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Summary. The self-similarity of sets (measures) is often defined in a constructive 
way. In the present paper it will be shown that the random recursive construction 
model of Falconer, Graf  and Mauldin/Williams for (statistically) self-similar sets 
may be generalized to the noncompact  case. We define a sequence of random 
finite measures, which converges almost surely to a self-similar random limit 
measure. Under  certain conditions on the generating Lipschitz maps we deter- 
mine the carrying dimension of the limit measure. 

Preface 

This paper was mainly inspired by the ideas of my friend and teacher Ulrich 
Z/ihle (14.1.1950-1.12.1989), who died too early. With him we lost a sincere 
man and excellent mathematician. In the last years he worked intensively on 
the field of fractals. He developed a general approach for describing self-affine 
random measures, and founded the bases for wide application of this nice theory. 
This paper would not be possible without the good cooperation with him. 

0 Introduction 

Fractals are sets with a highly irregular structure, for instance all sets of non- 
integer Hausdorff  dimension. A general account of fractals was given by Mandel- 
brot [M]. In many cases the Hausdorff  dimension is determined by the parame- 
ters of self-similarity. A theory of strictly self-similar compact sets has been 
developed by Hutchinson [HI. He showed that for every finite set of contractions 
$1 . . . . .  SN acting on R e there is a unique invariant non-empty compact set 

N 

K with K =  U Si K. Moreover, if the maps $1 . . . . .  SN are similarities he gave 
i = l  

an open set condition under which the Hausdorff  dimension of K is equal 
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N 

to a, where ~ is the unique number satisfying ~ (Lip S y =  1. Later on, Falconer 
i = I  

[F2], Graf [G] and Mauldin and Williams [MW] independently investigated 
random compact fractal sets by randomizing each step in Hutchinson's construc- 
tion. They showed that Hutchinson's result has a probabilistic counterpart. 

The aim of the present paper is to generalize the random recursive construc- 
tion model of Falconer, Graf and Mauldin and Williams (FGMW-model) to 
the non-compact case. For this it is useful to translate the FGMW-model  in 
a measure-theoretical language. We can do this in the following way (cf. Sect. 1). 
Let p be a probability distribution on the set of all N-tuples of contractions 
acting on IR d. First, we choose an N-tuple ($1, ..., SN) of random contractions 
according to #, and arbitrary random finite initial measures ~1, --., 0N, indepen- 
dent in ie{ i ,  . . . ,  N} ,  and independent of (S~ . . . .  , SN), and set 

N 

q~l = ~, (Lip S,)~O/oS:~ 1, 
/ = 1  

where Lip(Si) are the Lipschitz constants of Si and c~ is the unique number 
N 

with IE ~, (LipSi)~=l. Now we choose, for every ie{1, . . . ,N},  an N-tuple 
i = 1  

(Si,1, ..., St,N) w.r.t. #, and random finite measures ~,1 , - - - ,  ~,k/,N, such that 
{(S/,1, . . . ,  S/,N), (S t ,  . . . ,  SN), 0~, O~.j" i, j e { 1  . . . . .  N}} is a family of independent 
random elements, and set 

N 

q~2 = y '  (Lip S/)~(Lip S~,j)~O~,joS~.j t oSi - t .  
i , j = l  

We continue this process and obtain a sequence of random finite measures 
N 

~b,= ~ (Lip S~l)~ ... (Lip S/~ ..... ~,)~0~, ..... ~oS~1...,~o . . . .  S~ 1, n = l ,  2 . . . . .  
i l  . . . . .  i . =  l 

In Sect. 2 we investigate under which conditions the sequence (q~,) converges 
almost surely to a random finite measure ~. Moreover, we show that the limit 
measure is independent of the choice of the startmeasures. 

In Sect. 3 we show tha the limit measure r has an analogous self-similarity 
property like the limit set in the FGMW-model,  that means, if r are copies 

N 

of q~, independent of q~ and ($1, . . . ,  SN), then the measure ~ (Lip S/)~OioS71 
has the same distribution as q~. i= 1 

In Sect. 4 the first two moment measures of ~b are investigated. 
The carrying dimension of the limit measure q~ will be computed in Sect. 5. 

Thorem 5.8 gives conditions under which the carrying dimension of r equals 
d* =min{d,  ~} a.s. 

Finally, in Sect. 6 we give some examples satisfying the conditions of Theo- 
rem 5.8. In particular, we show that in the deterministric case these conditions 
are implied by Hutchinson's open set condition. Moreover, we get in the compact 
case a class of examples where the open set condition in the FGMW-model  
is not satisfied, but the dimensions do not change. 
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Throuhout  the paper we use the following notations 
2, ...} 

[-IR d, ~d] - d-dimensional euclidean space with Borel o.-algebra ~d and eu- 
clidean norm ]" 1. 

~ d  -- Lebesgue measure on N d 
B(x, r) - the closed ball in ~ with centre x and radius r 
M = M(IR d) - the family of all Radon measures on [IR a, N~] 
m = m O R  d) - the usual o.-algebra on M (see [K]) 
Cb = Cb(IR d) - the set of all continuous bounded functions f:  p d ~  [0, or) 
Cc = Cc0R d) - the set of all continuous functions f:  lRd~ [0, oo) with compact 

support 
~=A~ a) - the set of all Lipschitz functions f:  IRaqI0 ,  oo) with compact 

support 
II f II - the supremum norm of the func t ionf  

(p(f )=~ f(x)~o(dx),  (p~M f: lRd~[0 ,  oo) measurable, in particular ~0(l'l)=S 
Ixl ~o(dx) 

(O, i f ,  IP) - a complete probability space, over which all random variables 
will be defined 

IEX - the expectation of the random variable X. 

1 M o d e l  

In this section we describe the underlying construction model of certain 
sequences of random finite measures which should converge to a self-similar 
measure with fractal carrying dimension. This construction is an analogue to 
the FGMW-model  (cf. [PZ]) for the noncompact  case, that means, in our case 
the measures generally do not have compact support. We first introduce the 
following notations. Let N be a positive integer and D, = {1, ..., N} n. 

Furthermore denote by D = U Dn the family of all finite sequences o. 
n = 0  

=(o-1 . . . .  , o.,) (including 0) in {1, ..., N}, by Io-I = n  the length of O.~Dn, by ~ln 
=(271 . . . .  ' Z n A  Ivl) the curtailment for r e D  and by a * ' / 7 = ( O - 1 ,  . . . ,  o-]a], "gl, " " ,  "Clvl) 
the juxtaposition of o. and z. 

f, _lS x -  S y[ } For  a map S: IRd---,IR d let Lip (S) = sup ( �9 x, y e lRdx :#y  be the 

Lipschitz constant for S which may be infinit. 
S is called a contraction if Lip(S)< 1. By Con(N e) we denote the set of 

all contractions of IR d . Con(lR a) is a topological space; it is equipped with 
the topology of pointwise convergence. A map S: N a d I R  d is a similarity if 
I S x - S y [ = L i p ( S ) l x - y ]  for all x, yMR d. 

Let /~ be the distribution of a random vector (S 1 . . . .  , SN) of contracting 
maps, i.e., a probability measure on the Borel a-algebra of ConORd) N. 

N 

1.1. Lemma (IF2],  [G] 6.1.) (i) S ~ Lip(Si)~#(d(S1 . . . .  , SN)) is a strongly mono- 
i = l  

tone decreasing function in fl > O. 
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(ii) There exists  a unique c~ > 0 with 
N 

Z Lip(S~)~#(d(Sa . . . . .  SN))=I.  [] 
~=a 

1.2. We now define a sequence of random measures as follows. For  every a e D  we 
choose an N-tuple (S~, 1, ..-, S~,N) of random contractions distributed according 
to # and a random finite measure ~ .  We suppose that {(S~, 1 . . . . .  S~,u), ~ :  a~D}  
is a family of independent random elements. For  a e D  denote 

p~ = Lip (S~), 
T=S~,I loS~I  2 . . . . .  S~ and 

1~= I ]  P~I~- 
i = l  

The random measures qS, n = I, 2, ..., which form our model, are defined through 

q~,= Z I~0~~ -a n = l ,  2 , . . . ,  
a~Dn 

where e is the unique number from 1.1. (ii). 
In the next section we investigate under which (sufficient) conditions a ran- 

dom finite limit measure for the sequence (qS,) exists. 

2 Convergence 

For random variables i t ,  ..., ~ denote by cr(~ 1, ..., 4,) the generated o--algebra. 

( 0 )  ( L e t ~ , = o -  S~"ce  Di a n d ~ , = o -  ~b~,S~:zE U Di n = l ,  2, .... For  shortness 
i = 1  i = 1  

we write S,, ,  for Y' 1~ n = 1, 2 . . . . .  
aeDn 

Throughout  the paper we suppsoe the following. 

2.1. Conditions. (i) c~>0 
(ii) sup IES~,, < oo 

n 

(iii) 1EISi(0)[ < ~ for i=  1 . . . .  , N (This implies lE[Si(x)l < oo.) 
(iv) There exists a constant K > 0  such that 1E~,~(I'[)<K for all aeD,  and for 
any a e D ,  ~ ( I R  d) = 1 a.s. 

2.2. Lemma ([PZ] 3.1.) S~,, forms a martingale w.r.t, the f i l tration IF= ( ~ ) ,  = 1, 2 .... 
and therefore there exists a random variable Z such that 

(i) S~,, ~ Z a.s. for  n ~ oo 
(ii) ]EZ = 1 

(iii) IEZ 2 < oo. [] 

2.3. Corollary From 1.2. and 2.2. it fol lows immediately that O,(IR d) converges 
a.s. to Z. [] 
The next lemma is a reformulation of the La-convergence theorem for 
L2-bounded matingales. 

2.4. Lemma (JR] 8.12) Let  31, ~2 . . . .  be a sequence o f  quadratic integrable ran- 
dom elements in [IR, ~3  and ~ * = ~ l - I E ~ l ,  ~ * = ~ , - I E [ ~ , [ a ( ~ l  . . . .  , ~ - l ) ]  n=2 ,  
3~ . . . .  
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oo 
Then the sum L ~* converges a.s. /f  ~ Var {* is finite. [] 

, ~ = 1  k = l  

The aim of this section is to prove the almost sure convergence of the 
sequence (~b,) (see 1,2.) w.r.t, the weak topology on M. A sequence (~o,) of finite 

w I~ --+ oo 

measures converges weakly to a measure ~o~M(~o, ,(p) iff (p,(f) >~o(f) 

for all f e  Cb(lRd). Analogously, a sequence (~o,) of local finite measures converges 
v n ~ o o  

vaguely to a measure ~oeM(~o, ,qo) iff (p,(f) ,q~(f) for all feCc(lR~). For 

details see I-K]. There the following is proved. 

2.5. Lemma ([K], 15.7.6.) Let q), ~o 1, ~o2, . . . ~M and denote by Na the ring of 
all bounded Borel sets of N d. Then the following statements are aquivalent. 

lo 

(i) ~o. ,~o 

(ii) % ,4oand inf l imsup4o.(W)=O 
B e ~  a n 

v 
(iii) % > ~o and (p, (IR e) ~ ~o (IRa). [] 

Using the tightness of ~ O R  a) in C(Nd), the triangle inequality and 2.5 we 
obtain a criterion for weak convergence. 

2.6. Lemma A sequence (q),) from M converges weakly to a measure ~o~M iff 
~o , ( f ) -+9( f ) fo r  a l l f e ~  and inf l imsup ~0,(BC)=0. []  

B e ~  d n 

The next lemma is the key for proving the convergence. 

2.7. Lemma For any function f s s the sequence (~bn(f)),= 1, 2, ...forms almost sure- 
ly a Cauchy sequence. 

Proof L e t f e ~  with Irfl] <C.  By 1.2. we have a.s. for n>m:  

I ( ~ . ( f ) -  (am(f)[ 
=l ~ l~O~(foT~)-  ~ l~O,(foTOI 

a ~ D n  ~ D  m 

) 
= J ~ P], iO~,i( f~ - P~,i~P~(f~ 

a j i i = 1  

+ ~, P; , i~ko( f~176 . 
i = 1  

Defining 

and 

we obtain 

) {j= ~ 1~ ~ . ( fo  T~). p~, , - -  1 
a e D j  i 

a ~ D j +  1 

n - 1  

[~b. (f)  - ~bm (f)l = j~,~ (V5 + {~)" 
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(~j + ~) Thus we see that (~b.(f)) forms a.s. a Cauchy sequence if ~ is a.s. 
J =1 

finite. Using the triangle inequality and the symmetry of ~j it is enough to 
show that 

(a) ~ ]t/jl < oe a.s. and 
j = l  

(b) ~ ~ <  oc a.s. 
j = l  

For (a) it suffices to show that E ~ )bl < oo. Indeed, using the monotone conver- 
gence theorem we get j= 1 

oo 

IE~ Irbl-- ~ lEIrbl 
j = l  )=1 

< 113 ~, 1~ ~ p~,ilO~,i(for~,,)-f(T~O)+f(T~O)-~p~(for~)] 
j =  1 ,:rf~Dj i= 1 

< E ~, 1~ ~ p;,i(~lf(To,,x)--f(T~O) I O~,,(dx)+~lf(r~o)l OAdx)) 
j = l  a e D j  i=1  

<Lip(f )  E ~ 1 ~+1 ~ P~,~(0~,~(I 1o&,3+~'~(l'l)) 
j = i  aeDj i = l  

<Lip(f) ~ 1EI~ +~ ~ (IE0~**(I'I)+E~,~(I-I)+EIS~**(0)I). 
j =  1 a e D j  i = 1 

From 2.1. (iii) and (iv) it follows that there exists a constant/72 such that 

j ~ l  j = l  a e D j  

= / ~  ~ lEp~+l i<oo (by 1.1. (i)). 
j = l  \ i = 1  

For (b) we will use 2.4. By definition of (~/)~=1.2 .... it is clear that 
a(~1, ..., ~ _ 1 ) c ~ .  Moreover, we get as a corollary of the required indepen- 
dence 

E~j= ~ ]EI:~o(f~ 
a e D j  i= 

and 

=IE 1~ O~(fo T~) IE ~ 1 a(~ P a . i - -  1, " " ,  
a~Dn i 

-~-0. 

~.- 0] 



Random recursive construction of self-similar measures 503 

According to 2.4. it suffices to show that ~ Var ~i<oo. Indeed, using again 
j = l  

the independence and 2.1. (ii) and (iii) we infer 

0o 

j = l  j=~ 

= l~a r o P r  
.= j 1 cgiDj i 

= Z 7;)) 
j =  1 ~eDj i 

) ) 
j =  1 a , ~ D j  i k 1 

= < N 2 ' C  ~--1 ~ + 0  
j=  i 

<0o. [] 

We now turn to the main result of this section. 

2.8. Theorem (i) The sequence (~b,),= 1,2 .... converges almost surely to a random 
finite measure ~ with respect to the weak topology on M. 
(ii) I f  there are two families {0~ : l e D }  and { ~  : l e D }  which satisfy 2.1. (iv), 
then the corresponding limit measures 0 and ~ are a.s. equal. 

Proof (i) First we will show that (~b,) converges a.s. to a random finite measure 
q5 w.r.t, the vague topology. 

Let E ~  be a countable and dense subset of 5~. We define f2o={Oef2: 
( C ~ n ( O ) ( f ) ) n = l ,  2 .... is a Cauchy sequence for allfeE~o}. In view of 2.7. we have 
lP(f20)= 1. Using the completeness of the real numbers, we define for any goes2 o 
a linear functional 1 (m): E% --. [-0, oe) by 1 (o~)(f).-=lim (o,(m)(f) , fsE.~ c. 

These functionals are continuous as a consequence of 2.1. (iii) and 2.2. because 

I1(o))(f)1 
II l(co)ll = sup 

s~E~ Ilfll 

= sup lim ~b.(co)(f) 
s~.~o .-~o Ilfll 

< lim q), (co) OR e) 
n - + o o  

=Z(co)< oe for P-a.e. co. 

Thus we can extend these functionals to linear and continuous functionals 1(o~): 
n ---~ oo 

Cc~[0 ,  oe) and we obtain lP(~b,(f) , l ( f )  for all f e C c ) = l .  Since the map 

co~--~l(co) is measurable and following [Fe] 2.5,2. we get a random measure 
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t~ 
r putting r  l ( f ) ,  such that P(~b, , r  1. Using 2.5. it remains to show 

that inf lira sup q~,(B 0 =0  a.s. This condition is easy to verify, since 
BsN a n 

r m)0 < 1 
=D'/ 

1 
m 

___1 
m 

<l-- 
~ m  

~lxl r 

1~ ~IT~I ~,o(d~) 
o'~Dn 

[ ~ 1U~,AI.I)+ ~ 1DIT~01] 
ffeDn aeDn 

( ~  i y '  ~o(I.t)+ Y~ ~+~ 
j=  1 ffeDj ~ D j  

The right hand side does not depend on n and tends a.s. to zero for m-~ o% 

because i ( ~  l~+tO~(l'])+ ~ 1~+1 _~ l~lj_tlS~O]) is a.s. finite, which follows as 
j=  1 aeDj aeDj 

above from 1.1. and 2.1. (iii) and (iv). Thus we obtain lira lim sup r m)~)=O 
a.s. and (i) is proved, m ~ o~ . 

(ii) Let { ~ :  o-ED} and { ~  : o-eD} be two families of independent random 
finite measures which satisfy 2.1. (iv). Denote r  ~ I~O~oT~ -1 and qS. 

a~D~ 

= ~ 1~ tp~o T~ -1 . From (i) we obtain two random finite measures ~b and 
o'eDn 

(with mass Z) such that ~b, w , ~b a.s. and $,  w , ~; a.s. Now we want to show 

that r and ~ are almost surely equal. For this, by 2.5. and 2.6. it is sufficient 
to show that Iq~,,(f)-~,(f)l tends to zero a.s. for all f z ~  as n ~ o o .  Indeed, 
using the triangle inequality and 2.1. (iv) we have a.s. f o r f e ~  

lr 
< ~ l~l~'~(f~176 

aEDn 

< ~ l~(l~(f(T~x)-f(T~ 0)) ~,o(dx)l + I~(f(T~0)--f(T~x)) ~(dx) l )  
~yeDn 

< L i p ( f )  Z I] +~(~/'o(7"I)+~(1"])) 
aeDn 

=< Lip(f)  2KS~+ t,,. 

The right hand side tends to zero if i S:+ ~,, is a.s. finite. The finiteness follows 

n=l i 
from 1.1. and the monotone convergence theorem, because lie S~+~,, 

n=i 
= p~+~ < oo. This completes the proof. [] 

n=l 

A property which carries over from the start measures to the limit measure 
is the following. 
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2.9. Lemma The limit measure (a has the property 

lE~(l'l)< ~. 

Proof. Using 2.8. and 2.1. (iii) and (iv) we get 

lEqS(l" l)= lim lE(~b (1~,: lyl :<c~(')]" [)) 
c ---> co 

= lim lim lE(qS,(l~y:lyl<~(')l'l) ) 
c --* oo n ~ c t ~  

< lim IEr 
n ~ o o  

- - l im lE ~ l~lr~x--r~o+r~o[O~(dx) 
n ~ oo a ~ D n  

__<0+ lira lE ~ I~IT~OI 
n ~ 09 a f fDn  

<lim ~ ~ ~ + ~  lEl&01 = xt-~ •  1 
n ~ o o  j = l  a E D j  

_-< const ~ p~ + 1 
j = l  

< ~ .  [] 

2.10. Remarks (i) All results from this section carry over without difficulties 
from IR d to any complete separable metric space. 

It is also possible to take more general masses. That means, if we replace 

the masses 1] in 1.2. by I:I p~fi, where the p~, a~D, are [-0,1)-valued random 
i = l  N 

variables with the same independence conditions as in 1.2. and lE ~ p~,i = 1, 
[ [a l  \ 2  i =  1 

then Theorem 2.8 remains valid if sup[lE{ ~ I-[ P~li) <oo. But in view of 
n \ ~  E l ) n  " :  i=l 

the next sections we restrict to the canonical masses. 
(ii) The condition ~b,(Na)= 1 a.s. for a~D is not necessary. It may be replaced 
by the following conditions. For any a~Dn and any i=  1 . . .N, lE[O~,i(Nd)l~J 
=O~(IR a) holds and there exists a constant K such that IE~b~0Re)<K for all 
aED. 
(iii) If we suppose that the family {~a : a~D} consist, of identically distributed 
random finite meaures then 2.1. (iv) can be replaced by the conditions 
lE~bo (IRa) 2 < ~ and lE~bo(] "])< ~ .  

3 Self similarity 

In this section we will show that the limit measure ~b (more exactly, its distribu- 
tion) has an analogous self-similarity pro.perty as the limit set in the F G M W  
model (cf. [G] 4). We denote by ~ (M)  the set of all Borel probability measures 
on [M, gJ~] and by P, the distribution law of the limit measure q~. 
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3.1. Definition Let U be a Borel probability measure on Con(lRd) u. A probability 
measure PE~(M) is called u-self-similar (U-s.s.) if for any measurable function 
f: M-*  [0, oo) 

P d  ~ i ~f(~) ( ~ )=  1 Pi (P ~ pN(d(~ 01, . .- ,  (PN))u(d(S1 , - . . ,  SN)), 
i= 

where pN denotes the product measure of P on [M, 9"J~l N. 

3.2. We define the map T~ : .~ (M) -~ ~ (M) by 

jf(cp)(T~Q)(d~o)= p~ cfloS71 QN(d(qr . . . . .  ~oN))u(d(S1, ..., SN)) 
i= 

for f: M ~  [0, oe) measurable and QeN(M). 

3.3. In this notation P e ~ ( M )  is U-s.s. if and only if TuP=P. 

3.4. Theorem Let U be a Borel probability measure on Con(~d) N. Then Pu is 
u-self-similar. Moreover, for any QeN(M) with ~o(l'l)Q(dg)<oo the sequence 
TunQ converges to Pu w.r.t, the weak topology. 

With the help of 2.9. we infer the following uniqueness. 

3.5. Corollary Pu is the unique U-S.S. probability measure in the class of measures 
Q ~ ( M )  satisfying ~o(l'l) Q ( d p ) <  o9. []  

Proof of 3.4. As a corollary of 2.8 (ii) we may assume that the start measures 
{(a~ : a~D} in the construction of Pu are independent and identically disributed 
according to a probability measure Po ~ ~ (M) with j cp ([. ]) Po (d cp) < ~ .  We denote 
by P,=P,(Po) the distribution of qS, (cf. 1.2.) and by #D the product measure 
of U. First we will show that Pu is U-S.S., i.e., that T~ Pu=P~. Using 1.2. and 
2.8. we obtain for any funct ionfe  Cc(IR a) 

Jf(q~) P , (do )=  lim jf(cp)/,+1 (d ~o) 
n --* oo 

= lim ~ f (  Y' 1;(,or . . . .  , Sr162 
n --+ oo 

( ~ E D n  + 1 

~ --1 = P~ Z pPi,~ll"'"'P,,~(qh,o~ ~ .. . .  Si-,~ll) PoD(d(cP.)o~.) 
i a e D n  

�9 # ' ( d ( S z * * *  1, . . . ,  S z ,  ~ , N ) ~ o )  u(d(Sl,  ..., SN)). 
Because of the boundedness of the integrand and the almost sure convergence 
we obtain. 

~f (~o) ~(d~o) 

=~lim~f(f=lp~cpioS:~l)P~N(d(@,...,cpN))#(d(S1 . . . .  ,SN)) 
n oo i 

= P i  (P i . . . . . .  , 

i 

= ~f(cp)(T, P~)(d 9). 

Thus we have T, P, = Pu- 
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It remains to show that Tu" Q - - ~  P, for any Q e~@(M) with ~ q)(J. F) Q (d (p)< co. 
Using induction and 2.8. it is easy to see that for any continuous bounded 
function f:  M --* [0, oo) 

lim ~f (cp)(T2Q)(dq~) 
n - + o o  

= J i m  SSf ( • 1~, (pOo T~ -1) Q~ #D(d(S,,. ~ . . . . .  S~.N)~D) 
~ D n  

= lim ~f(q~) P,(Q) (d~o) 
n ~ o o  

-- Sf(~o) Pu(d (p), and hence the theorem is proved. [] 

3.6. Remarks (i) In the proof of the preceding theorem we used the same tech- 
niques as in I-G] 4. 
(ii) P, is #-s.s., that means, if (~U)~D, are copies of ~b, independent of q5 and 
(T~)~D,, then the random measures ~ ~ ~ ~"-1 �9 ~ ~p o ~ , n =  1, 2, ..., have the same 
distribution as ~b. ~ v ,  
(iii) Our /~-self-similarity is a stochastic version of Hutchinsons self-similarity 
(cf. 6.1.) and generalizes the stochastic version of Graf (cf. 6.2.) to the noncompact 
case. If Nd is replaced by a compact subset then Pu is the unique #-self-similar 
distribution in ~ (M)  without further conditions. 
(iv) The self-similarity property also carries over to the case of general masses 
(cf. 2.10. (i)); replacing p~ by Pi. In particular, the hyperbolic iterated function 
system on a compact subset K C p d, which generated a unique invariant measure 
/~ (see [GI HI) is contained in our model. (This is easy to see if we take # 

N 
=6(S ...... S~) and pi=6,,~ with mi>0, i=  1, ..., N, and y '  mi= 1.) 

/ = 1  

4 M o m e n t  measures  

For further purposes it is necessary to know something about the structure 
of the first two moment measures of the limit measure q~. 

The intensity measure A ,  of a random measure ~ on Nd is defined on N d 
by Ao(B)=IEO(B), B e N  d. The second order moment measure of ~ is the measure 
A~02) on ]R~ |  d defined by A~,Z)(.)=lE(~ x ~)(.). For details see [K]. 

Intensity measures 

For the intensity measures A,, =As ,  we can prove the following. 

4.1. Theorem I f  the conditions 2.1.(ii)-(iv) are satisfied, there exists a finite mea- 
sure A u on OR d, ~d] with 

w 

(i) A, , A u 
(ii) A,(-)=IEqS(.), Au(R d) = 1 

(iii) A u does not depend on the choice of the startmeasures. 
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Proof (iii) follows immediately from 2.8.(ii). (i) will be proved in an analogous 
way as in 2.8.0). 

We first show that (A,(f)), = 1,2 .... forms a Cauchy sequence for fss  Similar- 
ly as in 2.8.(i) we have for n>m 

]A,(f)-A,,(f)l  

1~ ~ P~,i[O**i(fv o T,,i)_O~(f o T,) ] 
j = m  aeDj  i = 1  

+ ~ p~,~b,~(foT~)-t~(foT~) 
i = 1  

n - - 1  

= ~ ~ El:ltP,(f~176 
j = m  eraDj+ 1 

+ ~ ~, lEl:q/~(fo T~)E p~,~-" 1 
j = m  ~ D j  i 

. - 1  

< ~ ~ 1El~lq/~(f~176 
j = m  aeDj+ 1 

n - 1  N 

< L i p ( f )  ~ ~ IEI~ +1 Y' (E~,,,(I'I)+E~(I-I)+EIS,,~OI) 
j = m  aeDj  i = 1 

< const. ~ p~ + 1 
j=ra i 

Using 1.1. we get that [A,(f)-Am(f)l tends to zero for n, m--+ oo and therefore 
(A,(f)) forms a Cauchy sequence for f~s We now define a linear functional 
1: ~ ~ [0, oo) by l ( f ) =  lira A,(f),fEs176 This functional is continuous because 

s 11 (f)l < ,-+ 00 
[I 1 [I = uPc i ~ - =  1. Thus we can extend 1 to a linear continuous functional 

f 
1 on Cc and get a finite measure A,  on [IR d, Ne] with Au( f )=l ( f ) , f~C ~ (cf. 

v 

e.g. [Fe] 2.5.2). By construction we have An ,Au. 
For  the weak convergence by 2.5. it is sufficient to show that 

lim lim sup A,(B(O, my)= 0. This condition is satisfied because 
n ~ c o  n ~ c o  

An (B (0, m) c) <- 1 m A, (1-[) 

= l l E ~ [ x [  r  
m 

1 
=<-- const. (cf. 2.8.i). 

m 

Again by 2.5. we obtain Au(IRa)= lim An(N~d)= 1. For (ii) it remains to show 
that Au(-)=tEqS(.). "-~ ~ 
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This is an immediate consequence from the uniform boundedness of the 
second order moment measures. We have supA~2)(NexIRe)=supE~b,(]Rd) 2 
=sup  ES~, ,<  ~ .  []  , , 

n 

Like for the limit measure we have a self-similarity property for its intensity 
measure Au. 

4.2. Theorem Let it be a Borel probability measure on Con(]Rd) u. Then A u is 
the unique measure q~ in M with 

(i) ~o(Rd)= 1, 
(ii) ~0 (]. [) < m, and 

N 

(iii) cp= ~ ]Ep~(~ooSF1). 
i=1 

Proof Obviously, A u has the properties (i)-(iii), since (i) follows from 4.1.(ii), 
(ii) from 2.9., and (iii) from 3.4.(i). If we take a measure q~eM which satisfies 
(i)-(iii) and choose ~ , =  ~o, a~wD, then using (iii) we have A , =  ~p for n =  1, 2, .... 
From 4.1. we know that A, ~A u and thus we obtain ~o = A  u. [] 

Second order moment measures 

The second order moment measure of the limit measure q~ plays an important 
role for dimension estimations (see 5.6.). 

For shortness we denote A~2 ), n =  1, 2, and A(2) aeD, by A(, 2) and A~ ), 
respectively. Recall that A~Z)(B1 x Bz)=Ec~,(Bx)(~,(Bz) for B1, B 2 6 ~  d. We 
define measures A~, n = l ,  2, ..., ~sD, on [-iR e, Nd] by A~(B)=SA~,(B)A~(dx), 
B e N  d, where A, ~ is the intensity measure of ~b, starting with ~ = ~ ,  x e N  d. 
That means A, ~ is the intensity measure of ~ 1~ 1 ~ . ~  o T~-1 

z~Dn 

4.3. Lemma For any measurable bounded function f from IRa• ]R d into [0, ~ )  
we get 

Sf(x, y) A<.2)(d (x, y)) 

= IE ~ 1~ ~ ~ p~,~p~,jI~f(T~,~x. T~ , jy )A ._k(dx)A~_k(dy  
k = l  a e D k - 1  i , j=  l 

i # j  

+E Z 
r n 

Proof We first assume that f =  1B1 • ~2 with B1, B2 E ~  d. In this case we have 

A(.2)(Bx x B: )=]E ~' l~(~h~o T.-~)(B~) 1~(~o T~-~)(B:) 
~,z~Dn 

+ E  2 12~(~ ~ T~- 1)(Bm)(~/ao T21)(Bz). 
a~Dn 
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We denote the two parts of the sum by S 1 and $2. Using properties of the 
conditional expectation and the independence in the model we obtain 

S2=-IEIE[ y'  I~=(Or162 
a~Dn 

=]E Z 12~Af)(T~-I Bl x T~-I B2) �9 
f f E D n  

S I =  ~ Z 12a ~ Paa*iPaa*J E P : , i , ~ l l ' " P : , i , ~  
k = 1 o'eDk- I i , j  = 1 r e D n - k  

i * j  

'(~,i,~~ ~, P~,j ,vI1.. .P~,j ,~(~,j ,~ T~,j,v)(B2) 
v E D n  - k 

i J z  
k = l  LaeDk- 1 i , j = l  r~Dn-k  

i * j  

.(t)~,i, oS;,li**o .... S;,li,~I1)(T~,I B1) Z P : , J , ~ I 1 . " P ; , J , ,  
u  

"( Oa  , j , v ~  S ; : j ,  v ~ . .  �9 ~ S -  , j , v l  1) (Ta.} B2)] ~ ]  

N 
i ~z a A a , i [ T - 1  a , j  = IE Z 1~ ~ ~ P~,iP.,j~..-k,..~,i B1) A.-k(T.,j-t B2). 

k = i a~Dk-  1 i , j  = 1 
i # j  

This leads to the assertion for our specialf. The general case follows by standard 
measure theoretical arguments. [] 

4,4. Theorem I f  suplES~, ,<oo and the conditions 2.1. are satisfied, then A(~ 2) 
n 

A (2) of 4) and converges weakly to the second order moment measure ~_~ 

~f (x, y)A(f)(d (x, y)) 
N 

= ~ IE ~ 12~ ~ p~,ip; , j~f(T~,~x,T~,jy)Au(dx)A,(dy) 
k = l  aEDk- I  i , j = l  

i * j  

for all measurable bounded functions f: IR d x IR d ~ [0, oo). 

0 

Proof. WE first show that A(2) ~/'uA(a)" For this it is enough to show that 

lira ~f(x) g(y) A~2)(d(x, y))= ~f(x) g(y) A(f)(d (x, y)) 
f l  ~-~ oO 

for any functions f, g E Co. Let max { II f I1, II g II } < C. Using Lemma 4.3. we get 

lirn ~f (x) g(y) A(,2)(d(x, y)) 

n N 

~f(T~,ix) A,_k(dx) ~g(To,jy) A~*~(dy) = l i m  ~" IE ~' 1~ ~ 2 ~*' 
n--* o~ k= 1 aeDk-1  i , j = l  

i * j  

+ lim E ~ 12~ ~f(T~x) g(T~y) A~2)(d(x, y)). 
n ~ ~ aeDn 
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We denote the summands by $1 and Sz, respectively, and examine them separate- 
ly. Together with 2.1. (iv) and 1.1. we have 

S2~  lim CIE ~ 1~ z~ 
n --+ oo 

ff~Dn 

(4=1)n = c  lim  

=0.  

Since $2 > 0 it follows Sz = O. 
In order to compute $1 we use 4.1., Lebesgue's dominated convergence theo- 

rem, and the independence required in the model. Thus we obtain 

S l = Z  l i m e  12~ ~ Z p: , ,p : , j~ f (T~ ,~x)A~*~(dx)  
= 1  ,~e -1  i , j =  l 

i * j  

�9 Ig (T , , j y )  Ag_*~(dy)) 

= IE y. 1~ ~ y, p ; , ~ p ~ , j f f ( r ~ , ~ x ) A , ( d x ) I g ( T ~ , j y ) A , ( d y  ). 
k = l  a e D k  1 i , j =  l 

i::l:j 

Hence, the vague convergence of A(, 2) to ._uA (2) is proved. A(f)(.)--lE(q~ x r  
follows from suplE(~bv(lR~)3)=supS~,,<oo. With the help of 2.5. we get 

A(n2) w > A(2), since 

A(u2)(IR dxIRd)=IE(r 2 and lim A(~2)(IR dxlRa)=lEz 2. 
n --* co 

IEZ 2 < oe implies that A~ 2) is a finite measure on Nd | Nd. []  

In the next section we will see how to use the structure of the second order 
moment  measure A (2) for determining the carrying dimension of the limit mea- - - / L  

sure r 

5 The carrying dimension 

We denote by ~ a  the fl-dimensional Hausdorff measure on IR e and by dim B 
the Hausdorff-Besicovitch dimension for B ~  d. (For details see IF l j3  Further 
denote by diam B the diameter of B. 

5.1. Definition (cf. [Z2J) A measure ~oEM has the carrying dimension fi (car- 
dim q~ = fl) if the following conditions are satisfied. 

(1) there exists a Borel set B with ~o (B c) = 0 and dim B < fl and 
(2) ~o (B) > 0 implies dim B > ft. 
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5.2. Remarks (i) There exist measures having no carrying dimension. For exam- 
ple, measures which are supported by disjoint sets of different dimensions have 
no carrying dimension. 
(ii) In general the carrying dimension of a measure ~0 is not greater than the 
dimension of the support. For example, let qo be a measure on ([0, 1 l, ~ c~ [0, 13) 
concentrated on the rational numbers. Then cardim qo = 0 and dim spt (p = 0. 

Upper bounds 

The next lemma gives conditions under which one can get an upper bound 
for the Hausdorff dimension of a random set carrying a random measure 
on Nd. The proof of this lemma without the last step is completely the same 
as in [Z iI  6.1. 

5.3. Lemma. Let ~ be a random measure on IR~ and fl>O. Suppose that for 
any bounded set B~=IR ~ and any e > 0  there exists a sequence (F,)=(F~(B, 0) of 
countable families of random closed subsets of IR d, having diameter at most 1, 
such that 

l imlP( tp(B\UF~)<0=I  and ~ ( l i m ~ f  ~ (d iamK)P+~<c~)=l .  
n ~ o~ KEEn 

K ~ B # O  

Then there exists an increasing sequence En of random closed sets on ~d such 
that dim S , < f l  a.s. and OORd\ ~ E, )=0  a.s. 

nE~q 

Proof. Let ~>0 and a bounded set B e N  d be given. Then we can choose a 
subsequence N'  of N such that lim sup O(B\UF,(B, 0 )<  e a.s. and 

lim inf 2., (diam T,,r~)p +~ < oo a.s., n N'. 
K e Fn (B, E) 
Kc~B#O 

Let meN.  Putting B =B(0, m) and e = 2 - "  we can choose for any 6 > 0  increasing 
subsequence (n,,) of N'  such that 

(1) O(B\UF~,~(B(O,m),2-")<2 -m+l a.s. and 

(2) l iminf ~ (diam K)~+o< oo a.s. 
m KeFnm(B(O,m) ,2_m)  

Kc~B(O,m)#O 

Defining Fo,m = UF, m(B(0, m), 2 -m) and 

~-  (~ G:~,~+~B(O,k)), kEN, 
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we obta in  for any  b o u n d e d  B e N  ~ 

=< lim 0(B\ f f~)  
k--* oo 

= lim O(B\ (-] (F~/~,k+~ riB(O, k))) 
k--+ oo I ~ N  

= lim O(BU (B\F~/~,k+~)) 
k--* oo 1 

--< k~lim ~ O(B\F~/,,~+a) 

< k-*~lim ~1 2 - k - 1 + 1  = 0  by (1). 

�9 , .~, 
I t  remains  to p rove  d l m ~ k =  ft. By the definit ion of  the Hausdor f f  measure  
and  (2) we have  

J t ~  +~(ff~, n B) < l im inf ~ (diam K)~+~ < oo 
1 ~ ~  K~F1/1,k+I 

KnB~O 

�9 ~" __</~. choose for all b o u n d e d  B e N  d and  ~ > 0  and therefore d l m ~  k Finally,  we 

~k to obta in  an increasing sequence. [ ]  
k = l  

L e m m a  5.3. gives us a very helpful condi t ion for finding an upper  b o u n d  for 
the carry ing d imens ion  of the limit measure  qS. 

5.4. Theorem I f  the assumptions 2.1. (i)-(iv) are satisfied, then there exists an 
increasing sequence E, of random closed sets on IR d such that dim E,<c~ a.s. 
and qS(IRd\ U 3 , ) =  0 a.s. (This implies card im ~b =_< e a.s. if the carrying dimension 

nan  

of q6 a.s. exists.) 

Proof F o r  given b o u n d e d  B e N  d and  e > 0  we can choose a sequence (r,) of  
real number s  with 

(1) l im r , = o o  and  

(2) there exists a cons tan t  c < 1 such tha t  r ,  ~ +~ E PT § ~ c". 
\ i = 1  

N o w  we choose an a rb i t r a ry  point  XoelR d and define families F~ of  r a n d o m  
closed sets F, by  F o = B(Xo, 1/2) and  

F,={F~=B(T~xo, l~r,/2)'aeD,}, n =  1, 2, . . . .  
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Then it suffices to show that both conditions from 5.2. are satisfied for f i= c~, 
and that the diameters of the element of F, are at most 1 for n__ no. Using 
the Markov inequality we see that for the first condition it is sufficient to show 
that IE~b((UF,) c) tends to zero, because 

~'(~b (B\  U F,) < e) __> 1 - ]P (~b ((U F~)0 > ~) 

> l -- ]E ~b ((UF,)~)/e for any e and B. 

With the help of the self-similarity for q5 (cf. 4) and properties of the conditional 
expectation we obtain 

E ~ ((u&) ~) = E E  [4, ((u&Y)143 
=~E~I- ~ l~-(4,"o:Ub((u~)9143, 

~ D n  

where the ~U, aeD., have the same distribution as ~b and are independent of 
4 .  Thus we have 

Ed,((usy) = E y~ 1~ A.(T~-'((UC.y)). 
c~Dn 

By the definition of (F.) we may continue 

cr$Dn 

<=EZ 
aeDn 

=lZ~. 
~ D n  

<__E Z 
~Y~D n 

I~A,(T~-*( U F~) ~) 
r ~ D  n 

1~ Au( Vd- ~ (F~)) 

1~ AF,(Tj- 1B(T~ Xo, 1. r./2) ~) 

1~ Au(B(xo, r,/2) ~) 

= A~,(B(xo, r./2)c), 

which tends to zero for n ~ oo (use (1)). 
For the second condition in 5.2. it suffices to show that 

IE lira inf ~ (diam K)~+~< oc. For, by Fatou's Lemma and (2) we have 
n K e F n  

IE lira inf ~ (diam K) ~+~ = N  lim inf ~ (diam F~) ~+' 
n K~Fn n r 

=lE l imin f  Y'. r, 1~ 
1~ f f 6 D n  

~ o O .  
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Finally, from (2) it follows that there exists an noEN such that for any 
o-e{1, . . . ,  N} ~ the diameters 1,1,-r . do not exeed 1 for n>no, since 

1P 1,1 . = < oo implies IP U 1,1,---- = 0  
n =  1 n 1 n > n o  

and 

> 1 < ~, ~,( ~+~r~+~>l) P l~l .=  ~ 1~ _ 
n = l  n = l  tYeDn 

--< E r: Pr 
n = l  i 

= ~ ~ C n 
n = l  

< oo holds. 

Thus the theorem is proved. [] 

5.5. Remark Up to this point all results remain valid if we replace N a by any 
complete separable metric space. 

Lower bounds 

The proof  of cardim ~b__> c~ is more delicate and makes use of the structure of 
/I (2) The underlying theory was developed the second order moment  measure ._u . 

by O. Fros tmann and U. Z~ihle. 

5.6. Lemma (cf. [Z1] 6.3.) Let ~ be a random measure on Na, f l>0,  r>0,  
and B, T ]Rd. Suppose 

i I x -y l -~ lB . (x )  l { I x - y l < r }  A(o2)(d(x,y))<oo forany n~N.  

Then the implication 

dimB=>fl whenever O ( B ) > 0 B e N  d, 

almost surely holds. [] 

5.7. Corollary I f  the condition in 5.6. is satisfied we obtain cardim O>f l  a.s. /f 
cardim q5 a.s. exists. [] 

5.8. Theorem Suppose that in addition to 2.1. the following conditions are satisfied 

(i) $1, ..., S• are similarities #-a.s., 
(ii) suplES~,,< oo and 

n 

(iii) IES~]Szx- Sjy [ -~A,(dx) A,(dy)< oo for i,j~{1 . . .N} i~:j and f l<min{d,  c~}. 

Then we have cardim q5 > rain {d, a} a.s. 
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Proof Using the structure of the second moment measure A~ 2) (cf. 4.4.) and 
the independence from 1.2. we get 

f t x - y l  -~ lB.(x) l{ tx-Yl  < r} A(f)(d(x, y)) 

_-__fix-yl- y)) 

k = 1 a e D k  - 1 

N 

12~ ~ P~,i P~,i fSlT~,i x -  T~, jy l - 'Au(dx)  Au(dy) 
i , j = l  

i 4 : j  

N 

1~ ~-' 2 p:,ip;,j[.flS~,~x-S.,jyl-'A,(dx)A,(dy) 
i , j =  1 

i : ~ j  
k : l  a C D k -  1 

<const.  ~ E ~ 12~-~ 
k = l  a e D k -  ~ 

= const. ~ p{ ' -~  
k 1 

<oo for fl<cc 

Now the theorem follows immediately from 5.6. and 5.7. [] 

Together with Theorem 5.3. we get the following main result of this paper. 

5.9. Theorem I f  the conditions 2.1.(i)-(iv) and 5.8.(i)-(iii) are satisfied, then the 
carrying dimension of the limit measure 0 is equal to d*=min{d ,  e}. [] 

5.10. Remark The condition 5.8. (iii) is on the first view complicated and unhand- 
ly, but we learned that it is sufficient to know the structure of the intensity 
measure of the random limit measure r The condition is not to hard for the 
deterministic case. We will show in the next section, that Hutchinsons open 
set condition implies 5.8. (iii). 

6 Examples 

6.I Hutchinsons self-similarity sets 

A theory of strictly self-similar compact sets has been developed by Hutchinson 
(cf. [H]). He proved the following. 

Theorem (Hutchinson) (1) For every finite set of contractions $1 . . . . .  SN of a 
complete metric space (X, p) there exists a unique self-similar measure q) with 
compact support K, i.e. 

N 

q0 = ~ (Lip Si) ~ qo o S~- 1 
i = l  

N 

where ~ is the unique number for which ~ (Lip Si) ~= 1. 
i = l  
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(2) Let X be a compact subset oflR a and suppose that for S1 . . . . .  SN the following 
conditions are satisfied 
(a) The map S i is a similarity, i= 1 . . . .  , N 
(b) Open set condition: 

There exists an open set 0 ~ X,  such that 

N 

SiO~O and SiOc~SjO=O for i+j. 
i = 1  

Then the Hausdorffdimension of the invariant set K equals ~. [] 

We see that (1) is a special case of Theorems 2.8. and 3.4. taking #=6(s ,  ..... s~,) 
(point measure). The additional conditions are only restrictions for the noncom- 
pact case. Now we show that (2) is a special case of Theorem 5.9. To do this 
we have to check that Hutchinsons open set condition implies 5.8. (iii). 

In the deterministic case 5.8.(iii) is equivalent to the existence of a constant 
c, such that ~ l x - y [ - ~ o ( d x ) < c  for all y~lR a and all f l<~. By choosing a 

n ~ o o  

sequence (r,) of positive real numbers with r~ = 1 and r, ,0 we obtain 

~[x -y [ -P  qo (dx)__< (p 0Ra) + ~ 1 ( I x - y ]  < i} [x-y]-Pq)(dx)  

= ~ I1B~y,r~\B(x,r~+I)(X)IX--Y[-aq~(dx)+CPO Rd) 
k = l  

< ~ r/-+~ [~o(B(y, r~))- ~o(B(y, rk+ 1))] + ~o(R e) 
k = l  

rr z Jr 1 rk)) r =-  ~ + (p (IRa). 

Following Hutchinson ([-HI S. 738) we see that the open set condition implies 

the existence of a constant g, such that ~o(B(y, rk))<_g for all y and k and e. 
r~ - 

This constant is independent of (rk) and therefore we can choose (rk), such that 

k=2 \rkP+--~ 1 r~ -~ is finite. Hence, we get a constant c such that ~lx-yl ~0(dx)<c 

for all y and all fl < c~. 

6.2 The recursive construction model of Falconer, Graf and Mauldin-Williams 

The idea of this model is to form a probabilistic counterpart  to Hutchinsons 
self-similar sets. The main results are summarized in the following. 

Theorem (cf. [G])  Let K be a compact subset of IR d with K = i n t  K and # be 
a BoreI probability measure on Con(K) N. For every ~ D  we choose an N-tupIe 
(S~.1 . . . . .  S~.N) of contractions w.r.t. /~ and a random set K~. Suppose that 
{(S~.1 . . . .  , S~.N), K~: aeD} is a family of independent random elements. Then 
we have: 



518 M. Arbeiter 

(1) There exists a.s. the limit set (w.r.t. Hausdorff metric) 

~ = l i m  U T~(K~). 

0 ~' (2) ~ is statistically self-similar, that means, if (~*)~D are copies ~f ~, independent 
of S and (T~)~Dn, then the random sets U T~(~) have the same distribution 
as 2, n= 1, 2, .... ,eD, 
(3) I f  #-a.e. (St, ..., SN) are similarities and Si(int K)c~ Sj(int K)=  0 #-a.s. for i:#j, 
then the Hausdorff dimension of the limit set S equals almost surely ~, where 

N 

c~ is the unique number with E ~, (Lip Si) ~ = 1. [] 
i = l  

If we translate this model in the measure-theoretical language we see that our 
model contains the FGHW-model.  (1) and (2) are special cases of Theorem 
2.8. and 3.4. if we restrict to the compact case. 

(3) is a special result of Theorem 5.9. under some stronger assumptions. 
Suppose that #-a.a. (S~, ..., SN) are similarities and there exists a constant c >0  
such that dist(Si K, S jK)>c  #-a.s. for i, j={1 ,  ..., N}, i=t=j. Then the condition 
5.8.(iii) is satisfied and therefore the carrying dimension of the random limit 
measure almost surely equals ~. This is easy to see because of 

IE~ I S i x - S j x l  -~ l { ]S i x -S j y l  < 1} Au(dx ) A#(d y) 
-<_IEI~ lr(x) lr(y) lS~x-Sjyl-~A,(dx) A,(dy) 
< c- pA.(K) 2 

<oQ for fi>0. 

However, these conditions are only sufficient. Section 6.4. gives examples, also 
for the compact case, for self-similar measures with carrying dimension e where 
Si (int K) n S~(int K) = 0 for i 4=j is not satisfied. 

6.3 Self-similar measures with absolutely continuous intensity measures 

6.3.1. Proposition Suppose that the conditions in 5.8. are satisfied and replace 
5.8.(iii) by 
(i) A,  has a bounded density f~ w.r.t. •d 

(ii) E p F l < o ~ f o r  i=1,  ..., N 
Then cardim 4) =min  {d, c~} a.s. 

Proof. Let f~ < c. Now the proposition is an obvious consequence of Theorem 
5.8. since 

E ~S 1 { ] S i x - S i y  ] < 1} I S i x -  Sjy[-P A~(dx) A,(dy) 
--lEp~ -1 S~ 1 {[w] < 1} [w]-l~f**(Si-l(w q- Sjy))fu(y) s176 s w) 
_<_ c. IEp; t I 1 {]wl < 1} ]w[-t~s 
<oo for fl < d. [] 

6.3.2. Proposition Suppose that the conditions in Theorem 5.8. are satisfied and 
replace 5.8.(iii) by 
(i) A,  has a bounded density f ,  w.r.t. 5r d 
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(ii) S~ and Sj are independent for i, je{1, ..., N} i#j.  
Then cardim q5 = m i n  {d, e} a.s. 
Proof Using the self-similarity of A u we get 

IE ~ p~ p~ ~ 1 {]Six-Sjy[ < 1} [Six-  Sjy[-~Au(dx ) Au(dy) 
i , j = l  

i~=j 

<I f l { I x -y l< l } l x -y l  -p p~AuoXi -~ (dx) p~.AuoS~ (dy) 
i 

= ~ 1 {Ix-y]  < 1} I x - y [ - P  A, (dx) Au(dy ). 

By the same arguments as in 6.3.1. the right hand side is finite. [] 
Remarks (1) The boundedness of the density fu can be replaced by restrictions 
on the increase offu in a neighbourhood of the origin. 
(2) Generally, it is very difficult to check whether the limit measure A u is absolute- 
ly continuous w.r.t. ~a.  But in the special cases it is possible to show this, 
for example if the translations of the similarities are distributed w.r.t, a stable 
distribution (d = 1). However, it sufficies to require that the translations of the 
similarities have a bounded density w.r.t. s This case will be investigated 
in the next subsection. 

6.4 Similarities with absolutely continuous translation distributions 

It is well known that any similarity S acting on IR d can be written as follows 
Sx = Ps Osx + tls, where rlselR d, ps = Lip(S) and 0s is an orthogonal d x d matrix. 
So we can prove the following. 

Proposition Suppose that the conditions in Theorem 5.8. are satisfied and replace 
5.8.(iii) by 

(i) Si and S j are independent for i # j i, j ~ {1 . . . .  , N} 
(ii) (Pi Oi) and qi are independent for each ie{1 . . . . .  N} 

(iii) t/i has a bounded density gi w.r.t. ~od. 
Then cardim r = min {d, e} a.s. 

Proof Denote by ~ the distribution of qi, let gi < c and use the required indepen- 
dence in order to get 

N 

]E ~ p~ p~ ~ 1 {IS~x- S j [  < 1} [S~x- Sjy[ -P Au(dx) Au(dy) 
i , j = l  

i4-j 

N 

i , j = l  
i:# j 

�9 ~ (d u) ~ ( d  v) A u (d x) Au (d y) 
N 

<=]E F, pg p cSSS51 {Iwl < 1} Iwl gj(v) oLq~ A.(dx) Au(dy ) 
i , j = l  

i:# j 

__<cSIwl- l{Iwl<l} Z (dw) 
<oe for fl<d. 

The proposition follows from Theorem 5.8. [] 
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Remarks (1) (i) (iii) can be weakend by analogous assumptions on the condition- 
al distributions. 
(2) 6.4. provides a class of examples where the "open set condition" in the 
FGMW-model  is not satisfied but the carrying dimension of the self-similar 
measure q5 is almost surely equal to e. 
(3) An open problem is to find further and more general explicit conditions 
on $1 . . . . .  SN under which 5.8.(iii) is satisfied. 

Acknowledgements. I would like to thank Martina Zfihle for the helpful discussions in preparing 
the manuscript for publication. 
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