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Summary. We study symmetric exclusion on a random set, where the underlying
kernel p(x, y) is strictly positive. The random set is generated by Bernoulli
experiments with success probability g.

We prove that for certain values of the involved parameters the transport of
particles through the system is drastically different from the classical situation
on Z. In dimension one and r:= lim |(|x|™!logp(0, x))|>|log(1—q)| the

X{—=w
transport of particles occurs on a noii!:lassical scale and is (on a macroscopic
scale) not governed by the heat equation as in the case: r<|log(1—g)| on a
random set, or in the classical situation on Z.

The reason for this behaviour is, that a random walk with jump rates p(x, y)
restricted to the random set, converges to Brownian motion in the usual scaling
if r<|log(1—g¢g)| but yields nontrivial limit behaviour only in the scaling
x—=u"1x, tou T (@ > 1) if + o0 >r>|log (1 —q)|. We calculate o and study the
limiting processes for the various scalings for fixed random sets. We shortly
discuss the case r = + 0, here in general a great variety of scales yields nontrivial
limits.

Finally we discuss the case of a “stationary” random set.

A. Motivation and main results

0. Introduction

In the last years the theory of particle systems with spatially inhomogeneous
evolution mechanism has attracted attention for its significance in application and
for new interesting phenomena occurring. The interest has focused so far on various
types of Branching processes (Dawson and Fleischman [1], Greven [5, 6]) or the
contact process (Bramson, Durrett, and Schonmann; Liggett). Here we focus on a
different type of question: we are interested in the transport properties of particle
systems evolving in an inhomogeneous medium, that is with spatially varying con-
ductivity. This will lead to a problem for a random walik in random environment,
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which is of interest in itself. We have to extend work of Kawazu-Kesten [8] to more
general situations, that is non-nearest neighbour models. Compared with [8] or
Sinai’s work [15] also some new phenomena occur.

Consider the following evolution on a subset of Z¢: Given is a random set 4 of
accessible sites. We define a Markov process evolving on {0, 1} according to the
following rule: Particles move from x to y at an exponential rate given below
provided the system is in the state ne {0, 1}4:

(0.1) (La)p G, LN A =1 (y)) .

(Here n(y)=1 or 0 depending wether site x is occupied or empty.)

The set A4 is generated by a random mechanism but is then fixed throughout all
time. We are always interested in the evolution for given random environment.

In principle there are two main problems of interest:

(A) Suppose the process starts in an inhomogeneous situation for example:
one half space occupied, the other one empty. Now analyse the flux of particles
on a macroscopic scale, that is: study in a first and main step the rescaled function
u(t, x) = E(n, ()] 4).

(B) Take the process in equilibrium, tag a particle and analyse its motion on a
macroscopic scale.

We start in this paper the analysis of question (A) for the case where:

0.2) p(x,»=p(y,x), px»=p0,y—x), plxy>0 V(x y)eZ' xZ*
Y p0, )y <w.

In the classical situation where 4 =Z? we have the situation that the path of the
tagged particle tends in the usual scaling to Brownian motion and the density of
particles u(z, x) = E(n,(x)) fulfills in the scaling x—&~'x, £—¢~ ¢ in the limit -0 the
heat equation:

0 1 o \?
) — #(t, )=~z o> | —) i, x).
03) = (%)=~ 3 (ax) (1, %)
We shall show in this paper that in dimension d=1 and for random sets 4 generated
by Bernoulli experiments with success probability g, we have the classical picture as
far as problem (A) is concerned for almost all realizations of the random set if:

0.4) l@ (X))~ *|1og p(0, x)|) < [log (1 —g)|

but something drastically different in the case where the relation above is violated.
Then the particles move at a slower speed and the motion depends also in the
macroscopic picture on the random environment o defined by 4.

The basic tool in studying this problem is the fact that problem (A) leads to a
problem for a random walk on a random set. To see this make the following
observations:

The density E(n,(x)) of particles at x at time ¢ is given by: (E:=E(:|4))

(0.5) E@m()=Y P,0x, DEM()),

yeAd

P, has generator 1,(x)(p(x, ) —(x, ) 1,(3).
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Therefor our problem (A) leads us in the symmetric situation to the study of a
random walk on a random set. (For proofs of (0.5) see Liggett [11].) On the other
hand due to the duality relations, it suffices in the symmetric case to treat the
n-particle problem. The n-particle problem however is straightforward once the one
particle problem is solved. We formulate for that reasons our results as results on
random walks in random environments. But note that this reduction is valid only in
the case of symmetric exclusion processes.

Problem (B) is more difficult especially in the subdiffusive situation where quite
some additional work has to be done. We focus in this paper solely on problem (A)
even though our techniques will be useful for problem (B) too.

The organization of the paper is as follows: In Sect. 1 we formulate and explain
our results on a continuous time random walk on a random set which appears in
problem (A). In Sect. 2 we show how to reduce our problems to problems for
discrete Markov chains on Z. Section 3 prepares the important tools of our
analysis: we construct certain random harmonic and subharmonic functions A(x),
f(x) for our chain and analyse their asymptotic behaviour for |x|—co. In Sect. 4 we
apply these results to the diffusive case and finally in Sect. 5, 6 to the subdiffusive
case. In both cases it is the main point to get control over the behaviour of the
Markov chain introduced in Sect. 2. Finally in Sect. 7 we put everything together to
prove our theorems. We exploit a point of view on the ergodic theory of Markov
chains developed by the author in [4].

The main work has to be done to deal with the fact that the restricted chain can
not be reduced to a model with nearest neighbour jumps or a model where
jumprates are assigned to the bonds. Models of the last mentioned type have been
treated in the literature, see for example Kawazu and Kesten [8] for a rigorous
treatment and an extensive list of references especially to the physics literature.

la. The model

We start by introducing the ingredients we need to define our random walk
precisely.
(i) Suppose {Z(x)}xcz¢ are i.i.d. Bernoulli-variables with:

(1.1 Prob (Z(x)=+1)=4.

A realization of (Z(x)),cz we shall denote with .
The random set A on which our process will move is defined as:

(1.2) A={x|Z(x)= +1}.

(i) Furthermore we have a Markov transition kernel p(x, y) on Z9 x Z° with the
properties stated in (0.2) (i.e. homogeneous, symmetric, strictly positive transition
matrix, finite variance).

Now we are ready to define the process (X(¢));er+ we are interested in as
follows:

Definition 1. (X (2)),er+ is a continuous time random walk on Z“ with generator L
defined on L*®(Z%) as follows:

(1.3) (L= G ) =30, ) Laxalx, Y)(f(¥)), choose X(0)=xe 4.

Our main interest is focused on the behaviour of X(¢) as t— oo and the question
whether we can rescale time and space so that we obtain a limiting process.
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Furthermore in which cases do we get Brownian motion as the limiting process?
What is the structure of the limiting process in the subdiffusive case? We organize the
results in a such a way that we start with results carrying over to more general
situations and then proceed to results ( Theor. 3) which depend on the very special form
of the model. In this paper we are concerned with the one dimensional situation.
Throughout the paper we assume (0.2) and d=1.

1b. The results

The behaviour of the process X (¢) can be described very well provided the tails of
p(0, -) behave fairly regular. The important requirement for a detailed analysis is
that the following limit exists:

1
(m log p(0, x))

We denote by Y, (¢) the Brownian motion with variance ¢, with % (X)) the law of X.

(1.4 r:= lim

[x] =00

(+ coincluded) .

Theorem 1.

Case 1. r<|log(1—g)]

(1.5) 3(@ X(nzt)) lw) = L((Y,(1)er+) w-a.s.
reR*

n—>w
with o positive and independent of .

Case 2. r>|log(1—q)| or: r=|log(1—gq)| and p(0,x)~ce "V

1
(1.6) f((— X(nzt)> |a)) = dy,=0p @-a.s. [
n teR* n-o

Remark. Case 1 and 2 can be distinguished for general p(x, y) fulfilling (0.2) by the
criterion: Y (1—¢)"(p(0, n) ! <o or +oo. Studying the second case further,

n=1
requires necessarily regularity assumptions for transparent results. Therefore we
focused here already on cases were (1.4) holds.

Remark. For o one can give a representation (see Coroll. 6 in Sect. 4) but no simple
formula,

The Theorem 1 raises of course immediately the question: what is the right
rescaling in the second case where the motion is slowed down too much by the gaps
in the thinned out random set.

The results do depend very much on the form of the tails of p(0, -) if we are in the
subdiffusive case. If we want to see something in a deterministic rescaling we have to
have subexponential tails of p(0, -). Our techniques work for quite general p(0, -)
we focus however here on assumptions which allow transparent results. Very
concise results can be given if we assume that the tails behave asymptotically
exponential. For convenience only we shall assume in the sequel even:

-1
a.n p(0, x)=cexp(—rix|), c=<2p(0,x)) .

XeZ
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A remark on terminology and notation. We call a measure trivial if it is concentrated
on the points 0, respectively the process =0. With weak convergence of a sequence
we mean convergence as processes if we write the sequence as % (X, ), g) and weak
convergence of the marginals if we write .#(X,). (Compare [2], Chap. 3.)

Theorem 2. Assume that (1.7) holds.

a) For oo >r>|log(1—q)| we have with a=r|(log(1—q))~'|:

1
(1.8) {3 ((— Xt +°‘t)) )} is tight and all weak limit points are
h teR*/)neN* pontrivial.

For r=|log (1 —q)| we have:

1
(1.9) {Z <<— X((#*In n)t)) )} is tight and all weak limit points are
" teR*/J1eN pontrivial.

b) We obtain in (1.8) and (1.9) convergent subsequences if n runs through any
subsequence (n,(k))ren With the property: ([x] denotes the largest integer smaller
than x.)

(1.10) (((Ilog(l—Q)l)_llogni(k))—[(flog(i—q)l)"llog(ni(k))])kj’ ief01).

For subsequences with different i we obtain in (1.8) different limits. 0O

Remark. If we replace n' * * by a function f (n) €n' "*(>n' **) we obtain §, as a limit
(respectively the sequence is not tight).

The theorem above tells us roughly how fast the particle can move, but we
would like to have some information what happens for fixed w, at least if we exclude
o in a set with small probability. This point of view is analogues to the procedure in
Sinai’s work [15]. Furthermore we want to know what is the structure of the limit
processes. Both questions require a fairly complex analysis and we need to introduce
various quantities:

The subdiffusive behaviour is due to the fact that the process needs too much
time to cross large gaps (=consecutive points ¢ 4) when r is too big. It is therefore
important to store the information about location and size of the large gaps. In our
situation it turns out that large gaps at the level n of rescaling are gaps of size:

(1.11) [(log (1 —g)) ™" log (n)].

since the expected waiting time for a jump across such a gap is of order »* and on the
other hand the occurrence of larger gaps in [ —#, n] has probability tending to 0 as
H=>00.

We define therefore first the following sequence (W,{fw(x))xem of processes.
These processes store all information about large gaps, namely their location and
size.

Here is the definition: Denote by ((x? ,));cz the location of points such that a
block not belonging to 4 follows to the right which has length:

-1 P 5_llogdl
(1.12) [(log(1—q)|) *logn]—a; with —ow<ag/<—— and §=1.

! r
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Define (o= |log (1 —¢g)|"'r as before, c=(1+e )1 —e ")~ asin (1.7)):

n Y e Ix)={ilx,el0,0)n4}, x>0

1.13) W2 (x):= el
(13) Woo) -n* Y ce'® I(x)={ilx} ,e[x,0)n4}, x=0.
iel(x)

Different from a walk with jumps to nearest neighbours only we have also to take
into account that the behaviour of our process will be different in the following two
situations:

c(xxxx) X (XxxX) X
large gap large gap

In words: The local structure of A close to the large gap influences the time the
process needs to cross this gap.

We shall show that we can find a jump process (¢,),er with jumppoints x; S Z
and values ¢, e[ ¢, ¢] ¢ >0, ¢ < oo which describe this effect. In our special situation
where p(0, x)=ce "™ we can give the following explicit formula:

—w 1 —r Y
(1.14)  &=((1+FG)F)™", F:(1+ y e"‘yi> e G=Y ey,
k=1

k=~—1 t—e™’
z{l{keA—m}’ k<0
y 1{.’ceA~z},z=inf(xeA|x>y): k>0.

Remark. A general device to find this process (¢,) is to construct a harmonic
function for the jumpchain of our process (which can be uniquely determined by
some additional requirements: it will be constructed in Sect. 3) and setting:

(1.147) 5y=(h(2)~h(y))p(y,2)<ZAp(y,x))— for y=x;, where
z=inf(xeAlx>x;), {x}iez:{xelixed, x+1¢4}.

The information about large gaps and the local structure around them, is
condensed in the following processes:

(1.15) W,,‘fw(x)=§ &dW? (), xeR.
0
Since in the end we want to study the properly rescaled process we introduce
(1.16) W2 (x)=n"*W? (nx) a={log(1—gq)| 'r.
Now we re ready to introduce the crucial process Z2 (¢, w) which gives onlevelna

good approximation for the behaviour of X(#) for given w and # large (provided w
isn’t in a certain exceptional set with small probability and é is small enough):

(1.17) Z3(t, w):=(W) ) " YV 0,6(0))
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here
Y(¢): Brownian motion with variance o (¢ is chosen later).
Vws@) = L(t, W ,(x))dx, L (z,x) is the local time of Y (z).
For h nondecreasing we set 2 ™! (u)=inf(¢|a(¢) > u).

Three questions have to be answered: does Z?(z, w) approximate n~ ' X(n' *%),
does Z(¢, w) converge for n— o0, —0 and finally what is the structure of that limit ?
The answers are given in a), b), ¢) of the theorem below. The theorem has a form
analogues to Sinai’s result for a walk in a random potential: (A nicerlooking though
less informative consequence is formulated in a Corollary below.)

Theorem 3. Assume that p(0,x)=cexp (—r|x|) and a=r(log(1—¢q)|) ' >1, and
set E=E(-|w).

a) There exists o e(0, 00) such that Yn>0, ¢>0 and f € 6,(R) exist ny, 6,>0
such that:

(1.18)  Prob (co, {E’f (% X “z)) —Ef(Z2t, 0))

és)zl-rf

Vnzn,, 0=50,.
b) Suppose (n;(k))ien is a sequence such that: ([x]=largest integer smaller x)

(1.19) ((10g(1—Q))’llogni(k))~[(10g(1—9))”110gni(k)]kj> ie[0,1).

Then the approximating processes (23 4,(t, w)),er+ have the following asymptotics
for k— o0, 00

(1.20) g((zi-(k)(ts ®))teR*) k? L(Zi1))er+) Viel0,1),
(1.21) a(f((Zf(f))tew)&:j)3((Zi(t))zem+) viel0,1).

o) (Z;(1)), (Z2(v)) with ic[0, 1) have the following structure:
(o) Z1t) is given by

(1.22) ZO)=w X0,

where the ingredients are defined as follows:
(1) Y(2) is Brownian motion with variance ¢ (the same as in a),
(i) Vi(£)=] L(z, W(x))dx with L(t,x) the local time of Y (t).
t

(i) W(t)=[c,d¥7(y).

0
Here the (Y (y))yer are stable processes with positive increments and with index
a~ ! uniquely determined by:

[ny]
1% l:(cn xgo (p(x, y(x))) ! e(x) 1A (X))ye ]R*] ni g(yia (y))

with: mE,
. 14e7 T
Y@ =inf(>x,zed),  e(=Y p(x.y), =i

yed
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The (c,)yer form a jump process with values in [ ¢, ¢ and common jump points with
(Y (P)yer- If (¥ )xe s denotes the jumppoints of Y then Ly kerlVrer) is1.1.d.:

cires((ifun g eon) (5 eon) (o)

with
L((B)icz) = (;) B(1,9), c=(1-e ) (1+e™).

(B) To obtain Z? replace in (1.22) simply Y* by Y° with:
Y~ Y ()= ()~ T ) Ypo-ve)zsy- O

Another, though less informative, way to phrase our result above is:

Corollary. With the assumptions and notations as in Theorem 3 we have:

(1.18") g((J_ X(n}”(k)t)) >=»z((zi(z))tsm+), vie[o, 1)
¥03) Y g

Z(t) is selfsimilar with index (1+a)~* for all i and has continuous path.
The second hine follows from (1.22) with Lemma 3, 4 from [8].

Remark. We can consider (Z,(1)),cr+ again as a process in a random medium &
defined through a realization of ((¥*(¢)),er; (¢,)yer)- This process can be viewed in
a sense as an Ornstein-Uhlenbeck process in the random potential

¥y
U(y)={ ¢, dY*(x), thatis as solution X, of dX,=dY,—U’(X,)dt.
0

Then £ (¢t~ 11 **X,)= Z(X,), that is on the macroscopic scale diffusion occurs at
speed 111 *2,

Remark. The (c,) appearing in (1.22) represent the effects of the unboundedness of
the range of the jump rate of the walk restricted to A. Otherwise the form of the limit
process is similar to the one found in [8].

Of course one could ask now what happens in the case when r=+oo. The
behaviour in this case is very complex in the sense that there exist typically various
scales in which we obtain nontrivial behaviour even for fixed w but typically these
scales are not comparable. We also have localization.

As an example take p(0, x)=cexp (—x?). Consider the scales (corresponding

to gaps ~(|log(1—g)| " logn—B)):

(1.23) fym)i=n""12mn 20 p=(log(1—g))™*, BeN
and define 7, =inf(¢|X, ¢ [—n,n]). Then we have:

Theorem 4.

(1.24) & (% X(nflf’g"znw) =>4, was.

for all f<(llog(1—gq)))~>=b?
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(1.25)  For every feN:
1
{Lf (— X(nfy (n)t))} is weakly compact with nontrivial
n neN weak limit points.
(1.26)  For every feN:

[sup (En_ (sup >>:l<oo w-a.s.
TeR* \n—=wo \t£T

1
(1.27) 3( log 7;,) = 6. O
logn N oo

 Xafym)

Remark. The effect in (1.25), (1.26) above is simply that the walk is trapped between
gaps of size (log(1 —g)))~logn—p* (i=1,2) with f'<f.

Remark. This result says especially that it is in the case r = + co not possible to find
a scale independent of the realization of the medium, which still gives a reasonable
picture of the motion of the particle. The motion is on different scales in different
parts of space, and the various parts have random extensions. So we have in fact
three regions in parameterspace with qualitative very different behaviour of the
random walk: r <|log (1 —gq)|, co>r=|log(1—4q)|, r=+ .

lc. Outlook

We conclude with some remarks on a more general form of the random medium.
Consider a stationary ergodic process of the form (7, T?);cz with T, T2, N-
valued random variables. With 7' we describe the length of strings of points
belonging to 4 and with 77 the length of strings not belonging to 4. Assume that at
0 a string belonging to A4 starts. If we have E, ((p(0, T? +1)) ') < oo, then the
random walk on 4 behaves diffusive w-a.s. and there is no difficulty to adapt our
methods of proof. The behaviour in the subdiffusive situation can be described via
a w-independent rescaling essentially only in the case where the (7});cz are
independent and the Prob (73 = n) behaves fairly regular. We don’t have the space
to go into detail, however the methods we develop in this paper suffice to treat the
general model and the reader having a special situation in mind won’t have any
problem in working out this case along the line of our arguments. Note however that
the limiting processes in the subdiffusive case do depend on the special form of
2(0, ) and Z(T?)! We shall work out some cases in a forthcoming article.

The case of higher dimensions shows different features and our methods have to
be refined substantially, we cannot discuss details here.

B. Basic tools

Let us shortly summarize the idea behind our approach. In order to study X(¢) we
should investigate the following random times: Consider an interval [ and define
T.(I)= exit time from 7, when the process X(¢) startsin x. Controlling the behaviour
of these random variables should be the core of the problem. In order to study 7, (1)
we need to know at least three things: What are the probabilities to leave the interval



316 A. Greven

I'to the left or the right, how often do we visit a point y e I befor leaving 7 and how
much time do we spend in the average in a point.

The first two properties are properties of the jump chain only. Our first idea is
that we can separate the analysis of the jump chain from the question how long it
takes to make n-jumps as n— oo (Sect. 2a). Our second idea is to control the number
of points visited befor T (1) and the exit probabilities to the right, left with (random)
subharmonic respectively harmonic functions and this way turn our problem into
a potential theoretic one, namely to estimate these (sub)harmonic functions
(Sect. 2b, 3). The chapter B turns these ideas into mathematics.

2. The embedded jump chain and the resistance between points

This section especially part b) is basic for the rest of the paper, it introduces the
important discrete time chain (X)), on Z. The first purpose of this section is to
prove that it suffices to study a discrete time Markov chain on 4, the jumpchain.
Next we relabel points in 4 by Z in order to obtain a new random Markov kernel
p(x,y) on Z. For this kernel we define the notion of resistance and derive basic
properties of that quantity which is crucial in the study of (X,),cn, as n— oo.

a) Reduction to a discret time problem: the embedded jump chain. The first step
towards proving our theorems consists in reducing our problem to a discrete time
problem.

Definition 2. (X,),cn is the jump chain belonging to (X(¢))ser+. This chain has
transition kernel p(x, y):(on 4 x 4)

(21) ﬁ(x,y):=(p(x,y)leA(x,y))(e(x))_l, e(x):= Zp(xay)

yeAd

We define a measure I1(-) with support on 4 by setting:
2.2) O(B)=) e(x) VBcAd, II(z)=0 forz¢A. O

xeB
The following proposition tells us in (2.4) that it suffices for our purposes to study
(X, )neninstead of (X(2));cr+ and that the chain (X, ), is reversible with respect
to II.

Proposition 1. For every kernel p(x, y) on Z° which is symmetric and strictly positive
for x =y the following holds for the jump chain of the walk restricted to A (as defined
in (2.1)):

a) I is a reversible invariant measure of p for every A.

b)
(i) For every realization of A:
23) LX) =L Xy s zwn=m%ﬂ§:nzﬂ,

where conditioned on (X,);.w the (T) ;e are independent with £ (T, ;) =exp (e(X))).

(i1) Consider now for given w the normed sum of the jump times T, belonging to
(X(@))ier+:

2.4) not <

-

ﬂﬁﬁmmﬂwm
1 =0

I
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Proof of Proposition 1. a) Foreach x, y € A we check the detailed balance conditions
as follows:

e(X)p(x, y)=e(x)p(x, y)(e(x)) " =p(x, y)=p(y,x)=e(V)p(y, ) (e(¥)
=e(N)p(¥,x).

b) The part (i) is of course an immediate consequence of the Definition of e(x).
More interesting is part (ii). Here we shall adapt an idea of Papanicolaou and
Varadhan in [14] for our purposes, that is: study the medium as seen from the wal-
ker, use for this process Birkhoffs ergodic theorem and then derive the conse-

quences for the problem in question, The details of that program require some
work:

Step 1. Note first that conditioned on w and (X)), x, the (7;),. y are independent and
exponentially distributed with E(T; |o, (X,);cn)=(e(X;)) 1.

Therefore we shall study first the quantity Y (e(X;))™! and prove that:
i=1

@3 VY ) > (EeO) ! as,

For that purpose we consider the Markov process y, on {0, I}Zd, which is defined on
the joint probability space generated by w={Z(x)} <z and (X,)nen, through the
following relation: (y, is the medium seen from the walker at step k)

+1 onAd-X,
An+=

(2.6) 0 elsewhere

-1
a(ja¢):=<;p(iak)1{¢(k)=+1}> > jezda 905{071}2-

With this definition we can write: (using the homogeneity of p(x,y))

n

1 & 1
2.7 = ) X)) == Y a(0,y).

R op=1 n k=1
Suppose now that we could find a measure y on {0, I}Zd such that: (Such a yu is
automatically unique!)

(2.8) 4 is invariant measure of the Markov process y.

i is equivalent to &) 28, and shift-ergodic.

xeZ?
(B,:=q06,+(1—g)d).

In this situation the ergodic theorem for stationary processes would imply that
(a(0, -)=01)

(2.9) 1 Y a0, %) — E*(a(0, -)) < ® qu)-a. s.
1 y=p n= o xeZ?
Assuming (2.8) we could conclude the proof as follows:
We can assume without loss of generality that for the jumprates p(x, y) we have:
p(x,x)= 6> 0! Note that given (e(X;)) the T;(X;) are independent and exponentially
distributed, therefore by conditioning on {e(X;)};~, .., a straightforward calcu-

.....
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lation using an extended law of large numbers [3] page 243, shows that (2.9), (2.7)
imply

(2.10)

X | =

n a.s.
Y. T, = E*(a(0,-)) for fixed w, w-a.s.
i=1 noo

Step 2. Now it remains to construct p and to evaluate E*(a(0, -).

The measure y will be obtained as a weak limit of a sequence u, of probability
measures with support on periodic continuations of elements in {0, 1}*~ with
Ey=(—N, N In order to define uy we shall need the kernels py(x, y) obtained
from the walk induced by p(x,y) on AnE, as follows: Denote by
Ay={y|lymod 2N)e AnEy} and define py(x, ) as the walk j(x, y) restricted to
Ay as in (2.1) and then projected on the restclasses mod (2N).

(2.11) ey(x) = Z PO, (x), Sy:= Z en(x),
yeAn—x xeEnnA
2.12) HN(B):=<Z eN(x))(SN)_l; BS AnE,.

Note that ITy is a reversible invariant probability measure for py.

Let (X{™);enbe the stationary Markov process on Eyn A with marginal IT, and
transition kernel py (-, -). Now define u, as follows: (Denote by 7, the shift by x e Eyy
and by wy={Z(x)},.g, respectively by @y the periodic continuation of wy to a
{0, 1}-valued function on Z%).

(213)  py:=L(tgpoy) VeeN,  jiy(o):=puy(@lg,) {o=(l)} -

The next observation is now that (the details of the proof are straightforward and
left to the reader):

2.14)  e,(x) ™ e(x) w-a.s.; sup le(x)—e,(x)) = 0 w-as. Va<1

n—w |x| San n—o

S,2n)~% — E,_(e(0)) w-as.
Let b(+) be a bounded and local functional of y. Then we calculate using (2.12)
and (2.14):

@15 ERGB)=E, Y @b(rx@n>=Ew(S—:)_ (id 5 q(x)b(a@))
xeE, Sn n n xeE,
S\ /1
~E, <F> <F x;ﬂ e(x)b(rxw)).

Suppose we can show that then the first factor is uniformly integrable which will be
done in step 4. A minute’s thought shows that then the relation above implies with
the second part of (2.14) and the L'-ergodic theorem for stationary fields indexed by
Z°, that we can define p as follows:

(2.16) A, => u, uis translation invariant, y is y-invariant.

R~ o0

Since (according to (2.14)) S,((2n)*E,(¢(0))) ' — 1 w-a.s., we have especially:

n—oo

2.17) E*(a(0, ))=(E,((O)™".



Symmetric exclusion on random sets 319

Step 3. It remains to show that y is shift-ergodic and equivalent to &) 2,, this
xeZ?
measure we abbreviate by v. The relation pg=v implies of course that u is

shift ergodic.

We show first that u<v. First observe the following facts: p(n, x, +), the n-th
power of 7, is equivalent to counting measure, ey (x) < 1, and S,(2n) E,(e(0))) > 1.
Therefore looking at (2.12) shows us that, we have the following estimate for the
density &, of ITy with respect to the normalised counting measure on Ey :

Define c,(w)=S,(2n)~% then:

(2.18) P <

cN(co)Nj> E,(e(0) & B-as.

ex(w)’ xeZ¢

We shall prove in step 4 that

(2.19) R RN
en(@)  Now £, (e(0)

This implies with (2.13) and the second part of (2.18) that: (T as i (2.13))

dji "
(2.20) | dvg Amdiy = 1 forsome meR*, vy=& 4%,

N-ow xeEn

Since a v-nullset can be approximated by a set M with v(M)=<¢ and such that M
depends only on a finite number of sites and furthermore fy(M)— p(M), we can
conclude from (2.20):

(2.21) p<v.

In order to obtain the relation v<u we use the fact that p"(n, x, +) = counting
measure on Ey for every ne IN. The argument then is word by word the same as in
Papanicolaou, Varadhan [14], p. 551, we refer the reader to that paper for details.

Step 4. Now we prove (2.19). Our chain is derived as jumpchain of a continuous time
process, we are therefore allowed to assume w.l.o.g. that: p(x,x)=4J>0. This
implies especially that p¥(x, x)= 4 for all Ne N. Therefore we have the estimate

(2.22) ex(@QNY = Y ey(x)Z8lANEy|.
xeEn

Note that we are only interested in those w where |4 Ey| > 0. Observe furthermore
that for those w:

(2.23) ! <@2N)6 1:=N
ex(w)

Now consider the following two events: (¢>0,e<¢q)

(2.24) Ci:={wl |4AnEyZe 2N)%}

C,:={wl0<|4dnEy|<e - 2N)"}
and estimate with (2.22) and (2.23) as follows:

1 o 1
(2.25) E, <CN (w)>§Ew(N102) +E, (5@7 101> .
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Since we have by (2.18) and (2.22):

N( ) N-w
and by the large deviation principle for Bernoulli-variables:
(2.27) Prob, (|ANEy|<e-2N)Y¥)<e?@¥ with §(e)>0 for e<gq

we obtain from (2.25) immediately the assertion (2.19) with the Lemma of Fatou (by
observing that we can make ¢ arbitrarily small, so especially smaller than g).

(2.26) E< ! ) (E (e(O)))kl, (Prob(C,) = 1 for e<gq!)

b) The induced chain on Z. In order to study the chain (X,) it is convenient to
relabel the points in 4 by Z¢, so that we obtain a new chain (X,) on Z¢. This chain
will be the main object for our analysis in the next chapters. We focus on d=1 from
now on.

Definition 3. (X,) is a Markov chain on Z with transition kernel p(x, y) with
(2.28) p(x,y):=p(.k),

where
=inf(ll#{meA,0§m§l}gx)

f =0
k:=inf(l|#{meA,0=m=<l}2y) %=

similar for x, y<0. O

The qualitative behaviour of (X,),x is, in the case of dimension 1, determined
to a large extent by a quantity c, , which we call (stressing the metaphor somewhat)
the resistance between x and y.

1

x§Z§y—1 PZ,Z+1)’

In the case y<x we replace p(z,z+1) by p(z,z—1).
In the next step we investigate the behaviour of the resistance ¢, , for |y —x|— o0.

Proposition 2. Suppose d=1 and p(x,y) fulfills (0.2).

1
a) Case 1. E <ﬂ7(0,—1))< + 0.

(2.29) Coyi= y>x.

Then:

1
2.30 -2.8.
(2.30) T S (p(()l)) oo
Case 2. If E, (ﬁ (01 1)) + o0, we consider the case where lm <| I[Iog (0, x)|)
=re(llog(1—g)|, ).
Define p=\log(1 —q)ir~*. Then we have

T 1 +o y>f
2.31 m {———-c_, ., |=
@30 Iyl o <(2Iy|)”’ ”> {0 y<p

b) If we have p(0,x) ~ ce~ " for some r with r> |log (1 —g)| then:
[x]~ o0
(2.32) & L c_ is weakly relative compact.The weak limit
@Iy “Tm e e
points are stable laws on IR with index f3.
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Furthermore we have as criterion for convergence along a subsequence:

[P c_
’2yk|l/ﬂ Yies Vie o

(2.33) z ( ! ) => stable law with index p

<((logy,) —[logy.]) converges for k— oo

For every possible limit of (log y, — [log v, ke we obtain a different weak limit point
for the law of the resistance along that subsequence. ( They differ by a scalefactor only,
of course).

Proof. a) In case 1 we apply simply the strong law of large numbers for i.i.d.
integrable random variables. Note that in this case a stationary ergodic random set
would give the same result! We treat case 2 under point b).

b) The assumption on p(0, x) implies the following relation for (-, -):

(2.34) Probw<A ¢

zern — 1_q)n—1=e—"|108(1_‘1)|(1_q)_l
50.1) ) (

G -0

The assertion (2.31) follows now from Stout [17], p. 130-132 by straightforward
arguments.
Now note that for x between » and n+ 1 the quantity (¢™)~# varies by a factor

1
between 1 and e”. That means that the Laplacetransform F(s) of & (,0 )

obeys according to (2.34) above (see [3]): (0, 1)
—F — 1=
2.35) 0<c<tim (1) <him (LD coc o0
s—0 Sﬂ 50 sﬂ
which immediately implies
(2.36) 0<e % <lim (F(An~Y#))"< lim (F(Ain~VE)yr<e .

The standard continuity theorem for Laplace transforms yields now that the

1
sequence & (———

A -, , | is weakly compact with nontrivial weak limit points.

To proceed further note that (2.34) implies for a sequence y, <IN with:
[log y,] —log y, converges as k— oo, that:

c
(2.37 Prob,, (p‘_(()T)‘Z“exP (rlog yk)> ~ const (exp (rlogy,)) "*.
» k—w
An explicit, but tedious calculation shows now that this implies for the Laplace

1
transform F(s) of & (A———> that:
50, 1)

(2.38) 1—F(sy; Y#y ~ constsfy; 1.
k— o0
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It is then a standard calculation to show that (compare [3]):

1
(2.39) & <I2y 77 Coy y")k = stable law with index f.

This finishes the proof of (2.33) and (2.32).

3. A harmonic function and an associated martingale

The basic idea of our approach to Theorem 1, 2 is to use martingale central limit
theorems, and potential theoretic arguments in order to study £ (rn~ " X,) and exit
times from intervals as n— co.

For that purpose we shall first construct a harmonic function % for the kernel
p(x, y) (unbounded of course!), so that ¥,:=h(X,) is a martingale. The next step
will be to analyse 4(x) as |x|— co in order to be able to use information about ¥, to
conclude something about X,. Since the ideas behind these constructions work in
more general situations, we state and proof first general results: in Sect. a) existence
of a suitable h, in b) asymptotic properties of # and then we show in Sect. ¢) how they
apply in our situation. Essential is the proper use of the potential theory for discrete
time Markov chains.

a) Construction of an unbounded harmonic function for certain Markov chains.
We start by proving a crucial fact about Markov chains on Z (our Prop. 3). Here we
use many ideas from [4] and [12]. We shall use especially the fact that a recurrent
chain with kernel P on Z has up to multiplicative constants a unique o-finite positive
invariant measure IT and the equation (-) (/— P) =4, — d, has asolution bounded by
multiples of IT and all solutions of that kind differ only by a multiple of IT (see for
example {4], Theor. 2). Furthermore we shall need the potential kernel K(x,y)
constructed in [12].

Consider a Markov kernel P on Z with the following four properties:

(i) Pisrecurrent and irreducible. Fix an positive g-finite invariant measure I7.

(ii) Let# be asolution of the Poissonequation (-)(/—P)=d,—0,(x > y), which
is bounded by a multiple of the invariant measure IT of the chain.

Now we require that for each pair x,y exist a*, ¢~ € R such that:
(3.1) hm @) —at H(2)=0 lim (y(z)—a™ I (2))=0.
We shall denote by 4 ,d; , the numbers defined by (3.1), when 7 is the minimal
positive solution of (+)(/—P)=4,—4d,and by a] ,a;  the equivalent numbers if
is choosen as (6, —d,) K where Kis a potentlal kernel of P in the sense of [12]. Note

that aj ,—a, , is 1ndependent of the choice of K and equal to 4] ,—d; ,.

(iii) { c, , denotes the resistance between x and y: xézéy_ . P_(ZZ—-i—T)>

3.2) ZP(x,y)c,;,y<oo VxeZ, ) P(x,))|yl<cc VxelZ
y y

(iv) Theinvariant measure I of the chain P is bounded by a positive multiple of
the counting measure from above and from below.

Remark. Note a;;,~ depend on the choice of IT!
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Proposition 3. If P is a Markov transition kernel on Z which fulfills (1)—(iv) above then
there exists a (unique) function h: Z—R such that for a given choice of II:
(3.3) () P*(h)=h

() h(0)=0

) A+ —h)=(a711,,—arr1, ) =71, —d11,5) -

Remark. The point of this construction or choice of # is the representation ()! It is
based on the “renewal property” (ii). We do not use (y) as definition since the  we
construct exist also in cases where (ii) does not hold, so that we have a) §) but not y)!

Remark. We have not yet excluded that h=0thatisa},, ,—a;,, ,=0forallxeZ.
We will show in Proposition 4, 5 that for our application h+0.

Our method of proof allows to show with minor modification the ex1stence of
certain subharmonic functions, which also allow a representation in terms of a
We shall only prove Proposition 3 in detail.

Proposition 3'. Suppose (1)-(iv) of Proposition 3 are fulfilled. We can construct a
Sfunction [ =0 such that:

3.9 P*—=D)(f)=2-1y, (f is subharmonic)
f©0)=0,
B.5) f)=lo+dcoc f(x)=claio+aso—2(K(x,0)—K(0,0))
f+D)—f()=cafs x+a5e1,.—2(K(x+1,0)—K(x,0))c™)
(f(x+1)—f(x))x:wC(ax++1,x~a;+1,x)=(ﬁLl,x-ﬁ;ﬂ,x)C

f(x—1)—-f(X) /\_J c(ax_—l,x_a:—l,x)=(é;—l,x_é:—l,x)c

c=1I1(0).
FEurthermore we can write f in the form:
(3.6) f=fr+f" 7 z0
P*=D(f*7)=1y
frx)=dgec  fTx)=d;ec.
Proof of Proposition 3. First we shall define a sequence of functions (#,),en,
harmonic except at the two points —#, n. And later we shall show that this sequence

has a limit 4 which has the desired properties. Step 1 introduces 4,,, step 2 derives
properties, step 3 yields 4 and step 4 finally shows that # is harmonic,

Step 1. The sequence 4, is uniquely defined through the following properties:
(37) P*(hn)_hn=i_-{—n}—1={n) 1={a}z:l{a}'(lj(a))_l

£,(0)=0

h,e L*(Z).
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.. - I
To see this define a Markov transition kernel P(y, x)=P(x,y) %’ where [T

is a g-finite positive invariant measure of P (which exists due to the fact that P(-, -)
is recurrent, see for example [4]).

This kernel P is recurrent (easily checked using (iv) and the Lemma of Harris
quoted in [4]) and the same measure IT is an invariant measure. Define for given
function f a new function f (x)= f (x) (I (x)). Then we can rewrite (3.7) as follows:

(use (iv)H)

(38) (En)p—ﬁnzé{—n}_é{n}
1,(0)=0
h,dII £C - counting measure .

Now standard theorems about solutions of the Poisson equation yield the assertion
that 4, is determined by (3.7). (See for example Greven [4], Neveu [10]).

Remark. In the same fashion we can turn a Poissonequation with P for a measure
n:(m)(I—P)=45,—48, into one for functions and for P:

3.8) (U-PYp=Ty-1,, FEO=FOUE)T, FO=N().
This fact will be used later frequently.
Step 2. Now we shall derive a bound on sup [|4,(x)|] and a representation for £,(x).

For this purpose we introduce first some notation: Let # be the minimal positive
solution of the equation (-){(/— P)=§,—3J,. There exists a number b, such that:

(see [4)).
3.9 n<b, Il

where IT denotes the invariant measure normalized with I7({0})=1. We shall see
below that this allows us to estimate }i,(x)] as follows:

(3.10) I, ()] =26, (T () v FI(~n)) (in; (ﬁ(x))*)
xe

To prove this we calculate as follows: (The forth equality uses a basic property of
potentials see [12], p. 109).
(3.11) By (x) = hy(x) —hy (0) = by, 6= 00> =y, =1 P +11)

=~ (P*() — by =Ly =Ty >

=n({rDUT @)™ —n({ —nHUT(—m) ™"
So that by (3.9) and by II(x)=C ! >0 we can conclude from (3.11):
(3.12) (O Clr({n}) +1({ —n}) < Ch, (T (n)+ I (—n))

L2b,C(II(n)v I (—n)).

Step 3. By our Assumption (iv) we can conclude from (3.12) that:
(3.13) sup [JA, (x)|] = C2b, sup (II(n)<o0.
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This means that we have via assumption (ii) and (3.11):

(3.14) h(x) = h(x) YxeZ, |hXx)|<b,C VxeZ,
k— oo
(3.15) h(x)=(a;”’0—a;o)=(ﬁ:,0—ﬁ;’o)

h(x+1)—h(x) =(a;+1,x—a;+1,x) =(d:+1,x“d;+1,x) .
The last equality proves the assertion (p).

Step 4. In order to prove the remaining point (x) we observe that due to
P*(h,)—h,=1,_,—1.,, and (3.13) it suffices to show that: (apply dominated
convergence theorem)

(3.16) Y P(x, »)h(p) < o VxeZ
Y P(0,x)b,< 0.

Note that the second inequality implies the first one.

Since # is the minimal positive solution of the Poissonequation we obtain
(d;y+1 20')

(3.17) bx§<inf1'_l(x)>—1 Y sup[n,,-1(2)] Vx>0.

0<ysx 2

On the other hand we shall show below that the following estimate holds for the
effect #, ,_, of the (§,,0,_;)—Filling scheme (=minimal positive solution of
(+)I—~P)=6,—6,_,) which amounts in this case (discrete state space) to saying
Ny x—1(A)=E4(visits of (X{?)rew to A4 before first reaching (x—1)) ([4],
Lemma A):

l_P(y:y_i) -1
3.18 g1 og-).
(3.18) s 1<)_( e (L (O
This implies due to assumption (iv) together with (3.17) that:
1
3.19 b.<|c- ———  [Sconst ¢, 4.
G19 —l: ogggx P(J’,J’*i)] °

Now our assumption (iil) gives immediately the assertion (3.16).
In order to prove (3.18) above, note first that : (Lemma of M. Kac quoted in [4])

(3.20) E(#visits of X in 4 before the first return to x)=1IT(4)
()= {x})~1H(-)

and

(3.21)  E(3visits of X to x before a jump from x to x—1 occurs)

_1=P(x,x—1)
T P(x,x—1)
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Both (3.20) and (3.21) together give immediately the desired inequality using that
N..x—1(A4) is equal to the expected number of visits in 4 starting in x before first
hitting x—1.

b) Asympiotic properties of harmonic functions. In this section we prove a result
about the asymptotic behaviour (Jx|]— c0) of harmonic functions as constructed
in Proposition 3. Here we consider a general class of random transition kernels
with certain properties. That this class contains our kernels p(x, y) is nontrivial
and shown in part c. The strategy in this section is to compare A(x) with the re-
sistance ¢, , employing the representation of 4 givenin (3.3) (y). Via (3.5) line three
this yields automatically information about the subbarmonic functions f with
(P-D)(f)=1, too.

In this section we consider an ergodic stationary process with values in M, (Z),
which is denoted by {P(x, +)}xcz. We assume that £ (P(x, -))=ZL(P(x, —)). As-
sume also that for almost all realizations the assumption (i)—(iv) of Proposition 3
are fulfilled, where (iv) holds uniformly in w. Choose the o-finite positive invariant
measure which is only unique up to multiplicative constansts IT for each w such that

lim I(x)= lim II(x)=1. Now it makes sense to talk about E,(a{o), E, (a5 o),

since we fixed IT and we fixed it such that {II(x)}.z is stationary. Assume
furthermore E,(a; o) * E,(a5).

Denote by ~ the harmonic function constructed in the last paragraph,
respectively f the subharmonic function constructed in Proposition 3’ with
(P*—ID=21y,, and ¢, is the resistance between x and y ((2.29)).

Proposition 4. In the situation described above the following holds:
a) IfE,, (73(—;—6) < oo then we find ce R* independent of o such that for k=c h
we have ,

(3.22) F(x)/x = 1  w-as.

|x]~ o0

b) If E, (P_(éT)>= + 00 we consider the case where the following additional
assumptions hold :’

(3.23) { &L (co /1X|*)} xen is weakly relative compact with
only nontrivial limit points .

(3.24) P(x,y+2)SP(x,y)P(y,y+2) w-as., fory>x, z>0
ory<x, z<0
(3.25) P is reversible with respect to the invariant measure II ~ w-a.s.

Then h respectively f have the property:

(326) {2 (x)/]xl“)}xez} is relatively weakly compact and all weak limit
(327) {L XXM} xez) Ppoinis are nontrivial.

FO)F0 for y+0 w-as.

Note that in b) 2(x)x~* does not converge w-a.s.!
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Proof of Proposition 4. a) The general strategy is to use 3.3 (y) to represent 4 in terms
of the a;; 7 , and then to apply the ergodic theorem. Here are the details:

Step 1. Due to a result of Neveu [12] we can construct a potential kernel X(x, y) for
P, that is we have especially

(3.28) (K(x,-)—K(y, )UI—P)=6,—8, K(x,-)<o-II for some acR".
Due to our assumption (ii) we have then automatically:
(3.29) [(K(x,2)—K(y,2))—ag,MI(z)] —> 0
z—+ o
[(K(x,2) = K(y,2)) —ay, [I(2)] = 0.

With the representation for # derived earlier in (3.3) (), we know that whatever
o-finite invariant measure we select, # has the property:

(3.30) h(y+1)—h(y)=c(a}iy,,—a,,1,,) for some ceR.
We can represent A(y) therefore in the form:
(3.31) r(p)=c 3 (83:-1—0551)

0<x=y

Notethata*, a~ depend on the choice of IT. The point now is that IT is choosen here
in a translation invariant fashion. This is the case because we have choosen IT for
each w such that lim sup I7(x) =lim sup 1 (x) =1 and then we have that (IT(x))czis

X 00 X0

stationary and ergodic (for the latter use (3.20)!). So having chosen IT:

(3.32) h()= )Y (@f.-1—az. 1), (—L~> stationary ergodic.
0<x<y ’ ’ H(x) xeZ

The (@] 1 —a;_1.x)xez form a stationary R-valued process, since the difference

af_y .—a,_, , is independent of the choice of the special function in the

construction of K(-, +) and since {(II(x))™'},ez is stationary! (See [12] or [4],

Theor. 2, for the fact that two admissible solutions of the Poissonequation differ by

a multiple of IT only!)

The underlying process {P(x,:)}xcz is ergodic so that the sequence
(ai_; x—a,-;, ,)is also ergodic, since the tail field of that sequence is contained in
the tailfield of {P(x, -)}xcz. The proof of that fact is based on an identity we shall
prove later namely (3.53). The details are straightforward and omitted here. Note
that by assumptions E,,(a{ )+ E,(a1.¢)-

Provided we can show that E_(la; (—aj o[)<oo, the ergodic theorem for
stationary processesand (3.32) tells us that:

(3.33) h»))y — E,(aio—a;,)+0 w-as., qed.

y—=> +o©
Step 2. In order to verify that the expectation above is finite we shall use the
following fact, which can be found for example in [4], Theorem 2: If , , denotes the
effect of the 4,,0,-Fillingscheme (or equivalent the minimal positive solution of
(+)—P)=6,—0,) then we have:
(3.34) Neytiye=ay, I, a R,

Xy



328 A. Greven

This implies with (3.1) that

(3.35) a; . +a; . <2a (for notation see (3.1)).

X,y

With the same considerations as in (3.18)—(3.21) in the proof of Proposition 3 we
derive the estimate:
(3.36) <cf-t 41

Y A= 0) T PO, 1)
Now (3.35) and (3.36) yield immediately that E,,(ja; o —a; o)) < o0, since a; o —ay o
=4t o—d;, and by definition df,,d;,20 and E,(P(0,1) 1)
=E_((P(1,0))"*) < oo by assumption.

) for some CeR* independent of w.

y
b) The starting point here is again the representation #(y) =3 (a; . — a5 ,—1)

[
obtained in (3.32). The task is to relate the sum on the right to the resistance between
0 and y (which was denoted by ¢, ,) and then we can use Proposition 2b in order to
obtain our assertion.

Step 1. We saw already that (see (3.35) and (3.36) above)

o ) e 2 1 1
;(ax,x—l_ax-x‘l)‘éc ; (P(X,X—1)+P(x_1’x)>

=C‘(c0,y+cy,0), with C independent of w.

(3.37)

Since on the otherhand the invariant measure IT is bounded below and above by the
counting measure and P is assumed reversible with respect to II in this part we have:

y y 1
33 + —a- <cy —— (- ,
(3.38) %:(ax,x-1 a4 -1 = %: Plx,x—1) o,y

C independent of .

Step 2. It remains to obtain a corresponding estimate from below. It suffices to
know something for y very large, since we want only to assert something about the
behaviour of A(y)/y* for y—co.

We know from the ergodic theorem that for all >0 and o>1 the following
holds:

(3.39) (éo TX,;—T) 1{P(x,x_1)gs})y_°‘y—:00 m-a.8s.
so that it suffices to prove for some ¢>0 an estimate of the form:
y y 1
(3.40) xgo (@ s 1—a57x-1)2C xgo Pl lper-nse> €>0.

This will be done in the next Lemma below.

First we finish the proof of Proposition 4 assuming (3.40) to be true. Consider
first part one of assertion (3.26) dealing with 4. Having (3.38) and (3.39) combined
with (3.40), the assertion (3.26) follows immediately with (3.31) from the
assumptions about the behaviour of the resistance in (3.23). For the first part of
assertion (3.27) about f we use (3.5) instead of (3.31).
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The second part (f(¥)>0 for y=+0) works as follows:

The relations (P*—1)(f)=21y,, f =0 imply that either 1, o,/ =0 or: f(»)
=0=y=0. 1, .,/ =0 would however imply according to the relation (3.5) and
(3.40) that P(x x+1)=6>0VxeZ™ for some é >0, where 4 can be chosen (due to
the ergodicity of {P(x,+)}xcz) independent of w. This in turn means that

E, PO.D) < o0 in contradiction to our assumption. Therefore (3.27) part two

holds.
We turn back to proving (3.40). It suffices to prove:

Lemma 3.1. Suppose that a transition kernel P(x,y) fulfills the conditions (1)—(iv) of
Proposition 3 together with the following conditions for some ce R™ :

(3.41) Y P(x,xtk)ZcP(x,xt1) VxeZ,

k=2

(3.42) Py, x—1)/P(y,x)Sc - P(x,x—1) Vy>x
P(y,x)/P(y,x—1)§c'P(x—l,x) Vy<x

Then we have the following estimate: (g, ¢ depending only on ¢ and inf I1(x))

1
(3.43) 3 (axx 1 x,x-1)§£‘———’P(x,x_1) Liperx—yge 1 {P(x—1, 06} -
s>0

Remark. (1) In our case P(x—1,x)<CP(x,x—1) as mentioned in (3.37) before!
(ii) The assumption (3.24) of Proposition 4 implies of course (3.41), (3.42).

~

Proof. First remember thata; ., —a, ., =4, ., —d, ., where the "-quantities
are derived from the minimal positive solution of (- P) 0,—0,_; . Denote this
solution again with 5, ., (-). Then we know #, . _,(4)=E4# {visits of X}¥ to 4
before reaching (x—1)} ([4] I, Lemma A). Therefore:

(344) nx,x—l('x—l)zo'

To prove (3.43) we shall proceed in two steps: first estimate #, ,_; (x) from below
and then in the second step use the fact thaty, ,_, (x—1)=0to obtainaresult about
(@5 .y —d; ) by passing to the dual chain and applying the optional stopping
theorem for marginales.

Step 1. Let (X,),—¢,;,... be the Markov chain with transition kernel P. With

P

Probw () we denote the probability measure for the corresponding process starting
m point x.
In order to write down our estimate we shall need the following quantity:

(3.45) B(x) : =Prob,,, (The chain X, hits (x —1) before
xand X ¢{x—1,x}).
Then with the same argument as in (3.19) to (3.21) we have:

1=p(rx=1)—f() _1—pex—1y() 1
B)+p(x,x—1) ple,x—1)  y(x)’

with y(x) =(B(x)/p(x, x—1))+1

(3.46) Mx, -1 Z
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Suppose we can show that:

(3.47) y)<K VYxeZ
then we can write for some e€(0, K ~!):

—Kp(x,x—1) 1 1

3.48 O —_—
( ) nx,x—i(x)_ p(xx 1) K‘Cp(x,x—l) 1{p(x,x—1)§s}-

The estimate on y(x) we obtain as follows:
The fact that Z plx,x—k)<cp(x,x—1) leaves us with finding a bound

=2
from above on y (x) =B’ (x)/p(x, x —1) with: (denote with B, = {X{* > x before it
hits x—1 or x})

(3.49)  B'(x):=Prob,, ((the chain X, hits (x—1) before it hits x)nB,).
In order to get control over this quantity we introduce:
(3.50) ¢, =Prob,,(B,N(the last point before X, hits {x—1,x} is y)).

From here we obtain our assertion (3.47) by applying to the relation above our
assumption (3.42) to obtain:

x—1
(3.51) F@E>24g%%%¥

Step 2. Having (3.48), we are left with the task to estimate (45 ,_; —d; ., )by the
quantity Hy,x—1 ('x) “Hx,x—1 (x - 1) My, x~1 (x) Compare (344))

For that purpose we define the quantities: | X, : process with kernel P(x, y)

—m,)ﬂfﬁ

(3.52) H (x,x—1)=Prob, (X, hits {x, x—1} first in x).

Zcplx,x~1).

Since 7, ,_; is the minimal positive solution for the Poissonequation (-)(I—P)
=§,~d,_4, we can obtain with the same manipulations as in (3.7), (3.8) an
Poissonequation in terms of P. Then we have by the well known optional stopping
theorem for martingales:

(353) ( xx 17 x,x—l)zlim (ﬁ+y(x7x-'1)

y— o

—H_ (3, x = D)1 U (x) 7

If we plug (3.48) in (3.53) and use IT(x) < C we see that our assertion (3.43) is proved
if we can show that:

(3.54) (H, o x—1)—H_ (x,x—=1))=26>0
provided: P(x,x—1}+P{x—1,x)<e.

But this is an immediate consequence of our two assumptions (3.41), (3.42) and
assumption (iv) in Proposition 3 because they imply for sufficiently small &
(depending on ¢ in (3.41), (3.42)) that for some 6>0: H__ (x,x—1))<1/2-4,
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H,  (x,x—1)=(1/2)+6. The straightforward details are left to the reader (com-
pare technique leading to (3.51)).

¢) The Application to the Case of a Walk Restricted to a Random Set. In this section
we shall investigate the question whether our random kernel p(x, y) introduced in
paragraph 2b) fulfills the assumptions which were needed to construct the
harmonic function / (of Prop. 3) and whether Proposition 4 on the asymptotic form
of these functions is applicable.

Proposition 5. Consider our original kernel p(x, y). Assume that we have in addition
that:
(3.55) lim <|—i—| logp (0, x)>> — .
|x]—= o0

Denote by X the point which is mapped onto x relabelling A with Z.

Then we have:

The {p(x, *)}xcz form a stationary and shift ergodic process with the following
properties:

(1) p(x,y) satisfies the assumptions (1)—(iv) of Proposition 3 for almost all
realizations of the random set A.

(2) We can choose a reversible invariant measure with weights &(x)

=( Y p(x,y) | and with that choice the process {é(x)} .z is stationary ergodic with

€Ad
Ew(}élf’,o)#Em(af,o) and p(x,2) Lp(x, V)p(y,2) for z>y>x. Therefor is Prop. 4
applies to p(-, +).

1
Corollary 5. Assume that either E,, W) < 400 or p(0,x)=ce” "™ for some r.

Then for p(x, y) exists for almost all » an harmonic function h,(-) with h,,(0)=0. It
is determined uniquely by requiring (3.3) (y) and choosing II(x)=é(x). It has the
property that Proposition 4 holds. Furthermore {x||h,(x)|<4} is compact for
every AelR.

In the sequel we shall assume that we have choosen this harmonic function h for
each w and in the notation we suppress the dependence on ® for convenience.

Proof of Proposition 5. The fact that {f(x, -)},ez is stationary follows from p(x, y)
=p(0, y—x)and £ (4 —x)=¥(A), (4 =random set). The ergodicity follows from
the ergodicity of {1 ,4(x)y.z} and p(0,y) — 0.
[y|= o

We start proving assertion (1). (i) Since p(x, y) > 0itis clear that p(x, y)>0on 4 x A
and therefore p(x, y) >0 on Z x Z which implies of course that (-, -)is irreducible.
In order to show that p(-, -) is recurrent we observe first that this is the same as
showing that p(-, -) is recurrent. Since both p(-, ) and p(-, -) are reversible we can
apply the Nash-Williams recurrence criterion, ([11]), to show that p(-, ) is
recurrent.

Define

(3.56) a(x, y)=1-p(x,y)
a(x, y)=e(x)p(x, y)=e(x)1,(x)p(x, »)1 4(»)

and note that 4=<a.
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Then the Nash-Williams criterion tells us that the recurrence of p(-, +) implies
the recurrence of p(-, +). (Compare [11].)

(iv) Note that the assumption p(x,x)=d>0 is no lost of generality here
since p is kernel of the jumpchain of a continuous time process. We have then the
estimate:

(3.57) 0<d=p(x,x)Se(x)<1 Vxed, lim e(x)= lim e(x)=1a.s.

X=>— 0 xX—++w
which proves immediately the assertion.
1
(iii) Aslongas E,{ -——— )< o0 we know that for almost all @, we have for w
. (0,1)
fixed:
(3.58) o,y =const x|

and the assertion is therefore implied by our assumption Y p(x, y)y* < co.
y

Inthe case where E,, (p—(&l—)> = + 00, we know from our additional assumption
(3.55) that: ’

(3.59) ﬁ(O,x)écaﬁg Vé<coo.
So that in the cases where r < oo, Proposition 2 tells us that the assertion holds.
(Since then ¢, ,=0(x’) for some § >0, compare Prop. 2, (2.31).)

(i) We fix @ throughout this section. We observe first that by the same
manipulation as in (3.7)—(3.8"), we can (by introducing the dual chain P again)
transform assertions about solutions of (-)(/—P)=4,—4¢, into assertions about
P*—D(f)=4g. )

We shall need the following quantities for the dual chain (X,) (compare (3.52)
for the definition):

(3.60) H (B, z):=Prob (X} hits B first in point z).

‘We see (using the translation mechanism mentioned above) that the convergence of
(K(x,2)—K(y,2))(II(2)) ! for z— + o0, — o (here K(-, -) is the potential kernel
for P) is implied by showing that the bounded solutions f of (P*—I)(-)
=Ty — Ty (G(x) : =g (x)(TI(x))) have the property that f(z) converges as z— + oo,
—oo. This in turn is equivalent to showing (by the martingale optional stopping
theorem, see (3.53))

(3.61)  H,(B,z) converges for y—»+00, y—>—00 for finite sets B.

This last fact is implied by a Coupling-result. Suppose we can define (X ™), zand
(XY rez on a joint probability space such that with S, T denoting the hitting times
of B for the two processes:
(3.62) Prob(XP=X§ ) — 1 uniformly in z<0

y— —
then (3.61) would hold.

It is known that (3.62) above holds for classical random walks ([4] Theorem 1
and Corollary or [13]). In order to get it for our random walk simply note that we
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can find, for almost all realizations of 4 for every n, me N points z,, z, such that:

(3.63) Zn(z,—m,z))SA, Zn(zy,z,+m)cA, z;=—m and z,zm.

So that we can deduce (3.62) from the result for classical random walks with
standard analysis.

Next we prove assertion (2) of Proposition 5. The first part of assertion (2) of
Proposition 5 is trivial due to Proposition 1a, so is the subexponentiality of . The
proof of the second part of assertion (2) about E, (a;, —ay o) is somewhat more
involved, even though the fact itself is intuitively obvious. We start for a warm up
and for showing the spirit of our approach by showing that

(3.64) Prob,, (@) ,>0)>0 (for notation see Prop. 3').

For that it suffies to consider w such that [ —#, n] € 4, where we shall choose nin a
minute.
For a random walk on Z, which is recurrent and fulfills ) p(x, y)(¥)* < oo we

have due to a result of Ornstein [13] that ;" >0=4;,. The ~ yindicates that we talk
about the unrestricted walk p(x, y) here rather than about p(x, y). It is now of
course standard analysis to show that for an £ > 0 we can choose  such, that (5 is the
minimal positive solution of (-)(I—P)=4, —J, again).

(3.65) lim () (x) ) =dfo—¢ for w with [—n,n]<A4.

x>+
This proves (3.64) by choosing e=1/24; ,. Now note that (3.64) implies according
to Proposition 3’ that f'*, /'~ constructed there are not identically 0, for e with
[—n,n]cA.

Now we start with proving E, (a; )+ E,(a;,). We do this by showing E,(a; )

=E,(a; ) leads to a contradiction.

Step 1. We know E,(af)=E,(a;,) implies ((3.33)!) that A(x)=0(x|) w-a.s.,
with /4 defined through (3.3). Therefore with f defined by (3.5) in Prop. 3’

(3.66) E,(ao)=E,(a;,) implies: f(x)=0(x]) w-a.s.

since the representation formula (3.32) for 4 implies together with (3.5) that
f(xy~clh(x)| as x| o0, with 1=¢=6 >0 uniformly in .
We shall show now that for p(x, y)=p(y, x)and ) p(x, y) y? < oo (note d=1 was

already used in (3.64) above) the kernel p(x, yy) has the property that the
subharmonic function f from (3.5) fulfills:

(3.67) f(x)zc(w)lx], Prob(c(w)>0)>0.
Of course (3.67) and (3.66) together show that E,(a; o) = E, (41 o) is impossible in
our model.

Step 2. It remains therefore to show that (3.67) above is true. For that purpose
observe first that for given ne N the points x such that [x —n, x+n]nZ = 4 have
positive density.
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Since Y p(x, y)y* < Y, p(x, y)y* < 0, we can choose for & fixed m(n) such that
for nz=n, yand some a€(0,1):

(3.68) Y ﬁ(O,m(n)+k)§:—2 and m(n) San

k>0
<use Chebychev: P(XZm)<n™? | sz(dx)=o(n‘2)>.

The idea is now to show that f'(-) grows at least linear in [x —n+m, x +n—m),
which would immediately give (3.67). Note first that for 6 >0 small enough and
m(n) choosen such that (3.68) holds

(3.69) lim Prob [X{® makes a jump =m(n) before time on*]<1.

n=>

Now fix n and therefore m(n) such that the probabilities above are less than 1 —¢’
and (3.68) holds. We write m for m(n) now.

If (X{) doesn’t make jumps >m during a time period it looks like a symmetric
random walk till it leaves [x —n+m, x+n—m]. It therefor has the property that
({:=x~n+m,x+n—m))

3.70) E(T;)=constn?* where T,=inf(k|X{"¢I).
3

This implies that X needs in the average a timespan bigger than c(w)K? to leave
[—K, K], where ¢(w) depends on the density of points such that [x—n+m,
x+n—m]cA.

We shall show that this implies that:

(3.71) djo+d ozconste(w)|x| or 4r,,+d-, o=constc(w)lx|

which finishes the proof of (3.67) using the representation in Proposition 3.

Step 3. The last implication can be seen as follows: The chain starting in 0 will have
the property that (by (3.70)) it visits points in (— K, K) in the mean at least ¢(w) K>
times before leaving this intervall. Denote by & the minimal positive solution of:

(3.72) (VT ~P)=28,—(0_x+5x).

Note that & is bigger than the minimal positive solution of (-)(I—P)
228p— 00l (~x ky» 5O that due to the remark above we have:

(3.73) E(—~K, K)zc(w)K>.
Due to the fact 0 < ¢ <IT<é and E(-)(IT(+)) ™! is maximal at 0, we can conclude:
(3.74) £(0)=const - c(w)K.

Now consider ¢!, £2 the minimal positive solution of the equations (-)(I— P)
=8y — (3o —6_x). Since & + &2 is a positive solution of (3.72) we conclude from
(3.74) that:

(3.75) EL0)+E2(0)=const c(w)K.
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Similar to the procedure in (3.52)—(3.54) we obtain then again with the martingale
optional stopping theorem:

(3.76) (A5 o+dg o)+ (dlg o+dZg o) 2constc(w)K. q.e.d.

We don’t repeat the details here. <Use lim lim H,({X,0},0)= 1.>

K~»+wy—>+w

C. Proof of Theorem 1 to 4

The Sects. 4, 5, 6 apply our results from Sect. 3 to the chain (X )¢en. They contain
the important results we shall need in Sect. 7 to prove Theorem 1 to 4. Section 4
aims at Theorem 1, Sect. 5 at Theorem 2 and Sect. 6 at Theorem 3. The proof of
Theorem 4 is a byproduct of the results we have by then.

4. Asymptotic behaviour of the associated martingale: diffusive case

In this chapter we consider the case E(p(0,1)) ! < oo and we apply first the
martingale central limit theorem to study 4(X,), the associated martingale of our
random walk (X, ) with / as introduced in Sect. 3 (Coroll. 5), and then we derive the
implications for the jumpchain of our original walk X(z).

Notation. By B2 (t) we denote (in this section only ) Brownian motion with diffusion
constant ¢>. We shall write Y(s) for Y5, in case we regard a discrete chain as a
random variable with values in D(IR), the space of right continuous functions with
left limits. With é(x) we denote again ) p(X, y)1,(»), where X corresponds to x
when relabelling 4 with Z. y

Proposition 6. Let h denote the harmonic function for p(x, y) constructed in Sect. 3.

Suppose that E,, (P ><oo Define Y,=h(X,)ando*=E,, <2h2(y)p(0 y)e(O))
Then: 5(0,1)

+k
4.1) 21k ( Z—k Y (h(x+y)—h(x))a(x, y)) — o2 < w a.s.

a(x,y) :=E€(x)p(x,y).

“4.2) .5?( Y, |co) = 4(0,1) w-a.s.
ol/n n-»
(4.3) ’?(G Y(nzazt)> 1w> = L((B,()ier+) o-as.
teR* n—o

1
Corollary 6. Assume E,, | ——— | < oo then we have for 6=(E,(la; o —ai o)) ?¢
<o0: ©,1) ’ ’

4.4) g((% X’(nzz‘)> |w> = P((Bz(t))ier+) 0-as.
teR*

n—>co
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and for the jumpchain (X )ren of our original Markov process, (4.4) holds with
G2 where

(4.5) G=q"'6 (o=0(q,p0,-)Y.

The first assertion of the Corollary is seen by combining Proposition 4 ((3.22)), 5
and 6. The second assertion follows from the observation that we have the following
relation between X, and X, : X, x =n<>X, equals the n-th point in 4 which is blgger 0,
which yields the assertion using the fact that the gaps between points in A4 are
geometrically distributed (parameter 1 —g).

Proof of Proposition 6. The process (1, ), nis for every w a centered martingale with
respect to the o-fields o (X, )i=x), k=0,1,... To prove the Proposition we shall use
the standard central limit theorems for martingales.

Step 1. Therefor an important quantity is the conditional variance and quadratic
variation:

(4.6) E((Y,1, — LY X, =x, 0)=) (h(x+y) = h(x)PF(x,x+).

Note that this functional of the medium has a stationary (in x) distribution
(Prop. 4a) which proves (4.1) via the ergodic theorem, if we can show it is integrable
(see step 2).

We can write the conditional quadratic variation of the rescaled martingale in
the form:

i - 12 - - 5 o
(4.7) % Y E(Yiry = X)X, 0) = le 2 WX+ ) = h(X) P (X, X +3) -

The right hand side of the equation above is now treated according to the scheme of
the proof of Proposition 1, namely considering it as a mean along a path of the
canonical Markov process describing the environment as seen from the random
walker. We don’t repeat the details here and refer the reader to Sect. 2a. We obtain
for almost all w provided the right hand side is finite:

12 - - PN
(4.8) ” ; Y, (WXt ) —h(X)Y P(Xi, X+ )

= B3 009 -h@Fate)
as.and in  L'(u, £(X,)) (see (2.16)).

If we can show that: E,, (ﬂ(o )) < coimplies that E,, <Z (h(x+y)—h(x)alx, y))
< o0, then we have by (4.8) the a.s. and L*-convergence of the conditional quadratlc
variation. The L*-convergence gives us a Lindeberg-condition, w-a.s. The in-
variance principle for martingales ([7]), Theor. 4.4, p. 100) gives us now (4.2)
and (4.3).

1 T .
Step 2. In order to show that: E, (;(0—1)>< oo implies finite expected quadratic

variation, we distinguish two cases: (# as defined in Theorem 1 and y<>y relabelling
A with Z.).
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2
Case 1. r=0. Then E ((PT(Ol—l)> )< oo and we can estimate:

(4.9) Y (Y B0, 0O} 2 (1)p(0,5),

y

and therefor by combining (3.32) and (3.38): (C independent of w)

@10)  E, (Z R(IPO, y)é(t»)g(Ew %1—)) > T 12p(0, )< .

Case 2. r>0.
First assume that: p(0, x)=conste
Next we use the property that

—rl|x|

y—1

(4.11) ﬁ(O,y)glg[ plx,x+1).

Now we can estimate with (3.32) together with (3.38) as follows (C independent
of w).

412 ¥ hz(y)ﬁ(O,y)§C<Z <§ m> ﬁ(O,y))

@ (; (x,x+1)><; ng*kﬁ(x,X-H)))

¥y 1 _
(3 (¢ ) o)

a<1 and a independent of .

H/\

IIA

Taking expectation over w in (4.12) yields now immediately the assertion for
p(0,x)=e ",

We see immediately that what we need for the argument is p(0, x) < Ce~ ri=l for
some C, r. This is however assured by (1.4), so that we have proved the assertion in
general.

5. Asymptotic behaviour of the associated martingale: subdiffusive case

In the case of infinite expected resistance we examine the behaviour of (X,) when we
average over w and especially we determine the appropriate scale for our process. In
the next section we shall discuss the more complicated question to determine the
behaviour for fixed w. In this section we derive again a more general result for
random transition kernels generating a chain X, and later we will use Proposition 5
to specialize the results to our case.

The approach we take here is to use the submartingales f(X,) (with f as in
Prop. 3') to estimate after what time the process will leave an interval [ —#, 1] for n
large. This random time determines the rate at which we have to rescale time, if we
scale space by n 1.
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Therefor we define the following stopping times T'(n) for a Markov chain (X;)
on Z:

5.1 T(n)=inf (k| X, €€(—n,n)).

The essential property of these stopping times is given by:

Proposition 7. Suppose that P(x,y) is a random transition kernel which fulfills the
conditions of Proposition 4b (see (3.22) to (3.27)). Then we have.

(5.2) {L(Tmyn )}, en  is weakly relative compact.

The weak limit points are different from o, .

Proof. The crucial step in the proof is to study the behaviour of:

T(n)

(5.3)  Leom):=Y, lgx=x»
i=1

LO(x,n)=L(x,m1 4,

ul 1 1
with A’l={o|} ————==Zén*n{of bb’*"l———-—;%},
{ ‘_Z,. P(x,x+1) } { Iyén P(y,y+1)
b:=sup P(x,x+1)<1.
We shall show later in this section that:

Lemma 5.1. Suppose the kernel for (X,) fulfills the assumptions of Proposition 7.
Then:

4

L6
(5.9 {g’( x, w)} is weakly relative compact with nontrivial
nelN

" weak limit points.

L&
(5.9 ( ()i’ n)> are uniformly integrable

" neN.xel-mnl  oper o and the process .
L(x, Lo(x,
(5.6) 0 <inf inf E(—(ilﬂ)gsup sup E(_(an—)>=6C< 0
n |x|£an n n |x|<n n
with a<1.
To proceed further note that:
+n

5.7 Tm)=1+ ) L(x,n);

T3 (n) =T =1+ g Lo(x,n).

x=-n
Since according to Proposition 4b: lim inf Prob,, (4;) goes to 1 as 61 + oo, it suffices

in order to show (5.2), to prove this result for T°(n)n~ " for arbitrary e R™.
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The relations (5.6) combined with (5.7) above implies first of all that
(expectation over w and process)

(5.8) lim [E(T?(m)n~ ")) ]< oo, liminf[E(T¢mn~0+2)]>0

n—o0 n— oo

This implies the assertion (5.2) for T%(n)n~ 4 ** by combining (5.7) with the relation
(5.5). (Note in (5.5) we have the uniform integrability in n and x € [—n, 1] so that
(n~ "9 T?(n)),en is uniformly integrable!) This proves according to our remark
above our Proposition 7 by letting 67+ oo and it remains to show Lemma 5.1.

Proof of Lemma (5.1). To prove our Lemma we use the subharmonic function f
from Proposition 3. We start by observing the following general fact about
subharmonic functions:

Step 1. Suppose that S is a stopping time of the chain (X})rcw and f is a positive
subharmonic function. Define g=(P* —I)(f) and u=.2(X3).
Then the following holds (see [4], part II, Lemma 1a):
(5.9 s [o=v, f>+<n, 9> —lim (v, [
S~1

11(A)=E< y 1{X,;E,,}), y,(4)=Prob (X*e 4,n<S).
k=0

If we apply this to our situation, thatis S=17,,v=4,and f= f as constructed in
Proposition 3', g=21,,,, we easily obtain for some C;,C in R™ that:

(5.10)  <p, f>=f(»)+2E(Fvisits of X to x before reaching € ((—n, n))
i, [ >Z(fMAf(—n)C;, C€,>0,C, independent of w and n
L IHYS(fm v f(—n))+C(w), Cy(w)<oo as., independent of x
G(w)=C Y. b " (P(y,y+1))"', b=sup(P(x,x+1))<1.

Ivlzn

Remark. The last two lines follow from the fact that by assumption: P(x,y+2)
ZP(x,y)P(y,y+z), P is reversible with respect to IT and IT bounded by the
counting measure from above and below. Furthermore |f(x+y)— f(x)| can be
bounded by the resistance between x and x + y. We leave the straightforward details
to the reader. (Compare (4.12)! and Prop. 4a, case 2).

Step 2. We start by showing the first inequality of (5.6). (The second one is implied
by (5.5)). We shall study {Z(E(L’(x,n)lw)n"*)},cn, in the case where x=x(n)

<on for some g<1. Due to stationarity and ergodicity of and

1
P(x,x+ 1)})(61
due to the assumption that {L(c, ,n™ %)},en has nontrivial weak limit points, we

conclude that for some &>0: lim Prob(wlc_ ), —n= 1%, Ciyn, = en*)>0. This

proves with (5.10) second line and with (3.5) in connection with (3.37) that
uniformly for x=xm)Son:

(.11 liminf [Prob (w|E(L(x, n)jw) =&'n*)] >0, & >0.

n—o
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From here the first inequality in (5.6) follows now immediately. It remains to show
(5.4) and (5.5).

Step 3. In order to show (5.4) and (5.5) we shall define in (5.13) below a suitable
sequence at¥(w) and write L°(x,n)n~*=(L%(x, n)(at(w)) *(a®(w)n~*). Then
(5.14) in the Lemma 5.2 below tells us that the first factor converges weakly to
exp (1) and the expectation to 1. Next (5.18), (5.19) in Lemma 5.3 below tell us that
the second factor is bounded above on 4% by Cé for |x|<n. This proves in
connection with (5.11’) immediately our assertions (5.4), (5.5).

Lemma 5.2. Suppose (X;)jen is a Markov chain on Z which is recurrent. Define:

(5.12) g3 =Prob ({X{ returns to {x} before reaching ¢[—n,n]})

(5.13) a=(1—gt)1,
If d™ — + o0 then (&, E with respect t0 (X;)ken)
L L
(5.14) g(iif;}i)) = exp (1), E( (?{C;}n)) -1
ay n— o a, no o
Proof. Remember
1
5.1 E(e’N=—"— f — .
(5.15) (@N)=—7 for Z(M)=cxp()
We have:
5.16 E( (—sL(x,n))= 1—g,
(5.16) exp(~sL(x,n —TTos,
and therefor for a,— + o0 we can calculate as follows:
sL(x,n) 1—q, 1
- - N '
(517) E(exp< a, )) 1—q,,e’5/“n no (S+1)

This proves the first part of (5.14), the second part is obtained again by explicit
calculation.

Lemma 5.3. For our chain (X)ren we have the relations:
Denote by f, is the solution of P*f.—f,=21., f.(x)=0 constructed in
Proposition 3’ (f.(y)>0 for y £x, see (3.27)1). Then for C,(w) as defined in (5.10):

(5.18) (@) £ Cy(w)+max (f,.(—n), f.(n),
(5.19) |i1|1§pnmax(fx(n)’ fx(—”))ég PO+

Proof. Since f, is subharmonic we obtain by applying (5.9) and (5.10) third line
with elementary calculations:

(5.20) (1 = ¢,(x) = ((max f,(—=n), fm)+Co(@)) ™",

which yields with the definition of af® in (5.13) the assertion (5.18).
The relation (5.19) is an immediate consequence of (3.5) and (3.35),
(3.36). q.e.d.
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As a Corollary of the proof of Proposition 7 we observe that:
Corollary 7. Under the assumptions of Proposition 7 we have for every ce R™:

(5.21) F(T(emn™?) —> 5, w-as.

n— @

We can replace here assumption (3.23) by £L(¢y, ./ 1x))=0, Which is equivalent to

1
Eq <P(0, 1)>= *

Proof. The observation to make here is, that due to (3.5) and (3.40) the solution
to (P*—1I)(+)=21,, we constructed in Proposition 3" has the property:

(5.22) fmn 1= +00 was.

| Amdeo}

With this relation plugged into the estimates of this paragraph we arrive at (5.22).
We leave the straightforward but tedious details to the reader.

6. The behaviour of X, for fixed w in the subdiffusive case

1
The dynamics in the case E, (p(() 1)>= +o0 and p(0, x) =ce ™" looks roughly

as follows: The dynamics of the process is determined by the fact that % 4 contains
intervals of the size [log (1 —¢)| ! log n. To cross these gaps the random walk needs
a certain amount of macroscopic time (namely n! *% «>1). However in between
these large gaps the walk moves on a faster scale. The difficulty of the analysis is now
rooted in the fact that in order to cross gaps of size [|log (1 —g¢)|!log(n) —a] we
need also a macroscopic amount of time namely gn! ** steps with e=e~". Since a
can be arbitrarily large we obtain “in the limit” a set of gaps which are dense in the
macroscopic space. Furthermore is the structure of the set 4 close to these large gaps
of importance for the ability of the walk to cross a large gap.

In order to overcome this difficulty we consider first auxiliary processes where all
gaps are of size [log (1 —q)| ! log (n) —a with a< ¢ < 00. We analyse these auxiliary
processes first and then in the second step we send ¢ to + co. Finally we incorporate
the local structure close to the gaps into our picture.

If we have only large gaps we describe for n— oo the motion of the walker by a
Markov chain governing the transition from one of the intervals between large gaps
to the other. Inside such an interval the position of the walk should be uniformly
distributed. (Since it looks here like (reflected) Brownian motion provided we use

. 1 . L .
the scaling x>~ x, t—n?t.) Taking ¢+ oo means our subdivision of macroscopic
n

space into intervals becomes finer and finer resulting in the picture given in the
theorem.

We proceed now as follows: First we consider auxiliary processes namely a
walker on a set derived from Z by locating gaps at points [x;n] of size
[log(1—q) tlogn]—a;,a;<c and let n tend to infinity, later we let ¢ tend to
infinity. This is in Sect. 6a. In a second Sect. 6b we incorporate the local structure
of A close to large gaps. These results are then connected with our original problem
in a third Sect. 6¢. In the fourth Sect. 6d we collect the proofs of the results related to
the potential theory of the involved Markov chains.
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a) A sequence: (X2™) e of auxiliary walks on a set with large gaps only. The
auxiliary processes we shall need are random walks with transition kernel p(x, y)
restricted to a set A*" containing only large gaps. In order to define these sets 4%"
we shall make use of the following ingredients:

Given are sequences (x});cz, (¢%);ez With the following properties:

(6.1) (xfeR, xt,, >xf VieZ, [ixielabllj<wc V(a,b)eR?
llog ¢ .
(6.2) teZ; a‘,‘;§~r—, Y exp(—rikl—rdi,)<oo VieZ, ¢e(0,1).
k
The sets A%" are now defined as follows: (Set p=|log (1 —¢)|™!)

63) Aﬁ’"=1\<‘ul<[nx§], [nxf+(plog<n>—af)+1)).

This means that we place gaps of a fixed size at the locations given by the x{ and then
we blow up the picture in a proper fashion. Note that the possible overlap between
the intervals we remove from Z, becomes empty for any set of the form [ —an, an]if
n is large enough, that is we can forget this effect since we want to study the case
n— 0.

We denote by (X")xcn the jump chain of the random walk restricted to 45"
that is this random walk has the following transition matrix: ’

(6.4) (1A54"(X)p(x,y)1m’"(y))< ) P(x,y)>_ -

yeds"
We make use of the following abbreviation ([y] : largest integer below y for y e R).
(6.5) Iy =(nx], [nxig]]  F=(xf, x44].

Our aim is to describe Prob (Xpi,+qeli") for n—o0. The description of these
limiting probabilities will be given via a Markov procen (¥7),e g+ on (x¢);ez, which
describes the transition from one interval I} to the other. The process Y7 will be
defined with the help of the function introduced below.

Define d¢=exp(—ra?) and then set:

k(x)

Z &  k(x)=sup(jlxi<x) for x>0
R

-Y & k'(x)=inf(jlx;>x) for x<0.

=

With this function /°(-) we can define a transition kernel ¢°(i, /) on Z x Z as follows:
B (5a) —h5(%)

ha(xj-ﬂ) _ha(x§~1)
B8 — B (x5 )

ha(x§+1 ) —ha(xj‘-_l)

First we define a process on Z and then use this process to define the one on the
intervals where we identify the intervals with the right endpoint.

6.7 U, j—1=

0. J+1)=



Symmetric exclusion on random sets 343

Definition 4. The process (¥7),.r+ is 2 Markov process on Z with the following
transitions and jumprates: (The constant ¢ appearing below will be specified
later on)

(6.8) transitionis: according to ¢°(i, /)
jumprate in i€ Z: (4, +474)(Ix, —xi)"te, ceRT.
The process Yf is now simply defined as ¥Y7=x%. 0O

Define the following sets of subsequences of N: (n;)eN, if [logn;]—logn;
converges to —k.

log (1—
Proposition 8. Assume that p(0, x)=constexp (—r|x|) and o ™? =l—9§;—@< 1.
Then the following holds: (We suppres the lenghty explicit form for ¢ below).

For every ke [0,1) there exists ce (0, 00) such that with choosing that ¢ in (6.8) we
have:

U oen oo
(6.9) Prob(ﬁ X[;n1+u]e(x§,x§+1]> —> Prob(Y;=i+1)=Prob(Yi=x},,)
nEN,

If I(+) denotes the Lebesque measure and B a Borelset contained in (x7, x;.,] and
s(m)y=o0(n'**);s(n)>n*, then:

1 on 1 e
(6.10) Prob <; Xf;n1+"+s(n)]EBl n Xfinl+"]€(xf=xf+1]> = (B 11, - -

n—>w
nEN,

To get an idea how to prove this observe: The limiting process is a birth and death
Markov process. Approximately the process counting the index of the interval
where X" sits moves to nearest neighbours only, at least in the scale we use
(Lemma 6.3 below). So we need to know the time our process spends in an interval
and the probabilities to leave it to the left or the right. For this purpose we use of
course our harmonic and subharmonic functions from Proposition 3,3’. The
assumptions made there are easily checked following the arguments in the proof of
Proposition 5, assertion 1, we leave this straightforward modification to the reader.

So in order to prove our Proposition 8, a minutes thought shows that it suffices
([2] chap. 4, Theor. 2.6)) to show the following four Lemmata: ((6.1) proves (6.10)
while (6.2) and (6.3) proves (6.9)).

Lemma 6.1. Denote by (Y,) Brownian motion in [xi, xt, ] with reflection at the
boundary and diffusion constant ¢°.

1/2
Then for o-=<z p(O,y)y2> we have:
y

1 o _
(6.11) 3((; Xs’+m2>t RJXﬁ’":[yn]EIf’”)33((1’§y’)tem+), VieZ
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Lemma 6.2. Denote by T7"(x) the exit time of Xp" from I}" that is:
(6.12) TP (x)=inf (k|1 Xp e GI0™)  for Xg"=xelp".

Consider now subsequences of N contained in N,.

Then for each i€ [0, 1) there exist ce (0, o0) independent of j such that uniform in
xelp":

J

T (x) : =LAl 4 A-
6.13) 3( ;11“ )f:o exp (elxsy | — X @rd +d ).
ne N,
Lemma 6.3.
(6.14) Z Z Prob()?,ﬁ:{'lelﬂ)?,ﬁ’"elf)—) 0 VieR”
Jiy=l>1 kgm*e n—w

where If=(x}, x5 1]

Proof. Obvious which the help of (5.12), (5.13) and (5.19) combined with the fact
that in any given interval 7 on R:x} ; —x{=d6(1)>0.

Lemma 6.4. We construct, according to the device given in Proposition 3 (3.3),
harmonic functions h®"(+) for (XF")ren.

Then we can achieve after multiplying h*" () by a factor depending possibly on n
that: (Call the resulting function h*")

(6.15) n~*h"(nx) —> h*(x) in the Skorohod metric .

n—aoo

Denote by vs’"=$(n_1XTje,n(x)), then (6.15) can be strenghened to:
(6.15) § In= R (ny) = h* (p)|dv"(y) = 0.

The proofs of 6.1, 6.2 and 6.4 need no fundamentally new ideas beyond the
techniques from Chaps. 3 and 5, we defer these proofs, potential theoretic in spirit,
to the last Sect. 6d of this chapter.

The next step is now to study what happens with Y if we let ¢ tend to 0, which
corresponds to refine the subdivision (xf). Consider therefor the following
situation: given is {(x{);ez, (})icz} e (0,17 SUch that (in addition to (6.1) and (6.2))
the conditions (6.16) to (6.19) below hold. Define I(x)= {ilx{e[—x, x]}. Here are
the conditions:

(6.16) {x¥lieZ}c{xlieZ} for ¢ <e,
6.17) sup (xf,, —x8)—> 0 forall xeR™;
iel(x) &0
(6.18) (U {x8i eZ}) is countable,
£>0
(6.19) sup ( > d§>< o0, where again ¢f=e "%,
£>0 \iel(x)

Then we can define

£>0

(6.20)  h(x)=lim ( Y d§> for x>0, (analogues for x<0).

0=xj<x
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Let Y(t) be Brownian motion with diffusion constant ¢ (as appears in (6.8)) and
L(t, x) it’s local time. Denote by ¥(z) the time transformation V(¢)={ L(z, h(x))dx.
If we replace / by 4*in these formulas we can write £ (¥) = £ ((h°)” 1 Y((re)” 43))
as an elementary calculation shows (compare [8]). It is now no surprise that for
e—=0:

Proposition 9. Assume that (x})iez,(a})icz fulfill (6.16)—(6.19). We have for
Y i=x5:

(6.21) Z(E)rer) = LYV THONer?)-

Proof. This is a consequence of a limit theorem for birth and death processes of
C. Stone. The details of this reduction are (besides notation) the same as in Kawazu-
Kesten [8] on page 565567, furthermore the result is very intuitive we therefor refer
the reader to that paper.

b. A refined carricature (X") of a walk on a random set. The last two Proposi-
tions allow us to control a walk passing through a medium with large gaps, which
are macroscopically well separated. That means that so far we have not accounted
for the fact that the medium may look as follows around the large gap: -

X xxxx(-- ) xxxx.

x large gap x+1

The two one point gaps marked have of course quite an influence on the behaviour
of the random walker and his ability to cross the large gap. We incorporate this
effect into a new carricature (X7"); . of our process X,. Loosely speaking we
consider a set with large gaps and possibly small gaps close to these large gaps: we go
back to our kernel p(x, y) on the random set 4 and we obtain a carricature by filling
the little gaps far away from large ones and making only nearest neighbour steps.

Precisely: The information about the above mentioned small trouble spots is
hidden in the harmonic function we constructed in Proposition 3, 5. We define
therefor: (4 denotes the harmonic function for p(x, y) based on the choice IT(x)
=e(X), (here xx relabelling 4 with Z), constructed in Prop. 3)

h(x+1)—h(x)
(P, x+1)~""

Definition 5. We denote by (X{*") the Markov chain on Z defined by /4" according
to the Eq. (6.7) where A*"(x):

(6.22) & =

(6.23) A*"(p): =2y+§ . dh®"(x)),

rx—1 1
%: mi{ﬁ(y,yﬂ}gsn)‘“}s x>0

with: 2%"(x)=<0,x=0

-2

—_— 1y -y, x<0.
|5 Ay POrnEe
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We know by (3.37), (3.40) that for n=ng, £6Z¢g,:
(6.24) O<e<é,Sé<oo for x with: A*"(x+ 1) +hA5"(x).

Note that the process {¢,(w)}xez is not i.i.d. (it is stationary of course) and it’s
appearance is due to the fact that the restricted chain is not a nearest neighbour
chain after the relabelling.

1t is easy to check here by explicit calculation (nearest neighbour steps!) that
again the assumptions of Proposition 3 are fulfilled and if we apply the construction
of Proposition 3 to X" we recover as our harmonic function 4 the functions 4"
(This is checked immediately by explicit calculation using (3.3)y.) The first task is

. . . . 1
now to use the ideas of part a) of this section to control the behaviour of . Xt |,
since it is the process we hope to be a good approximation for # large, ¢ small to the

1. . . . .
rescaled process — X[+, the one we are interested in finally (that is the one with

kernel g(x, )).

In the next Proposition we determine the behaviour of X2'*) for n— o0, e=0 in
terms of a time transformed Brownian motion Z}", of the type which occurred
already in Proposition 9. Knowing Proposition 9 it is no surprise that we shall need
the following ingredients:

(6.25) Zpr=FTHY (T T O) (T @) =inf (4 f (1) =wu)),
where the quantities on the right are defined as follows:

[n,x]—1

(6.26) Rr(x)=n"" Y &G0 y+D) T 0.y 2e s
o]

x>0, (¢, asin (6.22)).
For x£0 sum from —[nx] to —1 and multiply by —1.
erd)={ L(t, h*"(x))dx,

here Y,=Brownian motion with variance 6> =1 and L(, x) it’s local time.

Comparing (X") with (Z>") makes of course only sense if we known more
about the behaviour of (Z}") for n— oo, ¢—0. This is the case since it turns out for
this purpose we need only information about 2™ (+) which is closely related to the
wellstudied resistance. This information will be provided later on in the Propo-
sition 11. Note that Z>" moves on the subsequence of points x with the property
that the resistance between x and x+1=c, ., Zen"

Proposition 10. Under the assumptions of Theorem 3 we have (E:=E(-|w)) for n
running through a sequence in some N;:
z n>> =0.

For all n>0, f€%,(R):
Proof. First we use the scheme of Proposition 8 developed in (6.7)—(6.8) and try to
approximate for fixed ¢ and » large the process (X;")rew by a process (¥;");cr+

— A (1 en N
(6.27) lim (lim Prob (co'Ef (Z X[;nm]) —Ef(Z>")

£~0 \n—w

The convergence for ¢—0 is uniform in n.
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(a particular version of Z7*") which lives on the right endpoints of the rescaled inter-
vals (xF", xf17 ], where (Jc£ ™)icz counts the points x € Z with p(x, x+1)<en)~* The
additional technical problem we have here compared with Proposition 8 is that
(x#™);ez do depend on n now. The main purpose of the following is to show how to
handle this problem.

Step 1. To introduce ¥#" consider now the rescaled positions of the gaps that is
introduce: X"=n"*x{" and the intervals (¥", x/"" +1]. Furthermore define 4;"
=c,ap" where y= x“‘ and a"=n""(p(x&", x#"+1))"'. Now define (¥>") by

(6.6)—(6.8), in the latter formula c=1.

Step 2. Here we construct a process Y7, in a sense the limit of ¥*", in order to get
rid of the n-dependence of the (¥7");cz: The Proposition2b tells us that
L((xF",ap");ez) converges for n—oo, nSN,. In fact we use here a stronger
version, which says that & ((n™ %o, [,.))xeR) cOnverges for n— o0, # running through
a subsequence in N, to a stable process with index o ™! (this is of course with (2.32) a
classical result, we just quote here). We shall prove later on in a Corollary to
Proposition 11 (6.31) that this implies the convergence of £ (X", d7");cz). We
denote the jump points and jump heights of the hmltmg object by (xl, l),e z here.
As a consequence ([8], p. 567) we can construct (X", 47" Z)neIN> (x¢,d%);czona
common probability space such that the distribution for fixed # is the given one and
such that in addition:
(6.28) (xp",48™) — (XF,47) a.s. nSN,.
Denote this big probability space by @ and an clement by @&, that is

&= [((x} )zeZ)ne]Na(x )zeZ] [(aa)lEZa(( "iez)nen]- These objects above define
(see (6.7), (6.8)) for every n the scale and speedmeasure of (¥"),cr+ respectively of
aprocess (°¥?) and therefor define these processes uniquely, if we choose in (6.8) the
constant c=1.

Now we can of course conclude with standard arguments hat £ (¥>"),cr+)

= Z((°Y?);cr) (if nSN,). (Process moves to nearest neighbours only D

It is easy to see with an explicit calculation that in fact & (Temy=2(Z5")
(compare [8], p. 566). Therefor we can conclude that: (E=E(-|@))

gﬁr’n‘< f( X:nf’ﬂ) Ef(ﬂYtS)), nSN,.

Step 3. In order to prove our assertion it remains to check first that for e—0 the
claims of Proposition 8 holds, if we replace (X", ¥?), by (X>", ¥?). As before we
have to show that the modified versions of Lemma 6.2 and 6.4 hold. For (6.4) we
just use (6.28) above together with Proposition 2b. This relation (6.28) replaces also
(6.69) in the proof of (6.2) and the rest of the proof carries over. We leave the
straightforward details to the reader. Having done this we can conclude now that
with

L(f)={i|x{esup (f)}, we have for fe%,(R):

Ef( anfn) EFCY|s sup ( sup !f(ffﬂ)—f(X)l)

lim

n—aoo

Ef( Xf#ﬂ) Ef(Zim

lim

n—oo

iel;(f) ff§x§jf+1

with n— oo through N,.
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But we know from Proposition 2b, especially the characterization of the limit points

of ZL((n" "¢y, 1ny))yer) that:

iel.(f) e

Prob (co

sup (|fis+1_fﬂ)§5> — 0 Véx>0.

This proves of course our assertion (6.27), if we combine this result with Step 2.

Step 4. In order to see the for e—~0 uniform convergence in #, we simply observe that
the df can be realized by realizing an « ™ *-stable process and looking for the jumps
which are bigger than e, similar a" arises as the values of (A (x, x+ 1)) ! for x=x"
where p(x, x+1)=(en)” % Now write all the processes in the form given in (6.25):
Let Y(¢) be a Brownian motion with diffusion constant ¢? and define

Rr(x)=sign(x) Y af (I(x)={ieNx>,xi>,0),

iel(x)
Ve(t)={ L(t, h*(x))dx.
Then as in the end of Step 2
LY=L RV ®),
Using A>" instead of A%, we can represent X" in the form given above. Observe that

the expressions ( Y. 49" | are monotone in ¢ if we consider R™, R~ separately
iel(x

(decreasing for x>(()), increasing for x<0) therefor the same monotonicity
properties holds for A%" in (6.23). This proves immediately the assertion of
Proposition 10.

Thesmext step is to study Z" for n— oo, e—0. A look at (6.25) shows that it is
essentjal now to construct a limiting object of the harmonic functions A%"(x)
(compare (6.26)) which define the approximating Markov chains to our real

process. Observe according to (6.23) and (6.26): A" (x)=n"* { ¢,d(h>"(y)) and we

0

know by the Proposition 2 that & {(n~*h>"(ny)),cr} tends weakly to a stable
process with index o« ~* and where jumps smaller ¢ are omitted as n— oo through a
sequence in N;. It remains therefor to study the behaviour of (¢,,,), for n— oo for
given 2%"(x), that is given location and size of large gaps. We are going to construct
first a modified process (¢2™) which takes into account that in the representation
formula for 2%"(x) only those ¢, count where x is such that the resistance ¢, , , ; is of
the order of magnitude of at least en®

(6.28) cy":=¢, yis the largest integer smaller or equal than x such that

Cyyr1 200",
It can be easily shown via (3.3) and [12] that ¢, is a measurable function of the
medium. Below we give the asymptotic behaviour of these objects and in a corollary
.the consequences for our process Z>". We call a function stepfunction if it is of the
form Y a;I; where I, are indicators of intervals with UL =1R. By 2*" we denote the

ieZ
functilce)n introduced in (6.23) part two, which describes location and size of the large
gaps. Denote by I(g) the set of jumppoints of a stepfunction g on RR.
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Proposition 11.

(6.29) L (chmxerrn™h>"(n)=g) => & Z(0),

n-> oo xel(g)

Vg : = stepfunction on R,

(6.30) F(c)asin(1.14), Supp (£ (c)) (0, ).

Corollary 11.

(6.31) LR, er) = £ ((I cde,{'g(x)> )
n— oo 0 yeR*

Y7, and c, are defined as follows: (recall c, , denotes the resistance)
y
Y2 =) (F200) — Y Ny - vy ze)
0

with Y a stable process with index o™ " given as the limit of £ ((n™*Co, ny1)yer*) fOr
n— 00, n running through a subsequence in Nj.

(c)rer: L |]¥)= & Z(c), Z(c)asin(1.14).
xel(¥7)

Furthermore we have for ¢—0:

(6.32) g((f cdeif;(x)> >:>$((f cde;“(x)> )
0 yeR*/ e~0 0 yeR*

Proof. We consider here p(x, y) and its harmonic function 4. Our aim is to analyse
é.=(h(x+1)—h(x)p(x,x+1) for x with p(x,x+1)~n"%

Step 1. First we recall a representation of A(x-+1)—A(x) suitable for our pur-
poses. We start with A(x+1)—h()=(a), 1~ 051, )=(G 1 c—d5i1 )

= —(dy .41 —d5 .+ (this latter version is easier to handle notation wise) (see
Prop. 3, (3.3) to recall definitions).

A—

In order to analyse (45 .., —dy .+;) we have to study {* which denotes the
minimal positive solution of (-)(I—p)=65,—6,,,. We start introducing some
quantities we shall need to give a useful representation of (™.

(633) v(x)zl[x+2’w)(.)ﬁ(x’ ')
(634) H(X)=1(—oo,x](')ﬁ(xs ')
(6.35) n®, & are the minimal positive solution of:

U=H)( )2V (6, +6,01)
U=P)()ZHD ~(0F0,11)

(6.36) B~ U =) =) =6, +aS,
P0): —(EPU—P)—p) =56, 476y

We know that ™ (4)=E ([ 4 visits of X, to 4 before reaching x or x+1] 1, > x+2)
(see [4], part I, Lemma 2) similar ¢®. From this we conclude immediately:
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Lemma 6.5.

(6.37) C(x)= i (1 —ﬁ(X, X+1)—ﬁ(X)*'))(x))j(n(x)+é(X))

i=0
=@ x+ D+ D +y0) T D +EY).

This last equation will now be analyzed, the first factor in Step 2, the second in
Step 3.

Step 2. We are interested in the behaviour of A(x+1)—h(x) for those x where
h(x+1)—h(x) 2 en® For the analysis it is most convenient to pass to a new random
set A, which is interpreted as medium on the event: at 0 starts a large gap of size
[(log (1 —q)) 'logn]—a. To be precise we introduce the following notation:

(6.38) (w7 )iew i.i.d. Bernoulli with success probability g
(0 )jen i.i.d. Bernoulli with success probability ¢
beR* b=ce™™ with ae(—w,loge/r)

The new medium is defined as follows:

let p(O,x)=ce”|x|,y(x)zx—([m 10gni|—a>, then

(6.39) x<0 and op=+1
xeAd,d x=0 or y(x)=0
y()>0 and ),,=+1.

Note that if we denote by p,(x, y) the kernel on Z x Z induced by this new medium
A, (that is use definition (2.1), (2.28) and replace 4 by A4,) then we have:

(6.40) 5,0, )=bn"" for neN, with 8=0.

For notational convenience we focus on ne No (that is {|(log(1— p))‘1|10g n)]
—|(log (1 —p)) " *|log (n) -—> 0) since n € N; requires just another constant in (6.40)).

We shall write ™, é(") if we talk about the quantities: #©, ¢© in the medium
A,. The invariant measure for p, (choosen according to the convention from
Prop. 5) is denoted by IT™. Then we can prove: (Sect. 6.d)).

Lemma 6.6. ( Assume always n runs through a sequence in Ny here)

(6.41) Pt = yb
(6.42) B™n* — b

643 |-|,—lmnp™=0, |[-|.—limé®=¢ |.|,—limO"=0

(6.44) ﬁ=< i e”‘w,;*>7 y=(1 _!__Z:: (1 +k§1 e_’kwk>>/3
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If we combine Lemma 6.6 with Lemma 6.5 and the relation (6.40) we obtain for
nS N, : (a.s. with respect to (0, @ )ieN)

1
~ (m)
(6:45) PO.DEY = e

The next task will be to study &(y)/I1(y) for y— + 0.

Step 3. Since as n— o0, the point1 becomes a barrier for our process in the medium
A,, we expect ¢ to be determined by the following transition kernel §(x, y):

(6.46) 4(0,2) 1 =1,()p(2)12(2) ( 5 p(xz))v ,

zeR
% ={xx <0, 0, =1}0{0}
g is derived from g according to (2.28)
(relabelling 4, by Z). '
Define I1(z)= Y. p(z, y)w, (again zez, relabelling 4, by Z) and by & the minimal

<0
positive solution of (T—§)(+)=p®||u® | ~* — &, (see (6.34)). We shall prove:

Lemma 6.7.

(6.47) yhf?o WM (yn=0, lir_n EWMMH (=4,
=) -1

(6.48) A= lim (E(y)/ﬁ(y»=(k§0 ce""co,:) ,

W, =1 c~—1_6~r
0T T {qer )

As a consequence we obtain via (6.45) that for nS N, :
(6.49)  p,(0,1) (y EIP@ ™)/ (y) - y{iljlw ™™ (y)))
I
nooo 1+ B+
H‘")(z”)=<2 p(z, y)1A“(z)1A”(y)>, z«>Z relabelling 4, by Z.
v
Step 4. Now we are going to apply (6.49) to our original situation. Consider the

sequence {x;(n)};cz of sets, where for fixed #, {x;(n)};cz labels the points where for
some fixed £>0:

(6.50) PO (), x, () + 1)< (en) ™.
We denote by b, , the quantity defined by the equation
(6.51) POx;(m), x;(n)+1)=b,; ,n™*

and by B; ,., 7; , etc. the quantities B>, ... as defined in Step 1 (6.33) and (6.36).
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Observe that due to Proposition 2b the distance x;_; (n) — x,(n) is of the order n,
thatis & (n~ ! (x,;.,(n) —x,(n))) converges to a distribution with no atom at 0. With
(6.44) and (6.48) we can therefor conclude that the quantities (B; ,)icz, (7;.n)icz
(A4; »)iez, are for different i asymptotically independent. Therefor we obtain for
nc Ny :

(6.52) 3((———1'& Ai,,,) 1{x: (n)}zel> = T,

1—F:Bi,n_'_’}"i,n n—ro jcZ

I' is a probability measure on IR* with supp(I')<(0, ). £
= 2((1+FG)F)~1) with

4

1+e—r [vs] B
<1+ y ¢ yl) —, G=Y ey, L(ien)= @@(Lq).
k=1 k=1 !

The representation of / in terms of 4,7; |, and relation (6.45) together with the
last relation in (6.43) and (6.52) allows now to go back to our original problem and
to derive from the relation above:

(6.53) LB (x;(n), x;,(m)+ D (h(x;(m) + 1) — h(x;(m))icaln™ *h>"(n-) =g)
= Q@ 1I, Vg:=stepfunction on R.

nsw ick
nS N,

This proves of course our assertion in Proposition 11.

It remains to prove our Lemma 6.6 and 6.7. Since the arguments are closely
related to the ones needed to prove 6.4, and potential are theoretic in spirit we shall
prove them together in Sect. 6d.

¢) Comparison between the carricature X" and X,. The last important step

o . .y (1
towards Theorem 3 consists in showing that the rescaled original chain <— X mm)
n

1 SEn . ~ A — —
and the auxiliary process (;l— X ;,;m) with £=(E_(é(0) 1)) 't are for fixed ¢ and very

large n very close for most environments @ provided ¢ is sufficiently small. The
transformation z-»¢ takes into account the effect of the small gaps in the real
medium which are not close to large gaps (remember p(x, x)>0!). Precisely:

Proposition 12. Under the assumptions of Theorem 3 the following holds

(E:=E(-|w)):
(6.54)  lim [fﬁﬁ Prob <w' |Ef(% )?,nua)_Ef(% Xg;f‘ﬂ) gé>}=

for all fe%,(R) and 8>0.

The convergence for ¢—0 is uniform in n.

The proof of this Proposition is based on the following two Lemmata which
show that the space and time structure of both rescaled processes become very
similar for large » and small .
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Lemma 6.8. Denote by d; the Skorohod metric for functions on the interval ICR.
With h(-), k*"(-) we denote the harmonic functions belonging to (X,)ren, (X&"ken
which we constructed in Proposition 3. The explicit form of the latter is given in (6.23).
We extend these functions on Z to functions on IR by setting g(x)=g([x]). Then the
Sollowing holds:

(6.55)  lim < lim Prob <w|d, (ni h(nx), ni ﬁ"”(nx))gn>>=0 V>0

£ 00 n— oo

h(nx), h*"(nx) are of course considered functions of x for the Skorohod metric. The
convergence for ¢—0 is uniform in n.

Proof. Since we can bound increments of 42(x) by multiples of the resistance between
the relevant points, compare (3.38), (3.40), the relation (6.55) follows from
Proposition 2b and the explicit formula for A*" given in (6.23).

Lemma 6.9. Denote by L*(x,n), L(x,n) the number of visits to x before reaching
€[—n,n] in the processes Xz ) (X,). Then we have with the convention
L¥(x,n)=(e(X)) "1L%(x,n), where X<Xx relabells the random set A with Z:

)

Proof. As in Lemma 6.8 we conclude that (6.55) still holds replacing 4, A" by the
subharmonic functions £, (e(%))~!- f>"(+) constructed in Proposition 3’ (the x
refers to (P—1)(f,) =21;y). Following the scheme of Sect. 5 we show then with the

Eq. (5.9) that lim Prob,, (|E(Z*(x, n)n™%w)— E(L(x,n)n"*|w)|> ) tends to 0 as

(6.56)  lim <E E, sup (

g0 \n—w |x|S=n

The convergence for ¢—0 is uniform in n.

£¢—0 uniformly in |x| <n. Now Lemma 5.2 proves the assertion (6.56).

Proof of Proposition 12. The proof of this Proposition is nothing but making precise
the following idea: In the macroscopic scale the probabilities to leave a fixed
interval to the left (right) and the distribution of the number of steps to leave this
interval become for both processes very close for most w if # is large and ¢ is small
enough (according to Lemma 6.8 and 6.9). This should imply that the processes are
close for ¢ small and » large for most w.

Step 1. In order to make this “for most " precise, fix first an f € 4, (R) and define
for a compact interval I=[a, 5] = R containing the support of f the set Q23 (1) of
media. To do this we need the following ingredients:

(6.57) L, ,(x,m), L8 +(x, m) denotes for given w the number of visits to x before
leavmg [x—m, x+m]n for (X7 ren, (Xken-

(6.58) (xf"™)ien labels the points x with p{x, x+1) <en™*.
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With these ingredients we define 2%-7(7): (Functions on Z are extended to R by
setting q(x)=¢([x]) and abbreviate I(n)={(x, m)e Z*|[x —m, x+m]<=nl}).

(6.59) QiD= {wl sup (n~*|h%" (nx) — h(xm) < 9}

m{wl max (n'llxiﬁ;"l—xia’"léﬂ)}

nixgrel

f\{aﬂ min (n_l|xf4"1—xf’"|zf)}

nixpre]

m{wk"o,a: cO,b_Z_ gn“(b —a)}

f\{wl sup (| £ @™ *(€(x) 7 L, (x, m)lw)
(x,m)el(n)

2L, m>|w>||>ge}

n%wl Y emrErlemi(p(x, x — 1)1

x <[an]

+ Z e—r|x—[bnl|(ﬁ(x,x+1))_1ég}.

x> [bn]

We shall show later on that for our f € %,(IR): for every § >0 we can find a 6, (5)

such that:
e

(6.60) VO<0,(8), t<t,(I) and Xp'=X,el:
1 {e.n 1 s
E f ——X’t";ll+|x w|—E f — Xp+e
n n
With Lemma 6.8, Proposition 2b and Lemma 6.9 applied to (6.59) we can conclude
on the other hand that:

lim (192:;@

B=

to(D1oo as IR, 7=(E@E0)"") 1.

(6.61) [ lim Prob(wjwe Qg;,f([))} 1 [ lim Prob (wjwe Q%2 (I))] ,
n—ow 0| no o
¥Y6>0, Ic<R,
(6.62) lim Prob(wlweQ82(I)) 1 1 V>0, I<R.
n—>ow e—0
Both statements (6.60) and (6.61) together give immediately the assertion.
Step 2. It remains now to prove (6.60). For that purpose we consider again (x?"‘)l-E z,
which label for 8, n fixed the points x such that p(x, x+1) <(6n) ™ * In the next step

approximate X, by a process (¥:*) by ommitting all jumps to points which cross
more than one of the points (x");cz. We check immediately that for all >0 the
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following holds for >0 and T,(J) the exit time of X, from n/:

- k<tntte

(6.63) E(Pmb( sup [1{Tn(l)étnx+u}|n‘1.i’,f’"~n_1fk|)]>O|w>>=0
Vo eQl3(I).

This process (X2:")xez (which is Markov for given w) we approximate in turn by
()?If’n)kel:

(6.64) Xom:=inf (2 rjx2n 2 X9m).

If we choose §=¢, than we have obviously for all §=<e¢ that:
(6.65) 1 Xer—nT 1 XprZe for 0eQP0(I), kTI).

Apply this last procedure to X" and call the result f’,ﬁ’". Taking the relations
(6.63) and (6.65) together we see that in order to finish our proof we are left with
comparing (n_lf,ﬁ’")keN and (n~'XP")rcn. Both these processes live on the
sequence (n”1x")rez and have only transition to the neighboring points.

Step 3. To prove (6.60) we shall use the fact that w e Q%(I)to show, that for every
6>0 we can find a 6,(5) and #,(Z) >0 such that for all € Q®:(I) and r<1,(D),
0=6,(5):

(6.66) fim [E(f (1 Xizi+o)|) — E(f (07 X)) <8

Putting the three relations (6.63), (6.65) and (6.66) together prove of course the first
assertion in (6.60). It is however easy to derive with line three in (6.59) and
Lemma 5.2 that 7,(I)7+ o0 as ITR.

Step 4. It remains to show (6.66) above. Call the probabilities to leave the interval
I;=(x&", x5 ] to the right starting in x : ai*" (i, x) for the process X" and a%" (i, x)
for the process X" Denote the respective exit times from I; by SF"(x), T%"(x).
Finally let L(J) be the set of indices such that x/" e I. Note in I;, L(I) we repress the
dependence on ¢ and # in the notation.

Now we use (6.63) and line 1 and 5 respectively line 4 in (6.59) with [17], page
250, to conclude for all §<6,(5), t<t,(I), we Q% (I):

lim ( sup sup |a&"(i, x) —a"(i, x)|> <6
r—>oo \ie L{I} xel

H(sup sup ||£f(§f"‘(x)—3(7"?’"(y))||)§6, Tor=Torn™ 0%
r=oo \ie L(I} x,yel;

This proves (6.66) for t>0. q.e.d.

d) Proof of Lemma 6.1,6.2,6.4,6.6 and 6.7. In this section we shall give the proofs
of Lemma 6.1, Lemma 6.2 and of the group of Lemmata 6.4, 6.6 and 6.7. The main
tool is the exploitation of the asymptotics of the subharmonic function f of
Proposition 3" and the spirit of this section is potential theoretic. This is of course
the point where we exploit the fact that p(x,z)=p(x,»)p(y,2z) for x<y<z.
Otherwise we would get at this stage instead of convergence several limit points.
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Proof of Lemma 6.1. Abbreviate [x{, x;, , ] by I. The first observation is that with the
techniques from Sect. 5, namely Corollary 7 (5.21), we can show that for the exit
times 7, of (X{"")gen from the interval nl, we have that n~2 T, converges to oo in
probability. Therefor

(6.67) lim Prob (n~! X7 leaves I before time n*t)=0 VieR™.
Replace now the discrete time chain by a continuous time rate 1 process and omit all
jumps leading outside zI. Denote this new process by (X&")ger+, itis forn, efixed a
Markov process.

We consider the action of the generator G of the process (#~ ! X%%) on the set
D, ={f\f is arestriction of a C*(IR) function to / with f|5;/=0}. Observe that D, is
dense in the set D with respect to the norm ||f]=|f1,],+{f 1], where
D={feC*(D)|flar=0,(x—y) "> (f(»)—f (x)) converges gor x—-yedl, xel}.

The set D is the domain of the generator % o? ™ of reflected Brownian
X
2
motion in D, where (% is defined at the boundary by lim [2(f(»)—f(x))
|x=y|—-0

“(x—y)7?]. A straighforward calculation shows that:
6.68 G U; ey VfeD
(6.68) (N = 5\ 5) ) vreD;.

This implies the convergence of the semigroup of (7~ (X%3))ser+ to the semigroup
of reflected Brownian motion (Compare [2}, p. 9 formula (1.16)). By a result from
[2], p. 167 we have then: £ ((n~! X&%)scr) converges to reflected Brownian motion
on [ in the sense of processes.

Due to therelation (6.67) above and due to the law of large numbers for the jump
times this implies that £ ((n~'Xim)ser+) converges to reflected Brownian
motion. (Note one process is obtained from the other by transforming time t— 7(¢)
with T(nt)(nt)"! — 1, VteIR* and furthermore the limit process has continuous

n—oo

path. We leave out the tedious details of this measure theoretic puzzle).

Proof of Lemma 6.2. Step 1. First construct a subharmonic function f" for
(X2")ren according to Proposition 3’ with, among other properties:
f2"x)=0,P, ,(fi")—fi"=21y where P, , stands for the transition kernel of
(X;7")ken. Crucial is now again the behaviour of (n™*f5"),en. We have:

k(y
(6.69) n‘“fi’"([ny])—j(fZﬁ?, k(y)=sup(ixi<y), ce(0, ).

Remark.c=(1—e 2" (1 +e ")(e "+e ?"—e *")~1. The proof of 6.69 proceeds as
follows:

Denote the quantities a; ,,a, , introduced in Proposition 3 in Sect. 3 for a
Markov chain by a; (¢, n) once they are constructed for (Xz"). Tt is easy to see that
Lemma 6.1 implies that for, x>y and 3i x;e(y,x), we have a, ,(e,n) = 0.

Now the relation (3.3) (3.5) in Proposition 3.3’ tell us that it suffices to prove the
analogues statement for £>", that is (6.15) of Lemma 6.4 and Lemma 6.6. For this

reason we refer the reader to the proof of Lemma 6.4, 6.6 for these facts.

+ —_



Symmetric exclusion on random sets 357

Step 2. As a next step we decompose the exit time 75" from z - (x%, xJH] Note we
repress the dependence on the starting point of (X o")renN IN OUr notation.

(7%44] e
(6.70) Tor= Y Lion), LCGom)=Y 1y,
x=[nx;]+1 k=0

Xgn=[yn] with ye(x,x5;).
We shall prove below in Step 4 that uniformly in xenl:
(6.71) E(m~*L&(x,m)) = 2c(d4; ' +d;}4) " Vxenl, withcasin (6.69).
So that together with (6.70) we have as a consequence:
6.72) E(Te™n~ "D = 2e(@;7 " +a;3) 7 (x5, —x5).
Next apply our Lemma 5.2, (5.12) to (5.14), in order to obtain the uniform
integrability of n~®*DT%" and then conclude from (6.72) that:

(6.73)  {FLmAT2Tp™)}, is weakly relatlve compact with nontrivial limit points.
A limit pomt has mean c(d; —l—aJH) (xj+1 x3).

We are done once we can show that such a limit point has to be an exponential
distribution.

Step 3. To prove exponentiality we use of course a coupling argument. In the
remainder we work out the details. Consider for some y e (x5, xj. ) the stopping
time:

inf (k| Xp"=[yn], X&"=x) if X" reaches [yn] before T¢"

T7" elsewhere )

(6.74) T>= {

Observe that in order to show the characteristic property of the exponential
distribution:

(6.75) Prob(T5" 2 (t+s)n' +°‘|7}5’” =mlte) nf:/w Prob (77" >snlte)
it suffices to show that
(6.76) n~@*D  qup  (E(TY) — 0.

xe(x;, X0 n- o

It remains therefor to prove (6.71) and (6.76) in order to established our Lemma.

Step 4. We start with proving (6.71). Rewrite (6.71) in the form

6.77) E(Lé(x,n)) ~ 2c 7’+ n®
) "o aj+a1+1
To prove this note first that according to (6.15) and (6.15") we have:

A

(6.78)  Prob (e exits n(x;, x;,,] first to the right) ~ ——4—

now G +£ZJ+1

Next apply the formula from (5.9): (uPs, f>={, f>+<{n,9>, g=Pf —f to:
f=15" S=T7" u=4, and conclude then with (6.69) and (6.78) that (6.77) holds.
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The uniformity in x is obtained by applying the estimates for f,>" in terms of the
resistance obtained from combining (3.5) with (3.35), (3.36).

Step 5. The relation (6.76) is shown as follows: Define a function &, as

(6.79) kyi= Y fon.

zeni

This function has the property P, ,(k,) —k,=21,; and therefor if we combine the
formula from (5.9) again: {uPs, f>=<u, f >+<{n,g)> with (5.10) we obtain now
the estimate:

(6.80) E(T7) =k, (p)+Prob (T =T7"(x)) Cn

'(maii [(fx([x;n]) fo([xj+1n]+1))]+cz>-
The second summand is bounded by Cr? (apply (5.9), (6.23) to f»" and T, to
bound the probability term by n! ~%).

Combine now (3.5) with (3.36) to conclude from (6.80) that

[xjs 0] =1 1 [x;,47] _
681) su EYI.")§C< 1 —m>n+an
xerIt)I(( ) [xj%ﬂ P, . (x,x+1) [xj§+2 P, (x,x—1)
<Cn?. qed

Proof of Lemma 6.4, 6.6 and 6.7. Observe first that 6.4 is included in 6.6 for the
. : 1
choice w; =w, =1 for all ke N, which makes the quantity <m A> toa

constant depending only on p(0, x) that is 7 (p(0, x) = ce"*!). The proof of 6.6 and
6.7 proceeds in three steps. In step one we prove the assertions (6.41), (6.42) about
B", y" and in Step 2 we study ", £" (6.43) and in Step 3 the behaviour of £(y) for
y—+ 00 (6.47). Recall the notation introduced in (6.33) to (6.36), and (6.39).

Step 1. Remember that we are in the situation were p(0, x)=ce "™ with

-1

c=( Y e""") (thatis c=(1—e ")(1+e ") 1).
xeZ

(i) We start with analyzing the behaviour of ™. We first calculate the

probability B,, that the walk with transition kernel p, (x, y) makes a jump from 0 to
the right but not to 1:

(6.82) Bn=bn_"‘( Y e_'kw,j> for neN,
k

=1
(see (1.10) for the definition of Ny).

Observe that jumps from a point y>0 into the left halfline have probabili-

ty bounded by C(n °p,(y,1)) for the kernel p,(-,-) (since p,(y,2)

<Cp,(y,Dp,(1,00p,(0, 2)) therefor we obtain from (6.82) above immediately
A42).

(6

(i1) In order to study y" we observe first that: the probability to jump at least
twice from the left halfline to the right one or vice versa before hitting 0 or 1 is at
most of the order n72*=0(n"%) and therefor negligible for our purpose.
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Consider the chain X with kernel §,(, -). Now introduce d,=Prob (X{)
=y|X{P=0), T=hitting time of {y|y =0}. We have according to the remark above:

Y Bu(.k)
6.83 m=3 4 k=1 +0(n"2%).
59 ’ ygo "\, (. 0+ Y, ﬁn(y,k)> e

Now use that p(0, x)=cexp (—r|x}) and an explicit calculation yields (6.41) and
(6.45). (Hint use p(u, x)=p(u, v)p(v, w)p(w, x) with u=y, v=0, w=1, x=k.)

Step 2. (i) In oxrder to prove (6.43) we introduce 7™, the minimal positive solution of

(6.84) (I—ﬁn)(-)=V‘")(Hv(")’|)‘1—51,
We have by construction of #®, #®:
(6.85) 1™ ZAO(P AW @ C).

Observe that if we can show that #™ < CIT £ C - (counting measure) for all #, then
we have proved (6.43) part one, since (6.85) tells us that then [#® |, =0(n"%). (We
use the notation ||, =sup|n(x)|.) With the techniques from Sect. 3, (compare

(3.34) to (3.38)) we obtain:

6.86) [, < c< Y () ( L (Bury- 1))‘1>> .=yt
x>1 y=
Introduce next the medium generated by the set {0,1}u{—ilw; =1,ie N}
u{ilwit.;=1,i=1}. This medium induces a walk § on Z by restricting p(x, y) and
then relabelling the points with Z. Now note that for y=2: g, (y,y—1) 25y, y—1)
for the medium 4, for all n and furthermore p,,(0, y) < CaP |v"| with a < 1. Therefor
we estimate starting from (6.86) above as follows:

(6.87) |WWM§C<20*<§Jﬂ%r4»*»=5<w

x>1

which concludes the proof of (6.43) part one. (The fact C< oo follows from
Prop. 1b.)
(ii) Note that with the same idea as above we obtain also:

(6.88) [¢®|,<C<o0 VneN

(C depends of course on (w™,w™))).

As a consequence we can select a pointwise convergent subsequence ¢, De-
note it’s limit with &. The estimate (6.88) above allows us to conclude from the fact:
&® is (the unique) minimal positive solution of (I—7,)(+)=u®™ — (™5, +y™4,),
that:

(6.89) £ is minimal positive solution of: (I -§)(-)=u—8,, u=q(0, -)

§(x, y) is obtained from ¢(x, y) by relabelling % with Z~

QQJ%=%@W@JﬂAﬂ<2P@J0_,

yeB

RB={x|x<0, w5 =1}u{0}.
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This implies that ¢ is independent of the choice of (n,) and therefor £™ converges
pointwise to the unique ([4]) measure £ which solves (6.89). It remains now to prove
that this convergence takes place as || - || ,~convergence. The techniques of proof are
similar to arguments we worked out 1n detail in Sect. 3, here we only sketch the
proof: For u™, p with bounded support this would be a consequence of the
Balayage-principle or equivalent the optional stopping theorem for martingales for
the dual chain (compare Sect. 3 (3.52) to (3.54)). Since we have unbounded support
we have to estimate the influence of the tails of a measure y, on the minimal solution
of the Poissonequation for gt — &, uniformly in the |- Hm‘norm. This is done in the
fashion of (6.86), (6.87)!

By an explicit calculation one proves that IT™ converges to some [T in the |- |,
norm.

Step 3. We conclude with the proof of Lemma 6.7. The relation (6.89) allows us to
derive that é= £ similar one has IT=1II, so that especially (6.48) holds.

To proceed further recognise that (&+§,) is §-invariant and furthermore is the
minimal positive solution of (§—7)(-) = o (=zero measure), which assigns measure
one to the point 0. This implies:

(6.90) E=E=T(I1(0)~" -4,
and therefor
(6.91) Ey)/H(y) - o).

Since according to our convention how to choose II™ we have: I[I1(0)
=Y p(0,k)wpy,. We have therefor proved Lemma 6.7.

k=0

7. Proof of Theorem 1-4

a) Theorem 1. We prove part a) of the theorem by combining Corollary 6 (4.4) with
Proposition 1 (2.4) which gives immediately convergence of the finite dimensional
distributions. In order to obtain convergence in the sense of processes for the
continuous time process with Proposition 1, use simply Theorem 9.1 in [2], p. 142.

In order to apply Corollary 6 we have to show that r <|log (1 — ¢)| implies that

1
E | < ]<o0:
<p(0, 1
Observe that r <|log (1 —g)| means that:

7.1 pO,y)zce P >0, r<a<llog(1—g).
Therefor
1 w0
(7.2) E, (A_,>§20-1. e llos—aln, gon o o
50,1) z

In order to prove part b) of the theorem we assume first that p(0, x) ~ ce " for
|x|— 0. Then we combine Corollary 7 ((5.21)) with Proposition 1 and obtain the
assertion for the case r = Jlog (1 —g)| under the restriction made above on the tails
of p(0, x).

Next we relax the condition p(0, x) ~ce™ "™ in the case r>|log (1 —q)| by gett-
ing the analogues estimate to (7.1) above (that is p(0, y)<cexp(—ay) with
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ae(llog(1—g)|,r)) and then check that this suffices in the estimates in the proof of
Proposition 7.

b) Theorem 2. We consider first the case where r<|log(1 —g)}. By combining
Proposition 7 (5.21) and Proposition 1 (2.4), one obtains with the definition

(7.3) T(®):=inf (1| X (1) e€[—n,n])
that

(7.4)  {L(Tmyn~1*?)},cn is relatively weakly compact and the weak
limit points are nontrivial .

To proceed further we use the stationary and independence structure of the
distribution of the medium. We explain below how we can get out of the relation
(7.4) that:

(7.5) lim lim [Prob(3r<sn'**: X(1)e@[—cn, cn])]=0 VseR*

c—o00 B ®

(7.6) Ay, beR*Y, ViF,eR” l:m Prob(X(n”“t)e[—bn,bn])}<1,

n— oo
i —4L=2a>0.

(Note Prob (+) refers here to the measure on the product of medium and process.)

The relation (7.5) is obtained as follows: In order to reach €[—cn, cn] from
point 0 we have to cross [c]-times an intervall of length # or we have to have at least
one jump of size =n. The variables 1, 4 are independent for x belonging to
different intervalls [(k — 1)n, kn]. Furthermore the probability of a jump of size = &n
tends to 0 exponentially fast as n— oo. It is now straightforward analysis to derive
(7.5) from (7.4).

In order to get (7.6) note that for every ¢ >0 with positive probability we leave
(1+5)[—n,n] before cn* **-time units (uniformly in 7), compare Sect. 5 Lemma 5.2
and 5.3 and Proposition 2b. In order to be back in [ —bn, bn] at time n' ** we have to
cross again an intervall of length », which according to (7.4) we can accomplish in
less than (¢ —c)n' **-time units only with probability smaller than 1 for ¢ large
enough (uniformly in 7). This means the values of ¢ where the limit in question is 1
are isolated q.e.d. Note that with a little bit more work we get through with
assuming only ergodicity (instead of independence) for the medium.

Both relations (7.5) and (7.6) together imply that

1
(1.7 {3 (; X +“t)>} is relatively weakly compact for every r and weak
nelN

limit points are nontrivial, except for at most ¢=1¢; with a sequence ¢, with
Liyg—42a>0.

In order to prove (1.8) it remains now to show tightness of the sequence

1 . .
{3 ((— X (nl_“t)> } , as measures on the space of right continuous
n teR*/ JneN

functions with limits from the left. Thisis a fact we can derive best from Theorem 9.1
in [2], p. 142. Use (7.5) and (7.7) to verify the conditions needed there.
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The proof of (1.9) follows the same lines, we simply have to replace n'** by
nlogn and prove the respective versions of Propositions 2band 7. All we have to do
to accomplish this, is to replace (2.32) and (2.33), which refer to classical results,
compare [8] or [3]. We leave the straightforward details,to the reader.

The remark following the Theorem 2 is consequence of Proposition 7 and the
fact already used above that any interval can be left with positive probability before
time cn' *%

¢) Theorem 3. 3a): The first observation is again that Proposition 1 (2.4) and the
calculation following (4.4) imply that for our purposes we are allowed to replace

n X (%) by c—l)?[bnm,] with a=gq and b=(E,(e(0))). Assume first n< N, for
n

some i. We start by connecting the approximating process Z="(t, @) from the theo-
rem with the one more suitable for technical purposes used in Sect. 6 namely Z".
These processes are defined in (1.15) and (6.25) via Wy} ,, V, ,, , respectively 2%",
P& Proposition 11 (6.29) and Proposition 2b tell us that these quantities converge
in distribution to the same limit as n— co, # S N;. From this we can conclude that the
L(ZP")and L (Z7"(t, w)) have for n— 00, n <= N, the same weak limit point. To see
this we use the fact that both processes are of the form g, ' Y(([ L(0, g,(x))dx) " *(¢))
with g, converging weakly to a nondecreasing jumpprocess with isolated jump
points. Then the assertion is checked by an elementary calculation. If we then
combine the result above, Proposition 10 (6.27) and Proposition 12 (6.54) we obtain
the assertion (1.18) of Theorem 3 for n— oo in N;. To generalize this consider: If the
relation wouldn’t hold for a subsequence n, it would be violated for a subsequence
(n,) = () with (n,) = N, for some i. Therefor (1.18) holds for neN.

-1
b) and c): Denote by ¢ the number <Z e""“) .

First observe that in our notation ¢(p(y,y+1)) ' =r*exp (ra’) for y=x? and
that therefor we conclude with Proposition 11: the laws of W2, and our function
A%" constructed in Sect. 6b (6.26) have for n— oo the same weak limit points. For the
last object we derived a limit theorem, namely Corollary 11 from Sect. 6b, ((6.31)).
It allows us to conclude that:

(7.8) LW o(XNxer) = £ ((} cde,-‘f“s(y)> ]R>,

n— oo 0

ncN;

(7.9) & (<’§C ¢yd Yif'.s(y)> >=> & <(? Cdei“(y)) )
0 xR/ -0 0 xeR

In order to prove (1.20)~(1.22) it remains now to show (in view of the two rela-
tions above) that the convergence of the #(W;,) implies the convergence of
L((Z2(t,w)ieR) to L(ZP(1)ier) as n—>o0, nSN; and of L (Z?(¢))ier) to
L(ZA1):er) as 6—0, where the latter is defined via (1.22). For the last assertion we
can follow word by word (besides the notation) the arguments of Kawazu-Kesten in
[81, there they solve in Lemma 2, Proposition 1 on p. 567—-569 this problem. We
don’t repeat these arguments here and refer the reader to that paper. For the first
assertion we pointed out in 3a how to proceed. The uniformity of the convergence
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0—0in n follows immediately from Y7;(x) ¥*(x), W2, (x) W, »(x)as 6—0for x=0.
(For x <0 we have decreasing sequences instead.)

d) Proof of Theorem 4. We only indicate how to modify our earlier arguments for
the case of exponential tails:

Consider again the sequence of sets {x}*};.z, where for n and « fixed {x"*};cz
labels the points which have strings of forbidden points to the right of length at
least |log(1—gq)| 'logn—a with a<a. The length of the string is written as
[log(1 —¢)| tlogn]—al* We saw already in Sect. 6 that (n™'xP% a¥*)icz
converges weakly for n— o0, n< N,. So realize again the whole sequence on a
common probability space such that (n~'x]"®, "’“) —> (x},a?). Denote by

xi=inf(x}|x}>0), so that Oe[x}_
with probability one.

We shall show that in the scale f,(n) the process doesn’t leave the interval
[x%_;,x%] in the limit n—oo. For that purpose consider again the subharmonic
functlon f from Proposition 3’ with P*(f)~f=1,, f(0)=0 among other
properties. Again we can estimate f in terms of the resistance (compare Sect. 3) and
obtain:

~1, X5, Furthermore note that a’_;,a5%a

+o0 x<xj_y

(7.10)) L f(nxD)— 0 xe[xf g, x5]
+oo  x>xj.

With the same arguments as in Sect. 5 we derive from the relation above that the
following holds for T, =inf (k|X, e € [x}*]):

(7.11) n~'f, " (n)T, = oo in probability.
Now look at the exit times 7, from aninterval [y’, y”]<= (x}_,, x}). Looking at (7.10)
above again, we conclude with the scheme from Sect. 5 that:

(7.12) n~'f Y (n)T, — 0 in probability.

n— o0

The last two relations prove Theorem 4. We omit any further details.
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