
Probab. Theory Relat. Fields 93, 359-376 (1992) Probability 
T h e o r y  a~ Related Fields 

�9 Springer-Verlag 1992 

The law of the iterated logarithm for local time 
of a L6vy process 

In-Suk Wee* 
Department of Mathematics, Korea University, Seoul, Korea 

Received March 11, 1991; in revised form January 27, 1992 

Summary. Let  {Xt} be a one-d imens iona l  L6vy process  with local  t ime L(t, x) and  
L*(t) = s u p { L ( t , x ) : x ~ l R } .  U n d e r  an a s sumpt ion  which is more  general  than  
being a symmet r ic  s table  process  with index a > 1, we ob ta in  a L I L  for L*(t). Also 
with an add i t i ona l  cond i t ion  of symmetry ,  a L I L  for range is proved.  

1 Introduction 

Let {Xt},  t > 0 be a one-d imens iona l  LEvy process.  Its character is t ic  funct ion can 
be represented  as follows; 

E exp(iuXt) = exp( t0(u))  
where 

O(u) = ibu + f (e i"x - 1 - iux(1 + x 2 )  - t)v(dx). 

Here  v is a measure  on IR - {0} satisfying f ( 1  /, x2)v(dx) < oe. No te  that  we 
d o n ' t  include the Gauss i an  c o m p o n e n t  in O(u) since the behav ior  of B.M. is 
wel l -known.  F o r  x > 0, define 

G ( x ) =  f v (dy ) ,  
lyl>x 

K(x)  = x -2 f yZv(dy). 
ly[<x 

W e  assume tha t  
G(x) 

lira s u p ~  < 1 (1.1) 

as x tends bo th  to 0 and  ~ ,  and  

EX1 = 0. (1.2) 

F o r  a -s tab le  processes,  l im G(x) /K(x)  = (2 - c0/~ as x ~ 0 and x ~ o% so that  our  
a s s umpt ion  is more  general  than  being a symmetr ic  a-s table  process  with c~ > 1. We 
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also note that (1.1) implies that EIXI] < c~. Assumption (1.2) is necessary to 
guarantee recurrence of the process. In fact, under (1.1) and (1.2), Xt is point- 
recurrent since the following criteria for point-recurrence are satisfied; for any 
2 > 0 ,  

f R e - -  ~ c ~ ,  
_ ~  x - 4,(u) 

l u < l  

This work is mainly concerned with the asymptotic growth rate of local time of 
X. Under (1.1) and (1.2), Kesten and Bretagnolle's conditions [4, 103 for existence 
of a continuous version of L(t, x) as a function of t are satisfied: they are as follows; 

du < ov (1.3) 
1 

-~o R e l  - 0 ( u )  

f(1 A Ixl)v(dx)= oo . (1.4) 

Moreover, it is not hard to show that a jointly continuous version of L(t, x) exists 
by checking the results obtained by Barlow and Hawkes [2] and Barlow [1]. They 
improved the result of Getoor  and Kesten [5], and proved that under (1.3) and 
(1.4), 

q3(x) dx < oo (1.5) 
f x(log 1/X) i/2 Ixl <l/e 

is necessary and sufficient for the existence of jointly continuous version of local 
time where 

1 
(p2(y) = f(1 - cos uy)Re 1 - 0(u) du ,  

and 0 denotes the monotone rearrangement of q~. For  a comprehensive list of 
results related to local times, the reader may consult [1]. When a jointly continu- 
ous L(t, x) exists, it is clear that 

L(t, x) = lim ~ X(x_,,~+~)(X(s))ds. 
e-+ O 0 

This work is motivated by a result of Griffin [7] which described the asymptotic 
growth of the local time of a symmetric ~-stable process with ~ > I. To describe his 
results, let 

L*(t) = sup{L(t, x):x  ~ IR} 

R(t) = {X(s):O < s < t} 

and denote the Lebesgue measure of R(t) by m(R(t)). Griffin showed that for some 
c, Ce ( 0 ,  az), 

lim sup t-1/~(llt)-(1-1/~)m(R(t)) = c a.s. (1.6) 

liminft-(~-l/~)(llt) 1-1/~L*(t) = C a.s. (1.7) 
t --+ ~ o  
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where llt denotes log log t. In the case of Brownian Motion, the taw of iterated 
logarithm implies that the result of type of (1.6) holds even with sup~__<~IXs[ 
replacing m(R(t)), and the result of type of (1.7) was obtained by Kesten [9]. For  
symmetric e-stable processes, it is well-known that (1.6) is no more valid with 
sups __<t I Xs[ instead of m(R(O). We will now be concerned with the same question 
for the class of L6vy processes satisfying (1.1) and (1.2). For x > 0, define 

f (x )  = G(x) + K(x) . 

It is easy to see that f - 1 ( l / y )  is well-defined for y large s incef is  continuous and 
strictly decreasing once it reaches the support of v. In this work, we prove that 
assuming (1.1) and (1.2), for some C e (0, oo), 

l iminfL*( t ) f -~( l l t / t ) l l t / t  = C a.s. 
t --* oO 

Furthermore, under the extra condition that Xt is symmetric, it will be shown that 

m(R(t)) 
lira sup 1 - C a.s. 

t -~  f -  (llt/t)llt 

There are very important estimates used to derive the necessary probability 
estimates, which assert that for some constants c, C and any positive integer m, 

ct 
E(L(t, x)) < (t.8) 

= f - l ( 1 / t )  

E(L(t ,x)  - L ( t , x  + y))2m ~ (2m)! f_z (1 / t )  ] \IylK(IyI)J " 

The proof involves a method employed previously by Jain and Pruitt [8] for the 
case of an integer-valued random walk, and it turned out to be very useful in our 
situation. The analogous estimate to (1.9) for Brownian local time was obtained by 
Borodin [4] using the Ray's formula 1-12] which is not valid for general L6vy 
processes. 

In Sect. 2, we will briefly review the basic facts and obtain the important 
estimates on the local time. We will state and prove the main theorem about the 
local time in Sect. 3. In Sect. 4, the law of iterated logarithm for range will be 
presented. We will denote a finite positive constant by C. Its value may be different 
from line to line; whenever necessary, we will number the constants. 

2 Basic estimates 

In this section, we will assume that (1.1) and (1.2) hold. Also we will assume that 
v(IR) = ~ .  Otherwise Xt is a compound Poisson process with a drift term. We 
start with some useful facts about f(x). First not that x2f(x) is continuous and 
strictly increasing. Also it will be frequently used that from (1.1), there exist 
0 < eo < 1, ao, A0 such that for x ~ (0, ao] • [Ao, oo), G(x) < (1 - ~o)K(x), hence 
there exists 1 < 60 < 2 such that 

x~176 is strictly decreasing on (0, ao] u [Ao, oo), 

yl/Oof-l(y) is strictly increasing on (0,f(Ao)] w [f(ao), oo) 
(2.1) 



362 I.-S. Wee 

(See Lemma 4.2 of [13]). Using this, we observe that for M > 1, small and large 
values of x and y, 

M-2f(x) <=f(Mx) <= M-~~ (2.2) 

M-1/~~ < f- l(My) < M-1/2f-~(y) . (2.3) 

Also we note that for any x, G(x) < CK(x) for some C > 0, which implies that there 
exists 61 such that 0 < c51 < 60 and xOlf(x) is strictly decreasing for any x. There- 
fore we obtain the analogous inequalities to (2.2) and (2.3) with 61 replacing 60 
which hold for any x and y. We will use the fact that 

lim sup G(x)/K(x) < 1 
X---~ 0 

exp(tf(cos ux - 1)v(dx))du 

implies that {Xt} has density, since 

f lexp(t~(u))ldu = 2 ~f 
lul ~ 1/ao 1/ao 

<2f 
1/ao 

e p(, ,cos   

-<_2 7 e x p ( - C t  f u2x2v(dx))du 
1/ao lux I < 1 

= 2 ? e x p ( -  CtK(1/u))du 
1 / a o  

~o 

= 2 f exp( - CtK(v))v-2dv 
0 

ao  

< 2 f exp( - Ctv-~176 
0 

< OO 

where v~~ > 2-1ve~ > 2-aa~o~ for v < a0 is used. It is now convenient 
to introduce more notation though it will not be used so frequently as G and K. 
Define for x > 0, 

~(x) = f y(1 + y2)-lv(dy), 
tYl > x 

fl(x) = f y3(1 + yZ)-lv(dy). 
lyl < x 

For any a > 0, we may write Xt as the sum of two independent L6vy processes 
X~ (a), X~ (a) where 

Eexp(iuX~(a))=exp(itu(b-c~(a))+t f (exp(iux)-l-iux(l + xZ)-l)v(dx)), 
Ixl_-<a 

E exp(iuXtZ(a)) = exp(t f (exp(iux) - l)v(dx)) . 
Ixl > a 



The law of the iterated logarithm 363 

X{(a) is a compound Poisson process of parameter tG(a) with all jumps of size 
greater than a up to time t. That is, 

X2(a) = ~, (Xs - Xs-)Wr-,,,1~(X~ - X~_). 
s < t  

By differentiating, it is easy to see that 

EX~(a) = t(b + fl(a) - ~(a)) 

Var X~ (a) = ta2K(a) . 

Now we will derive two basic estimates (1.8) and (1.9) on the local time which 
are interesting themselves. The techniques used here heavily rely on the method 
used by Jain and Pruitt [8] in the case of an integer-valued random walk under 
analogous assumptions to ours. The argument starts from the well-known inver- 
sion formula to obtain the necessary probability estimate. First we prove a series of 
lemmas. 

Lemma 2.1 There exists C1 such that for any t, 

fle'O(")ldu < C l / f - l ( 1 / t )  . 

Proof. We start with the estimate on let~ For u > 0, we have 

le*(")l = exp( t  f (cos ux - 1)v(dx)) 

__< exp ( t  f ( c o s u x - 1 ) v ( d x ) )  
Ixl < l / u  

_-< exp( - CtK(1/u)) 

< exp( - Ctf(1/u)).  (2.4) 

Let at = f - 1  (i/t), and using (2.4), observe that 

fle~O~"~ldu < 2/a, + 2 ~ exp( - Ctf(1/u))du 
I/at 

<= 2/a~ + 2 ? exp( -- Ctua~a~f(at))du 
1~at 

< 2/at + 2 ? e x p ( -  Cua'aa~)du 
1/at 

< 2/a~ + 2 7 exp( - Cva')dv/a~ 
0 

= Ci/at .  [] 

Lemma 2.2 There exists C2 such that for any x, ~ > O, t > O, 

P(IXt - xl < e) <__ C2g/ f - ' (1 / t )  . 



364 I.-S. Wee 

Proof. 
inversion formula,  

l f p ( I x ~ -  ( x -  Y)I 2) dy 
1 COS r y  < 

= ~ry2 

= - - i  f e x p ( - - i u x + t t ) ( u  1-- du .  
2g l ul < r 

Note  that  for 0 < ~ < 2, 

~f 1 - cos ry 
e ( I x ~  - ( x  - y ) l  < ,~) -nry~ dy 

1 1 - cos z 
> ~ P(IX, -  xl < X -  o) f - -  dz 

Izl <_- r~/ 7~Z2 

C 
--> 7 P ( j X ,  - xl _-< ,~ - ~) 

if we let rq = 1. Using the inversion formula  (2.5) with L e m m a  2.1, we have 

P([Xt -- x] <= 2 -- tl) < C2/ f -~(1/ t )  . 

N o w  the assert ion follows easily if we let t / =  a, 2 = 2e. [] 

L e m m a  2 . 3  

Essentially, we follow the p roof  of Theo rem 3.6 of [6]. We start  with the 

There exists C3 such that for any x, ~ > 0 and sufficiently large t, 

) P ( I X s -  x] < e)ds < C 3 e t / f - l ( ! / t ) ,  
0 

(2.5) 

hence 
EL(t, x) < C a t / f - l ( 1 / t ) .  

Proof. Using L e m m a  2.2, we write 

P ( I X s -  xl < e)ds < f C2e , 
o o f - ~ / s )  as .  

Using (2.1), observe that  for any Ao < f - l ( 1 / t ) ,  

1/f(ao) t 

f C2e/f-l(1/s)ds + f C2e/f-l(1/s)ds 
0 1/f(Ao) 

t "  o+ 1/,~o i C2~ ~/f(ao)  i/~Ods + ~2o~ -1/~od s 
f S -  S 

<-- aof(ao) 1/~~ o f - l ( 1~  t) 1/f(Ao) 

<= Ce/(aof(ao)) + Ce t / f -  1 (1 /0 .  

This completes  the p roof  since obviously  

1 / f  (Ao) C2 ~ f ~ ds < Ce 
1/f(ao) f -  ( l / s )  

and  t / f - l ( 1 / t ) ~ o o  as t ~ o o  []. 
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L e m m a  2.4 There exists C4 such that for any x, y and ~ > 0, 

f l P ( I X , -  xl < e ) -  P ( I X . -  (x + y)[ < e)lds < 
C4e 

o = l y [ K ( l y l )  

Proof The p roo f  runs similarly to L e m m a  7 of [8]. [] 

L e m m a  2.5 There exists C5 such that for any positive integer m, and t large enough, 

E(L(t, x) - L(t, x + y))2m __< (2m)! (Cst / f -~(1/ t ))m(lyiK(ly[))-m.  

Proof Fix x and  y, and let 

I~,~ = (z - e, z + s) ,  

It  suffices to show tha t  

E o O,(Xs)ds < (2m)! \ f _ t ( 1 / t )  / ~lyIK~(lyl) " 

Recall f rom Sect. 2 that  Xt has density. Fu r the rmore  it suffices to consider the case 
when Xt has cont inuous  density. Otherwise,  we choose a symmetr ic  stable process 
{ Yt} of index e, independent  of {Xt} such that  

(2 - c~)/e < 1 - lim sup G(x)/K(x), 

as x tends to 0 and oo. Fo r  5 > 0, set Za, t = Xt + Yat. Then the L6vy measure  of 
Za, t is given by 

#a(dx) = v(dx) + 5 lx l - l -~dx  , 

which implies tha t  as x --+ 0 and x --* co,  

lim sup G~o(x)/K~,,(x ) < 1 
and 

fi,(x) = f ( x )  + 4 5 e -  1(2 - c0-*x  -~ , 

where G~,, Ke0 a n d s  denote  the corresponding functions with #a replacing v in the 
definition of G, K andf respec t ive ly .  Since Za, t has cont inuous  density, the general 
case follows easily by letting 5 -+ 0 f rom the assert ion for Za, ,. Deno te  the density of 
Xt by p(t, x) and note  that  L e m m a  2.3 and 2.4 imply that  for t large, 

p(s, x)ds < C 3 t / f  - l ( 1 / t )  
0 

f [p(s, x) -- p(s, x + y)[ds =< C4/(lylg(ly]) ) . (2.6) 
0 

Write, for N > 2m, 

E {  O,(X~)ds = E(S~ + Sz + . . . . .  + S~v) 2~ 
0 

= Z e(s ,sk . . . . .  

{2 
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where 
Jk = [(k - 1)t/N, kt/N), 

& = f tb~(Xs)ds, 
Jk 

Q = { (h , i z  . . . . . . .  ,iN); 0 < i l , i 2 , . .  �9 iN <--_ 2m, i~ + i2 + ' �9 �9 + iN = 2m}.  

Let 
Q l = { ( i l , i 2 , . . . , i N )  s Q ; i k = 0 o r l f o r a l l k }  

Q2 = Q c~ Q]  . 

Calculating the cardinal number  of Q2, we observe that  

Y. E l S e ' S ) . . .  S~,~l < - -  
(~ = 2m 2m 

which can be made  sufficiently small if N is sufficiently large. Therefore, 

E ~ (X~)ds  "~ Z E(S~' Si  2" . .  S~ ~) 
o Q~ 

=(2,,)! Y~ E ( s ~ s , ~ . . . s ~ )  
T2m(1, N) 

where Tk(i,j) = {(ii, i2 . . . . .  ik):i < ii < i2 < "'" ik <=j} and ~ denotes that  the 
ratio tends to i as N---> oo. N o w  we show that  by induct ion on m, 

E ( S i l X i 2 " "  Si2m) < (  4C38  t ~ m (  C4,~ )m ( 2 . 7 )  

T2m(1,N) = \f-l(1/t)/l \IyIK(Iyl),/ " 

It  is easy to see that  (2.7) holds for m = t. We write 

2 
T2m ( 1, N) 

E(SqSi2 . . .  Si2m) = ~ f f  E{E(4~(X,)IX~)~(Xv) 

x E x ~ (  ~ S ' i~S~'"  S'~2m)}dudv (2.8) 
T2m - 2(i2 + 1, N) 

where S~, = f s k~(Xs  - X~)ds. Recall that  Xt has density p(t, x) and note that for 
p(v, w) 4= O, 

e ( ~ ( x . ) l x o  = w) 

= p(v, w ) -  p(u, z)p(v u, w - z )dz  f p(u, z)p(v u, w z )dz  
lx,~ lx+~,~ 

l { f  _ _ = p(v, w ) -  (p(u, z) - p(u, z + y))p(v  u, w z )dz  

+ f (p(v - u, w + y - z) - p(v - u, w - z))p(u, z ) d z ~ .  (2.9) 
Ix+y,~ J 

N o w  we substitute (2.9) into (2.8) and take the absolute value of (2.8). Also applying 
the induct ion hypothesis  on 

T2m - 2(i2 + 1, N) 
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and using (2.6), we obtain 

where 

2 E(SiISi2"'" Si2m) 
T2m(1 ,N)  

< (  4C3gt "~m-:( C4g "~m-1 

= \ f - l ( 1 / t ) J  \ I y l -~y l ) , ]  

1 _--< i I < i 2 N N J i :  x J~2 

+ f f (  f f  R ( v - - u , v : w - - z , w ) z t  ..... (z)dudv)dzdw} 
Jq x J~2 

< (  4C3et ~m( C4e ~'~ 

= \ f - : ( 1 / t ) J  \ Iy lK(IYl)J  ' 

R(u, v: z, w) = ]p(u, z) - p(u, z + y)]p(v - u, w - z)lcI)~(w)l . 

3 LIL for local time 

In this section, under the assumptions (1.1) and (1.2), we will prove that 

lira inf L*(t)f-X(ll t / t) l l t / t  > 0 a.s. (3.1) 
t--* O0 

lira inf L*( t ) f -  :(llt/t)Ut/t < oo a.s. (3.2) 
t o o 0  

Throughout  this section, we will assume that (1.1) and (1.2) hold. The necessary 
probability estimate to prove (3.1) is relatively easier to obtain. First we quote some 
results from [13]. Note that though the definition of f i n  this work is different from 
that in [133, it is not hard to obtain the following versions under our assumptions 
(1.1) and (1.2). Denote A~ = sups__<~tXsl. 

Lemma 3.1 (Theorem 4.6(2) of [133) There exists 0 < 01 < 1 such that for t suffi- 
ciently large 

P(Xt  > O) > 01, P(Xr < O) > 0: . 

Lemma 3.2 (Lemma 3.2(2) of [13]) There exist C6, C7 such that for sufficiently 
large a, and t, 

P(At < a) > C6exp( - C7tf(a)) . 

Lemma 3.3 (Lemma 2.4 of [13]) (1) For tf(a) < e(6o - 1)2~~ 

P(A~ < a) > Cs(e)exp( - 2-~~ , 

where C8(e) = 1 - 2(60 - 1)e/(6o(1 - e)2). 
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(2) For tf(a) < e(6o - 1)/6o, 

P(A~ > a) < (1 - e)-2t f (a) .  

L e m m a  3.4 For (~o < (60 - 1)/(26o) /x 1 and t large, 

P(L*( t ) f -~ ( t / t ) / t  <= () <= 4( ~~ . 

Proof. Using the fact that  t < L*(t)At and Lemma 3.3(2), we observe that  for 
t large 

P(L*( t ) f -~(1/ t ) / t  < () < P(At > (-~ f -~(1/ t ) )  

< 4(~o 

since 

Theorem 3.1 

t f ( ~ - l f - ~  (l / t))  =< ~0o. [] 

l im in fL*( t ) f -1 ( l l t / t ) l l t / t  > 0 a.s. 
t - - + ~  

Proof. Denote  h(t) = t / f - l ( 1 / t )  and choose ( < 1 so that  

~6o < (60 - 1)/(26o)/x (2e) -2 . 

By L e m m a  3.4, we obtain for t large, 

P(L*(t) <= 2-l(h(t / l l t ))  <= {P(L*(t/llt) <= ~h(t/llt)} nt/2 

= < (2ff~o/2) 11t 

= e - r  ( 3 . 3 )  

where e -r  = 2( ~~ and r > 1. N o w  setting tk = 2 k, it suffices to show that  

P{L*(tk) <= 4-1~h(tk+l/lltk+a)} 

converges. Using that  h(tk+ 1/lltk+ 1)/h(tk/lltk) __--< 2 for k sufficiently large, and (3.3), 
we have 

P{L*(tk) < 4-1(h(tk+l/lltk+l)} < exp( -- ~lltk), 

whose sum converges. [] 

Next  we prove the second half of the main result whose p roof  is much more  
involved. We need a lemma to estimate the tail of  the distr ibution of L*(t) mainly 
based on the results in Sect. 2. 

L e m m a  3.5 For ~/> 1, M > (46oq/(6o - -  1)) 1/2 V 1, there exist C9, mo such thatfor 
any integer m >mo and t large 

P(L*( t l t ) f -  ~(1/t)/t >= 2M) 

<= C3tll/2/M + (2m)! C9(m)(tll/2/M)~ + 1 0 / / 9 M  2 , 

where C9(m) depends only on m. 
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Proof. For given t />  1, M > (45otff(5o - 1)) 1/2 v 1, let h(t) = t/f-l(1/t),  and 
N =f-l(1/MZt) .  Then we have 

P(L*(tlt) > 2Mh(t)) <= P (  sup L(~t,x) > 2Mh(t)) + P(A~t > N) 
\ IM<N / 

< P (  sup IL(~t ,x ) -  L0/t, 0)1 > Mh(t)) 
\ l x l < N  

+ P(L(I1t, O) > Mh(t)) + 16q/gM 2 . (3.4) 

where Lemma 3.3(2) is used with e = 1/4. It is easier to handle the second term in 
(3.4) by using Lemma 2.3 which implies that 

EL(rlt, O) C3/71/2 
P(L(IIt, O) = > Mh(t)) = < - -  = < - -  (3.5) 

Mh(t) M 

sincef-l(1/t) / f- l(1/t / t  ) < ~/-1/2. To obtain the upper bound for the first term in 
(3.4), let n be the integer such that 2"-1 < N < 2" and 0 < 7 < 1 where 7 will be 
chosen later. Observe that 

P (  sup ,L(tTt, x ) -  L(17t, O)t > Mh(t)) 
Ixl<N 

< P (  sup ,L(,It, x ) -L( t l t ,  0)[> Mh(t)) 
{x[ N2" 

< ~ P tL(qt, i2 k ) - L ( t l t , ( i -  1 )2k) t>~-y  - ( - 7 ) h ( t )  
k=0 i= 

~ 2-+k ( i )  ( i - 1 ) M  k 1 ) 
+ k= ~ i=~ P L(rlt, ~ -- L tlt, - ~ -  > ~ y ( - 7 ) h ( t )  . (3.6) 

F i x 2 > 0 s u c h t h a t  1 + 2 < S o a n d l e t m o = [ ( 6 o - l - 2 )  t ] +  1,3, 2 = 2  -4 and 
m > mo where [x] denotes the largest integer not exceeding x. We deal with the first 
and second term in (3.6) separately. To bound the first sum in (3.6), we let 
A1 = [logzAo] + 1, and note that for k > A1, 

K(2 k) >f(zk)/2 _--> (2"-k)a~ ~ C(2"-k)a~ (3.7) 

and for 0 < k < At, 

K(2 k) > Cf(2 k) > C2-2kf(1). (3.8) 

Now using the Markov Inequality, Lemma 2.5, (3.7) and (3,8), we have an upper 
bound for the first sum in (3.6), 

2"-k(2m)! 
= \2kK(U)f-*(1/~lt)J \M7~-k(1 -- ?)h(ti / k=0 

< (2m)! {- 4Cs</z- ~m(f-*(1/t)/t)m2"t'+Zm) ~, 2k(-:~m-m-1)K(ek) -m 
= \ V 2 (  1 - -  7)2// " , ~ = o  
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< (2m)! (. g l / =  .~2),2,(i+am)(f_i(1/t)),, 
= M ( 1 - 7 )  / 

X ~M2"2 -na~ Z 2k(a~ q- (l / t)" ~ 2g(m-;t'-1) 1 
( Al<k<-_n O<k<A1 ) 

I / CIal]2 \ -  
<(2m)! t M ~ ( ~ 7 ) 2  ) (f-i(i/t))'{M2"2-"" + 2"(i+;"'(1/t) .}  

( c,,,, 
_-< (2m)! \ M 2 - ~ - y ) 2  ) {M" + M2(l+a")/a~ "} 

< (2m)! \Mg 7))2 2 

= (2m)! C9(m)(rli/2/M)" (3.9) 

since f -  ~ (y)yl/ao ~ for y small implies that 

f -  i(1/t)i + Zm+m(1/t)m = ( f -  i(1/t)(1/t)i/ao)i + a.+. t -.+(1 +2.+.)/6o 

ct-m+(1 +2.+.)/6o 

which converges to 0 as t ~ oo since m > too. For the second term in (3.6), we let 
al = [logz 1/ao] + 1, and note that for k > a~, 

K(2-*) > f(2-k)/2 > c2(k-a')6~ -"') (3.10) 

and for l _ _ < k < a l ,  

K(2 -k) > C f(2 -k) > C2ka'f(1). (3.11) 

Again using the Markov Inequality, Lemma 2.5, (3.10) and (3.11), we have an upper 
bound for the second term in (3.6), 

Note that 

2"+k(2m)! \2-kK(2-k) f -~(1/ t l t )  MTk(1 -- ?)h(0 k=l 
4C5t/1/2 '~m 

= (2m)! \M--7-~7)2. ) ( f - l (1 / t ) / t ) '2"  

x ~, 2*+'+z')aK(2-k) -m . 
k=l 

• (21§247 -"__< C m ~ (21+~+~m-<~) k 
k = l  l<k<at 

+ C ~ ~ (21+~+~-~176 k 
k>a~ 
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which converges by the choice of  2 and too. Therefore  the second sum in (3.6) is 
bounded  above  by 

(2m)! (Ctll/Z M -  Z)m2"(f- l(1/t)/t) " 

(2m)! (CtlX/ZM- 2)" f -  1 (1/M2 t ) ( f -  l(1/t)/t)" 

< (2m)! (Crla/ZM-2)mM2/a~ l(1/t)(1/t)l/a~ 

x (1/t) "-("+ 1)/6o (3.12) 

which converges to 0 as t--+ oo. Combin ing  (3.4), (3.5), (3.9) and (3.12) finish the 
proof.  [] 

Remark. It  was pointed  out by the referee that  L e m m a  3.4 and 3.5 imply 
that  { L * ( t ) f - l ( 1 / t ) / t , t >  1} is stochastically compact ,  i.e. every sequence 
{L*(t~)f-l(1/tn)/ t ,}  with t~ ~ o o  has a subsequence which converges to a non-  
degenerate  law. I t  would be interesting to know what  the subsequential  limit laws 
are. 

Final ly we need following l emma  to obta in  the necessary probabi l i ty  estimate. 

L e m m a  3.6 There exist 0 < 02 < 1, 0 < I01 < 1, Pa > 1, such that for t sufficiently 
large, 

P ( p l f - l ( 1 / t )  ~ X, < p z f - l ( 1 / t ) )  > 02. 

Proof We will determine Pl ,  and P2 later. Let a = f - l ( 1 / t ) .  L e m m a  3.3(1) implies 
that  for P2 large 

P(IXd < pza) > C(pz)exp(  - 2-e~ f(paa)) 

> C ( p z ) e x p ( -  1/(2O~176 (3.13) 

where C(pz) ~ 1 as P2 ~ oo. Also L e m m a  2.2 implies that  

P(IX, I < pla) <= C2Pl 

< 0, /2,  (3.14) 

by choosing pl  small. Therefore  using L e m m a  3.1, (3.13), and (3.14), we obta in  

P(p la  <-_ Xt < p2a) > C(p2)exp(  - 1/(2a~176176 + 01/2 - 1 

= 02 

which is posit ive if we choose P2 large enough. [] 

N o w  we are ready to complete  the main  result. 

Theorem 3.2 

lim inf L*(t ) f - i ( l l t / t ) l l t / t  < oo a.s. 
t ~ o O  

Proof Let p(t) = ( f - l ( l l t / t ) l l t / t ) - l ,  and 6 = exp(kX), 2 > 1. We will use 

lim inf L*(t) < lira sup L*(6) L(tk+l, x) -- L(tk, x) t~o p(t) = k ~  ~ + l im in f  sup (3.15) 
k~oo x p(tk+l)  
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To  prove that  the lim sup in (3.15) is finite, it suffices to show that  ~P(L*(tk) > 
Cp(tk+l)) converges. Let  t / >  1 be fixed and r = [lltk/r/] + 1. To  apply Lemma 3.5, 
fix m > mo and observe that  

p(tg+ 1)/p(tk) >= (tk+ 1/tk) l -  i/go . (3.16) 

By using Lemma 3.5, we have 

P(L* (tk) > Cp(tk+ 1)) <= rP(L* (rltk/lltk) >= Cp(tk+ 1)/r) 

<= Cr2tll/2p(tk)/p(tk+ i) 

Ct] - 3 /2( l l tk )2( tk / tk+ 1)  1 - 1 /go  (3.17) 

since (3.16) implies that  in this setting, the first term of the upper  bound  obtained in 
Lemma 3.5 dominates  the remaining terms. It is easy to see that (3.17) is summable 
for 2 > 1. It remains to prove that  

diverges. To  obtain the necessary probabil i ty estimate, let 7 > 1, s = ?t/llt, 
a = f - l ( 1 / s ) , p  = P l  and A =2pEp;  1 - 2  where Pl ,  and PE are the constants  
obtained in Lemma 3.6 and Y will be chosen later. Fol lowing Griffin's method  [7], 
set 

Ek = { sup (L(ks, x) -- L((k - 1)s, x)) _-< Mp(t) ,  

sup [X,+(k-1)s - X(k-1)sl _--< pa, kpa < Xks ~ (A + k)pa~ 
O<_u<_s J 

and observe that  for r = [llt/7 ] + 1, 

E k c  {L*(t) < AMp(t )} .  
k = l  

Denote  by ~ t  the smallest cr-field generated by {Xs, s =< t}, and note that 

P Ekl~ '~ t r -1)s  = I ~  "-~CEkP(Erl~(r-1)s)  
k = l  k = l  

= I~ :T~kP s p (L(rs, x) - L((r  - 1)s, x)) =< Mp(t), 
k = l  

sup I X , + ( r - 1 ) s -  X(r-1)s[ _-< pat  
O<_u<_s J 

xP(rpa <= X~ < (A + r)patX(~-l)A a.s. 

Using Lem ma  3.5 and Lemma  3.2 we have for fixed m > m o and M large enough,  

P(sup(L(rs ,  - L((r--  1)s,x))_< Mp(t), sup IX,+(~- I )~-  X(r-1)~l =< pa]/ 
O<u<s 

> C6 exp( -- C7/p z) - 2C3yl/e/M -- (2m)! C9(m)(271/e/M)m - 647/(9M 2) 

= 0 3 > 0 .  
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L e m m a  3.6 implies that  for x e [(r - 1)pa, (r - 1 + A/2)pa], 

P(rpa < Xrs < (A + r)palX(r_ l)~ = x) 

>= P(pa <= X~s - X(r-1)~ <= (1 + A/2)pa) 

82 . 

Similarly for x ~ [(r - 1 + A/2)pa, (A + r - 1 ) p a l ,  

P(rpa < Xrs < (A + r)palX(~ 1 , = x ) > 8 2 .  

By taking the i terated condi t ional  expectat ions,  we have 

P(L*(t) <= AMp(t)) >= (8283)" 

> (log t) -2r 

where e -r = 8283. Therefore  

P ( s u p ( L ( t k + l , x ) - -  L(tk, X)) < AMp(tk+l))  > (k + 1) -2~/v 

whose sum diverges if 22~ < 7. [] 

4 LIL for range 

In this section, assuming that  Xt is symmetric,  in addit ion to (1.1), we will prove  
tha t  

m(R(t)) 
lira sup = C a.s. (4.1) 

~_~ f-~(l l t / t ) l l t  

Since (3.2) implies that  

it suffices to prove  that  

m(R(t)) 
l i m s u p  ~ > 0 a.s. 

, ~  f -  (llt/t)llt 

m(R(t)) 
l i m s u p  < ~ a.s. 

~ o ~  f -  l(llt/t)llt 

We will modify  Griffin's app roach  [-71 to obta in  the required probabi l i ty  estimates.  
M a n y  calculat ion there are easier since a symmetr ic  stable process has the scaling 
property .  In  fact, we have found that  if we use the similar technique to [7], (4.1) 
holds under  extra  condi t ion 

lira inf G(x)/K(x) > O, 

without  assuming the symmet ry  of {X,}. But for symmetr ic  {Xt}, we can get the 
upper  b o u n d  for Laplace  t ransform of m(R(t)). It  is interesting to compare  the 
upper  bounds  for Laplace t ransform of SUpsz~lX~(a)[ and m(R(t)) obta ined  in 
L e m m a  4.1 and 4.2 respectively. 
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Define J(t, a) to be the number  of jumps of size greater than a up to time t. Tha t  
is, recalling the definitions of X 1 and X a from Sect. 2, for a > 0 

J(t, a) = # {s = t: IX, - X s_ I > a]} 

= # { s  < t ' lXf f (a)-Xf f_(a) l  > a} . 

Define for a > 0, 

and 

*o(a) = 0 

r,(a) = inf{s > ~ . - l ( a ) :  IXs(a) - X~_(a)l > a} 

= inf{s > "c,_ 1 (a):[ X2(a) - XZs _ (a)l > a} 

Z,(a) = sup IX s - X . . . .  (,)[ . 
z . _ ~ ( a )  < s < ~ . (a )  

It is clear that  Zl(a), Z2(a) . . . .  , are i.i.d, and 

Zl(a) = sup IXsl = sup [Xl (a ) [ .  
s < *,(a) s < "q(a) 

Fur the rmore  {X} (a)} is independent  of {z,(a), n = 1, 2 , . . .  } and T1 (a)is exponen- 
tially distributed with parameter  G(a). As a consequence of these definitions, we 
have 

m(R(t)) < Zl(a) + Z2(a) + ' ' "  + Zs(,.~) + Y,(a) (4.2) 

where 

Yt(a)= sup [ X s - X  ...... ,l" 
"Cj(t,a ) <= S < t 

Now we prove two lemmas which yield the necessary probabil i ty estimate. 
Recall that  (1.1) and symmetry of Xe are assumed throughout .  

L e m m a  4.1 For any positive a, t, and u, 

E e x p ( u  SUPsst IXI~ (a)l) <4exp(tu2aze"aK(a))" 

Proof Using the L6vy's Inequality, we have 

P ( s u p  IX~i(a)l > x~ <= 2P(IX~t(a)l > x).  
\ s < t  / 

Also observe that  

g exp(ulXlt(a)[) < E exp(uXit(a)) + E e x p ( -  uXit(a)) 

< 2 e x p ( t  f ( e " ' - l - u x ) v ( d x ) )  
Ixl =< a 

< 2 exp(tu2a2e"aK(a)) . 
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Proof. 
that  

Hence for u > 0, 

E e x p ( u s u p l X ~ ( a ) ' ) =  f u e " X P ( s n p l X ~ ( a ) l > x ) d x  
\ s < t  0 s < t  

<= 2 f ue"XP([Xr > x)dx  
0 

= 2E exp(u]X~(a)l) 

<= 4 exp(tuaa2e"~ [] 

L e m m a  4.2 For any positive a, t, u, 

E exp(um(R(t))) <= 4 exp(tu2a2e"aK(a) + 9tG(a)) . 

Proof. Let a be fixed and suppressed to simplify the nota t ion in the following. We 
write, sl < s2, 

[x~12-x~,l*= sup tx~-x~,l. 
st < t <=s z  

Observe that  by using L e m m a  4.1, 

E[exp(u(Z1 + Z2 + . . .  + Zs(o + Yt))lJ(t) = N, zl = t1, ~2 = t2 . . . .  ~s = tN] 

= Eexp[u(IXr  + 1X,12 -Xt~, l  * + . . .  + IXl~ - Xr + I x r  - - X ~ I * ) ]  

= E exp(ulX~,l*)g exp(ulX~2 -- X ~ , [ * ) . . .  E exp(ulX~ - Xr 

< 4N+ 1 exp(tu2a2e,,K(a)) 

= 4e 2N exp (tu2a2e"aK(a)) . 

Since J(t,  a) is a Poisson process with parameter  G(a), 

E exp(u(Zz + Z2 + .  �9 �9 + Zs(t) + Y,) < 4 exp(tG(a)(e 2 -- 1) + tuZaZe""K(a)) 

< 4 exp(9tG(a) + tu2a2eUaK(a)), 

f rom which the assertion follows by (4.2). ES. 

Theorem 4.1 Suppose that (1.1) holds and {Xt} is symmetric. Then 

m(R(t)) 
lira sup - C a.s. 

,-.~ f - l ( l l t / t ) l l t  

Denote  k ( t )= f -~ ( l l t / t ) l l t .  As we remarked earlier, it is enough to prove 

m(R(t)) 
l i m s u p - - <  oo a.s. 

t-~ ~o k ( t )  

Let a = f - l ( l l t / t )  and ua = r where r will be chosen later. Then we have by using 
Lemma 4.2, 

P(m(R(t))  >= Ck(t)) <= exp( - Cuallt)E exp(um(R(t))) 

=< exp( - Crllt + traerK(a) + 9tG(a)) 

=< exp( - (Cr - r2e ~ - 9)llt) 

< (tog t)-2 
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if we choose r and  C so that  Cr - rZe r > 11. Hence Borel-Cantell i  1emma implies 
that  for t, = 2", 

m(R(t . ) )  
l i m s u p - -  =<C a.s. 

,._,~ K( t . )  

Note  that  by (2.3), for each n, 

k( t . ) /k( tn_l)  <= 2 l/a~ . 

Therefore the assert ion follows since 

m(R(t))  m(R(tn)) k(t.) 
lira sup k(t) =< l i m s u p  k(tn) k( t ._  l) [] 
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