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Summary. Let {X,} be a one-dimensional Lévy process with local time L(t, x) and
L*(t) = sup{L(t, x):x € R}. Under an assumption which is more general than
being a symmetric stable process with index & > 1, we obtain a LIL for L*(z). Also
with an additional condition of symmetry, a LIL for range is proved.

1 Imtroduction

Let {X,}, t = 0 be a one-dimensional Lévy process. Its characteristic function can
be represented as follows;

E exp(iuX,) = exp(ty(u))

Y(u) = ibu + [(e™ — 1 — iux(1 + x*)~)v(dx).
Here v is a measure on R — {0} satisfying [ (1 A x?)v(dx) < . Note that we
don’t include the Gaussian component in ¥(u) since the behavior of B.M. is
well-known. For x > 0, define
G)= [ vy,

lyl>x

Kx)=x"2> [ y*>v(dy).

lyl=x

where

We assume that

lim sup%i%< 1 (1.1)

as x tends both to 0 and oo, and
EX,=0. (1.2)

For a-stable processes, lim G(x)/K(x) = (2 — )/« as x - 0 and x —» o0, so that our
assumption is more general than being a symmetric a-stable process with o > 1. We
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also note that (1.1) implies that E|X | < co. Assumption (1.2) is necessary to
guarantee recurrence of the process. In fact, under (1.1) and (1.2), X, is point-
recurrent since the following criteria for point-recurrence are satisfied; for any
A >0,

e 1
LR

1
|u<f1 Re(——m>du= w .

This work is mainly concerned with the asymptotic growth rate of local time of
X. Under (1.1) and (1.2), Kesten and Bretagnolle’s conditions [4, 10] for existence
of a continuous version of L(t, x) as a function of ¢ are satisfied: they are as follows;
b 1
Re—du< w0, (L.3)
/ 1=y

S A Ix])v(dx) = o . (1.4)
Moreover, it is not hard to show that a jointly continuous version of L(¢, x) exists
by checking the results obtained by Barlow and Hawkes [2] and Barlow [1]. They

improved the result of Getoor and Kesten [5], and proved that under (1.3) and
(1.4),

P(x)
|x| <1fe x(log 1/x)

is necessary and sufficient for the existence of jointly continuous version of local
time where

dx < o0, (1.5)

1
0*(y) = f(l — cos uy)Re 1—_m du ,

and ¢ denotes the monotone rearrangement of ¢. For a comprehensive list of
results related to local times, the reader may consult [1]. When a jointly continu-
ous L(t, x) exists, it is clear that

N
L(t’ X) = lim 27 f X(x—s,x+s)(X(S))dS .
e=0 <€ o

This work is motivated by a result of Griffin [7] which described the asymptotic
growth of the local time of a symmetric a-stable process with a > 1. To describe his
results, let

L*(#) = sup{L(t, x):x e R}
R()={X(s):0<s <1}

and denote the Lebesgue measure of R(t) by m(R(z)). Griffin showed that for some
¢, Ce(0, o0),

lim sup ¢t~ V*(le) "~ V9m(R(t)) = ¢ as. (1.6)
t—= oo
lim inf £~ V(1) Ve L¥(H) = C as. (1.7)

t—=> o
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where 1t denotes log log t. In the case of Brownian Motion, the law of iterated
logarithm implies that the result of type of (1.6) holds even with sup,.,|X;]
replacing m(R(f)), and the result of type of (1.7} was obtained by Kesten [9]. For
symmetric a-stable processes, it is well-known that (1.6) is no more valid with
sup, <;| X} instead of m(R(z)). We will now be concerned with the same question
for the class of Lévy processes satisfying (1.1) and (1.2). For x > 0, define

JSx = Glx) + K(x) .

It is easy to see that f~1(1/y) is well-defined for y large since fis continuous and
strictly decreasing once it reaches the support of v. In this work, we prove that
assuming (1.1) and (1.2), for some C € (0, o),

lim inf L*(?) £~ 1(le/o)lie/e = C as.

t—+ o

Furthermore, under the extra condition that X, is symmetric, it will be shown that

: m(R(1))
limsup ——~—=C as.
o ? F e/ o)l
There are very important estimates used to derive the necessary probability
estimates, which assert that for some constants ¢, C and any positive integer m,

ct
E(L(z, x)) ém (1.8)
Ct m 1 "
, X) — ) 2'": 2m)! — . 9
UG x) = £+ )y < (m) (f 1(1/r)> <|y|K(1yl)> 19

The proof involves a method employed previously by Jain and Pruitt [8] for the
case of an integer-valued random walk, and it turned out to be very useful in our
situation. The analogous estimate to (1.9) for Brownian local time was obtained by
Borodin [4] using the Ray’s formula [12] which is not valid for general Lévy
processes.

In Sect. 2, we will briefly review the basic facts and obtain the important
estimates on the local time. We will state and prove the main theorem about the
local time in Sect. 3. In Sect. 4, the law of iterated logarithm for range will be
presented. We will denote a finite positive constant by C. Its value may be different
from line to line; whenever necessary, we will number the constants.

2 Basic estimates

In this section, we will assume that (1.1) and (1.2} hold. Also we will assume that
v(R) = co. Otherwise X, is a compound Poisson process with a drift term. We
start with some useful facts about f(x). First not that x?f(x) is continuous and
strictly increasing. Also it will be frequently used that from (1.1), there exist
0 < g <1, a4, Ag such that for x (0, ag] v [4g, ), G(x) < (1 — £9)K(x), hence
there exists 1 < 85 < 2 such that

x®f(x) is strictly decreasing on (0, ag] U [4o, o),

yt%f~1(y) is strictly increasing on (0, f(4,)] U [ f(ao), o0) @D
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(See Lemma 4.2 of [13]). Using this, we observe that for M > 1, small and large
values of x and y,

M™% f(x) £ f(Mx) £ M ~*f(x) (2.2)
MR Ty S fTHMy) S MUY THY) (2.3)

Also we note that for any x, G(x) £ CK(x) for some C > 0, which implies that there
exists 6, such that 0 < 8, £ J, and x?'f(x) is strictly decreasing for any x. There-
fore we obtain the analogous inequalities to (2.2) and (2.3) with J, replacing J,
which hold for any x and y. We will use the fact that

lim sup G(x)/K(x) < 1

x—0

implies that {X,} has density, since

[ lexp(ty(w)ldu =2 7 exp(t f(cos ux — 1)v(dx))du

|u| Z 1/ao 1/ao

<2 fexp(t S (cosux—l)v(dx))du

1/ao Jux| < 1

A

2 fexp(—Ct f uzxzv(dx)>du

1/ao lux] £ 1

=2 fw exp(— CtK(1/u))du

1/ao
=2 [ exp(— CtK(v))v™*dv
0

ao

£2 [ exp(— Crw™®f(ap))v ™ *dv

<

where v°K(v) = 27 W% f(v) = 27 1a¥’fla,) for v < ay is used. It is now convenient
to introduce more notation though it will not be used so frequently as G and K.
Define for x > 0,

ax)= [ yd+y*) " vdy),

byl > x

Bxy= [ yA+ )7 v(dy).

IPl=x

For any a > 0, we may write X, as the sum of two independent Lévy processes
X! (a), X?(a) where

Eexp(iuX l(a) = exp(itu(b —a@)+t [ (exp(iux)— 1~ ux(l + xz)‘l)v(dx)> ,

|x[£a

E exp(iuX?(a)) = exp (t [ (exp(iux) — 1)v(dx)> .

|x|>a
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X?(a) is a compound Poisson process of parameter tG{a) with all jumps of size
greater than a up to time ¢. That is,

th(a) = Z (Xs - Xs—)%[—a,a]c(Xs - Xs-—) .

sEt

By differentiating, it is easy to see that
EX @)= t(b + P(a) — a(a)
Var X}(a) = ta®*K(a) .

Now we will derive two basic estimates (1.8) and (1.9) on the local time which
are interesting themselves. The techniques used here heavily rely on the method
used by Jain and Pruitt [8] in the case of an integer-valued random walk under
analogous assumptions to ours. The argument starts from the well-known inver-
sion formula to obtain the necessary probability estimate. First we prove a series of
lemmas.

Lemma 2.1 There exists C, such that for any t,
Sle¥®idu < Ci/f (/1)

Proof. We start with the estimate on |e”™|. For u > 0, we have

le®| = exp(tf(cos ux — 1)v(dx))

< exp(t [ (cosux — 1)v(dx)>

Ix| £ 1/u

< exp( — CtK(1/u))
< exp(— Ctf(1/w) . 24)
Let a, = f~*(1/t), and using (2.4), observe that

Sle¥®|du < 2/a, + 2 f exp(— Crf(1/u))du

1/a:

<2/a,+2 [ exp(— Cru’al f(a))du

1/a;

<2/a,+2 [ exp(— Cu”al)du

1/ae

<2/a,+2 [ exp(— Cv®)dv/a,
0

=C,/a,. O

Lemma 2.2 There exists C, such that for any x,& > 0,1t > 0,

P(IX, — x| <e) < Coe/f 71 (1/1).
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Proof. Essentially, we follow the proof of Theorem 3.6 of [6]. We start with the
inversion formula,

1 cosr
S/ PUX— = = 2R gy
1 sin Au lu\*
“ gr exp( — wx + 0f(u)) T (1 - 7) du . 2.5)
Note that for 0 < n < 4,
1 — Cos Ty
il X,—(x—p|siH)——=2
MfP(l —x=yI= A) p— dy
>ip(|X_x[</1_ ) [ 1-cosz
:2}' T = ] xzz

lzl < g
C
2IP(1X1—xI§l—n)

if we let rp = 1. Using the inversion formula (2.5) with Lemma 2.1, we have
P(IX, —x|SA—-m=Cif(1)1).
Now the assertion follows easily if we let y = ¢, A =2¢. O

Lemma 2.3 There exists Cs such that for any x, ¢ > 0 and sufficiently large t,
t
[ P(1X,— x| < e)ds < Cset/f~1(1/1),
0
hence
EL(t, x) < Cat/f~1(1/1) .

Proof. Using Lemma 2.2, we write

¢ tChe
OfP(le—x|<8)ds§0ff_1(l/s)ds

Using (2.1), observe that for any A, < f~*(1/t),

1/£ (a0) t

[ Coe/f~'(1/s)ds+ [ Che/f71(1/9)ds

0 1/£ Ao}
< Gt Ujm) upsegs 4 ST gy
= aofla)’® D 1o

< Ce/(aoflao)) + Cet/f~*(1/1) .
This completes the proof since obviously
Ul C,e
1/f{10) f711/s)
and t/f " 1(1/t) =0 ast—o0 .

ds < Ce
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Lemma 2.4 There exists C4 such that for any x, y and & > 0,

© C48
0/ IP(1X; — x| <&)— P(1X;— (x + )| < g)ds = DK

Proof. The proof runs similarly to Lemma 7 of [8]. [
Lemma 2.5 There exists Cs such that for any positive integer m, and t large enough,
E(L(t, x) — L{t, x + y))*" < @m)! (Cst/ S~ H(1/)"(IyiK(lyD) ™™ .
Proof. Fix x and y, and let
IL.,=Cz—¢z+e), P=%;, —%,,.

It suffices to show that

. 2m Cset \™ e\
E( O/qbg(Xs)ds) é(zm)!<f‘1(1/f)> (mK(m)) '

Recall from Sect. 2 that X, has density. Furthermore it suffices to consider the case
when X, has continuous density. Otherwise, we choose a symmetric stable process
{Y,} of index «, independent of {X,} such that

(2 — o)/ < 1 — lim sup G(x)/K(x),

as x tends to O and co. For § > 0, set Z; , = X, + Y. Then the Lévy measure of
Zs,; 18 given by

Us(dx) = v({dx) + d|x| 1 *dx ,
which implies that as x -0 and x — o0,

Hm sup G,,(x)/K,(x) <1
and
Ju3) =fx) + 4007 2 ~ )7 x7F,

where G,,, K, and f,, denote the corresponding functions with p,; replacing v in the
definition of G, K and frespectively. Since Z; , has continuous density, the general
case follows easily by letting 6 — 0 from the assertion for Z; ;. Denote the density of
X, by p(t, x) and note that Lemma 2.3 and 2.4 imply that for ¢ large,

[ pls x)ds < Cat/F (10

Of Ip(s, %) = p(s, x + y)lds £ Ca/(I¥IK(3])) (2.6)
Write, for N > 2m,
E(Oft Q(Xs)ds)zm =E@S;+S;+ - + Sy)*
=Y E(Siss - S5

Q
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where
Ji = L(k — 1)t/N, kt/N),
Sk = f ¢8(Xs)ds s
Tk
Q={(i1,i2, ...... ,lN),Oéll,lz,,1N§2m,ll+lz++ll\]:2m}
Let

Q: = {(i1,i,...,iy)€Q; iy =0 or 1 for all k}
Q:=0nQ5%.

Calculating the cardinal number of Q,, we observe that

. o (20" (N ~1+2m N
E|SuS2.-. S <[ — —
prssss s () (0750 ) (o)

which can be made sufficiently small if N is sufficiently large. Therefore,

t 2m
E< f ¢£(Xs)ds> ~ Y E(S¥S% -+ S¥)
] Q1

=2m)! > E(S,S, ""S.,.)

T2m(1, N)

where Ti(i, j) = {(i1, 02, . .., )i S iy <ip < ' i, <j}and ~ denotes that the
ratio tends to 1 as N —co. Now we show that by induction on m,
Z E(Silsiz o Sizm)

4C3£t " C48 "
X é(f‘l(l/t)> <1y|K(|y|)) - @D

It is easy to see that (2.7) holds for m = 1. We write

Z E(Si,Si2 e Siz,,,)

Tam (1, N)

= Y J] E{E(@(X.)]X,)®.(X,)

1€ < EN Ty xJy,
X EXV< Y Si,Si, - Si,, ) dudy (2.8)
Tom-202+1.N)
where Si = [; ®,(X, — X,)ds. Recall that X, has density p(z, x) and note that for
p(v, w) # 0,
E(®,(X )X, =w)

= p(v, w)_1< [ pu,pv—uw—2dz— [ pu,2)plv—uw-— z)dz)

Tiiyie

= p( W)_l{ J (p,2) — plu, z + y))plv — u, w — z)dz

Iy

+ [ (po—uw+y—z) —plv—uw—z)p, z)dz} . 29)

Now we substitute (2.9) into (2.8) and take the absolute value of (2.8). Also applying
the induction hypothesis on

Exv< Z S8, S:-Zm)
Tam-2(i2+1,N)
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and using (2.6), we obtain

E(Silsiz e Si2m)

T2m(1,N)

<4C3at )m‘1< Cue )"‘“1
[ LyIK(1y])

x Yy {ff< If R(u,v:z,w)x,ﬂ(z)dudv)dzdw

1€iy<h N

IIA

+Jf ( I Ro—uviw—z W)xlmvﬁ(z)dudv)dzdw}

<< 4Cyet >’"< Cye >’"
S\ \IVIK(yD)

R(u, v:z,w) = |p(u, 2) — p(u, z + Y)Ip( — u, w — 2)| D, (w)] .

where

3 LIL for local time

In this section, under the assumptions (1.1) and (1.2), we will prove that

lim inf L*(t)f ~1(t/O)lle/t > 0 as. 3.1)
lim inf L*(t)f ~ 1 (e/H)1le/t <0 ass. (3.2)

Throughout this section, we will assume that (1.1) and (1.2) hold. The necessary
probability estimate to prove (3.1) is relatively easier to obtain. First we quote some
results from [13]. Note that though the definition of fin this work is different from
that in [13], it is not hard to obtain the following versions under our assumptions
(1.1) and (1.2). Denote A, = sup,<,|X;l.

Lemma 3.1 (Theorem 4.6(2) of [13]) There exists 0 < 8; < 1 such that for t suffi-
ciently large

PX;>0) =0, PX,<0)=z6,.

Lemma 3.2 (Lemma 3.2(2) of [13]) There exist Cq, C such that for sufficiently
large a, and t,

P(4, £ a) z Ceexp( — Ctf(a) .
Lemma 33 (Lemma 2.4 of [13]) (1) For tf(a) < &(8o — 1)2%"1/5,,
P(4, £ a) Z Cg(e)exp(— 27 *1f(a)),
where Cg(e) = 1 — 2(80 — 1)e/(0(1 — &)?).
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(2) For tf(a) < &(60 — 1)/00,
P4 za) = (1 - &) %tfla).
Lemma 3.4 For (% < (5o — 1)/(280) A 1 and t large,
P(L*@)f 1 (1/0)/t S O) S 4L .

Proof. Using the fact that t < L*(f)4, and Lemma 3.3(2), we observe that for
t large

PL*O)f ' 1/9t =) s P(AZ T f7H1/D)
< 40%

since

Ty = O
Theorem 3.1
lim inf L*(2) f~*(z/0)llt/r > 0 as.

10
Proof. Denote h(t) = t/f~*(1/t) and choose { < 1 so that
£% < (5 — 1)/(260) A (26)°2 .
By Lemma 3.4, we obtain for ¢ large,
P(L*(2) < 271 {h(e/) < {P(L*(t/1lt) < Ch(t/le) )7/

< (202

— pmam (3.3)
where e ¢ = 2¢%/2 and ¢ > 1. Now setting t, = 2%, it suffices to show that

T P{L*(t) < 47 Uh(tpn1/Uts 1)}

converges. Using that At 1 /Uty 4 )/h(t/1t,) < 2 for k sufficiently large, and (3.3),
we have

P{L*(ty) £ 47 "h(tis1/Mtes 1)} < exp(— Ell) ,
whose sum converges. [

Next we prove the second half of the main result whose proof is much more
involved. We need a lemma to estimate the tail of the distribution of L*(t) mainly
based on the results in Sect. 2.

Lemma 3.5 Forn > 1, M > (48on/(6¢ — 1))'/* v 1, there exist Cq, mq such that for
any integer m = mq and t large A

P(L*(nt) f~1(1/0)/t = 2M)
< Can'’?/M + (2m)! Co(m)(n*/2/M)™ + 163/9M?* ,

where Co(m) depends only on m.
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Proof. For given 5> 1, M > (464n/(6o — 1))*/? v 1, let h(t)=t/f~'(1/t), and
N = f~1(1/M?t). Then we have

P(L*(nt) =2 2Mh(t)) = P( sup Lint,x) = 2Mh(t)> + P{4,, > N)

IX|€N
< P< sup |L(nt, x) — L(nt, 0} > Mh(t))
Ixl <N
+ P(L{yt, 0) = Mh(t)) + 16n/9M? . (3.4)

where Lemma 3.3(2) is used with ¢ = 1/4. It is easier to handle the second term in
(3.4) by using Lemma 2.3 which implies that

EL(nt,0) _ Cint/2
P(L(nt, 0) =2 Mh(®)) < ML) =57 (3.5)

since £~ 1(1/1)/f " (1/nt) < 5~ 12 To obtain the upper bound for the first term in
(3.4), let n be the integer such that 2""* < N <27 and 0 < y < 1 where y will be
chosen later. Observe that

P( sup |L(nt, x) — L(nt, 0)} 2 Mh(t)>

x| N

= P< sup |L(nt, x) — L(nt, 0) 2 Mh(ﬂ)

lxlg2

n 2n-k

3y P(}L(nt, 29— L(nt, (i — 1)29)] 2

k=0 i=1

R

© 27I+k . . .
+Y % P<lL(nt, %) - L(nt, lz—kl>i > %«/‘(1 - y)h(t)> . (3.6)

k=1 i=1

Fix 4 > O such that 1 + A < &, and let mg = [(6o — 1 — A) ']+ 1,9?> =27* and
m = mg where [ x] denotes the largest integer not exceeding x. We deal with the first
and second term in (3.6) separately. To bound the first sum in (3.6), we let
A, = [log,Ao] + 1, and note that for k > 4,,

K29 2 f(29/2 2 2779 f(2")/2 ~ CQ ™" /(M?1) (3.7
and for 0 £k < 44,
K(2%) =z Cf(29 =z c2724(1) . (3.8)

Now using the Markov Inequality, Lemma 2.5, (3.7) and (3.8), we have an upper
bound for the first sum in (3.6),

n _ CS"It m 2 2m
20k (!
2z, 2 <2"K(2")f‘1(1/nt)) (My"—k(l - v)h(t)>

4C5’71/2 ™ -1 m-yn(1+ Am ‘ k(—im—m—1 —m
§(2m)!<m) (f M1 D)/ ’k§o2( * YK (2¥)
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C??l/z

M2(1 ) 2n(1 +/1m)(f l/t))m

< 2m)! (

{MZmz ndom Z 2k(éom—).m m— 1)+(1/t) Z 2k(m—)tm—1)}
k<

k<n 0g

II/\

_(2m)'( ) T/ M 20 ey

é (2m)y <M2(1 ) {Mm M2(1+).m)/50f (l/t)1+lm+m(1/t)m}

CY]UZ m
=(m! <M(1 - W)

= (2m)! Co(m)(n*//M)" (3.9)
since £~ (y)y*/% 1 for y small implies that
f—l(l/t)1+1m+m(1/t)m — (f—l(l/t)(l/t)l/ao)l+/lm+mt—m+(1 + Am+m)/do

< Ct_m+(1 +Am-+m)/do

which converges to 0 as t — oo since m = mq. For the second term in (3.6), we let
a, = [log; 1/a5] + 1, and note that for k = a,,

KQ2™% = f27%/2 2 C2*adef(~) (3.10)
and for 1 £k < aq,
KQ™MzCf2™% z C2* (). (3.11)

Again using the Markov Inequality, Lemma 2.5, (3.10) and (3.11), we have an upper
bound for the second term in (3.6),

@ . Cs"lt m 2 2m
L 2! <2"‘K(2"")f‘1(1/nt)> <ka(1 - v)h(t)>

4C5 1/2 m _
< (om)! (M%;T) (rasrr

< Z (21+m+).m)kK(2—k)—m .
=1

Note that
Z (21 +m+2.m)kK(2—k)—m é Cm Z (21 +m+/1m—61m)k

k=1 1<k<a

+Cm Z (21+m+lm—§om)k

k=za;
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which converges by the choice of A and m,. Therefore the second sum in (3.6) is
bounded above by
QCm)L (Cr*2M =220 (f =1 (1 /o)t
~m (Cyt PM T T MO (ST )/
< (2m)! (ChM 1AM 2 M1 (£ L1 /1)1 ) ooy
X (1/gyn=m=ide (3.12)

which converges to 0 as t —» co. Combining (3.4), (3.5), (3.9) and (3.12) finish the
proof. [

Remark. 1t was pointed out by the referee that Lemma 3.4 and 3.5 imply
that {L*()f " '(1/1)/t,t = 1} is stochastically compact, ie. every sequence
{L*(t,) f~'(1/t,)/t,} with t, » o0 has a subsequence which converges to a non-
degenerate law. It would be interesting to know what the subsequential limit laws
are.

Finally we need following lemma to obtain the necessary probability estimate.

Lemma 3.6 There exist 0 <0, < 1,0 < py <1, p, > 1, such that for t sufficiently
large,

Plp fTH U/ S X, S po fTHI/1) > 6, .

Proof. We will determine p;, and p, later. Let a = f ~1(1/t). Lemma 3.3(1) implies
that for p, large

P(1X,] £ p2a) 2 Clpa)exp(— 27"t f(p,a))
2 C(p2)exp(— 1/(2%p%)), (3.13)
where C(p,) — 1 as p; — 0. Also Lemma 2.2 implies that
P(1X:| = p1a) £ Capy
< 84/2, (3.14)
by choosing p; small. Therefore using Lemma 3.1, (3.13), and (3.14), we obtain
P(pia £ X, £ pra) 2 Clpy)exp(~ 1/(2%°p%)) + 0,/2 — 1
=0,
which is positive if we choose p, large enough. [
Now we are ready to complete the main result.
Theorem 3.2
lim inf L*() f~*(llt/0)1lt/t < o as.

Proof. Let p(t) = (f~*(llg/e)lit/t) ", and 1, = exp(k*), 4 > 1. We will use
L*(t) L*(t,) L(ti+y, x) — L(t, x)

lim inf < lim sup + lim inf su
imw D) o Ples1) oo xp P(te+1)

(3.15)
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To prove that the lim sup in (3.15) is finite, it suffices to show that ) P(L*(t;) =
Cp(te+1)) converges. Let # > 1 be fixed and r = [llt;/#] + 1. To apply Lemma 3.5,
fix m = my and observe that

P(tier1)/P(t) Z (tes 1 /) 1% (3.16)
By using Lemma 3.5, we have
P(L*(t) 2 Cp(ti+ 1)) S rP(L*(nt/1Uty) = Cp(te+1)/1)
< Crin'?p(u)/p(tis 1)
< Cp 732 )2 (t/te+ 1)t~ %0 (3.17)

since (3.16) implies that in this setting, the first term of the upper bound obtained in
Lemma 3.5 dominates the remaining terms. It is easy to see that (3.17) is summable
for A > 1. It remains to prove that

Z P<SUP (L(tk+1,x) — L(te, 0)) < Cp(tk+1)>

diverges. To obtain the necessary probability estimate, let y > 1, s = yt/ilt,
a=f"1/s),p=p; and A=2p,p7* — 2 where p;, and p, are the constants
obtained in Lemma 3.6 and y will be chosen later. Following Griffin’s method [7],
set

E, = {Sup (LAks, x) — L((k — 1)s, x)) = Mp(1)

sup | Xyva-1)s — Xa-nsl £ pa, kpa £ Xy (4 + k)pa}

O0Zugs

and observe that for r = [llt/y] + 1,
N Ee < {L*0) < AMp(©)}
k=1
Denote by &, the smallest o-field generated by {X,, s < t}, and note that

r r—1
P( m Ek|g;(r—1)s> = H '%‘EkP(Erlﬁ(r—l)s)
k=1 k=1
r—1
=TI %EkP{sup (Lers, x) — L((r — 1)s, %)) < Mp(2),
k=1 x

Sup |Xu+(r—1)s - X(r—l)sl é pa}

O0Suss
X P(rpa é er é (A + r)paIX(r—l)s) a.8.
Using Lemma 3.5 and Lemma 3.2 we have for fixed m = m, and M large enough,

P<Sup (L(TS, x) - L((V - 1)S7 X)) g Mp(t)a sup |Xu+(r—1)s - X(r—1)5| é pa)

0Zuss
z Coexp(— Cq/p?) — 2C5y*2 /M — (2m)! Co(m)(2y*/2/M)"™ — 647/(OM?)
= 03 > 0 .
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Lemma 3.6 implies that for x € [(r — D)pa, (r — 1 + A/2)pal,
P(rpa £ X, = (A +1)pal X ;-1 = x)

2 P(pa £ X,y — Xoo1ys = (1 + A/Dpa)

=48,.
Similarly for xe [(r — 1 + 4/2)pa, (A + r — 1)pa],

Prpa £ X,s S(A+71)palX, 1, =x)=0,.
By taking the iterated conditional expectations, we have

P(L*(t) = AMp(t)) = (0,65)"
2 (log 1)/

where e ¢ = 0,0;. Therefore

P< sup (L(ti+1, %) — Llte, x)) = AMP(tk+1)> > (k + 172

whose sum diverges if 24¢ <y. O

4 LIL for range

In this section, assuming that X, is symmetric, in addition to (1.1), we will prove
that

m(R(t))

li ———=C as. 4.1
P S G~ © @b
Since (3.2) implies that
: m(R(1))
lim sup ~—————— a.s.
RN et (11773111
it suffices to prove that
R
lim sup m(R()) a.s.

R ek (1 1373)113

We will modify Griffin’s approach [7] to obtain the required probability estimates.
Many calculation there are easier since a symmetric stable process has the scaling
property. In fact, we have found that if we use the similar technique to [7], (4.1)
holds under extra condition

lim inf G(x)/K{x) >0,
without assuming the symmetry of {X,}. But for symmetric {X,}, we can get the
upper bound for Laplace transform of m{R(f)). It is interesting to compare the

upper bounds for Laplace transform of sup, .| X!(a)| and m(R(z)) obtained in
Lemma 4.1 and 4.2 respectively.
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Define J (¢, a) to be the number of jumps of size greater than a up to time ¢. That
is, recalling the definitions of X! and X? from Sect. 2, for a > 0

J(t,a)=#{s<t:|X,— X,_| > al}
= #{s < :]X2@) - X2 (@) > a} .
Define for a > 0,
Tol@) =0
t(@) = inf{s > 1,1 (@):1X,(@) — X,-(a)] > a}
= inf{s > 1,_1(a): | X2(a) — X2_(a)| > a}

and
Zn(a) = sup ]XS_XTn~1(“)| "
T,-1(0) £ 5 < 7,(0)
It is clear that Z(a), Z»(a), . . . , are iid. and

Z(a)= sup |X,|= sup |X;(a)l.

s < te(a) S=1y(a)

Furthermore {X}(a)} is independent of {z,(a),n = 1,2, ... } and 7, (a) is exponen-
tially distributed with parameter G(a). As a consequence of these definitions, we
have

mRE) £ Z1@) + Z( @)+ + Zjpa + Yila) 4.2)
where

Y{a)= sup |X;—X

Trga S5 <1

Tiita) l )

Now we prove two lemmas which yield the necessary probability estimate.
Recall that (1.1) and symmetry of X, are assumed throughout.

Lemma 4.1 For any positive a, t, and u,
E exp (u sup | X! (a)i) < dexp(tu?a’e™K(a)) .
sEt
Proof. Using the Lévy’s Inequality, we have
P(sup [ XYa)| > x) <2P(|X!a)| > x) .
ss¢t
Also observe that

Eexp(u| X! (a)) £ Eexp(uX{(a)) + E exp(— uX/ (a))

<2 exp(t [ (e —1-— ux)v(dx)>

|xI<a

< 2exp(tu’a*e*K(a)) .
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Hence for u > 0,

Eexp(u sup |X§(a)[>

sEt

f ue"xP<sup | X Ha)| > x)dx
(]

<2 [ ue”P(|X!(@)| > x)dx
6

= 2E exp(u| X/ (a)})
< 4exp(tu*a’e™K(a). O
Lemima 4.2 For any positive a, t, u,
E exp(um(R(t))) £ 4 exp(tu*a’e* K (a) + 9tG(a)) .

Proof. Let a be fixed and suppressed to simplify the notation in the following. We
write, 5; < S,

XL —XL*= sup |X;—X1|.

SIS
Observe that by using Lemma 4.1,
Elexpu(Z, +Zr + .. .+ Zyy + YDNJO) =N, 1y =11, 12 =15, ... Ty = y]
= Eexp[u(| X} [* + X}, — XL 1* +. .+ X~ X ¥+ X! — X1,%)]
= Eexpu| X} |*)E expu| X}, — X1|*) ... Eexpu| X} — XL
< 4V lexp(tuta?e* K (a))
< 4e*N exp(tu’a*e*K(a)) .
Since J(t, a) is a Poisson process with parameter G(a),
Eexp(Z, +Zy+ ...+ Z;, + ¥,) £ dexp(tGa)(e® — 1) + wPa’e" K(a))
< 4exp(9tG(a) + tw?a*e™K(a)),
from which the assertion follows by (4.2). [I.
Theorem 4.1 Suppose that (1.1) holds and {X,} is symmetric. Then
. m(R(t
fim sup f‘lillt(/t)))llt =C
l;roof Denote k(t) =f~*(llz/t)llz. As we remarked earlier, it is enough to prove
that

R :
lim sup m(R(®) < co  as.

o k()

Let a = f~*(llt/t) and ua = r where r will be chosen later. Then we have by using
Lemma 4.2,

P(m(R()) =2 Ck()) < exp( — Cuallt)E exp(um{R(r)))
< exp(— Crllt + tr*e’ K (a) + 9tG(a))
<exp(— (Cr —r2e" — 9)ll)
< (logt)~?
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if we choose r and C so that Cr — r?¢" > 11. Hence Borel-Cantelli lemma implies
that for ¢, = 2",

m(R(1,))

<
K, <C as.

lim sup

n—> o

Note that by (2.3), for each n,

k(tn)/k(tn—l) § 21/50 .

Therefore the assertion follows since

i sup RO _ o mR(E) k()

t— 0 k(t) - n— 0 k(tn) k([n—l)'
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