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Summary. Let a, b be C2(R1)-functions with bounded derivatives of first and 
second order. We study stochastic differential equations 

d X , =  a(Xt) dWt + b(Xt)dt  , O <_ t <_ 1, 

whose initial value Xo is a Fr6chet differentiable random variable which may 
depend on the whole path of the driving Brownian motion (Wt). This anticipation 
requires to pass from the It6-integral to the Skorohod-integral. We show that the 
equation has a unique local solution {X~(co), 0 _< t _< to(CO)}, for sufficiently small 
to(CO) > 0, and we provide conditions for the existence of a global solution 
{Xt(co), 0 -< t _< 1}. 
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1 Introduction 

Let (~, ~,~, P) denote the Wiener space, (2 = Co([0, 1]), and (Ws) be the coordinate 
process. The theory of the stochastic integration of processes which are not 
necessarily adapted to (Ws) has been recently developed by several authors. In 
particular, Nualart  and Pardoux [5] have developed an extended stochastic 
calculus for both the Skorohod and the generalized Stratonovich integrals. This 
theory allows to study stochastic differential equations (SDE) where the solution is 
a non-adapted process. We refer to [9] for a survey of different types of anticipating 
SDEs. A natural class of anticipating SDEs arises when we impose a random initial 
value of the solution depending on the whole path of (Ws). Equations of this type 
have been considered by Ocone and Pardoux [-7, 8]. That means, one can consider 
SDEs of the form 

(1.1) dXs = a(X , )odWs + b(Xs)ds ,  s e [0, 1] , 

Xo = G  , 
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where So a ( X r ) o d W ,  denotes the Stratonovich integral, a and b a r e  C 2 ( R 1 )  - 
functions with bounded derivatives of first and second orders, and G is a random 
variable over Q. The special properties of the Stratonovich integral play a basic role 
in proving the existence and uniqueness of a solution of this equation. 

The purpose of this paper is to study the SDE 

(1.2) dX~ = a(X~)dWs + b (Xs )ds ,  s ~ [0, t ] ,  

X o = G ,  

where the stochastic integral So a ( X , ) d W r  is defined in the Skorohod sense. For  the 
functions a ( x ) =  a.  x and b ( x ) =  ft. x such an equation has been considered by 
Shiota in [10]. Under rather weak assumptions, which allow a and fl to depend on 
the whole path of (W~), this equation has been studied by Buckdahn in [1], using 
the Girsanov transformation. Here we will employ this in order to establish the 
uniqueness of a solution. 

Setting G = W~ and looking for a solution of the form X ,  = X,(x)/x  = w~ one can 
rewrite (1.2) in the following form 

dX~(x) + a'(X~(x))OxXs(x)ds = a(X~(x))odW~ + b (X~(x ) )ds ,  s ~ [0, t] , 

X o ( x )  = x ,  

which shows that in distinction to (1.1) one cannot expect the existence of a solu- 
tion (Xs) of (1.2) on the whole ~2 and for t = 1 in general. We show that for any 
bounded ball A in ~ and some t = tA > 0 (depending on A) there is a unique 
solution (X~) on A. 

This requires considering the Skorohod integral on balls A and its domain in 
LI([0,  t] x A). 

The paper is organized as follows: In Sect. 2 we introduce some elements of 
anticipating stochastic calculus, which will be needed later. In Sect. 3 we define the 
concept of a solution of a Skorohod SDE, give a short review on some results on 
linear SDEs and apply this for showing the uniqueness of a solution of (1.2). 
Finally, in Sect. 4 we present the main result concerning the existence of a solution 
X of (1.2) on [0, tA] • A, for any bounded ball A m ~ and some tA > 0, and we 
provide conditions on the initial value G under which there is a solution X defined 
on [0, 1] x f2. At the end of Sect. 4 we study additional conditions on G under 
which X~ has a density, for all s e (0, 1). 

2 Basic notions. Skorohod integral 

We will use (~2, ~ ,  P) to denote the Wiener space, i.e., ~ = Co([0, 1]) is the space of 
the continuous functions on [0, 1] with initial value 0 and is equipped with the 
supremum norm H" II, ~- is the Borel o--field over s and P is the standard Wiener 
measure on (~2, o~). Let (Ws) denote the coordinate process on O. 

A random variable F : Q --* R 1 is said to be Fr6chet differentiable if it belongs 
to L*(~?)= ~p>ILP(O) and if there is a n  L 2 ( [ 0 ,  1])-valued random variable 
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(DsF) ~ L*((2, L2([0, 1])) = 0 v > l  LP(Q' L2([0' 1])) such that, for any co ~ (2, 

F co + hsds = f(co) + ~ Dsf(co)hsds + o(IhlL2(to, ll>), 
0 

as IhLL2(to ' 11) --* O, h ~ L2([O, 1]) �9 

In particular,  also all smooth  Wiener functionals 

F(co) =f(cotl ,  . . . .  cot,), co e f2,  

w i t h f e C F ( R " ) ,  0 < t l < ' " < t , < l ,  n = 1 , 2 , 3 , . . .  

belong to these Fr6chet  differentiable r andom variables. The set of all smooth  
Wiener  functionals will be denoted by 5 P. 

We introduce now some s tandard spaces. The Sobolev space ID 1, v, p > 1, is the 
complet ion of the set of all Fr6chet  differentiable r andom variables under  the norm 

and D also denotes the extension of the Fr6chet derivative to ID 1' P. Then  we set 
IDI'* = ~ p > l  IDI'P- The set 50 is dense in (ID I'p, It" II 1,v), p > 1, and in ID 1'*, too. 

In generalization of the Fr~chet differentiability, a r andom variable F : f2 -~ R 1 
is called Malliavin differentiabte if there exists an LZ([O, 1])-valued random vari- 
able (D,F) such that, for any h e L2([0, 1]) and 6 > 0, 

ljmo P{co" ~ ( F ( c o + e ? h s d s ) - F ( c o ) ) - i D s F ( c o ) h + d s  > 6 } = 0 .  

The set of the Malliavin differentiable r andom variables will be denoted by ]D 1, o 
Clearly, 

ID 1'* c ID L P C I D  1'~ p >  1 .  

Lemma  2.1 For any h ~ L2([0, 1]) and Ohco = co + ~0 hsds, co ~ (2, the spaces ID L~ 
and ID 1,. are invariant relative to the transformation Oh, i.e. for any F ~ ID 1, o (ID 1, . )  
also F(Oh) belongs to IDI'~ and 

D~[V(Oh)] = (DsF)(Oh), a.e. 

Lemma  2.2 (cf. [63) The random variables M = maxr Wt, m = rain+ Wt and 
I tWIl=max~]W~l are in ID 1'*, and with the notations z l = m i n { t e [ 0 , 1 ] "  
W~ = M }  and z2 = min {t ~ [0, 1] : Wt = m} it holds 

D~M = IEo,+~l(s), D~m = IEo,~2l(s ) , and 

Ds[l[ WII-1 = I { M  > - m}IEo,~(s ) -  I { M  < - m}lio,+2j(s) , a.e. 

In particular, (D~M), (D~m) and (D~[ II WI] ] )  are bounded by 1. 

By virtue of the Lemmata  2.1 and 2.2 the r andom variable II W(Oh)11 belongs to 
ID 1'* for any h ~ L2([0,  1]), and the derivative is bounded  by 1. 

Finally, we introduce the space ID 1. o~ of all F ~ L ~o (f2) c~ ID 1,. with (D~F) 
L~~ 1-1 x f2), and for any open ball A = B~(h) with radius r > 0 a round  ~o h~ds, 
h ~ L2([0, 13), the space ID 1' +(A) of all F ~ ID 1' ~ whose support  is in A and has 
a strictly positive distance from the boundary  of A. 
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Lemma 2.3 If, for any G ~ L 1 (A), all F ~ ID 1. ~ (A) satisfy the relation 

(2.l) ~ F G d P  = O, 
A 

then G = 0 a.e. on A. 

Proof. Let A = Br(h) and (Hm) be a sequence of Fr6chet differentiable random 
variables approximating sign G.IA in L 2(Q). Such a sequence exists, since 50 is 
dense in L2(~). Moreover, suppose that, for any natural n, the function ~0, 
C ~ ( R  l) is such that 

1 1 
(p , (x)= 1, for [x[ < r - - ,  q~,(x)=O, f o r l x [ > r -  and 

O < ~ o , ( x ) < l ,  f o r a l l x ~ R  1. 

Then, with the notations v ,  /x for the maximum and the minimum, respectively, 
the sequence {((Hm /x 1) v ( -  1))'q~,([I W(Oh)ll), m = 1,2, 3 , . . . }  of elements of 
1DI'~(A) is bounded in L~(f2) by 1 and approximates sign G.~0,(f[ W(Oh) rf) in 
L2(~2). Hence, (2.1) provides 

j" IGl~0,(ll W(Oh)[l)dP = O . 
A 

Since n is arbitrary, we see that G must vanish a.e. on A. 
This lemma allows one to define the Skorohod integral (6A, Dora 6A) as the 

adjoint of (D, ID 1' ~~ for any ball A = Br(h), r > O, h ~ L2([0, lJ): 

Definition. A process (u~) e L 1 ([0, 1] x A) is said to be Skorohod integrable on A if 
there exists a 6A(u)~ LI (A )  such that 

(2.2) A ~ F 6 A ( u ) d P = ! ( i D s F ' u s d s ) d P ' f ~  

In this case we write (u~) e Dora 5A and call the unique element 6A(u) s LI (A)  the 
Skorohod integral of (us) on A. 

If A -- f2, we denote the Skorohod integral on f2 by 6 and its domain by Dora 6. 
Recall that the square integrable processes non-anticipating (Ws) as well as the 
elements of the space L2([0, 1], ID ~' 2) of all square integrable processes (u~) with 
derivative (D~Us) in L2([0, l J2x  f2) are in Dom6,  and the Skorohod integral of 
a square-integrable non-anticipating process coincides with the It6 integral. 

Immediately from the definition of (6A, Dom 6A) we obtain the following 
characterization: 

Lemma 2.4 I f  A and B are any balls in f2 with A ~ B, then every process (us) 
Dom 6B considered as an element of  Ll([O, lJ x A) belongs also to Dora 6A, and 

6A(u) = 6n(u) , a.e. on A . 

Obviously, Lemma 2.4 allows one to write ~o usdW~ for 6a(ulEo" tl) whenever the 
process (uslro, tl(s)) is in Dora 6A for some t ~ [0, 1] and a ball A c ~?. Moreover, 
Lemma 2.4 shows that, for any (u~) ~ Dora 6A, 

6a(u) = 0 a.e on any ball B ~ l u s [ 2 d s  = 0 ( ~ A )  . 
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This p rope r ty  is called the local p roper ty  of ~. It  allows one to define an integral 
6~~ even if (us) does not  belong to D o m  6A, cf. [5]: 

Definition. Let  A = B~(h) be any ball in ~2. A process (u~) s L~([0, 1] x A) is called 
an element of ( D o m  6A)1o~ if there are a sequence ((u~)) c Dora  c5 and a real 
sequence (r,) monoton ica l ly  increasing to r which are such that  

{ u " = u }  ~ B~.(h), n = 1 , 2 , 3 , . . . .  

For  such a (us) e (Dom C~A)lo~ we set 

6 ~ ( u ) = b ( u , ) o n B ~ ,  n = 1 , 2 , 3  . . . . .  

Under  this definition we have: 

Lemma2.5  Let (us)~Ll([O, 1]xA) .  Then, (u~)~Domc~A if and only if 
(Us)~(DomfA)lo~ and 6 ~ ( u ) ~ L  I(A). Moreover, if (us)~DomcSA, then 
CS1A~176 = 6A(U), a.e. on A. 

Proof Let A = B,.(h) and ( u s ) ~ D o m 3 A .  Fo r  any  natura l  n and any C ~ ( R ~ )  - 

function cp, with s u p p c p , r  and { c p , = l }  ~ - r + n , r  we set 

H .  = ~0.(11 W(Oh)ii). Clearly, H ,  e D ~' ~176 Let u~ = H, .us  on A and u~ = 0 out-  
side A. Then  

(u~) c L~([O, 1] x Q), 

i 

I(u ~) = H,6A(u) -- ~. D~H~ .u~ds ~ LI(Q), and 
0 

E[FI(un)] = E  DsF'u~ds , for a l l F s l D l , ~ 1 7 6  

Consequent ly ,  (u~) ~ ( D o m  cSA), and  c~(u n) = I(un). Thus, the local p roper ty  of D 

DsH = 0 a.e. on [0, 1] x {H = 0}, for all H ~ D 1'2 (cf. [5, Propos i t ion  3.1]) 

provides 
6(u ") = 6A(u) a.e. on Br-(1/,)(h), n = 1, 2, 3 . . . . .  

Consequent ly  6~(u)  = 6A(u) e L " (A). 
Conversely,  suppose now that  (Us)~ ( D o m  cSA)loo and 6 ~ ( u ) ~  L I (A). Let ((u~)) 

be a sequence in Dora  6 associated to (us) by  the definition o f ( D o m  cSa)loc. Since, for 
any F ~ 11) 1' ~176 there is a na tura l  n with supp F ~ B,.(h), we have 

A 0 

Hence,  u e D o m  3 A and •A(H) = 0~c(H) a.e. on A. 
Finally, note  that  the not ion of the Skorohod  integral 6A of processes (Us) 

LI( [0 ,  1] x A) on A developed here can be easily extended to any  arb i t ra ry  open 
subset of s 
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3 Skorohod SDE. Notion and uniqueness of the solution 

Fix any h �9 Z2([0, 1]), r > 0 and  t e [0, 1], and set A = Br(h). 

Definition. Let Xo �9 LI(A), (aAx)) and (bAx)) be in L I ( [0 ,  t] x A x R1). A process 
(Xs) �9 L 1 ([0, t-] x A) is called a solution of the Skorohod SDE 

(3.1) Xs = Xo + i ar(Xr)dWr + i br(Xr)dr a.e. on A, s �9 [0, t ] ,  
0 O 

if 

O) Xs �9 L~(A), s �9 [0, t], (a~(Xr)) and (br(Xr)) are in L~([0, t] x A), 

(ii) (a,(Xr)Ito" sl(r)) ~ D o m  fia, for all s �9 [0, t], and 

(iii) Eq. (3.1) holds, i.e., for any F �9 D 1' ~176 s �9 [13, t],  we have 

! ( i a r ( X r ) D r F d r ) d P = ! { X s - X o - i b r ( X r ) d r }  FdP" 

F o r  a s ta tement  on the uniqueness of the solution of (3.1) we first need some 
s ta tements  for the linear case of as(e), x) = as(m), x and bs(o), x) = bs(co)- x. Fo r  this, 
we review some results on linear Sko rohod  SDE of [1]. 

Proposition 3.1 Let (as) �9 L~176 t], D 1' co). Then, there are unique families { T~, s �9 
[0, t] } and {A .... r �9 [0, s], s �9 [0, t] }, of transformations of f2 into itself with abso- 
lutely continuous image measures P o [T~]-  ~, P o [At, s-]- 1 relative to P which satisfy 
the equations 

~ m = m +  

A r ,  s~O = eJ  - 

for any s �9 [0, t]. 

s/X. 

o'r(T, co) dr  a.e., s �9 [0, t] , 
0 

sA,  

av(Av,,e)) dv a.e., r �9 [0, s] , 
r/k. 

These transformations T~, A,, s are invertible, the inverse As of T~ is given by 

(3.2) As = T~- 1 : A o ,  s ~ s �9 [-0, t ]  . 

Moreover, the process (as(T~)) is in L~176 t ] ,DI '~  and the densities 
&as = d p o  [ A s ] -  1/dP and Ls = d P  o [ T s ] - i / d P  have the following form: 

~~ s = exp o'r(T~)dWr - ~ o o o 

/~s = ~es(As)-  1 ,  s e [0,  t ] .  

This result is generalized in [121. P ropos i t ion  3.1 allows us to state the 
following: 

Proposition 3.2 Assume that (~rs) �9 L~~ t], D 1' co), (bs) �9 L~( [0 ,  t] x f2) and G �9 
L~176 Then there exists a unique process (Xs) �9 LI( [0 ,  t]  x s which solves the 
linear Skorohod SDE 

(3.3) Xs = G + i arXrdWr + i brXrdr, a.e., s �9 [0, t ] .  
0 0 
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With the notations of Proposition 3.1, this process is given by 

X s = G ( A s ) e x p { i b , ( A r , ~ ) d r } L s ,  s ~ 1-0, t ] .  

This global statement can be generalized to a local one. 

Proposition 3.3 Let (as), (bs) be in L~([0 ,  t] x A) and d e  L ~(A), and suppose that 
there is a process (o's) e L~([0 ,  t], ID t' oo) which coincides with (~s) a.e. on A = B,(h). 
Then there exists a solution (X~) e L 1([0, t] x A) of the linear equation 

(3.4) 2 s  = d + i #~X, dWr + i b, Xrdr a.e. on A,s  e [0, t ] .  
0 0 

This solution (X~) is unique in Br-3~(t)(h), where 

(p(t) = i I1 ~sllL~(~)ds , 
0 

and if we set G = G on A, G = 0 outside A, (bs) = (bs) on [0, t] x A, and (b~) = 0 
outside [0, t] x A, then ()~) is given on B,_ 3o(t)(h) by the unique solution (X~) of(3.3). 

Because the proof  contains specifical technical arguments which are not needed 
later it is put into the appendix. 

The uniqueness of the solution of a linear Skorohod SDE in a ball in s allows 
us to deduce the uniqueness of the solution also for a nonlinear Skorohod SDE. 
For  this let r > 0, h e L2([0, 1]) and A = B,(h), and denote by Nr(A) the set of all 
(u~) �9 L ~ ([0, t] x A) which have an extension (zT~) such that  ~ e D l. o, and (D,~s) e 
L~([0 ,  1] x [0, t] x ~)  for any s e [0, t]. 

Theorem 3.4 Let (as(x)) and (b~(x)) be elements of Ll([O, t] x A x R l) which are 
such that ajco, .) and bs(og, .) belong to C:(R l) a.e., and both (O~as(x)) and (~xbJx)) 
are in L ~ ( [ O , t ] x A x R 1 ) .  Moreover, assume that there is a process (TjX)) 
e L~ t] x R l, D 1, ~) such that 7~(co, .) e Cl(R ~) a.e., (O~Vs(X)) e L~ ([0, t] x f2 x R l) 
and (7jx)) = (8~a~(x)) a.e. on A. 

Set ~o(t)=~t o IlY~llL~(~R~)ds. Then, for any X o e L l ( A ) ,  there is at most one 
solution (Xs) e ~t (A)  of the Skorohod SDE (3.1) on B~_ 3o<t)(h). 

Proof. Assume that  we are given two solutions (Xs) and (Y~) of SDE (3.1) which 
belong to D,(A). For  all r e [0, t], we set 

1 

5~ = ~ (~?~as)(OX~ + (1 -- 0) rs)dO , 
0 

1 

~)~ = y (a~b~)(OXs + (1 - 0) Y~)dO . 
0 

Clearly, (5~) and (/~s) are in L~([0 ,  t] x A). From the assumption (X~), (Y~) e Nt(A) 
we know that  there are extensions ()~), (I~) of (Xs) and (Y~), respectively, with 
(DrJ{s), (D~L) e L~([0 ,  1] x [-0, t] x f]). Hence, (a~ = I0 ~ 7s(0)~ + (1 - 0) L)d0)  is 
an extension of (g-s) and belongs to L~~ t] x ~); its derivative 

1 1 

Dras = f (D,?s)(OXs + (1 - 0) L ) d 0  + f (c?~s)(OJ~s + (1 - 0) L )  
0 0 

x (OD,2s  + (1 - O)D,f~)dO 
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exists and is in L~([0,  1] x [0, t] x g). Therefore, (as) s L~([0,  t], D 1' co). Set 
Z~ = Xs - Ys, s s [0, 1]. Since (Xs), (Ys) ~ LI([0,  t] x A) are solutions of (3.1), we 
have 

(Zs) E L1 (to, t] x A), 

(~,Z,Ito.~l(r) = a~(Xr)Ito.sl(r) - a~(Y,)Ito.~l(r)) ~ Dora 6A, S e [0, t] , 

and 

i s Zs = (a~(X~) -- a , ( Y , ) ) d W r  + ~ (br(X~) - b , (Y , ) )dr  
0 0 

= ~ 6 r Z ~ d W , +  brZ~dr a.e. o n A ,  s~ [0 ,  t ] .  
0 0 

Consequently, all assumptions of Proposition 3.3 are satisfied so that (Z~) = 0 is the 
unique solution of this linear equation on B~-a~(t)(h) with 

~o(t) = j" IJa~IIL~tQ)ds =< 117~ItL~r215 �9 
0 0 

This completes the proof. 

4 Skorohod SDE. Existence of a solution 

Throughout  this section we suppose that a and b are C2-functions of R 1 into itself 
whose derivatives of first and second orders are bounded. The main aim of this 
section is to give a constructive proof of the existence of a solution of the Skorohod 
SDE (3.1) for 

as(co, x) = a(x) and b~(co, x) -- b(x) . 

Let us first introduce some notations and present the main results before coming to 
the fairly long and technical details and proofs. 

For  the construction of the solution (X~) of the Skorohod SDE 

S S 

(4.1) Xs  = G + S a (Xr )dW~ + ~ b ( X , ) d r  a.e. on f2, s e [0, 1] , 
0 0 

the associated It6 SDE 

s i (4.2) Xs(x)  = x + ~ a ( X , ( x ) ) d W ,  + b (Xr (x ) )dr  
0 0 

a.e. o n f 2 ,  s e [ 0 , 1 ] ,  

plays a basic role. The pathwise description of the solution (Xs(x))  introduced and 
discussed by Doss and Sussmann, e.g. r l  1], allows us to define the transformation 

(4.3) As(., x) : s --* f2 

SA. 

As(co, x) = co - S a'(Xr(co, x))dr , co e f2, 
0 

for any fixed x e R ~. 
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Let G : ~ ~ R I be any Fr6chet differentiable bounded random variable satisfy- 
ing the following assumptions (G): 

(G.1) For some real M it holds 

[D~G(co)[ < M, and 

]D~G(co + ~o hrdr) - D~G(co)t <= M[hlL~([o. 137, for all h �9 L2([0, 13), 

(s, co) �9 [0, 13 x f2. 

(G.2) There is a real b > 0 such that, with the notation K = [[ GIILo(,~), we have 

1 + ~o (DrG)(A~(CO, x))a"(X~(co, x))OxXr(co, x)dr >= 3, 

for all (s, co, x) �9 [0, 1] x f2 x [ - K, K]. 

Then the implicit function theorem provides the following: 

Lemma 4.1 Under the assumption (G) there is a unique process (Us) with values in 
[ - K, K] that satisfies the equation 

(4.4) Us(co) = G(A~(co, U~(co))), (s, co) �9 [0, 1] x ~ .  

In particular, Uo(co) = G(co). The process (Us(co)) is pathwise absolutely continuous 
with respect to the Lebesgue measure, and for any (s, co)�9 [0, 1] x f2, there is a 
(D~U~(co)) �9 L2([0, 1]) such that, for all h �9 L2([0, 1]), it holds 

( 4 . 5 )  iDrU~(o~)h~dr=l iml Iu~(co+~ih~dr  ) U~(co)l 
0 ~.0  ~ 

This will be the basis for the derivation of the main results: 

Theorem 4.2 Let a and b be C2(R1)-functions with bounded derivatives of first and 
second orders. Then, under condition (G), the process 

x,(co) = x,(co, uAco)) 

belongs to (~v>~ LV([0' 1], lD~'V), and satisfies Eq. (4.1), 

X s = G +  a ( X , ) dW,+y b( Xr ) dr  a.e., s � 9  
0 0 

Proposition 4.3 Under assumption ((3) the process (X~) introduced in Theorem 4.2 has 
the following pathwise properties: 

For any co �9 f2, the mapping s ~-+ X~(co) is continuous, and there is a real constant 
C such that, with the notation 

1 

~(co) = y exp {Clcos[ } ds ,  
0 

the random variables X~(co) and D~X~(co) are bounded by 

exp{C(e c~(~') + [co~])} , for all s , r � 9  [0, 1] , co �9  

In particular, for any bounded ball A in s the process (X,) belongs to ~ (A). 

Proposition 4.3 will allow us to derive the following statement about uniqueness. 
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Theorem 4.4 Under condition (G) the process (X~) defined in Theorem 4.2 is the 
unique solution of the Skorohod SDE (4.1) inside the class of all processes that, for any 
bounded ball A ~ f2, belong to ~I(A) .  

Since assumption (G.2) is very restrictive, we should consider what happens if 
we omit (G.2) and impose only (G.1) on G. This will lead us to a "local" solution 
of (4.1). 

Theorem 4.5 Let a, b �9 C2(R 1) such that the derivatives of first and second order are 
bounded, and assume (G.1). Then, for any bounded ball A = B,(h), there is a t > 0 
such that the Skorohod SDE (4.1) has a unique solution (X~) �9  on 
[0, t] x Br_3~,(o(h), where ~o(t) = t . sup  la'(x)t. 

x 

After this presentation of the main results let us turn now to the details: 

1 Review on the description of  the solution of  Eq. (4.1) 

For any x e R 1 let the continuous function f :  R2-* R 1 be the solution of the 
equation 

Y 

(4.6) f (x ,  y) = x + S a(f(x,  z )dz ,  y e R 1 . 
0 

Moreover, set 

�9 (x, y) = (Oxf(x, y ) ) - l .  (b - �89 a. a')(f(x, y)) ,  

T(x, y) = (axf(x, y ) ) - l .  (b + �89 a. a')(f(x, y)) ,  (x, y) �9 R 2 . 

Obviously, there exists a real C~ such that the functions r y), 0 ~ ( x ,  y), T(x, y) 
and 0~T(x, y) are bounded by C1(1 + [xl)exp{C1 lY[}, and 0y~(x, y) as well as 
0yT(x, y) can be estimated by C2(l q- Ixl 2) exp{C2[y[}, for some real C2. Hence, 
there are unique processes (q~(x)) and (0~(x)) satisfying pathwise the equations 

(4.7) q~(co, x) = x + i 4~(r x), cot)dr, 
0 

0~(CO, x) = x + i T(O~(co, x), co,)dr, s �9 [0, 13 , 
0 

for all (co, x) �9 g2 x R 1 . 

Finally, we define 

(4.8) X~(co, x) = f(q0~(co, x), co~), 

Y~(co, x) = f(O~(co, x), cos), (s, co, x) �9 [0, 1] x f2 x R' .  

The such defined processes (X~(x)) and (Y~(x)) satisfy the It6 SDE 
$ s 

X~(x) = x + ~ a(X,(x))dW~ + ~ b(Xr(x))dr , 
0 0 
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and 

Y=(x) = x + i a(Y,(x))dW, + i (b + �89 aa')Y,(x))dr a.e., s e [0, 13, 
0 0 

respectively, which can be checked immediately by the non-anticipating It6 for- 
mula. Obviously, X=(co, .) and Y=(co, .) belong to CI(R1), for all (s, co) e [0, 1] x O, 
and X=(. ,x) as well as Y=(.,x) are Frdchet differentiable, for all (s, x) e [0, 1] x R 1. 

Lemma 4.6 The processes (X=(co, x)), (Y=(co, x)) and their derivatives (8=X=(co, x)), 
(SxY=(co, x) ) are continuous in [0, 1] x f2xR  1. Moreover, there is a positive real 
C such that, with the notation 

1 

~(co)=Sexp{C[co, l}dr ,  e)~s 
0 

these processes as well as their Fr~chet derivatives (D,X=(co, x) ) and (Dr Y=(co, x) ) are 
bounded by 

exp{(1 +lxl)d(~~ Clcosl}, foraI l  r , s~ [0 ,1 ] ,  coes x s R  1 . 

Proof. The continuity of X=(co, x), Y=(co, x) and their derivatives OxX=(co, x), 
8x Y=(co, x) follows immediately from (4.8). It remains to prove the estimates. For 
this recall that, for some real C2 > 0, we have 

I~(x, Y)I < (1 + [xl)exp{C:z]yl},  

]O=~(x, Y)I < (1 + Ixl)exp {C 2 ]Yl}, 

lS, q~(x, Y)I < (1 + Ixl2)exp{C2ly} , 

so that we can derive from (4.7) and the relations 

(4.9) 8xq~=(co, x) = exp { i (~xcP)(<pr(CO, x), cor)dr} , 

s 
D/p=(CO, x) = S (~?yr x), c%) Oxrp=(w, x) 

r 8xqOv(CO, X) dr" I(,.S= ) 

that, for some real C3 > 0, the variables [~o=(co, x)j, ]8=O=(co, x)r and [D,<p=(co, x)] are 
less than 

(4.10) exp {(1 + Ixl)eC3r176 . 

Thus, with regard to (4.8) and the following two relations 

OxX=(CO, x) = ( 8 x f  )( r x), cos) 8xq)=( co, x ), 

DrX=(co, x) = (~?xf)((P=(co, x), co=)D,(p=(CO, x) + (Srf)((p=(co, x), COs)" I(,~ - =} 

we see that the estimations in the lemma are correct. 
Analogously, we can deduce the estimations of Y=(co, x), a:,Y=(co, x) and 

D, Ys(co, x). 
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Remark. From the proof of Lemma 4.6 it becomes clear that also the processes 
(~0~(o9, x)), (0~(og, x)) and their derivatives are continuous with respect to (s, o9, x). 
The Fr6chet derivatives DKo~(og, x) and D,r x) are continuous with respect to 
(s, co, x), uniformly relative to r ~ [0, 1]. 

In addition to the co-wise estimation of X,(e), x) and Y~(co, x) we also need an 
a.e. estimation by a random variable of L* (f2). 

Lemma 4.7 There are a real q > 0 and a random variable ~ e L* (f2) which are such 
that a.e. the random variables 

Xs(x), O~X~(x), DrX~(x) and Y~(x) 

are bounded by ~(1 + Ixlq),for all s, r s [0, 1], x ~ R 1 . 
I f  additionally, a has a bounded derivative of third order, then the same holds also 

for Ox Y~(x) and D, Y~(x). 

Proof The Lemmata 2.1 and 2.2 of [8], including the proofs, provide the estima- 
tions we need. 

Lemma 4.7 allows to deduce an a.e. estimate by a random variable of L*(f2) also 
for q~(x), Or(x) and their derivatives. 

Lemma 4.8 There exist a real q > 0 and a random variable ~ ~ L* (f2) which are such 
that a.e. the random variables 

qo~(x), ~xq~s(X), DKo~(x) and tp~(x) 
are less than 

~(l+lxtq) ,  for all r ,s~[O, 1], x ~ R  1. 

If, additionally, a has a bounded derivative of third order, then the same is true for 
O~t~(x) and D,t~(x). 

Proof Without loss of generality we prove the statement only for opt(x), 0xcp~(x) 
and Dr~O~(x). We first estimate r Note that, by virtue of (4.7), there are reals 
C1, Cz > 0 such that 

Iq~(x)l < Ixl + e c'l~ b - ~ a a '  (X,(x)) dr 
0 

< Ixl + C2 i eC'l~ 1 + IX,(x) l )dr .  
o 

Substituting now the estimate for Xr(x) of Lemma 4.7 we see that the assertion for 
q~(x) is true. The estimate for 0~q0,(x) we obtain from the relation 

O, cp,(x) = (~f)(~o,(x), og,)a,;X~(x) 

and Lemma 4.7, the assertion for D/p~(x) can be proved by substituting the 
estimates of ~os(x) and D,X,(x) in the relation 

O,q~,(x) = ( ~ f  )( cp,(x), o9,)-1 (D,X,(x) -- (d,f)(cp,(x), o9,)I{, __< ~}). 

This completes the proof. 
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2 Transformations generated by (Xs(x)) and (Y~(x)) 

For any x e R ~, s e [0, 1], we define the following transformations of s into itself: 

sA.  

As(co, x) = co - ~ a'(X~(co, x))dr , 
0 

sA.  

Ts(co, x) = co + ~ a'(Yr(co, x))dr , 
0 

coef2 . 

Lemma 4.9 For any x e R l, s e [0, 1], the transformations As(x) and T~(x) are 
inverse to each other. 

Proof Let h e C([-0, 1] ). By virtue of (4.7) and (4.8), differentiation of Ys(So hrdr, x) 
and Xs(~o h~dr, x) relative to s provides 

 s(ihr r x) x+ 
+i 

0 

a Yv h~dr, x hvdv 
0 

( b + ~ a a ' ) ( Y ~ ( i h r d r ,  x ) ) d v ,  

i a ( X v ( i h r d r ,  x ) )  h~dv 

i (  1 ) ( ( i ) )  + b - ~ a a '  Xv hrdr, x dr ,  s e [ 0 , 1 ] .  

Substitution of T1 (So hrdr, x) e C~([0, 1]) for So h~dr in the second equation shows 
that (X~(T1 (So hrdr, x), x)) is a solution of the first equation. Thus, the uniqueness 

y. �9 of the solution of these differential equations implies that ~(So h~dr, x) and 
X~(T1 (So h~dr, x), x) coincide. 

In order to conclude the equality of Y~(co, x) and Xs(Tl(co, x), x) for all co e s 
we only have to recall that the functions co ~-~ Ys(co, x) and co ~-~ Xs(co, x) are 
continuous, since this implies also the continuity of co~--~Xs(Tl(co, x),x) 
( =  X,(co + So a'(Y,(co, x))dr, x)). Therefore, Ys(co, x) = X~(T~(co, x), x), (s, co, x)e 

1 ] x ~ 2 x R  1. Since (Xs(co, x)) is non-anticipating, Xs(Ti(co, x),x) and 
Xs(Tt(co, x), x) coincide for all s < t. Hence, for any s e [0, 1], we have 

sA.  

As(T~(CO, x), x) = T~(CO, x) -- S a'(Xr(Ts(co, x), x))dr 
0 

s/X,. 

= T~(co, x ) -  S a'(Yr(co, x))dr = co, 
0 

coe(2 . 

Analogously, for any s e [0, 1], x e R 1, we obtain 

T~(As(co, x), x) = co, co ~ f2 . 

This completes the proof. 
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3 The process (Us) 

Let G : (2 ~ R t be any Fr6chet differentiable bounded random variable satisfying 
the assumptions (G). 

We consider the equation v. = G(A.(e,  v.)). Its solution provides the process 
(Us), which we have to substitute in (Xs(x)) in order to obtain a solution of(4.1). For  
this, recall the implicit function theorem, which we need in the folowing version: 

Proposition 4.10 Let K be a positive real. Assume that f :  [0, 1] x [ -  K, K]--* 
[ - K, K]  is a continuous function with bounded derivatives ~sf(s, x) and a~f(s, x)for 
which it holds 

(i) the mapping x ~ Osf(s, x) is continuous, uniformly "relative to s ~ [0, 1-]. 
(ii) (s, x) --~ O~f(s, x) is continuous, and there is a real 6 > 0 such that 

1 - O ~ f ( s , x ) >  6, for al l (s ,x)  s[O, 1 ] x [ - K , K ] .  

Then,for any s ~ [0, 1], there is a unique solution x = xs ~ [ -- K, K]  of the equation 
x = f(s,  x), and the function s ~ xs is absolutely continuous, 

d ~?sf(s, xs) 
xs - 1 - ~ f ( s ,  xs) " 

This proposition allows us to prove Lemma 4.1. We divide the proof into two 
parts and extend the statement. 

Proof of  Lemma 4.1 

Step 1 Existence and uniqueness of the process (Us) and its pathwise absolute 
continuity with derivative 

d a'(Xs(co, Us(CO)))(DsG)(As(CO, Us(co))) 
d s  U s ( c o )  = - 

1 + ~" (D~G)(As(a, Us(co)))a"(X~(co, U~(co)))(c~X,)(co, Us(co))dr 
0 

For  any fixed co e f~ we set 

f(s,  x) = G(As(co, x ) ) .  

Then, under (G), the chain rule shows that Oxf(s, x) exists and has the form 

~,f(s ,  x) = -- i (DrG)(As(co, x))a"(X,(co, x))OxX,(co, x)dr . 
0 

Consequently, ~ f ( s ,  x) satisfies the assumptions required in Proposition 4.10. For  
the proof of the existence of Oj(s ,  x) set 

~c,(v) = 0, for v 6 0, ~c~(v) 1 = - v, for v e [0, ~], and 

w.(v) = 1, for v > e 
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where ~ is any real greater than 0. Then, for any h ~ L2(r0, 1]), the chain rule shows 
the existence of (d/ds)G(co + ~o ~c,(s - v)h~dv), 

d G(co + i ~c~(s - v)h~dv) = i (D~G)(co + i ~c~(s - v)h~dv)Os~C~(s - 

=-s~_~ 1 i (D~G)(co+i~c~(s-v)h~dv)h~dr" 

Thus, 

(4.11) 

'l i )} =G(CO)+ (D,G){co+ K~(s-v)hvdv ds hrdr, t~[O, 1]. 
0 

Under (G.1) we have 

(D ,G) (co+i t c~ ( s - v )h~dv ) - (DrG) (co+~i ' hvdv )  

<=M h~dv , for a l l s e [ r , r + e ] .  
k r - - g  

Hence, the right-hand side of (4.11) tends to 

G(co) + y (DrG) co+ h~dv hrdr , ase--*0.  
0 

On the other hand, the convergence of the left-hand side of (4.11) to G(co 
+~oAh~dv) is obvious. Consequently, for any h eL2([0, 1]), the function 
s ~ G(co + yo TM hvdv) is absolutely continuous and 

d ( s ~ . )  ( s~. ) 
d~sG co+ h~dv = hs(D~G) co+ h,dv , 

0 0 

i.e., ~sf(s, x) exists and 

as f(S, x) = - a' (X~(co, x) )(DsG)(AAco, x) ) . 

Clearly, c~sf(s, x) is bounded, a'(Xs(co, x)) is continuous relative to (s, x) and, thus, 
from the estimate 

](DsG)(As(co, x)) -- (D,G)(A~(CO, y))[ <__ M [a'(X,(co, x)) - a'(Xr(co, y))[ 2 dr , 
0 

x ,y  s [ -- K, K], (s, co) E [0, 1] xs 

we see that x ~ C~sf(S, x) is continuous, uniformly with respect to s ~ [0, 1]. 
Therefore, Proposition 4.10 can be applied. This yields the desired result. 

Remark. In order to abbreviate the notations we introduce the transformations 

A c o  = As(co, UAco)), T, co = T~(co, C(co)),  co ~ s 
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Since T~(x) and As(x) are inverse to each other for all x e R *, Eq. (4.4) implies the 
same for T~, A~. Moreover, due to [2] the image measures P o [~3-1 ,  p o [A~l- 1 
are equivalent to the Wiener measure P. 

Step 2 (of the proof of Lemma 4.1) Derivative (D,U~(co)) exists and is given by 

s 

(DrG)(Asco) -- j (D,,G)(A~co)a"(Xv(co, U,(CO)))(DrX,,)(c.o, U~(co))dv. t~r ~ ,} 

D, Us(co) = 

1 + J (DvG)(A~co)a"(Xv(co, U~(co)))(0xXv)(co, U~(co))dv 
0 

Fix any (s, co) ~ E0, 1] x O and any h ~ L2([0,  1]), and set 

f(e, x) = G(As(O,hco, x)) 

= G(O~hco ~" x))dv). -- 0 a'(Xv(O~hco' 

For convenience we drop co. Note that 

a~[X,(O,h, x)] = i (D~Xr)(O~h, x)h~dv 
0 

so that the chain rule yields 

1 

(4.12) ~?~f(~, x) = ~ (OrG)(As(O,h, x)) 
0 

x h, - I{r<=,)a"(X~(O~h, x)) ~ (D~X~)(O,h, x)hvdv dr .  
0 

In analogy to the first step we can derive 

1 

(4.13) ~3~f(e, x) = -- ~ (DrG)(As(O,h, x))a"(X,(Oeh, X))(O~X,.)(Oeh, x)dr . 
o 

Obviously, in view of (4.12) and (4.13) the assumptions of Proposition 4.10 are 
satisfied here, too. Thus, the unique solution (U~(O~h)) of the equation 

V~(O~h) = G(As(Ooh, U~(O~))) 

=f(e,  Us(O~h)), e e [0, 1] , 

is absolutely continuous with respect to e, and 

s 

d U~(O,h) ~ I ( ( D r G ) ( A - ~ - ~  ~(DvG)(As)a'(Xv(U~))(D'X'~,(U~)dvI{~z~' ~ O~hdr 

de o \ 1 + i (D~G)(A,)a"(Xo(Us))(~X~)(U,)dv 
0 

Setting e = 0 we obtain the desired result. This completes the proof of Lemma 4.1. 
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Lemma 4.11 Assume (G). Then, for any p > 1, the process (Us) belongs to 
LP([0, 1], 1D I'p) c~ L~ 1] x f2), 

(i) the mappin 9 s ~-~ (Dr U~) ~ LP([O, 1] x ~2) is continuous, and 
(ii) s ~ DrU, ~ LP((2) is continuous in [0, r], uniformly with respect to r. 

Moreover, the process ((d/ds) U~) is bounded by some real constant, (DrU,) is bounded 
by a random variable of L*((2), and additionally, there is some real C > 0 such that, 
with the notation 

1 

(co) = I exp {C ]COs l} ds ,  
o 

we have 

(4.14) [D~Us(CO)l<exp{eC~"~ foral l  s , r ~ [ 0 , 1 ] ,  COe~. 

Proof Obviously, the process (Us) as welt as its derivative ((d/ds)U~) are bounded 
by some real constant. By virtue of the second step of the proof of Lemma 4.1 there 
exists a real C > 0 such that 

,D~Us(CO)I <= C ( I  + i l(DrX~)(CO, U~(CO))ldv. I{r<=s}) CO ~ f2 . 

Then, the Lemmata 4.6 and 4.7 imply that (DrUs) is bounded by a random variable 
of L*(K2) and that there is a real C with (4.14). 

Thus, it remains to show (i) and (ii). We first turn to (ii). Let s < r. Then step 2 of 
the proof of Lemma 4.1 provides 

(D~G)(A~) 
(4.15) D~U~ = 

s 

1 + S (D~G)(A~)a"(Xv(Us))(axX~)(Us)dv 
o 

Taking into account that 
s/X,. 

A~CO = co - ~ a'(Xv(co, U~(co)))dv , 
0 

the Lipschitz condition (G.1) yields for all r s [0, 1] and all s, t s [0, 1] with s < t 
that 

(4.16) I(DrG)(A,) -- (D~G)(As)[ <= M la'(Xv(g,)) - a'(X~(U~))lZ dv 

\1/2 
+ M ( !  la'(X~(Ut))12dv) . 

Since 

la'(X=(U,)) - a'(X~(U~))t 

d u  1 
< sup [a"(x)l .sup ~ ~ [(~xX~)(og, + (1 - o)g,)ldO. [t - s l ,  

x r 0 

it follows from the estimate of c3~X,(x) in Lemma 4.7 that, for some ( ~ L*(Q), we 
have 

(4.17) I ( D ~ G ) ( A , ) - ( D r G ) ( A ~ ) I < ~ I t - s I ,  foral l  r,s, t s[O,  1]. 
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Consequently, for any p > 1, the mapping s w-~ (DrG)(A~) ~ Lv(O), s s [0, r], is con- 
tinuous, uniformly relative to r ~ [0, 1]. Since, on the other hand, by virtue of (G.2) 
and the Lemmata 4.1 and 4.6 

i rr p (4.18) s ~ 1 + (DvG)(As)a (Xv(U~))(O~X~)(Us)dv ~ L (Q) 
0 

is continuous and uniformly bounded, relation (4.15) now implies the correctness of 
statement (ii). 

Finally, we prove (i). For  this, note that by the same arguments as used above 
we can conclude that also the mapping 

s 

s ~ ~ (DvG)(A~)a"(Xo(U~))(DrXv)(Us)dv" I{r <= t} ~ LP(~) 
r 

is continuous for all r ~ [0, 1], and from the Lemmata 4.7 and 4.11 we see 

sup i (D~G)(As)a"(Xv(Us))(DrX~)(Us)dv" I{r<=s} L*(~?). 
r,s ~ [0,1] r 

This together with (4.17) and (4.18) gives (i). 
The property (ii) of Lemma 4.11 allows to define 

( D _ U ) s = L 2 ( f ] ) -  lira D~U,, se[O, 1]. 
r - - * s , r ~ s  

An immediate consequence of the Lemmata 4.1 and 4.11 is given by the following 
statement: 

Lemma 4.12 Under assumption (G) the process ((D_ U)s) is bounded by some 
e L* (f2), and 

d 
ds Us = - a'(X~(Us))(D_ U)s, for a.e. s ~ [0, 1] . 

4 Proof of Theorems 4.2 and 4.4 

Note that by virtue of (4.8) the process (X~) has the form 

(4.19) X~ =f(V~, Ws), s e [0, 1 ] ,  

where the process V~ = q~s(Us) is absolutely continuous with respect to s: This is the 
reason why the It6 formula plays a key role in the proof of Theorem 4.2. Let us 
recall the anticipative It6 formula by Nualart  and Pardoux (cf. 5, Theorem 6.1) for 
the special case we need. 

Proposition 4.13 Let f be a continuous function of R 2 into R 1 such that the derivatives 
ax f  ayf 02 x f  and O2,yf exist and are continuous. Moreover, let (V~) be a continuous 
process with finite variation belonging to L2([-O, 1], lO 1, 2) such that 

(ii) the mapping s ~ DVs ~ L4([0, 1] x ~2) is continuous, and 
(iii) s ~ D, Vs e L4(t?) is continuous in [0, r], uniformly with respect to r s [0, 1]. 
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Then, for any s ~ [0, 1], with the notation 

(D_ V)= = L 2 (Y2) - 

we have 

lim D= V~ , 
r ~ s , r < s  

s 

f(V~, W=) =f(Vo,  0) + i ~?xf(V~, W~)dV~ + ~ 0y f(V~, W~)dW~ 
0 0 

1 
i 02. yf(Vr, W~)dr + i ~2. ~f(Vr, Wr)(D_ V),dr 

+ 2 o  o " 

I f (Of f (V.  Wr)ILo,=a(r)) ~ Dom 6, then ~o OS(G,  W,)dW~ denotes the Skorohod inte- 
gral, otherwise it is the local Skorohod integral. 

Although, in Theorem 6.10 of [5] the It6 formula is established under the 
stronger assumption of the continuity of the process s ~ Dr V~ ~ L4(Q), s ~ [0, 1], 
which is uniform with respect to r ~ [0, 1], it turns out that the proof given in [5] 
needs the weaker assumptions (ii) and (iii) of Proposition 4.13 only. 

Proof of Theorem 4.2 We set V~--%(U=). Then, obviously, the process (V~) is 
absolutely continuous, 

(4.20) 

and in view of 

(4.21) 

d d 
ds V~ = qs(V~, VV~) + (O~q)=)(U=) U=, s t  [0, 13}, 

DrV= = (Dr%)(U=) + (Ox%)(U=)DrU=, r, s t  [0, 1] ,  

we can derive from the remark to Lemma 4.6 and the Lemmata 4.8 and 4.11 that 
the process (G) satisfies the assumptions of Proposition 4.13. In particular, the 
process ((D_ V)=) exists, and due to Lemma 4.12 we can deduce from (4.20) and 
(4.21) the relation 

d 
(4.22) d~ V= = ~b(V~, W~) - a'(X=)(D_ V)=, s e [0, 1] .  

Since also the solution f :  R 2 ~ R I of Eq. (4.6) has the required properties, we can 
apply the anticipative It6 formula to X= = f(V~, W=): For this, we compute, on the 
basis of the Eqs. (4.6), (4.8), (4.4) and (4.19) defining f, X=(x), U= and X=, respectively, 
that 

f(Vo, O) = G, 

~yf(Vs, W=) = a(X=) , 

02yf(V~, W=) = (a.a')(X=) , 

and taking into consideration Eq. (4.22) we see that 

d 
Oj(V~, W=)~s Vs = txf(V~, W=)(~(V~, W~) - a'(X=)(D_ V)=) 

(b �89 a .a ' ) (X=)-  2 = - ~,,xf(V=, W=)(D_ V)=. 
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Hence, the anticipative It6 formula of Proposition 4.13 provides Eq. (4.1). From 
the estimations of Xs(x), 8xX~(x), DrXs(x), Us and DrUs in Lemma 4.7 and Lemma 
4.11, respectively, we see that the process (X~) belongs to LV([0, 1], D I'p) for any 
p > 1. But, obviously we also have (a(Xr)I[o,sl(r)) ~ Dora 3, for all s e [0, 1] then. 
Hence, (Xs) is a solution of the Skorohod SDE (4.1). 

Remark. Note that by virtue of 

X~(co, x) = YAAs(co, x), x) and A~co = A~(co, Us(co)), 

it also holds 
x~(co) = ~ ( ~ ) o  Aso), (s, co) e [0, 11 x ~?. 

Now Theorem 4.2 allows us to prove Proposition 4.3 and then Theorem 4.4. 

Proof of Proposition 4.3 The proof of the estimate follows immediately from the 
estimates of XAco, x), 8xX~(co, x) and D~Xs(co, x) and those of UAco) and DrUs(co) 
in Lemma 4.6 and Lemma 4.11, respectively. Thus, for any bounded ball 
A = B~(h) c Q and any H e D 1, ~ (B~ + 1 (h)) with {H = 1} ~ A, the product (HXs) is 
in L| 1], D 1' oo), and, since (HX~) coincides with (Xs) on A, (X~) is in ~I(A).  

Proof of  Theorem 4.4 Note that, for any bounded ball A = B~(h) c f2, r > 0, 
h e L2([0, 1]), the solution (X~) of (4.1) on f2 is also a solution of (4.1) on A. Since 
moreover, (XA e ~ ( A ) ,  we can apply Theorem 3.4 by setting 7Aco, x) = a'(x) and 
~0(t) = ~o [[ ~s [[L~(~• s = t sup~ [a'(x)]. Hence, (X~) is unique on Br_3~o(o(h). This 
holds for any r > 0 and h ~ L2([0, 1]), and for f2, too. 

Remark. As we have shown, under assumption (G) there is a unique solution of the 
Skorohod SDE (4.1). The existence of such a solution on the whole probability 
space f2 is mainly ensured by assumption (G.2), whereas (G.1) is only some 
smoothness requirement for G which allows to apply the anticipative stochastic 
calculus. So we should pay a bit more attention to (G.2). Obviously, we can replace 
(G.2) by the stronger conditon (G.2'), namely 

(G.2') either (i) DsG(co) > O, for all (s, co) �9 [0, 1] x ~2, and a"(x) >= O, for all x ~ R 1, 
or (ii) DsG(co) <= O, for all (s, co) �9 [0, 1] x ~2, and a"(x) < O, for all x e R 1. 

In particular, if G = f(W1), f s C2(R 1), then the requirements (i) and (ii) take the 
form f ' (x)  > O, a"(x) > O, for all x e R 1, and f ' (x) < O, a"(x) < O, for all x e R 1, 
respectively. 

This price of omitting (G.2) consists in the loss of the global existence of the 
solution of (4.1), assumption (G.1) guarantees only the existence of a local solution 
as described in Theorem 4.5. 

5 Proof o f  Theorem 4.5 

Proof. Let 2 e C~~ 1) with 2(x) = ]x], for [x[ > 1, and Ix[ _<_ 2(x) __< 1, for [x[ < 1. 
With regard to Lemma 4.6 there is some real C > 0 such that 

18xXs(co, x)[ 2 = exp{C(1 + [xl)e ~(~ , (co, x ) ~ ? x e  1 , 
0 

for ~(co) = j'~ exp {C,~(co~)} ds. 
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Fix any reals r l ,  r2 with 0 < rl  < r2 and a ~c e C~(R 1) which is such that 

~ c ( x ) = l ,  f o r l x [ < r l ,  ~ ( x ) = 0 ,  f o r l x ] > r 2 ,  and 

0 _ _ < ~ ( x ) < l ,  for a l l x e R 1 ,  

and set G(co) = G(co)~(~(co)). 
Due  to the assumption,  G satisfies (G.1) and, obviously, so does G. In particular,  

R = II (711~or _-< II G I1~(~, 

IIDgllL~(c0,~l• _-<_ IIDG IILo<CO,~• + r2 sup t~'(x)l sup 12'(x)[- II G liLy,a), 
X 3: 

and in virtue of the relation 

~(co) < e x p { C ( 1  + sup]a'(x)l)}~(As(co, x ) ) x  
we have 

supp(DrG)(As(x))c{l~[<--r'2}withr'2=r2exp{C(l+supla'(x)])} 

Hence, there exists a real C(r2) with 

i ](D,d)(As(co, x))a"(X~(co, x))(axX~)(co, x)l dr 
o 

<~ C(r2) [(0~X~)(co, x) ledr  p/2I{I~I < r l}  

<= C(r2)exp{C(1 +/()er~}t l/z, 

for all (s, co, x) s [0, t ] x  s x [ -- K, KJ  . 

Let  ~ e (0, 1). Then  the expression in the last line is less than 1 - 6 if t = t(r2) > 0 is 
small enough.  In this case we have 

1 + (D,G)(A~(CO, x))a (X~(co, x))O~X,(co, x)dr > 6, 
o 

for all (s, co, x) e [0, tJ x f2 x [ -  K, K ]  , 

i.e., G satisfies also (G.2) on the time interval [-0, t].  Of  course, this restriction of 
(G.2) to [-0, tJ does not  mat ter  if we consider the Skorohod  SDE (4.1) only for this 
time interval. So Theorem 4.4 provides a solution ()~) e 0 p >  1 LP([0, tJ, 1D 1. p) of 
the equat ion 

2,=d+ia(J~)dW~+ib(X,)dr a.e., s e [0, t] , 
o o 

which is unique in the class of all processes whose restriction to any bounded  ball 
A = ~ belongs to N~(A). 

Since G = G on Bri(O)( ~ {141 _-< r~}), for r'~ = ( I /C ) In  r~ - 1, ( J~)~  @,(Br~(0)) 
is a solution of the Skorohod  SDE (4.1) on B,.;(0) with initial value G. Hence, for 
a given bounded  ball A = B,(h) c f2 choose r]  > r + [hlr~([o, ~1): Then A c B~;(O), 
and ()~) is a solution of (4.1) on A and belongs to ~ ( A ) .  In order  to complete the 
proof  note  that  the uniqueness of the s o l u t i o n  (Xs)~t(A) o n  Br_3tsupda,(x)l(h) 
follows from Theorem 3.4. 
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6 Existence o f  a density o f  X, 

Finally, at the end of this section we assume again (G) in order to deduce a criterion 
for the absolute continuity of the solution Xs e ID 1' * of the Skorohod SDE (4.1) 
with respect to the Lebesgue measure for any s e [0, 11. For  this, we will use 
Theorem 7 of [3]: 

Proposition 4.14 I f  F e 11) 1'2 and ~1 o ]DrFlZdr > 0 a.e., then F has a density with 
respect to the Lebesgue measure. 

Now we can state: 

Proposition 4.15 Let a be a C3(R1)-function with bounded derivatives of the first 
three orders, b be C 2 (R 1)_functions with bounded derivatives of first and second order, 
assume (G) and let (X~) denote the solution of(4.1) presented in Theorem 4.2. Then,for 
any s e (0, 1), Xs has a density if 

(DrG) e Cl ( [O , s ] ) ,  DoG = - a(G),  

d D,G[~=o [ b + � 8 9  O. 
ds 

Here, [ . , .1  denotes the Lie brackets. 

Proof. Since X~ has the form 

X s =  Y~(G) oAt ,  s e [ 0 , 1 ] ,  

and P o [A, ] -  1 is equivalent to the Wiener measure P, the random variable X~ has 
a density if and only if Y~(G) has a density. So we apply Proposition 4.14 to Y~(G). 
For  this, note that Y~(G) e ID 1. , ,  and 

(Ox Y~)(G) I D,[Y~(G)] = (axY~)(G)D,G + a ( Y , ( G ) ) ~  {~<s} , re [0, I]. 
On the other hand, by the non-anticipative It6 formula we see that, for any x e R 1, 

(4.24) a(Y~(x))~Y~(x) -1 = a(x) + b + -~ aa', a (Y~(x))O~Yv(x)dv , 
0 

for all r e [0, 1], a.e. 

Since both sides are continuous relative to x, we can substitute G, and we obtain 

D,[Y,(G)] 

= (0~ Y~)(G){D,G + (a(G) + b + ~ aa', a (Y~(G))(a~ Y~)(G)dv)I{r ~ 4} �9 
0 

Hence, 

{ i l D r [ Y s ( G ) l l 2 d r = O } = {  ilDrGl2dr=O}s 

{ i l  i [  i ] ( 2 } n D,G+a(G)+ b + ~ a a ' , a  Y.(O))(axY~)(O)dv d r = 0  . 
0 
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On this set the mapping r ~ D,G has a modification which belongs to C ~([0, s]), 
takes the value - a ( G )  for r = 0, and its derivative (d/dr)D~G has the value 
- [b + �89 aa', a] (G) in r = 0. This provides the desired result. 

Of course, by the Taylor expansion of a(Ys(x))O~Y~(x) -1 computed by 
Kusuoka and Stroock in [4] one can improve condition (4.23) by the following 
requirement: With probability zero, (DsG) has the same Taylor expansion as 
- ( a ( ~ ( G ) ) ~ Y s ( G ) - ~ ) .  However, the price for such a statement consists in the 

more restrictive assumption that a, b e C~ ~) have bounded derivatives of all 
orders and the initial value G is a smooth random variable. 

Appendix 

We present the proof of Proposition 3.3. 

Proof. Existence of  a solution. Due to Proposition 3.2 there is a process (Xs)e 
Li([0,  t] x f2) with Xs e Ll(~2), (arXrlto, sl(r)) e Dom ~ and 

5(aXIto, sl) = Xs - Xo - i brX, dr a.e., s ~ [0, t] . 
0 

Then it follows from Lemma 2.4 that the restriction (J~s) of (Xs) to A is in 
Li([0, t ] x  A), Xs ~ LI(A) and 

6A(~J~Ito, 21) = )~s - J~o - i b'~)~rdr a.e. on A, s e [0, t] , 
O 

i.e., (Xs) is a solution of (3.4). 
The proof of the uniqueness requires the following auxiliary statements (cf. 

Proposition 2.1 and Lemma 3.1 in [1]): 

Lemma A.1 Let  (as) e L~176 t], D 1, oo). Then there exists a sequence of  smooth step 
processes 

f in= Fn, kI[(k-1)2-~,k2-~)(S , Fn, k e 5  e , k =  1 , 2 , . . .  ,2 n, n =  1 , 2 , 3 , . . .  
k = l  

with the following properties: 

O) (a'~) converges to (as) in L2([O, t], lDi'2), and 

(ii) [t a" IIL~<E0,,]• ------ II a II~t[0,~] x~), 
llDo'nllL~(E0,~n=• < 1 + IIDoI!~r215 n = 1, 2, 3 . . .  

For a given process (as)eL~ t], ID l '~)  fix such a sequence ((aT)), and 
denote by A~ : f2 ~ O the transformation associated to (o'~) by (3.2). Then we can 
state: 

Lemma A.2 For any F ~ 6~ we have, with the above notations: 

(i) (F(A~)) e L~~ t], ID i' o~) is such that F(A~) e 5~ all s ~ [0, t]. 
(ii) The mapping r ~ Ds[ F (A~) ] is continuous for a.e. (s, co) e [0, t] x f2, and we can 

se t  

Ds[F(A~)] = lira D~[F(A~)] , s e [0, t ] ,  
r ~ s  
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The process (D~[F(A~)]) belongs to L~~ t], ID 1' o~), and 

(A.1) [I D~[F(A'~)] IIL~(a) 

< IIDF IlL~(t0,~l• exp{2(1 + IIDo-IIL~r215 s ~ I-0, t ] .  

(iii) The mapping r ~-* F(A~) is a.e. absolutely continuous with respect to the 
Lebesgue measure 

d 
(A.2) ds F (As") = - a~. D~ [F (A~)], a.e, 

Finally, under the above assumptions we recall the following fact of the proof of 
Theorem 3.1 [1]: 

Lemma A.3. For any F e 5 e, it holds 

F(A,) = L 2 ( O )  - lim F(A"~), s ~ [0, t ] .  
n --~ O0 

Now we are able to show the uniqueness of the solution of (3.4). For this we use 
the notations introduced above: 

Proof of Proposition 3.3. Uniqueness. Fix an arbitrary e > 0, and any C~(R1) - 
function ~ which has all its values between 0 and 1, takes the value 1 in the interval 
[ - ( r - g o ( t ) ) + e , ( r - g o ( t ) ) - e ]  and has its support inside [ - ( r - g o ( t ) )  
+(~/2), ( r -go ( t ) ) - (5 /2 ) ] .  Set H = tp(ll W(0h)]t) and let F eSC Then, for any 
s ~ [0, t], and any natural n the random variable HF(A~) belongs to D t' ~176 and 
(3.4) provides 

A A 

+!(igr2,HF(A:)dr)dP. 
By virtue of Lemma A.2 we have 

F(A'~) = F -- i a'~D~[F(A'~)] dr,  
0 

and, for r < s, 

Dr [HF (As")] = Dr [HF(AT)] - i D, [a~HD~ IF (A~)] ] d r .  
r 

Thus, the right-hand side of (A.3) takes the form 

(A .4 )  !GHFdP+!(iff~J~'D'[HF(A"~)]dr)dP+~(ib'X'HF(A'])dr)dPA\o 

- i { ~ o  (JHa:D~[F(A~)]dP + Ao~ i 6,)~D,[HG:D~[F(A:)]]drdP 

+ I i g,e,Ha:Do[F(A~)]drdP}dv.  
A O  
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Applying (3.4) to the random variable Hcr~D~[F(A~)] e lDI'~176 we see that 
~.A (~o X,a~HD~ IF (Am)] d r )dP  is equal to the integral in the last two lines of (A.4), 
1.e., 

!XsHF(A~)dP-!GHFdP-!(i~)~X~HF(A~)dr)dP 

= - a~)X~D~[HF(Ar)] dr dP 

+~(ia~X~F(A~)D~Hdr) dP. 

Since F s ~ is bounded, Lemma A.3 allows to apply the dominating convergence 
theorem to the left-hand side of this equation. So we see that the limit of the 
left-hand side equals 

~ XsHF(A~)dP - ~ GHFdP - ! ( i b~X~HF(A~)dr)dP . 
A A 

Taking into account that (5~) coincides on A with (am) we derive from Lemmata 
A.l(ii) and A.2(ii) that the assumptions required for the dominating convergence 
theorem are satisfied for the first integral on the right-hand side, too. Hence 
Lemma A.1 (i) implies that 

lim!(i(5~-a~)X~D~[HF(A~)]dr)dP=O. 
tl---~ ~o 

The same arguments provide 

Jim!(ia~ff~F(A~)DrHdr)dP=!(iS,X~F(A,)D,Hdr)dP. 

Consequently, 

(1.5) a~ ;~HF(As)dP = A ~ GHFdP + ! o 

+~(iS,)~F(A~)D,Hdr) dP. 
sA. 

Since supp H c B~_~(o(h ) and the transformation Asc0 = e ) -  ~o a~(A~,~co)dr 
maps Br-~o(t)(h) into A, a Girsanov transformation in (A.5) yields: 

(1.6) ~ X~(TAH(TAF~dP = ~ dHFdP 
A A 

+ A,,o~(iff~(T~)X~(T')H(T')F 2'~dr)  dP 

+ A,,o~(iS*(T~)ff~'(T')(D~H)(T*)~Fdr) dP" 
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(A.7) 

Here T~ denotes the inverse t ransformat ion to As, and .of, as is the density of As. All 
the integrals 

I.,~s(Ts)~slde = ~ IXsldP, 
A ,4 

and 

are finite, and H ~ ID 1, o~ (A). Hence, (A.6) does not  only hold for all F E 6 e, but  also 
for all F E L ~ (f2). Let now F be any element of L ~~ (f2) with suppor t  in B~_ 2~t)-~(h). 
In  this ball H(T~) takes only the value 1, and the local proper ty  of D, 

D~H = 0 a.e. on { n  = 1}( = B~_~0~o_~(h)) 
implies 

(D~H)(T~) = 0 a.e. on Br-2q,(t)-~(h) �9 

Hence, we can conclude from (A.5) and (A.6) that, for any s ~ [0, t], 

Xs(Ts)~s = G + i ff~(T~)X~( T~)~rdr a.e. o n  B ~ _ 2 ~ o _ ~ ( h )  , 
o 

i.e., }. 
This shows that  the process (J~s(T~)) is unique in Br-2q,(t)-~(h), and so is (Xs) in 
Br_3~,(o_~(h). Since e > 0 is arbitrary, (Xs) must  be unique in the ball B,-3~,(t)(h), 
too. This completes the proof. 
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