K). 

Note that 4 is bigger than the minimal positive solution of ( . ) (1 - /3 )  
>26o-ool~(_~c,K)}, so that due to the remark above we have: 

(3.73) 4((-  K, K)) > c(co) K z . 

Due to the fact 0 < c < H < ( a n d  4 ( ' ) (H( . ) ) -1  is maximal at 0, we can conclude: 

(3.74) 4 (0) > const �9 c (e)) K. 

Now consider 41,42 the minimal positive solution of the equations ( . ) ( 1 - / 3  ) 
= 60 - cSK (c5 o - cSK). Since 41 + 4 z is a positive solution of (3.72) we conclude from 
(3.74) that: 

(3.75) 41 (0) + 42 (0) > const c (e)) K. 
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Similar to the procedure in (3.52)-(3.54) we obtain then again with the martingale 
optional stopping theorem: 

(3.76) (d[~,o+d~,o)+(d+_K,o+d-K,o)>>_constc(co)K. q.e.d. 

Wedon'trepeatthedetailshere.(Use/c~+~o,-.+~lim lim /]y({K, 0 } , 0 ) = l . )  

C. Proof of Theorem 1 to 4 

The Sects. 4, 5, 6 apply our results from Sect. 3 to the chain ( ) ? k ) ~ "  They contain 
the important results we shall need in Sect. 7 to prove Theorem l to 4. Section 4 
aims at Theorem 1, Sect. 5 at Theorem 2 and Sect. 6 at Theorem 3. The proof of 
Theorem 4 is a byproduct of the results we have by then. 

4. Asymptotic behaviour of the associated martingale: diffusive case 

In this chapter we consider the case E(fi(0, 1))-~< ~ and we apply first the 
martingale central limit theorem to study h(J?k), the associated martingale of our 
random walk (J(k) with h as introduced in Sect. 3 (Coroll. 5), and then we derive the 
implications for the jumpchain of our original walk X(t). 

Notation. By B~ (t) we denote (in this section only !) Brownian motion with diffusion 
constant ~r 2. We shall write Y(s) for Ytsl, in case we regard a discrete chain as a 
random variable with values in D (IR), the space of right continuous functions with 
left limits. With ~(x) we denote again ~ p (~, y)1A(y), where Y corresponds to x 
when relabelling A with 7Z. y 

Proposition 6. Let h denote the harmonic function for fi(x, y) constructed in Sect. 3. 

Suppose thatE~, < oo. Define Y,=h(X,)anda 2 =Eo~ h2(y)fi(O,y)~(O) . 
Then.. 

z a s ,  

~(x, y) : = ~(x)~(x,  y ) .  

(4.2) s  ,co),-~o~=:> ~#(0, 1) co-a.s. 

Corollary 6. Assume E ~ , ( ~ ) < o o  then w e  have for ~=(Eo~( la~ , ,o - -a~ , ,o l ) ) -  l/2 a 
< oo~ ,Wt t , ,  l j /  

(4.4) 5 e ( ( !  X(n2t))t~IR+Ico).~((B~2(t))t~IR+ ) co-a.s. 
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and for the jumpchain (Xk)k~N of our original Markov process, (4.4) holds with 
~2 where 

(4.5) 6=q-16 (a=a(q,p(O,.))!). 
The first assertion of the Corollary is seen by combining Proposition 4 ((3.22)), 5 
and 6. The second assertion follows from the observation that we have the following 
relation between k k and X k : Xk = n<=~Xk equals the n-th point in A which is bigger 0, 
which yields the assertion using the fact that the gaps between points in A are 
geometrically distributed (parameter 1 -  q). 

Proof of Proposition 6. The process (Y,)n ~ N is for every co a centered martingale with 
respect to the a-fields d ((){i)i__< k), k = 0, 1 .... To prove the Proposition we shall use 
the standard central limit theorems for martingales. 

Step 1. Therefor an important quantity is the conditional variance and quadratic 
variation: 

(4 .6 )  E ( ( Y n +  1 - Yn)2]ff~-n ~---X, co) = Z  ( h ( x ' ~ - y )  - h ( x ) ) 2 [ 3 ( x ,  x - - ~ y ) .  
y 

Note that this functional of the medium has a stationary (in x) distribution 
(Prop. 4a) which proves (4.1) via the ergodic theorem, if we can show it is integrable 
(see step 2). 

We can write the conditional quadratic variation of the rescaled martingale in 
the form: 

. . . .  +Y)--h(Xk)) p(Xk, Xk +Y). (4.7) 1 E((Yk+I Yk)Elkk'm)--n 1 
n 1 

The right hand side of the equation above is now treated according to the scheme of 
the proof of Proposition 1, namely considering it as a mean along a path of the 
canonical Markov process describing the environment as seen from the random 
walker. We don't repeat the details here and refer the reader to Sect. 2a. We obtain 
for almost all co provided the right hand side is finite: 

(4.8) nl- ~1 ~ (h(Xk+y)--h(L))zfi(Xk'Xk+Y) 

" E~,(~ r (h(x+y)-h(x))2~(xoY)) 
n~ c~ 

a.s. and in LX(p, L,e(X,)) (see (2.16)). 

If we can show that : E~, ( ^ ,  1 .,~<~impliesthatE~(~(h(x+y)-h(x))2~(x,y))  (0,1)j 
< ~ ,  then we have by (4.8) the a.s. and Ll-convergence of the conditional quadratic 
variation. The La-convergence gives us a Lindeberg-condition, c0-a.s. The in- 
variance principle for martingales ([7]), Theor. 4.4, p. 100) gives us now (4.2) 
and (4.3). 

/ N  
2. In order to show that: E o , ( ~ ( ~ S ) <  ~ implies finite expected quadratic Step 

kt" \-~ - i /  
variation, we distinguish two cases: (r as defined in Theorem 1 and 37~,y relabelling 
A with 2~.). 
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Case 1. r = 0. Then E,o < ~ and we can estimate" 

(4.9) ~ (h (y))2fi(O, y) ~(0) =< ~ h 2 (y)p (0, y), 
y y 

and therefor by combining (3.32) and (3.38): (C independent of  co) 

(4.10) Eo, hZ(y)fi(O,y)~(O) < E~ ~ y2p(O,y) < ov. 

Case 2. r > 0 .  
First assume that:  p (0, x) = const e -  rlxl. 

Next we use the property that 

y--1  

(4.11) ~(0,y)< H p(x,x+l). 
0 

Now we can estimate with (3.32) together with (3.38) as follows (C independent 
of  co). 

1 2 
(4.12) ~h2(y)fi(O,y)~C(~ (~f i (x-x+l)) f i (O,y))  

<C(~(~13(x , ;+l)- ) (Ya'"-1));  

a < 1 and a independent of  co. 

Taking expectation over co in (4.12) yields now immediately the assertion for 
p (0, x) = e -  rlxl. 

We see immediately that what we need for the argument is p (0, x) < Ce- rlxl for 
some C, r. This is however assured by (1.4), so that we have proved the assertion in 
general. 

5. Asymptotic behaviour of the associated martingale: subdiffusive case 

In the case of  infinite expected resistance we examine the behaviour of  ()(k) when we 
average over co and especially we determine the appropriate scale for our process. In 
the next section we shall discuss the more complicated question to determine the 
behaviour for fixed co. In this section we derive again a more general result for 
random transition kernels generating a chain X k and later we will use Proposition 5 
to specialize the results to our case. 

The approach we take here is to use the submartingales f(Xk) (with f as in 
Prop. 3') to estimate after what time the process will leave an interval [ - n ,  n] for n 
large. This random time determines the rate at which we have to rescale time, if we 
scale space by n-1. 
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Therefor we define the following stopping times T(n) for a Markov chain (Xk) 
on Z: 

(5.1) T(n) = inf (klX k E cg( _ n, n)) . 

The essential property of these stopping times is given by: 

Proposition 7. Suppose that P(x, y) is a random transition kernel which fulfills the 
conditions of  Proposition 4b (see (3.22) to (3.27)). Then we have: 

(5.2) {~(T(n)n-(t+~))}n~N is weakly relative compact. 

The weak limit points are different from 6 o . 

Proof The crucial step in the proof  is to study the behaviour of: 

T ( n )  

(5.3) L(x, n)-= Y~ ~{x,:~}, 
i=1  

L~(x, n) = L(x,  n) 1A~,, 

with ~ -  col 1 1 A, , -  -p(x,x + l ) < f n ~  c~ co t ~ b ly-'q < 6  , 
) ~ l y L > ,  P ( y , y + l )  

We shall show later in this section that: 

b : = sup P(x, x +  1) < 1. 
x 

Lemma 5.1. Suppose the kernel for (Xk) fulfills the assumptions of  Proposition 7. 
T h e n  ." 

(5.4) ~ ( L O ( x ' n ) ~ ;  is weaklyrelativecompactwithnontriviaI 
( \ n ~ JJne~q weak limit points. 

(L~(x 'n)  ~ are uniformly integrable 
(5.5) \ n ~ ],~N,xe[-n,n] over co and the process. 

(5.6) 0 < inf inf E __< sup sup E 
n Ixl<-_an \ / n [xl<n 

To proceed further note that: 

+ n  

(5.7) T ( n ) = l +  ~ L (x ,n ) ;  
x = - n  

+ n  

T ~ (n) : = T(n) 1A~ = 1 + 
x ~ - n  

O0 

with a < 1. 

La(x, n). 

Since according to Proposition 4b: lim infProbo~ (A, ~) goes to 1 as 6]" + 0% it suffices 
n---r oo 

in order to show (5.2), to prove this result for Ta(n)n -(1 +~) for arbitrary 6 ell( +. 
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The relations (5.6) combined with (5.7) above implies first of all that 
(expectation over ~o and process) 

(5.8) lira [E(T~(n)n -~1 +~))] < ~ ,  lira inf[E(T~(n)n -(1+'))] > 0 
n ~ o o  n ~ o o  

This implies the assertion (5.2) for T~(n)n- ~ + ~) by combining (5.7) with the relation 
(5.5). (Note in (5.5) we have the uniform integrability in n and x~ [ -n ,  n] so that 
(n- ~ +~)T~(n))n ~ is uniformly integrable !) This proves according to our remark 
above our Proposition 7 by letting ~1"+ ~ and it remains to show Lemma 5.1. 

Proof of  Lemma (5.1). To prove our Lemma we use the subharmonic function f 
from Proposition 3'. We start by observing the following general fact about 
subharmonic functions: 

Step 1. Suppose that S is a stopping time of the chain (X[)ke~ and f is a positive 
subharmonic function. Define g = (P* - 1 ) ( f )  and # = ~q'(X~). 

Then the following holds (see [4], part II, Lemma 1 a): 

(5.9) ( # , f ) = ( v , f ) + ( t h g ) -  lira ( v , , f )  
n ~-~ cx3 

tI(A)=E ~{x~sA} , v , (A)=Prob ( X 2 s A , n < S ) .  
\ k = 0  

If we apply this to our situation, that is S= T~, v = 6r and f = f  as constructed in 
Proposition 3', g=2i~x 1, we easily obtain for some C 1, C in ]R + that: 

(5.10) ( # , f ) = f ( y ) + 2 E ( : ~ v i s i t s  of X} y~ to x before reaching ~ ( ( - n , n ) )  

( # , f ) > = ( f ( n ) A f ( - n ) ) C 1  C1 > 0 , G  independent ofo~ and n 

( # , f ) < = ( f ( n ) v f ( - n ) ) + C 2 ( w ) ,  C2(~)< ~ a.s., independent o f x  

C2(w)=C ~ blr-"l(P(y,y+]))-~, b = s u p ( P ( x , x + l ) ) < l .  
lyl>=n x 

Remark. The last two lines follow from the fact that by assumption: P(x,y+z)  
<<_P(x,y)P(y,y+z),P is reversible with respect to /7 and /7 bounded by the 
counting measure from above and below. Furthermore I f ( x + y ) - f ( x ) l  can be 
bounded by the resistance between x and x §  We leave the straightforward details 
to the reader. (Compare (4.12)! and Prop. 4a, case 2). 

Step 2. We start by showing the first inequality of (5.6). (The second one is implied 
by (5.5)). We shall study {~CP(E(L~(x, n)l~o)n-~)}n~, in the case where x=x(n)  

=<an for some o-<1. Due to stationarity and ergodicity of P ( x , x + l )  xeZ and 

due to the assumption that {L(co,,n-~)}n~ has nontrivial weak limit points, we 
conclude that for some e > 0 : lim Prob (colc_ r~,], - ,  > end, q~n],, > end) > 0. This 

n--* co  

proves with (5.10) second line and with (3.5) in connection with (3.37) that 
uniformly for x -- x(n) ~ o-n: 

(5.11 ') lira inf [Prob (~olE(L(x, n)lco ) __> e'n~)] > 0, # > 0. 
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From here the first inequality in (5.6) follows now immediately. It remains to show 
(5.4) and (5.5). 

Step 3. In order to show (5.4) and (5.5) we shall define in (5.13) below a suitable 
sequence a{, x} (co) and write L ~ (x, n) n -  ~ = (L a (x, n) (a{, ~} (co))- 1 (a{~} (co) n -  ~). Then 
(5.14) in the Lemma 5.2 below tells us that  the first factor converges weakly to 
exp (1) and the expectation to 1. Next (5.18), (5.19) in Lemma 5.3 below tell us that  
the second factor is bounded above on A, a by C5 for [x[<=n. This proves in 
connection with (5.11') immediately our assertions (5.4), (5.5). 

Lemma 5.2. Suppose (~[j)j~N is a Markov chain on ~ which is recurrent. Define: 

(5.12) q(,~}=Prob(~X! ~ returns to {x} before reaching cd[ -n ,n]})  
\ t  3 

(5.13) a{. ~} : = (1 - q{.~})-l. 

I f  a{. ~} --+ +oo then (Sf, E with respect to (Xk)keN) 
n - ~ o o  

Proof. Remember 

1 
(5.15) E(e st) - for 

s + l  

We have : 

['L(x, n ) \  

~ ( Y )  =exp  (1). 

1 - -  q n  
(5.16) E(exp ( - sL (x, n))) = 1 - e- s q, 

and therefor for a,--, + oo we can calculate as follows: 

(5.17) E exp a. / /  1-q.e-~/a..-,~(s+l---~" 

This proves the first part  of  (5.14), the second part is obtained again by explicit 
calculation. 

Lemma 5.3. For our chain (X~X})~N we have the relations: 
Denote by fx is the solution of P*f~- fx=21{~} , f~(x)=O constructed in 

Proposition 3' (f~(y)>O for y=~ x, see (3.27)!). Then for C2(co ) as defined in (5.10): 

(5.18) (d, x~) < C2 (co) + max (f~ ( - n), f~ (n)), 

+n C 

(5.19) sup max (f~ (n), fx ( - n)) < Y, p (y, Y + 1 )  
Ixl <=n - n  

Proof. Since f~ is subharmonic we obtain by applying (5.9) and (5.10) third line 
with elementary calculations: 

(5.20) (1 - q, (x)) > ((max f ~ ( -  n), f~ (n)) + C2 (co))- 1, 

which yields with the definition of a{, x~ in (5.13) the assertion (5.18). 
The relation (5.19) is an immediate consequence of  (3.5) and (3.35), 

(3.36). q.e.d. 
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As a Corollary of  the proof  of  Proposition 7 we observe that:  

Corollary 7. Under the assumptions o f  Proposition 7 we have for  every c ~ IR +" 

(5.21) 5F(T(cn) n-z )  ~ ~oo ~-a.s. 
i~-+ oo 

We can replace here assumption (3.23) by 5#(Co,~/1~j)~6o o, which is equivalent to 

E~ = oo. 

Proof. The observation to make here is, that due to (3.5) and (3.40) the solution 
to ( P * - I ) ( . ) =  2 1 ~  we constructed in Proposition 3' has the property:  

(5.22) f ( n ) n  -1 ~ +oo o-a.s. 
n ~ o o  

With this relation plugged into the estimates of  this paragraph we arrive at (5.22). 
We leave the straightforward but tedious details to the reader. 

6. The behaviour o f  Xk for f i xed  co in the subdiffusive case 

The dynamics in the case Eo~ ( ~ ) =  + oe and p(0, x ) = c e  -r'x' looks roughly 
k r  \ - ~  - / /  

as follows: The dynamics of  the process is determined by the fact that CgA contains 
intervals of  the size [log (1 - q ) [ - 1  log n. To cross these gaps the random walk needs 
a certain amount  of  macroscopic time (namely n I +', c~ > 1). However in between 
these large gaps the walk moves on a faster scale. The difficulty of  the analysis is now 
rooted in the fact that in order to cross gaps of  size [[log (1 -q ) ]  -1 log ( n ) - a ]  we 
need also a macroscopic amount  of  time namely en 1 +~ steps with e = e - " .  Since a 
can be arbitrarily large we obtain "in the limit" a set of  gaps which are dense in the 
macroscopic space. Furthermore is the structure of the set A close to these large gaps 
of  importance for the ability of  the walk to cross a large gap. 

In order to overcome this difficulty we consider first auxiliary processes where all 
gaps are o f  size Ilog (1 - q ) [ -  ~ log ( n ) -  a with a =< c < oo. We analyse these auxiliary 
processes first and then in the second step we send c to + oo. Finally we incorporate 
the local structure close to the gaps into our picture. 

I f  we have only large gaps we describe for n ~ oo the motion of the walker by a 
Markov  chain governing the transition from one of the intervals between large gaps 
to the other. Inside such an interval the position of  the walk should be uniformly 
distributed. (Since it looks here like (reflected) Brownian motion provided we use 

1 
the scaling x ~ -  x, t--*n 2 t.) Taking el" + oo means our subdivision of  macroscopic 

n 
space into intervals becomes finer and finer resulting in the picture given in the 
theorem. 

We proceed now as follows: First we consider auxiliary processes namely a 
walker on a set derived from lg by locating gaps at points [xin] of size 
[ ] log( l -q ) [ -~  logn]-a~,a~<c and let n tend to infinity, later we let c tend to 
infinity. This is in Sect. 6a. In a second Sect. 6b we incorporate the local structure 
of  A close to large gaps. These results are then connected with our original problem 
in a third Sect. 6c. In the fourth Sect. 6d we collect the proofs of  the results related to 
the potential theory of the involved Markov  chains. 
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a) A sequence.. -~'" (Xk )k~N of auxiliary walks on a set with large gaps only. The 
auxiliary processes we shall need are random walks with transition kernel p(x, y) 
restricted to a set A ~'" containing only large gaps. In order to define these sets A ~'" 
we shall make use of the following ingredients: 

Given are sequences (x~)i~z, (a~)i~ with the following properties: 

(6.1) (x~lR,  x~+t>x ~ Vi~7,  I{ilx~[a,b]}]<oo V(a,b)~lR 2 

(6.2) a~77 ; a~< [l~ ~ exp(--rik]--ra~+k)< go Vi~77, e~(0, 1) 
r k 

The sets A ~'" are now defined as follows: (Set p =  ]log O _q)[-1) 

~" 77( nx ~ + ) .  (6.3) A ' = \ U ([ i], [nx~+(plog(n)-af) ]) 
\ i e Z  

This means that we place gaps of a fixed size at the locations given by the x~ and then 
we blow up the picture in a proper fashion. Note that the possible overlap between 
the intervals we remove from 77, becomes empty for any set of the form [ - a n ,  an] if 
n is large enough, that is we can forget this effect since we want to study the case 
n----~ o0 .  

We denote by (J?P,'")k~ the jump chain of the random walk restricted to A ~'" 
that is this random walk has the following transition matrix: 

(6.4) (1A~,"(xlp (x, y) 1A~.,(y)) ~o,, p (x, y) 

We make use of the following abbreviation ([y] : largest integer below y for y ~ IR). 

(6.5) . . . . . . .  11+ 1 - ( [nxf] ,  [nx~+~]] I~-(xi,xi+l]. 

Our aim is to describe Prob(X[/~,l+,leli' ) for n~ov .  The description of these 
limiting probabilities will be given via a Markov procen (Y~)t~+ on (x~)i~, which 
describes the transition from one interval I~ to the other. The process Yt ~ will be 
defined with the help of the function introduced below. 

Define ~ = exp (-ra~) and then set: 

k (x) 

~ k(x)=sup(jlx~<x) for x>O 
(6.6) h~(x) = ~=o 

- ~ )  k'(x)=inf(jlx~> x) for x < 0 .  
i = 0  

With this function h~(.) we can define a transition kernel q"(i,j) on 77 x Z as follows: 

_ h~(x~+~)-h"(x~) 
(6.7) q~(j,j-l) 

h ( ~+~)-h (xj_~) 

q~(J',j+ 1)= h~(xj) -h~(x}- t )  
h~(x~+~)-h~(x~_~) 

First we define a process on 77 and then use this process to define the one on the 
intervals where we identify the intervals with the right endpoint. 
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Definition 4. The process (Y[) t~§ is a Markov process on Z with the following 
transitions and jumprates: (The constant c appearing below will be specified 
later on) 

(6.8) ~ i "  transitioris: according to q ( , j )  

^ - 1  jumprate in iETZ :(di-1+ai+l)([X~+l--X~[)-lc ,  c~]R + �9 

The process Yt ~ is now simply defined as Y~ - x r ; .  [] 

Define the following sets of subsequences of IN: ( n j ) e N  k if [ l o g n j ] - l o g n j  
converges to - k .  

Proposition 8. Assume that p (0, x) = const exp ( - r[x[) and ~ -  1 _ [log (1 - q)l < 1. 
r 

Then the following holds: ( W e  suppres the lenghty explicit f o r m  for  c below). 
For every k e [0, 1) there exists  c e (0, ~ )  such that with choosing that c in (6.8) we 

have: 

/1_~. \ 
(6.9) Prob ~n X[;,~+,]e(x~,x~+l])n~ ~ P r o b ( ~ [ = i +  l ) = P r o b ( Y t = x ~ + a )  

n=_N, 

I f  l ( . )  denotes the Lebesgue measure and B a Borelset contained in (x~, x~+l] and 
s(n) = o (n 1 + ~) ; s(n) >> n z, then: 

(6.10) 
- -  ?t 

n ~ N k  

To get an idea how to prove this observe: The limiting process is a birth and death 
Markov process. Approximately the process counting the index of the interval 
where J{~'" sits moves to nearest neighbours only, at least in the scale we use 
(Lemma 6.3 below). So we need to know the time our process spends in an interval 
and the probabilities to leave it to the left or the right. For this purpose we use of 
course our harmonic and subharmonic functions from Proposition 3, 3'. The 
assumptions made there are easily checked following the arguments in the proof of 
Proposition 5, assertion 1, we leave this straightforward modification to the reader. 

So in order to prove our Proposition 8, a minutes thought shows that it suffices 
([2] chap. 4, Yheor. 2.6)) to show the following four Lemmata: ((6.1) proves (6.10) 
while (6.2) and (6.3) proves (6.9)). 

Lemma 6.1. Denote by (Yt) Brownian motion in [x~,x~+l] with reflection at the 
boundary and diffusion constant 0 .2 . 

/ \1/2 
Then fo r  ~=(~p(O,y)y 2) we have.. 

\ y  I 

V i e ~  
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Lemma 6.2. Denote by T~'"(x) the exit time of X~'" from I~'" that is: 

(6.12) Tj~'"(x)=inf(klX~'"~cgI; '") for X;'"= x~I; '" .  

Consider now subsequences of N contained in N i . 
Then for each i e [0, 1) there exist c e (0, co) independent of j such that uniform in 

X e I ~ ' n :  

/ ~.~'"(X) "~ +a;,)). 
\ 7 

n~_U~ 

~ Prob -~'" e l j lX  ~ e l l )  ---+ 0 Vt~IR + 
j:lj,_/l> 1 k<=tnl+, n ~ m  

(6.13) 

L e m m a  6 . 3 .  

(6.14) 

where I~ - (Xk, X k + 11. 

Proof. Obvious which the help of (5.12), (5.13) and (5.19) combined with the fact 
that in any given interval I on IR : x~+ 1 - x ~ > 6 ( I ) >  O. 

Lemma 6.4. We construct, according to the device given in Proposition 3 (3.3), 
harmonic functions he'"(.) for :X~'"~ k ) k e N .  

Then we can achieve after multiplying he'"(.) by a factor depending possibly on n 
that.. (Call the resulting function ~'")  

(6.15) n-~B~'"(nx) ~ he(x) in the Skorohod metric. 
n.-+ co 

Denote by v ~'" = 5s (n- 1Xr;,.(~)), then (6.15) can be strenghened to." 

(6.15') ~ In-~B~'"(ny)-U(y)ldve'"(y) ~ O. 
n--+ oo 

The proofs of 6.1, 6.2 and 6.4 need no fundamentally new ideas beyond the 
techniques from Chaps. 3 and 5, we defer these proofs, potential theoretic in spirit, 
to the last Sect. 6d of this chapter. 

The next step is now to study what happens with Y~ if we let e tend to 0, which 
corresponds to refine the subdivision (x~). Consider therefor the following 

e a e situation: given is {(xi)ie~, ( ~)i~z}~(o,ll such that (in addition to (6.1) and (6.2)) 
the conditions (6.16) to (6.19) below hold. Define I(x) = {iLx~ e [ -  x, x]}. Here are 
the conditions" 

(6.16) ~' ' {x~ [teZ}___{x~lieTz} for e '<e ,  

(6.17) sup (x~+ t - x ~ )  ~ 0 for all xe lR  + ; 
i~I (x) e--,O 

(6.18) CU ~ {x~[ie 7Z}) 

(6.19) sup(~>o ~ x) f i~ )<~176  

Then we can define 

(6.20) 

is countable, 

where again dg = e -ra~ 

h(x)=lim( ~ f i ~ ) f o r x>0 ,  (analogues for x =< 0) . 
~0 i:0_ ~<x 
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Let Y(t) be Brownian motion with diffusion constant c (as appears in (6.8)) and 
L(t, x) it's local time. Denote by V(t) the time transformation V(t) =~ L(t, h(x))dx. 
If we replace h by h ~ in these formulas we can write .L~a (Yt ~) = ~ ( ( h 0  -1 Y((V~) -1 (t))) 
as an elementary calculation shows (compare [8]). It is now no surprise that for 
e ~ 0 :  

Proposition 9. Assume that (x~)i~Tz,(a~)i~ fulfill (6.16)-(6.19). We have for 

(6.21) ~((Yt~)tz~+) ~ ~ ( ( h - l ( Y ( V - ~ ( t ) ) ) ) t ~ + ) .  

Proof. This is a consequence of a limit theorem for birth and death processes of 
C. Stone. The details of this reduction are (besides notation) the same as in Kawazu- 
Kesten [8] on page 565-567, furthermore the result is very intuitive we therefor refer 
the reader to that paper. 

b. A refined carricature (X~'") of a walk on a random set. The last two Proposi- 
tions allow us to control a walk passing through a medium with large gaps, which 
are macroscopically well separated. That means that so far we have not accounted 
for the fact that the medium may look as follows around the large gap: 

$ l 
x . x x x x (  . . . . . .  ) x x "  x x .  

x large gap x +  1 

The two one point gaps marked have of course quite an influence on the behaviour 
of the random walker and his ability to cross the large gap. We incorporate this 
effect into a new carricature (-~'")k~N of our process Xk. Loosely speaking we 
consider a set with large gaps and possibly small gaps close to these large gaps: we go 
back to our kernelp (x, y) on the random set A and we obtain a carricature by filling 
the little 9aps far away from large ones and making only nearest neighbour steps. 

Precisely: The information about the above mentioned small trouble spots is 
hidden in the harmonic function we constructed in Proposition 3, 5. We define 
therefor: (h denotes the harmonic function for 13(x, y) based on the choice II(x) 
=e(2) ,  (here x~--~2 relabelling A with 2~), constructed in Prop. 3) 

h ( x + l ) - h ( x )  
(6.22) 8x - (/3 (x, x + 1)) - a '  

Definition 5. We denote by (_~'") the Markov chain on Z defined by h "~'" according 
to the Eq. (6.7) where h~'"(x): 

Y 
(6.23) ~ ' " ( y ) ' = 2 y +  S [xd(k"'"(x)), 

0 

with: h ~' "(x) =. 

x - 1  1 

~o fi(Y, y + l )  l{y(y,y+l}<=(~n)-,}, 

0, x = 0  

- 1  1 
l{ f i (y ,y+ 1)=<(en)-~}, 

fi(y, y + l )  

x > 0  

x < 0 .  
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We know by (3.37), (3.40) that for n>no, e<e o : 

(6.24) 0 < s  oe for x with: h~'"(x+l)+h~'"(x) .  

Note that the process {?x(co)}xEz is not i.i.d. (it is stationary of course) and it's 
appearance is due to the fact that the restricted chain is not a nearest neighbour 
chain after the relabelling. 

It is easy to check here by explicit calculation (nearest neighbour steps !) that 
again the assumptions of Proposition 3 are fulfilled and if we apply the construction 
of Proposition 3 to J~'" we recover as our harmonic function h the functions n c'~'". 
(This is checked immediately by explicit calculation using (3.3)7.) The first task is 

now to use the ideas of part a) of this section to control the behaviour of (1)~t~%~), 

since it is the process we hope to be a good approximation for n large, e small to the 

rescaled process -X[tnl,], the one we are interested in finally (that is the one with 
n 

kernel/~(x, y)). 
In the next Proposition we determine the behaviour of ^~'" X~ ) for n ~ o e ,  e ~ 0  in 

terms of a time transformed Brownian motion Z2'", of the type which occurred 
already in Proposition 9. Knowing Proposition 9 it is no surprise that we shall need 
the following ingredients" 

(6.25) Z~'"=(h~'")-l(Y((~'~'")-a(t))) ( f - l ( u ) = i n f ( t l f ( t ) = u ) ) ,  

where the quantities on the right are defined as follows: 

[n' x]  - 1 

(6.26) /~ ' " (x)=n  -~ ~" ~r(fi(y,y+l))-ll{~(y,y+l)<=(~n)-~ 
0 

x > 0, (?y as in (6.22)). 

For  x < 0 sum from - [nx] to - 1 and multiply by - 1. 

~,"(t) =~ c(t, ~'"(x))dx, 
here Yt = Brownian motion with variance 0 -2 ----- 1 and L(t, x) it's local time. 

Comparing ^~," ( X ~ )  with (Z['") makes of course only sense if we known more 
about the behaviour of (Z['") for n--* 0% e~0 .  This is the case since it turns out for 
this purpose we need only information about/7 TM ") ( .)  which is closely related to the 
wellstudied resistance. This information will be provided later on in the Propo- 
sition 11. Note that Z['" moves on the subsequence of points x with the property 
that the resistance between x and x +  1 =c~,~+ 1 >en ~. 

Proposition 10. Under the assumptions of  Theorem 3 we have (E" = E( .  I~o)) for n 
running through a sequence in some N i �9 

For all q>0 ,  feCgo(lR): 

(6.27) lim lim Prob coE f  X[tn~+,] - E f ( Z ; '  ) ~>t l . 
e ~ O  \ n ~ a o  

The convergence for e~O is uniform in n. 

Proof. First we use the scheme of Proposition 8 developed in (6.7)-(6.8) and try to 
(Xf,)k~N by a process ( Y ~ ) t s ~  approximate for fixed e and n large the process ^~'" ^~'" * 
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(a particular version of Z~'") which lives on the right endpoints of the rescaled inter- 
vals (x~'", x~;"l ], where (x~'")i~z counts the points x ~ 2~ with fi(x, x + 1) < en)- ' .  The 
additional technical problem we have here compared with Proposition 8 is that 
(x2"")isz do depend on n now. The main purpose of the following is to show how to 
handle this problem. 

Step 1. To introduce Yf'" consider now the rescaled positions of the gaps that is 
_ . -~," -~," + 1 ]. Furthermore define ... .  -~ ," -  n -  l x2 ," and the intervals (xi , xi ai introduce: x~ 

=c~a~'" where y = x 2 ' "  and a~'"=n (fi(x i , x  i +1)) -1. Now define ( ~ ' " )  by 
(6.6)-(6.8), in the latter formula c = 1. 

Step 2. Here we construct a process Yt~, in a sense the limit of Yt ~'", in order to get 
- s  rid of the n-dependence of the (x~)i~Tr The Proposition 2b tells us that 

~ ( ( x i  ,ai )i~z) converges for n ~ ,  nc_N  o. In fact we use here a stronger 
version, which says that L- ~ ((n-'co, E,~l)x ~ ~) converges for n ~ ~ ,  n running through 
a subsequence in N o to a stable process with index ~-~ (this is of course with (2.32) a 
classical result, we just quote here). We shall prove later on in a Corollary to 
Proposition 11 (6.31) that this implies the convergence of A~163 We 
denote the jump points and jump heights of the limiting object by (~ ,  d~)i~z here. 
As a consequence ([8], p. 567) we can construct ((Y2 '", a~'")i~)nE ~, (x~, d~)i~z on a 
common probability space such that the distribution for fixed n is the given one and 
such that in addition: 

(xi ,al ) ~  a.s., (6.28) -~'" ^~'" ,(s ~.~ n~-No. 

Denote this big probability space by O and an element by 05, that is 
05= [((s (Y~)i~z], [(d~)i~z, ((d/~'")i~),~].  These objects above define 
(see (6.7), (6.8)) for every n the scale and speedmeasure of ( ~ , n ) t ~ +  respectively of 
a process (~ ~ )  and therefor define these processes uniquely, if we choose in (6.8) the 
constant e = 1. 

Now we can of course conclude with standard arguments hat ~ ( ( ~ ' " ) ~ §  
:::> Aa ((0 Yf)t~ ~+) (if n ~ No). (Process moves to nearest neighbours only !) 

n--~ ~o 

It is easy to see with an explicit calculation that in fact s ) 
(compare [8], p. 566). Therefor we can conclude that: (E= E(.  [05)) 

^~'" ~ ~'" <Y~m - E f (  Y~) n~_N o. lira /~f Xt ,~+,  E f ( Z ,  ) E f  Xt,*+~ , 

Step 3. In order to prove our assertion it remains to check first that for ~-,0 the 
claims of Proposition 8 holds, if we replace ()?~,", Yf), by (2~'", ~ ) .  As before we 
have to show that the modified versions of Lemma 6.2 and 6.4 hold. For (6.4) we 
just use (6.28) above together with Proposition 2 b. This relation (6.28) replaces also 
(6.69) in the proof of (6.2) and the rest of the proof carries over. We leave the 
straightforward details to the reader. Having done this we can conclude now that 
with 

I~ ( f )  = {i]s e sup (f)},  we have for f ~ ~o (IR): 

lira E f ( ! X t ~ ; , ~ + , ) - E f ( ~  < _ sup ( sup [ f ( Y ~ + a ) - f ( x ) l )  
n- -+oo  - -  i ~ I ~ ( f )  \ ~ ? ~ X ' < ~ + l  

with n - + ~  through N o. 
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But we know from Proposition 2 b, especially the characterization of the limit points 
of ~ ( ( n - ' %  t,yl)y e ~) that: 

\(c~ (,X~+ 1 -X~l ) __< 3) ~-~--~ 0 Prob V 3 >0 .  

This proves of course our assertion (6.27), if we combine this result with Step 2. 

Step 4. In order to see the for e ~ 0  uniform convergence in n, we simply observe that 
the d~ can be realized by realizing an c~-l-stable process and looking for the jumps 
which are bigger than ~, similar aZ'" arises as the values of (fi (x, x + 1)) - 1 for x = x~'" 
where/~(x, x + 1)< (en)- ' .  Now write all the processes in the form given in (6.25): 
Let Y(t) be a Brownian motion with diffusion constant 62 and define 

/~ (x) = sign (x) ~ dg (I(x)={ieNlx>(<)x.~>(<)O), 
i e l  (x) 

V~(t) = ~ L(t, f[~(x))dx. 

Then as in the end of Step 2 

~ e ( ~  ~) = ~e ((h'~) -~ Y ( ( ~ ) -  ~ (t)). 

Using t7 ~'" instead ofnQ we can represent X~'" in the form given above. Observe that 

the expressions ( ~  @ " )  are monotone in e if we consider IR+, IR- separately 
i ) 

(decreasing for x > 0 ,  increasing for x < 0 )  therefor the same monotonicity 
properties holds for h "~'", in (6.23). This proves immediately the assertion of 
Proposition 10. 

The,next step is to study Z~ '~ for n ~  o% e--,0. A look at (6.25) shows that it is 
essential now to construct a limiting object of the harmonic functions h"'"(x) 
(compare (6.26)) which define the approximating Markov chains to our real 

process. Observe according to (6.23) and (6.26): h~'"(x) = n-~ i cyd(h~'"(Y)) and we 
o 

know by the Proposition 2 that 2'{(n-~h"'"(ny))ye~} tends weakly to a stable 
process with index c~- ~ and where jumps smaller e are omitted as n ~ oe through a 
sequence in N i. It remains therefor to study the behaviour of (cE,yl)y for n ~  oe for 
given h~'"(x), that is given location and size of large gaps. We are going to construct 
first a modified process (@") which takes into account that in the representation 
formula for B~'" (x) only those ?~ count where x is such that the resistance c~.~ + ~ is of 
the order of magnitude of at least en'. 

(6.28) 6 . . . .  ~ c~ . - c y  y is the largest integer smaller or equal than x such that 

Cy, y + l  ~ 3H ~t , 

It can be easily shown via (3.3) and [12'] that ?y is a measurable function of the 
medium. Below we give the asymptotic behaviour of these objects and in a corollary 
the consequences for our process Z['". We call a function stepfunction if it is of the 
form ~ afl~ where I i are indicators of intervals with UI~ = IR. By h ~'" we denote the 

i67Z 
function introduced in (6.23) part two, which describes location and size of  the large 
gaps. Denote by I(g) the set of jumppoints  of a stepfunction g on IR. 
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Proposition 11. 

(6.29) 

(6.30) 

Coronary 11. 

(6.31) 

5f((ct, ,x)x~,*ln h ( n ' ) = 9 ) ~  @ ~ ( c ) ,  
n - - ,  oo  x ~ l ( 0 )  

Vg :=  stepfunction on IR, 

5f(c) as in (1.14), Supp ( ~ ( c ) ) ~ ( 0 ,  oo). 

~((tT~'"(n, x ) ) ~ )  ~ ~ c~cl~;~(x . 
n ~ o o  y e n ~ .  + 
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Yi',~ and c x are defined as follows: (recall cx, v denotes the resistance) 

y 
V, Ay) = ~ ( V ( x ) -  r?(x_)) l(r,o(x)- r,o(x_)>=~ 

0 

with Yff a stable process with index ~-1 given as the limit o f  ~ ((n- "Co, brl)y ~ ~+) f~  
n~oo ,  n running through a subsequenee in N i . 

(cx)xe~+:Se(c~lYff)= (~) ~~ ~ ( c )  as in (1 .14) .  
x~I(~9 

Furthermore we have for  e~O : 

Proof. We consider heref i (x ,  y) and its harmonic  function h. Our  aim is to analyse 
~ =  (h(x+ 1) -h ( x ) ) f i ( x ,  x +  1) for  x with fi(x, x +  1) ~ n  -~. 

Step 1. First we recall a representat ion of  h ( x + l ) - h ( x )  suitable for  our  pur- 
poses. We start with h(x  + 1 ) -  h(x) = (a~+ 1,x - * + ^ -  --ax+i,x)=(a~+x,~--a~+i,x) 
= -  (a~x+i--a~,~+~) (this latter version is easier to handle nota t ion wise) (see 
Prop.  3, (3.3) to recall definitions). 

In order  to analyse ( f i+~+l-aZ,~+l)  we have to study ((~) which denotes the 
minimal positive solution o f  ( . ) ( I - f i ) = S x - 6 ~ +  1. We start introducing some 
quantities we shall need to give a useful representat ion of  ((x). 

(6.33) v (~) = 1 t~+2, ~)(" )fi(x, �9 ) 

(6.34) #(~) = 1(_ o~,,q(')/3(x, ") 

(6.35) r/(x), ~(~) are the minimal positive solution of:  

( l - - /3 ) (~  ) ~ V(x)--(Ox'3V(~x+ l ) 

(x-~)(.)___ u(~)- (~x +,L+l) 

(6.36) fl (~) : - (q (~) (I--f i )  -- v (~)) = fl (x)6~ + 1 + ~(~)3~ 

7 (x) : - (~ (~) ( I - / 3 )  - # (~)) = 6 (~)6x + 7 ~x)6~ + 1. 

We know that  q (~) (A) = E ([ # visits o f ) (  k to A before reaching x or x + 1 ] 1 V?~__> x+2} 
(see [4], par t  I, Lemma  2) similar ~(~). F rom this we conclude immediately:  
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Lemma 6.5. 

(6.37) ~(x) = ~ (1 -13(x, x +  1) _fi(x)_ 7(x))j(t/(~)+ r 
j=0 

= ( f i ( X , x  + l ) + fl(x) + 7(x))- l (tl(x) + ~(x)) . 

This last equation will now be analyzed, the first factor in Step 2, the second in 
Step 3. 

Step 2. We are interested in the behaviour of h ( x + l ) - h ( x )  for those x where 
h (x + 1) - h (x) > ~n ~. For the analysis it is most convenient to pass to a new random 
set A,, which is interpreted as medium on the event: at 0 starts a large gap of size 
[(log (1 _ q ) ) - i  log n ] - a .  To be precise we introduce the following notation: 

(6.38) (coT)ie~ i.i.d. Bernoulli with success probability q 
+ (o~)i~N i.i.d. Bernoulli with success probability q 

b~lR + b=ce -'~ w i t h a e ( - o o , l o g ~ / r )  

The new medium is defined as follows: 

(V 1 a )   hen let p(O,x)=ce -rlxl, 
Y ( X ) = X - \ l  [log (1 -q ) ,  

(6.39) i x < 0  and e g ~ l = + l  
/ 

x e A , J x = O  or y ( x ) = 0  

[ y ( x ) > 0  and cof(~)=+l .  

Note that if we denote byfi,(x, y) the kernel on 2g x Z induced by this new medium 
A, (that is use definition (2.1), (2.28) and replace A by A,) then we have: 

(6.40) /3, (0,1) = bn -~ for n ~ N  o with 0 = 0 .  

For notational convenience we focus on n ~ N  o (that is [1(log (1-p)) - l l log(n)]  
-1(log (1 -p ) ) - l t l og  (n) --> 0), since n E N i requires just another constant in (6.40)). 

n ~ N  o 

We shall write r/("), ~(")... if we talk about the quantities: t/(~ ~(o) in the medium 
A,. The invariant measure for/~, (choosen according to the convention from 
Prop. 5) is denoted by H C"). Then we can prove: (Sect. 6.d)). 

Lemma 6.6. (Assume always n runs through a sequence in No here) 

(6.41) 7(")n ~ ~ 7b 

(6.42) ]~(")n ~ ~ /~b 
n--+ oo 

(6.43) l l . l l~o-l imt/(")-0,  I I . l l~- l im ~(")=~, l t . l lo~- l imH(")=H 
n--* oo ~ 1 ~ o o  n--+ oo 

(6.44) fl=(k__~le rkco~-), ( 1 - e - ' ( l + ~  . 
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If we combine Lemma 6.6 with Lemma 6.5 and the relation (6.40) we obtain for 
nO_No: (a.s. with respect to (e)/-, co/+)i~) 

IP.L 1 
(6.45) ft,(0, 1)~ (") ~ ~ a.s. 

. _ ~  1 +f l+~ ,  

The next task will be to study ~(y)/II(y) for y ~  -t- oo. 

Step 3. Since as n ~  o% the pointl  becomes a barrier for our process in the medium 
A,, we expect ~ to be determined by the following transition kernel ~(x, y): 

(6.46) q(y, z) : = l~(y)p(y, z) l~(z) p(y, z) , 
g 

is derived from q according to (2.28) 

(relabelling A, by ;g). 

Define/?(z) = ~ p(z', y)co~- (again z~--~z', relabelling A, by 2g) and by ~-the minimal 
y_-<0 

positive solution of ( I - ~ ) ( . ) = / z  (~ [[#(o)l1-1_ 6o (see (6.34)). We shall prove: 

Lemma 6.7. 

(6.47) lira (~(y)/lI(y))=O, lira (~(y)/H(y))=A, 
y ~ o D  y---~ -- oD 

(6.48) A =  lira (~(y)/Ff(y))= ce-~ko)Z , 
y - ~ - o o  k = O  

( ~Oo �9 = 1, c 1 + e - ~ J "  

As a consequence we obtain via (6.45) that for n~_No: 

(6.49) 16,(0, 2) ( lira (~(")(y)/II(")(y))- lira (~(")(y)/17("'(y))] 
\ y " +  + oo y--* --  oO ) 

1 
- - ~ - - A  

Step 4. Now we are going to apply (6.49) to our original situation. Consider the 
sequence {x~(n)}iez of  sets, where for fixed n, {x~(n)}isz labels the points where for 
some fixed e > 0: 

(6.50) 13(x i (n), x, (n) + 1) < (en)- ~. 

We denote byb~,, the quantity defined by the equation 

(6.52) fi(x~(n), x~(n) + 1) --b~,,n-~ 

and by flz,,, 7~,, etc. the quantities fl(~'(")) ..... as defined in Step 2 (6.33) and (6.36). 
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Observe that due to Proposition 2b the distance xi+ 1 (n) - x~(n) is of the order n, 
that is ~(n -~ (x~+t (n) -x~(n))) converges to a distribution with no atom at 0. With 
(6.44) and (6.48) we can therefor conclude that the quantities (fli,,)isz, (7i,,)isTz, 
(Ai, n)ieTz , are for different i asymptotically independent. Therefor we obtain for 
nO_No: 

(6.52) 5 f  1Ar-fli,n-~-'~i,. ieT/ ieZ 

F is a probability measure on IR + with supp (F) c__ (0, oe). ~ ( F )  
= 5~ (((1 + FG)F) - a) with 

( F =  l + k = _ l e r k y  i l_e_ ~, G=k=l e-~ky t, ~((yi)i~)= g~)~( l ,q ) .  

The representation of h in terms of ~+_; i-,x and relation (6.45) together with the 
last relation in (6.43) and (6.52) allows now to go back to our original problem and 
to derive from the relation above: 

(6.53) 5f(((fi(xi(n),xi(n)+ 1)(h(xi(n)+ 1)-h(xi(n))))i~zln-~h~,"(n.) =9) 

=:> (~) F ,  Vg : = stepfunction on IR. 
n-~ov i ~  
n-~N0 

This proves of course our assertion in Proposition 11. 
It remains to prove our Lemma 6.6 and 6.7. Since the arguments are closely 

related to the ones needed to prove 6.4, and potential are theoretic in spirit we shall 
prove them together in Sect. 6d. 

c) Comparison between the carricature ~[,'" and "gk. The last important step 

 owards 3 con is s  s ow  gt at theres aledori   al  aio( '   +) 
andtheauxiliaryprocess(1-;~nl§ 

large n very close for most environments co provided e is sufficiently small. The 
transformation t ~ 7  takes into account the effect of the small gaps in the real 
medium which are not close to large gaps (remember fi(x, x )>  0 !). Precisely: 

Proposition 12. Under the assumptions of Theorem3 the following holds 
(E: = E( .  Ico)): 

(6.54) lira [~irn Prob(co ff~f(! XtnI+~)-ff, f ( !  Xtn n+~) >_--3)1=0 

for all f e cgo (IR) and 6 > O. 
The convergence for e~O is uniform in n. 

The proof of this Proposition is based on the following two Lemmata which 
show that the space and time structure of both rescaled processes become very 
similar for large n and small e. 
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Lemma 6.8. Denote by d I the Skorohod metric for functions on the interval I~_ IR. 
With h(.), n~'n(.) we denote the harmonic functions belonoin9 to ()(k)k~N, ()(~'")k~N 
which we constructed in Proposition 3. The explicit form of the latter is 9iven in (6.23). 
We extend these functions on Z to functions on IR by settin9 9(x) =9(Ix]). Then the 

following holds: 

(6.55) l im( l imProb(co]dt (~h(nx) , - - l  [;~,"(nx))>q))=O Vt/>0 
e~oo \ n ~ o o  n~ 

h (nx), ~"" (nx) are of course considered functions of x for the Skorohod metric. The 
convergence for ~ 0  is uniform in n. 

Proof Since we can bound increments of h (x) by multiples of the resistance between 
the relevant points, compare (3.38), (3.40), the relation (6.55) follows from 
Proposition 2b and the explicit formula for ~'~'n given in (6.23). 

Lemma 6.9. Denote by U(x, n), L(x, n) the number of visits to x before reaching 
cg[-n ,n]  in the processes ()(~'"), (-~k). Then we have with the convention 
L ~ (x, n )=  (e (2))-1L~ (x, n), where 2~--~x relabells the random set A with Z: 

(6.56) ( sup ( o) lim lim s  - 5~ ~o = 0. 
~ o ~  \n-~o~ Ixl<=n 

The convergence for e-+O is uniform in n. 

Proof As in Lemma 6.8 we conclude that (6.55) still holds replacing h, t~ ~'" by the 
subharmonic functions fx, (e(x)) -1 "f~'"(') constructed in Proposition 3' (the x 
refers to ( P -  I)(fx)  = 21{x}). Following the scheme of Sect. 5 we show then with the 
Eq. (5.9) that lira Prob~,([E(L~(x,n)n-'[a~)--E(L(x, n)n-~[o))] >6)  tends to 0 as 

n--+ c~ 

e~0  uniformly in [xl <n.  Now Lemma 5.2 proves the assertion (6.56). 

Proof of Proposition 12. The proof of this Proposition is nothing but making precise 
the following idea: In the macroscopic scale the probabilities to leave a fixed 
interval to the left (right) and the distribution of the number of steps to leave this 
interval become for both processes very close for most co i fn is large and e is small 
enough (according to Lemma 6.8 and 6.9). This should imply that the processes are 
close for e small and n large for most co. 

Step 1. In order to make this "for most o "  precise, fix first an f e (go (IR) and define 
for a compact interval I =  [a, b] ~ IR containing the support of f the set ~2~ of 
media. To do this we need the following ingredients: 

(6.57) L~,, (x, m), s (x, m) denotes for given ~o the number of visits to x before 
leaving [x -m ,  x +m]n for ()(~'")ks~, (Xk)k~N. 

(6.58) (x['")i~N labels the points x with fi(x, x+ i) <~n -~ . 
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With these ingredients we define 0,, . Q,,~ (I). (Functions on :g are extended to IR by 
setting q (x) = q ([x]) and abbreviate I(n) = { (x, m) ~ Z 2 ] Ix - m, x + rn] c_ nI}). 

(6.59) f2~ = {co[ sup (n-~f~"(nx) - h(xn))[) <= O} 

{ } c~ co[ max (n-llx~;"l-x2""l<O) 
n lx?"~I 

c~{ col (x, m)sup~ ~(n) (llSY(n-'(e(x))-lL~'"(x'm)lco) 

} - ~ (n-'/2~,, (x, m)lco)II) = 0 

c~{col x <Z[. ,1 e-rlx-["ll(fi(x,x-1) -1 

+ x > y~cb.l e-rlx-tb"llOS(x'x+l))-~<=O}" 

We shall show later on that for our f ~ c-g o (IR) : for every ~ > 0 we can find a 0 o (6) 
such that: 

(6.60) V0<0o(3),  t<to(I ) and J{~'"=XoeI: 

Jim (lao:~(i)E(f( 1 X,;,~§ 2 t ,~*o)co) )<6  

to (I) ]" oo as IT IR, 7= (E(d(0)-x)- 1 t. 

With Lemma 6.8, Proposition 2b and Lemma 6.9 applied to (6.59) we can conclude 
on the other hand that: 

(6.61) I2im Prob (coIco e t?~ ~!o I~im Prob (co[co ~ t?~176 (I))1, 

V0>0,  I _ IR ,  

(6.62) lim Prob (colin a o o Qg.(I))  1" I v 0 > 0 ,  I ~ F , .  
n--+ oo g ~ O  

Both statements (6.60) and (6.61) together give immediately the assertion. 

Step 2. It remains now to prove (6.60). For that purpose we consider again (x~'")iez, 
which label for 6, n fixed the points x such that p (x, x + I) < (6 n)- ~. In the next step 
approximate J?k by a process (.~'~'") by ommitting all jumps to points which cross 
more than one of the points (x~")iee. We check immediately that for all t > 0 the 
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following holds for z > 0 and T.(I) the exit time of -~k from nI: 

(6.63) .-~lim (Prob ( \  \k<t. ~+~sup [l{~.(1)<=t.~+.}[n-l"~'"--n-lXk,)]>O,~o))=O 

This process (X~)kez  (which is Markov for given (9) we approximate in turn by 
~ , n  

(6.64) )~ '"  �9 = inf (x~'"lxf'" > 2~'"). 
i 

If we choose 6 =e, than we have obviously for all 0<e  that: 

(6.65) [n- l~ '"-n- lX~"[<e for coe~2~176 k<T,(I).  - -  g , n  k 7 ~ - -  

Apply this last procedure to )(~'" and call the resul t /~ ' " .  Taking the relations 
(6.63) and (6.65) together we see that in order to finish our proof we are left with 

(n X~ )ken and (n -1 -~'" comparing -1 ~ , ,  X~ )ke~. Both these processes live on the 
(n Xk )k~Z and have only transition to the neighboring points. sequence -1 e,. 

Step 3. To prove (6.60) we shall use the fact that co ~ (2~ show, that for every 
6 > 0  we can find a 0o(6) and t0( / )>0 such that for all coeO~ and t<=to(I), 
0<00(5): 

- - 1  " ~ , n  - - 1  ~ e , n  (6.66) lira [E(f(n X~,~+,)[oo)-E(f(n Xtn~+,)]co)[-<6 
n---~ oo 

Putting the three relations (6.63), (6.65) and (6.66) together prove of course the first 
assertion in (6.60). It is however easy to derive with line three in (6.59) and 
Lemma 5.2 that to(I)T + oo as ITR. 

Step 4. It remains to show (6.66) abovel Call the probabilities to leave the interval 
- tx~," x ~'" ] to the right starting in x : a~' "(i, x) for the process )(~'" and a~'" (i, x) I i - - k  i , i + 1  

for the process -~'" X~ . Denote the respective exit times from I i by S/~'"(x), T/~,"(x). 
Finally let L(I) be the set of indices such that x.~'" e I. Note in Ii, L(I) we repress the 
dependence on e and n in the notation. 

Now we use (6.63) and line I and 5 respectively line 4 in (6.59) with [17], page 
250, to conclude for all 0<0o(b), t<to(I), co~O~ 

lim ( sup sup [@"( i . x ) - a~ ' " ( i . x )0<5  
n~oo \ i e L ( I )  x e l  i 

lim ( s u p  sap N~co(sg,.(x)-~q~o(V,.(y))ll)_<6 ~~'"-  _ _ ,  T(x)  - -  T(e;)n n - ( 1  + ' )  
n ~  \ i e L ( I )  x, y e I i  

This proves (6.66) for z>0.  q.e.d. 

d) Proof of Lemma 6.1, 6.2, 6.4, 6.6 and6.7. In this section we shall give the proofs 
of Lemma 6.1, Lemma 6.2 and of the group of Lemmata 6.4, 6.6 and 6.7. The main 
tool is the exploitation of the asymptotics of the subharmonic function f of 
Proposition 3' and the spirit of this section is potential theoretic. This is of course 
the point where we exploit the fact that p(x,z)=p(x,y)p(y,z) for x<y<z.  
Otherwise we would get at this stage instead of convergence several limit points. 
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Proof of  Lemma 6.1. Abbreviate [x~, x~+ 1 ] by L The first observation is that with the 
techniques from Sect. 5, namely Corollary 7 (5.21), we can show that for the exit 
times T, -~'" of ( X ~ ) k e n  from the interval nI, we have that n -2 T, converges to oe in 
probability. Therefor 

(6.67) lira Prob(n-lJ?~ '" l eaves /be fo re  time n2 t )=0  g t e l R  + . 
n---~ oo 

Replace now the discrete time chain by a continuous time rate 1 process and omit all 
jumps leading outside nL Denote this new process by ( J~")se  ~+, it is for n, e fixed a 
Markov process. 

We consider the action of the generator G~ of the process ~n-i p~,, -~s,2) on the set 
D 1 = { f l f  is a restriction of a C 3 (IR) function t o / w i t h  flol= 0}. Observe that D 1 is 
dense in the set D with respect to the norm Ilfll = IIf1111~ + LIf'lxil~, where 
D = { f e  C 2 (I) l f le i= 0, ( x -  y)-2 ( f ( y )  _ f (x))  converges for x ~ y  e ~I, x ~ I}. 

I 0" 2 of reflected Brownian The set D is the domain of the generator ~ dxx 

motion in D, where is defined at the boundary by lim [ 2 ( f ( y ) - f ( x ) )  
[x-yl~0 

�9 ( x - y ) - 2  ]. A straighforward calculation shows that: 

(6.68) a~,(f)._.~==> 2 \dxJ  ( f )  V f s D l "  

This implies the convergence of the semigroup of (n- ~ (J~;,~))sE ~+ to the semigroup 
of reflected Brownian motion (Compare [2], p. 9 formula (1.16)). By a result from 
[2], p. 167 we have then: 5e ((n-1 )7~;,~)s c ~) converges to reflected Brownian motion 
on I in the sense of processes. 

Due to the relation (6.67) above and due to the law of large numbers for the jump 
times this implies that 2 ' ( (n  - ~ ' "  ~ " ZX[SnZ])SE~. +) converges to reflected Brownian 
motion. (Note one process is obtained from the other by transforming time t---r T(t) 
with T(nt)(nt)-~ ~ 1, Vt ~ IR + and furthermore the limit process has continuous 

r / ~  el3 

path. We leave out the tedious details of this measure theoretic puzzle). 

Proof of Lemma 6.2. Step 1. First construct a subharmonic function f~'" for 
-~,, (Xf,)~sN according to Proposition 3' with, among other properties: 

8 , n  ~ , ? l  _ _  f~"(x)=O,P~,,(f~ ) - f ~  - 2 1 ~  where P~, stands for the transition kernel of 
(X~)k~N. Crucial is now again the behaviour of (n f~ ),eN. We have: 

k(y) 

(6.69) n-~f:~"([ny]) ~ c ~ ~̂ al, k(y)=sup(i[x~ < y), ee(O, oo). 
?l ~ ~0 0 

Remark. c = (1 - e - Z r ) ( l  +e-~)(e-~+e-2~-e-3") -1. The proof  of 6.69 proceeds as 
follows" 

Denote the quantities a~,y,+ a~,y- introduced in Proposition 3 in Sect. 3 for a 
(X~) .  It is easy to see that Markov chain by a+y(~, n) once they are constructed for -~'" 

Lemma 6.1 implies that for, x > y  and ~i X~(y,x) ,  we have a~,r(e,n) ~ O. 
n - - + ~  

Now the relation (3.3) (3.5) in Proposition 3.3' tell us that it suffices to prove the 
analogues statement for h~'", that is (6.15) of Lemma 6.4 and Lemma 6.6. For  this 
reason we refer the reader to the proof  of Lemma 6.4, 6.6 for these facts. 
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Step 2. As a next step we decompose the exit time T. ~'" from n (xj, xj+ a ]. Note we 
_ J  

repress the dependence on the starting point of (X~)k~N in our notation. 

[nx~+l] I?" 
g , n  (6.70) Tj - ~ U(x,n) L~(x,n)= ~ l{y:,,=x}, 

x = [nx~] + 1 k = 0 

X~'"=[yn] with y~(x},xj+l).  

We shall prove below in Step 4 that uniformly in x E nI: 

(6.71) E(n-~L~(x,n)) ~ 2c(fi~-a +a/+11) -1 Vx~nI ,  with c as in (6.69). 
n---} ~ 

So that together with (6.70) we have as a consequence: 

(6.72) E(T~,")n -(~+1) ----} 2c(d~ 1 +dj-+11)-l(x~+l-x~). 

Next apply our Lemma 5.2, (5.12) to (5.14), in order to obtain the uniform 
integrability of n-  (" + 1) Ty'" and then conclude from (6.72) that: 

(6.73) {5~ (n- (~ +~) T;'")}, is weakly relative compact with nontrivial limit points�9 
A limit point has mean e(d~l+fi;+al -x ) (xj+ -xg. 

We are done once we can show that such a limit point has to be an exponential 
distribution. 

Step 3. To prove exponentiality we use of course a coupling argument. In the 
remainder we work out the details. Consider for some y e(x~, x}+~) the stopping 
time" 

~inf(k])?~'"= [yn], X~'" =x)  if _~'" reaches [yn] before T~'" 
(6.74) 72= T~, . elsewhere 

Observe that in order to show the characteristic property of the exponential 
distribution: 

(6.75) Prob(T~'">(t+s)nl+'[Tf'">tn 1+~) ~ Prob(T~'">sn 1+~) 
n---} c~) 

it suffices to show that 

(6.76) n -(1+~) sup (E(T2)) ~ O. 
x e ( x j , x j + l ) n  n - , ~  

It remains therefor to prove (6.71) and (6.76) in order to established our Lemma. 

Step 4. We start with proving (6.71). Rewrite (6.71) in the form 
^ ^ 

(6.77) E(L*(x,n)) ~'~ 2c ajaj+l n~ 
n ~  a j + a j + l  

To prove this note first that according to (6.15) and (6.15') we have: 

(6.78) Prob(X~ '" exits n(xj,xj+l] first to the right) ,-~ aj 

Next apply the formula from (5.9)" (#Ps, f ) = ( l ~ , f ) + Q 1 , 9 ) ,  9 = P f - f  to: 
f = f~'", S = Tf",  # = 6~ and conclude then with (6.69) and (6.78) that (6.77) holds. 
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The uniformity in x is obtained by applying the estimates for f~'" in terms of the 
resistance obtained from combining (3.5) with (3.35), (3.36). 

Step 5. The relation (6.76) is shown as follows: Define a function k, as 

(6.79) k , : =  ~ f~ '" .  
z~n[  

This function has the property P~,, (k.) - k, = 21,s and therefor if we combine the 
formula from (5.9) again: (liPs, f )  = (#, f )  + (tl, 9) with (5.10) we obtain now 
the estimate: 

(6.80) E(T.~)<k,(y)+Prob(T,~= Tf'"(x))Cn 

The second summand is bounded by Cn 2 (apply (5.9), (6.23) to f~," and T, x, to 
bound the probability term by n I -~). 

Combine now (3.5) with (3.36) to conclude from (6.80) that 

([x~+ln]-~ 1 [xj+,nl 1 ) 
(6.81) sup(E(r,~))<C 2 P~,,(x,x+l) t- ~ P~,(x ,x-1)  n+Cn2 

x e n I  [x jn]+l  [xjn]+2 , 

< (~n 2 . q.e.d. 

Proof of Lemma 6.4, 6.6 and 6.7. Observe first that 6.4 is included in 6.6 for the 

choice co# = cok-= 1 for all k e N, which makes the quantity 1 + y +/7 A to a 

constant depending only on p (0, x) that is r (p (0, x) = ce-" Ixl ). The proof of 6.6 and 
6.7 proceeds in three steps. In step one we prove the assertions (6.41), (6.42) about 
/7", 7" and in Step 2 we study t#", ~" (6.43) and in Step 3 the behaviour of ~(y) for 
y--> + oo (6,47). Recall the notation introduced in (6.33) to (6.36), and (6.39). 

Step 1. Remember that we are in the situation were p(0, x)--ce ,i:,i with 

c=  e -'lxl (that is c = ( l - e - ' ) ( l + e - ' ) - ~ ) .  

(i) We start with analyzing the behaviour of /7("). We first calculate the 
probability B,, that the walk with transition kernelS, (x, y) makes a jump from 0 to 
the right but not to 1 : 

fo r  n E g  0 

(see (1.10) for the definition of No). 

Observe that jumps from a point y >  0 into the left halfline have probabili- 
ty bounded by C(n-~fi,(y, 1)) for the kernel f t , ( . , - )  (since fi.(y,z) 
<=C13,(y, 1)fi,(1,0)fi,(O,z)) therefor we obtain from (6.82) above immediately 
(6,42). 

(ii) In order to study y" we observe first that : the probability to jump at least 
twice from the left halfline to the right one or vice versa before hitting 0 or I is at 
most of the order n -2~=0(n - ' )  and therefor negligible for our purpose. 
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Consider the chain X (") with kernel p , ( - , - ) .  Now introduce dy = Prob (X(r")_ i 
=ylJ(o(") = 0), T=  hitting time of {YlY > 0}. We have according to the remark above: 

/ ~ f i . (y ,k)  \ 
(6.83) 7 (")= Z dr [ k=l> _ ~ + 0 ( n - 2 , ) .  

,<o k fi,(y, 0)+ ~ f i , ( y , k )J  
k>_--i 

Now use that p(0, x )=  c exp ( -  r Ixl) and an explicit calculation yields (6.41) and 
(6.45). (Hint use p (u, x )=p  (u, v)p (v, w)p (w, x) with u =y,  v = 0, w = 1, x = k.) 

Step 2. (i) In order to prove (6.43) we introduce t~ ("), the minimal positive solution of 

(6.84) ( I - / i , )  (.) = v(")( N v ") [1)-1 _ 32. 

We have by construction of q("), ~("): 

(6.85) t/'") < t~(")( ]1Cn' 1]) < 0(") (n-" C). 

Observe that if we can show that 0 (") < CFI < C. (counting measure) for all n, then 
we have proved (6.43) part one, since (6.85) tells us that then ]] t/(") ][ ~o = 0 (n- ' ) .  (We 
use the notation ]],]]~ =sup [t/(x)l.) With the techniques from Sect. 3, (compare 

x 

(3.34) to (3.38)) we obtain: 

(6.86) IP0"'II  <<-c ,  .=v.llv.ll-1. 
Y 

Introduce next the medium generated by the set {0, 1} v0 { - i[co~- = 1, ie  N} 
vo {i[co+ 1 = 1, i__> 1}. This medium induces a walk fi on 26 by restricting p (x, y) and 
then relabelling the points with ag. Now note that for y_> 2: ft,(y, y - 1) >_fi(y, y -  1) 
for the medium A, for all n and furthermore/i, (0, y) __ Ca lyl ][ v" [[ with a <~. Therefor 
we estimate starting from (6.86) above as follows: 

(6.87) a x. (fi(y, y -  1)) -~ = ~ < ~  
Y 

which concludes the proof of (6.43) part one. (The fact ~ <  ~ follows from 
Prop. 1 b.) 

(ii) Note that with the same idea as above we obtain also: 

(6.88) Vn N 

(C depends of course on (co-, co +) !). 
As a consequence we can select a pointwise convergent subsequence r De- 

note it's limit with ~. The estimate (6.88) above allows us to conclude from the fact: 
(") is (the unique) minimal positive solution of ( I - / i , )  (.) = #(") - (6 (") 60 + 7 (") 50, 

that: 

(6.89) r is minimal positive solution of: ( I - ~ ) ( . ) = # - 6 o ,  #=q(O, .) 

~(x, y) is obtained from q(x, y) by relabelling N with Z -  

q (x, y) : = 1~ (x)p (x, y) 1~ (y) p (x, y) , 

= { x l x  < O ,  J . 
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This implies that ~ is independent of the choice of (n k) and therefor 3 (") converges 
pointwise to the unique ([4]) measure ~ which solves (6.89). It remains now to prove 
that this convergence takes place as t[" [t oo-c~ ence- The techniques of proof are 
similar to arguments we worked out in detail in Sect. 3, here we only sketch the 
proof: For #("), ~ with bounded support this would be a consequence of the 
Balayage-principle or equivalent the optional stopping theorem for martingales for 
the dual chain (compare Sect. 3 (3.52) to (3.54)). Since we have unbounded support 
we have to estimate the influence of the tails of a measure/~, on the minimal solution 
of the Poissonequation for # - ~ o  uniformly in the It" 1[~ -n~ This is done in the 
fashion of (6.86), (6.87)! 

By an explicit calculation one proves that 11(")converges to some 11 in the ]1" ][ o~ 
norm. 

Step 3. We conclude with the proof of Lemma 6.7. The relation (6.89) allows us to 
derive that ~ = ~-similar one has H =/7, so that especially (6.48) holds. 

To proceed further recognise that (~-+ ~o) is c~-invariant and furthermore is the 
minimal positive solution of ( ~ -  I) (.) -- a ( = zero measure), which assigns measure 
one to the point 0. This implies: 

(6.90) ~ = ~ = 1-1(1I(0))- ~ - 6 o 

and therefor 

(6.91) ~(y)/H(y) -+ (/7(0)) -1. 
y-~ - o o  

Since according to our convention how to choose H (") we have: /7(0) 
= ~ p(0, k)C~l~ I. We have therefor proved Lemma 6.7. 

k__<o 

7. Proof of  Theorem 1-4  

a) Theorem 1. We prove part a) of the theorem by combining Corollary 6 (4.4) with 
Proposition 1 (2.4) which gives immediately convergence of the finite dimensional 
distributions. In order to obtain convergence in the sense of processes for the 
continuous time process with Proposition 1, use simply Theorem 9.1 in [2], p. 142. 

In order to apply Corollary 6 we have to show that r < [log (1 - q)] implies that 

E,o <oo" 

Observe that r < ]log (1 -q)] means that: 

p(O,y)>_ce-alyl; c > 0 ,  r < a < l l o g ( 1 - q ) ] .  (7.1) 

Therefor 

(7.2) E ~  < 2 c  - 1  �9 e - I~~ q)i" . e " ' <  o o .  

n = 0  

In order to prove part b) of the theorem we assume first thatp(0, x) ~ ce -rlxl for 
Ixl~oo. Then we combine Corollary 7 ((5.21)) with Proposition 1 and obtain the 
assertion for the case r > [log (1 -q)] under the restriction made above on the tails 
of p (0, x). 

Next we relax the condition p(O, x),,~ee -rixl in the case r > 1log (1 -q)l  by gett- 
ing the analogues estimate to (7.1) above (that is p ( O , y ) < c e x p ( - a y )  with 
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a ~ (]log (1 - q)], r)) and then check that this suffices in the estimates in the proof  of 
Proposition 7. 

b) Theorem 2. We consider first the case where r< ] log (1 -q ) [ .  By combining 
Proposition 7 (5.21) and Proposition 1 (2.4), one obtains with the definition 

(7.3) 

that 

(7.4) 

T(n) : = inf (t]X(t) ~ cg [_ n, n]) 

{Sr is relatively weakly compact and the weak 
limit points are nontrivial. 

To proceed further we use the stationary and independence structure of the 
distribution of the medium. We explain below how we can get out of the relation 
(7.4) that: 

(7.5) lim lim [Prob(3 t<sn l+~:X( t )e (g[ -cn ,  en])]=O VseIR + 
s ----~ CG n - - - ~  

(7.6) 3ti, b~lR +, V t + t i e l R  + :~ l imProb(X(nX+ ' t )~[ -bn ,  bn] ) ]< l ,  
- -  n---~ o o  

ti+ 1 - t i > a > O .  

(Note Prob (-) refers here to the measure on the product of medium and process.) 
The relation (7.5) is obtained as follows: In order to reach cg [ -en ,  en] from 

point 0 we have to cross [e]-times an intervall of length n or we have to have at least 
one jump of  size >n.  The variables l{x~a } are independent for x belonging to 
different intervalls [(k - 1)n, kn]. Furthermore the probability of a jump of size ~ en 
tends to 0 exponentially fast as n ~  ~ .  It is now straightforward analysis to derive 
(7.5) from (7.4). 

In order to get (7.6) note that for every c > 0 with positive probability we leave 
(1 + b )  [ - n ,  n] before cn ~ +~-time units (uniformly in n), compare Sect. 5 Lemma 5.2 
and 5.3 and Proposition 2 b. In order to be back in [ - b n ,  bn] at time n x +" we have to 
cross again an intervall of length n, which according to (7.4) we can accomplish in 
less than ( t - c ) n  ~ +'-time units only with probability smaller than I for c large 
enough (uniformly in n). This means the values of t where the limit in question is 1 
are isolated q.e.d. Note that with a little bit more work we get through with 
assuming only ergodicity (instead of independence) for the medium. 

Both relations (7.5) and (7.6) together imply that 

{ (     + , )}    srelat ve,yweaklycompa t or vo y andweak 
limit points are nontrivial, except for at most t = t~ with a sequence t~ with 
fi+~-t~>=a>O. 

In order to prove (1.8) it remains now to show tightness of the sequence 

ts~ n~N' as measures on the space of right continuous 

functions with limits from the left. This is a fact we can derive best from Theorem 9.1 
in [2], p. 142. Use (7.5) and (7.7) to verify the conditions needed there. 
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The proof  of (1.9) follows the same lines, we simply have to replace n 1+~ by 
n logn and prove the respective versions of Propositions 2b and 7. All we have to do 
to accomplish this, is to replace (2.32) and (2.33), which refer to classical results, 
compare [8] or [3]. We leave the straightforward details/to the reader. 

The remark following the Theorem 2 is consequence 'of Proposition 7 and the 
fact already used above that any interval can be left with positive probability before 
time en 1 +~. 

c) Theorem 3.3a): The first observation is again that Proposition 1 (2.4) and the 
calculation following (4.4) imply that for our purposes we are allowed to replace 

n-lX(nt+~t) by a ^ -X[bnl+Ot] with a=q and b=(E~,(e(O))). Assume first nc_N i for 
H 

some i. We start by connecting the approximating process Z~'"(t, co) from the theo- 
rem with the one more suitable for technical purposes used in Sect. 6 namely Z~'". 
These processes are defined in (1.15) and (6.25) via W,~,o, V, . . . .  respectively k7 ",", 
V"'". Proposition 11 (6.29) and Proposition 2b tell us that these quantities converge 
in distribution to the same limit as n ~ 0% n _ N~. From this we can conclude that the 
L~(Z['") and ~(Z[,"(t, co)) have for n~  oo, n ~_N i the same weak limit point. To see 
this we use the fact that both processes are of the form g~-i y((~ L(O, g, (x))dx)-1 (t)) 
with g, converging weakly to a nondecreasing jumpprocess with isolated jump 
points. Then the assertion is checked by an elementary calculation. If we then 
combine the result above, Proposition 10 (6.27) and Proposition 12 (6.54) we obtain 
the assertion (1.18) of Theorem 3 for n ~  oo in N~. To generalize this consider: If the 
relation wouldn't  hold for a subsequence n k it would be violated for a subsequence 
(nj,)~_(nk) with (nl,)c_N i for some i. Therefor (1.18) holds for n s N .  

b) and c): Denote by c the number e -'1~1 . 

First observe that in our notation c(fi(y, y + 1))-1= n , exp (ra~) for y = x~ and 
that therefor we conclude with Proposition 11: the laws of W~,~ and our function 
/7 a," constructed in Sect. 6b (6.26) have for n ~ oo the same weak limit points. For  the 
last object we derived a limit theorem, namely Corollary 11 from Sect. 6b, ((6.31)). 
It allows us to conclude that: 

(7.8) ~ (( W~~ :::=> LP ( ( i  x~rt ) '  
n ~ _ ~  i 

(7.9) ~ ( ( i  cydY~'~(y)]/x~/]=~5s \ \ 0  x ~ ) "  

In order to prove (1.20)-(1.22) it remains now to show (in view of the two rela- 
tions above) that the convergence of the ~~ implies the convergence of 
5r co)) t~)  to ~((Z~( t ) ) t~)  as n~oo, n~_N~ and of ~((Z~( t ) ) t~)  to 
~P((Zi(t))te~) as 6--+0, where the latter is defined via (1.22). For the last assertion we 
can follow word by word (besides the notation) the arguments of Kawazu-Kesten in 
[8], there they solve in Lemma 2, Proposition 1 on p. 567-569 this problem. We 
don't  repeat these arguments here and refer the reader to that paper. For  the first 
assertion we pointed out in 3 a how to proceed. The uniformity of the convergence 



Symmetric exclusion on random sets 363 

-~ 0 in n follows immediately f rom Yi~o (x) Yi ~ (x), W~ o~ (x) IV,, o (x) as 6 ~ 0 for x > 0. 
(For  x < 0 we have decreasing sequences instead.) 

d) Proof  o f  Theorem 4. We only indicate how to modify  our  earlier arguments  for 
the case of  exponential  tails: 

Consider  again the sequence o f  sets {x i }i~z, where for n and a fixed {x':"}i~z 
labels the points  which have strings o f  forbidden points to the right o f  length at 
least [ l o g ( 1 - q ) l - l l o g n - a  with a < a .  The length o f  the string is written as 
[ [ l o g ( 1 - q ) ] - l l o g n ] - @  ~. We saw already in Sect. 6 that  (n- lx i '  . . . . .  ,ai )iez 
converges weakly for  n~ov ,  n~_N o. So realize again the whole sequence on a 
c o m m o n  probabi l i ty  space such that  (n- lx~'~,ai)---> (xi,a~). Denote  by 

? 1 ~ o 0  

x~=inf(xrlxr>O), so that  0e[x~_~,x~]. Fur thermore  note that  a~ 
with probabil i ty one. 

We shall show that  in the scale f~(n) the process doesn ' t  leave the interval 
[x~_a, x~] in the limit n ~  oo. For  that  purpose consider again the subharmonic  
funct ion f f rom P ropos i t i on3 '  with P * ( f ) - f = l ( o ~ , f ( O ) = O  among  other 
properties. Again  we can estimate f in terms of  the resistance (compare Sect. 3) and 
obtain:  

(7.10)) 

-t- oo x x j_ 1 

f~- l (n) f ([n,x])-- ,  0 xe[x~_l,x~] 

+oo x>x~j. 

With the same arguments  as in Sect. 5 we derive f rom the relation above that  the 
following holds for T, = inf (klX k e cg [x']'~]): 

(7.11) n - l  f , - l ( n ) T ,  --~ oo in probabi l i ty .  
n---~ co  

N o w  look at the exit times T,' f rom an interval [y' ,  y "  ] _ (x~_ 1, x]). Looking  at (7.10) 
above again, we conclude with the scheme f rom Sect. 5 that" 

(7.12) n- l  f~-~(n)T,: ~ 0 in probabi l i ty .  
n ~ o o  

The last two relations prove Theorem 4. We omit any further details. 
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