A critical case for Brownian slow points ${ }^{\star}$

Richard F. Bass, Krzysztof Burdzy
Department of Mathematics, University of Washington, Seattle, WA 98195, USA

Received: 7 June 1995

Summary. Let X_{t} be a Brownian motion and let $S(c)$ be the set of reals $r \geqq 0$ such that $\left|X_{r+t}-X_{r}\right| \leqq c \sqrt{t}, 0 \leqq t \leqq h$, for some $h=h(r)>0$. It is known that $S(c)$ is empty if $c<1$ and nonempty if $c>1$, a.s. In this paper we prove that $S(1)$ is empty a.s.

Mathematics Subject Classification (1991): 60G17, 60J65

1. Introduction

Let X_{t} be a Brownian motion and let
$S(c)=\left\{r \geqq 0:\right.$ there exists $h>0$ such that $\left.\left|X_{r+t}-X_{r}\right| \leqq c \sqrt{t}, 0 \leqq t \leqq h\right\}$.
$S(c)$ is the set of "slow points" with parameter c. For every $r \in S(c)$, a piece of the path of Brownian motion lies within c times a square root boundary just after r. As is well known, the law of the iterated logarithm implies that after any fixed time r the next piece of the Brownian motion path does not lie in any multiple of a square root boundary, almost surely. Nevertheless, slow points exist for some values of c. Kahane [K1,K2] showed that $S(c) \neq \emptyset$, a.s. provided c is sufficiently large. Dvoretzky [D] showed that $S(1 / 4)$ is empty. Independently, Davis [Da] and Greenwood and Perkins [GP] showed that $S(c)$ was empty if $c<1$ and nonempty if $c>1$. Davis and Perkins [DP] examined a number of critical cases for Brownian slow points (e.g., asymmetric square root boundaries, two-sided (in time) boundaries), but left unresolved the question of whether $S(1)$ is empty or not. They did show that if $S(1)$ is nonempty, it must be at most countable. For additional information on slow points, see [BP, P].

[^0]Our main result is the following theorem.
Theorem 1.1. With probability one $S(1)=\emptyset$.
The present article is motivated not only by the desire to record the solution to an open problem about slow points but to present a new argument which seems to be applicable to other "critical" case questions as well.

In Sect. 2 we derive a number of estimates on the densities of OrnsteinUhlenbeck processes and on the exit probabilities from an interval. These are all either well known or extensions of known results using standard methods. Rather than working with square root boundaries, it is necessary for us to work with boundaries of the form $t \mapsto 2+\sqrt{t}$, and Sect. 3 is devoted to developing the appropriate estimates. The method we use is an adaptation of one of Novikov [N]. Novikov's paper deals with moving boundaries up to but not including the critical case $t^{1 / 2}$, and our results in Sect. 3 may be of independent interest. The main work is done in Sect. 4. We define approximate slow points. If A_{j} represents the event that there is an approximate slow point in the interval $[j, j+1)$, then we estimate $\mathbb{P}\left(A_{k} \mid A_{j}\right)$ and $\mathbb{P}\left(A_{k} \cap A_{p} \mid A_{j}\right)$. A standard second moment argument then tells us that $\mathbb{P}\left(\bigcup_{k=j+1}^{n} A_{k} \mid A_{j}\right)$ is bounded below by a constant independent of n. Unfortunately, we need that constant to be close to 1 ; it is necessary to iterate the estimates, which makes the proof considerably more complicated. Finally in Sect. 5 we show that our estimates on approximate slow points imply that $S(1)$ is empty.

The letter c with subscripts will denote constants whose exact values are unimportant. We begin numbering anew at each new proposition. The distribution of Brownian motion starting from x will be denoted \mathbb{P}^{x}. We will often write \mathbb{P} for \mathbb{P}^{0}.

2. Ornstein-Uhlenbeck processes

We begin by recording some known facts about Ornstein-Uhlenbeck processes and their connection with Brownian motions. Let X_{t} be one-dimensional Brownian motion. Let

$$
\begin{equation*}
Z_{t}=e^{-t / 2} X\left(e^{t}\right) \tag{2.1}
\end{equation*}
$$

Starting the Ornstein-Uhlenbeck process Z_{t} at $Z_{0}=z$ is then the same thing as starting the Brownian motion at $X_{1}=z$. The probability that the reflected Brownian motion $\left|X_{t}\right|$ starting from z at time 1 lies under the curve $t \mapsto \sqrt{t}$ on the interval $[1, s]$ is the same as the probability that the reflected Brownian motion $\left|X_{t}\right|$ starting from z at time 0 lies under the curve $t \mapsto \sqrt{1+t}$ on the interval $[0, s-1]$. With these facts in mind, we see that

$$
\begin{equation*}
\mathbb{P}^{z}\left(\left|Z_{u}\right| \leqq 1,0 \leqq u \leqq T\right)=\mathbb{P}^{z}\left(\left|X_{t}\right| \leqq \sqrt{1+t}, 0 \leqq t \leqq e^{T}-1\right) \tag{2.2}
\end{equation*}
$$

Integration by parts in (2.1) shows that Z_{t} satisfies the stochastic differential equation

$$
\begin{equation*}
Z_{t}=Z_{0}+W_{t}-\int_{0}^{t} \frac{Z_{s}}{2} d s \tag{2.3}
\end{equation*}
$$

where W_{t} is another one-dimensional Brownian motion. The solution to this SDE is unique. The law of Z_{t} is that of the diffusion on the line with infinitesimal generator $\mathscr{A} f(x)=\left(\frac{1}{2}\right)\left(f^{\prime \prime}(x)-x f^{\prime}(x)\right)$ started at $Z_{0}=X_{1}$.
\mathscr{A} is a symmetric operator with respect to the measure $m(d x)=2 e^{-x^{2} / 2} d x$. The transition densities with respect to m for Z_{t} killed on exiting $[-b, b]$ can be written

$$
\begin{equation*}
p(t, x, y)=\sum_{i=1}^{\infty} e^{-\lambda_{i} t} \varphi_{i}(x) \varphi_{i}(y) \tag{2.4}
\end{equation*}
$$

where the series converges absolutely and uniformly, $0<\lambda_{1}<\lambda_{2}<\ldots$, the φ_{i} are C^{2} and vanish at $-b$ and $b, \varphi_{1}>0$ on $(-b, b), \varphi_{1}^{\prime}(-b)>0, \varphi_{1}^{\prime}(b)$ $<0, \int_{-b}^{b} \varphi_{i}^{2}(x) m(d x)=1$, and $\mathscr{A} \varphi_{i}(x)=-\lambda_{i} \varphi_{i}(x)$. Moreover, $\lambda_{1}=1$ when $b=1$. See Knight $[\mathrm{Kn}]$ and Perkins [P$]$.

We will need the following estimate.
Proposition 2.1. Let $\varepsilon>0$. There exists t_{0} such that if $b \in\left(\frac{1}{2}, 2\right)$ and $t>t_{0}$, then

$$
\left|\frac{p(t, x, y)}{e^{-\lambda_{1} t} \varphi_{1}(x) \varphi_{1}(y)}-1\right|<\varepsilon, \quad|x|,|y| \leqq b
$$

Proof. First, we get a lower bound on $\varphi_{1}^{\prime}(-b)$ that is valid for all $b \in\left(\frac{1}{2}, 2\right)$. Note φ_{1}^{\prime} can equal 0 in $(-b, b)$ only at local maxima; for if $\varphi_{1}^{\prime}=0$ at x_{0}, then the equation

$$
\begin{equation*}
\varphi_{1}^{\prime \prime}(x)=x \varphi_{1}^{\prime}(x)-2 \lambda_{1} \varphi_{1}(x) \tag{2.5}
\end{equation*}
$$

evaluated at x_{0} shows that $\varphi_{1}^{\prime \prime}\left(x_{0}\right)$ is strictly negative since $\lambda_{1}, \varphi_{1}>0$. By the symmetry of \mathscr{A} about $0, \varphi_{1}$ is symmetric. So $\varphi_{1}^{\prime}(0)=0$ and 0 is a local maximum. Therefore $\varphi_{1}^{\prime} \geqq 0$ in $(-b, 0)$, hence φ_{1} is nondecreasing on $(-b, 0)$. Eq. (2.5) shows that $\varphi_{1}^{\prime \prime}$ is negative on $(-b, 0)$ and so φ_{1}^{\prime} decreases on this interval. Using the symmetry of φ_{1} we have

$$
1=\int_{-b}^{b} \varphi_{1}^{2}(x) m(d x)=2 \int_{-b}^{0} \varphi_{1}^{2}(x) m(d x) \leqq 4 b\left\|\varphi_{1}\right\|_{\infty}^{2} .
$$

Since

$$
\begin{aligned}
\left|\varphi_{1}(x)\right| & =\left|\varphi_{1}(x)-\varphi_{1}(-b)\right|=\left|\int_{-b}^{x} \varphi_{1}^{\prime}(y) d y\right| \\
& \leqq 2 b\left\|\varphi_{1}^{\prime}\right\|_{\infty} \leqq 2 b \varphi_{1}^{\prime}(-b),
\end{aligned}
$$

we obtain $\varphi_{1}^{\prime}(-b) \geqq\left(16 b^{3}\right)^{-1 / 2} \geqq 1 / 12$.
Second, we get upper bounds on φ_{i} and φ_{i}^{\prime}. As a function of b, λ_{1} is smallest when b is largest $([\mathrm{CH}])$. So there exists $c_{1}>0$ independent of $b \in\left(\frac{1}{2}, 2\right)$ such that $\lambda_{i} \geqq \lambda_{1} \geqq c_{1}$. From $\mathscr{A} \varphi_{i}=-\lambda_{i} \varphi_{i}$, we see that

$$
\begin{equation*}
\left|\varphi_{i}^{\prime \prime}(x)\right| \leqq 2\left|\varphi_{i}^{\prime}(x)\right|+2 \lambda_{i}\left|\varphi_{i}(x)\right| . \tag{2.6}
\end{equation*}
$$

Integration by parts shows that if $f \in C^{2}[-b, b]$ and $f(-b)=f(b)=0$, then

$$
\int_{-b}^{b}\left(f^{\prime}\right)^{2} d x=-\int_{-b}^{b} f^{\prime \prime} f d x
$$

so by the Cauchy-Schwarz inequality,

$$
\left\|f^{\prime}\right\|_{2}^{2} \leqq\left\|f^{\prime \prime}\right\|_{2}\|f\|_{2}
$$

where $\|f\|_{2}$ denotes $\left(\int_{-b}^{b}|f|^{2} d x\right)^{1 / 2}$. From this and (2.6) we obtain

$$
\left\|\varphi_{i}^{\prime}\right\|_{2}^{2} \leqq\left(2\left\|\varphi_{i}^{i}\right\|_{2}+2 \lambda_{i}\left\|\varphi_{i}\right\|_{2}\right)\left\|\varphi_{i}\right\|_{2} .
$$

Since

$$
\left\|\varphi_{i}\right\|_{2}^{2}=\int_{-b}^{b} \varphi_{i}^{2} d x \leqq c_{2} \int_{-b}^{b} \varphi_{i}^{2} m(d x)=c_{2},
$$

we conclude

$$
\left\|\varphi_{i}^{\prime}\right\|_{2}^{2} \leqq 2 c_{2}^{1 / 2}\left\|\varphi_{i}^{\prime}\right\|_{2}+2 c_{2} \lambda_{i},
$$

which implies $\left\|\varphi_{i}^{\prime}\right\|_{2} \leqq c_{3} \lambda_{i}^{1 / 2}$. Now by the Cauchy-Schwarz inequality

$$
\left|\varphi_{i}(x)\right|=\left|\int_{-b}^{x} \varphi_{i}^{\prime}(y) d y\right| \leqq c_{4} \int_{-b}^{b}\left|\varphi_{i}^{\prime}(y)\right|^{2} d y \leqq c_{5} \lambda_{i}
$$

or

$$
\begin{equation*}
\left\|\varphi_{i}\right\|_{\infty} \leqq c_{5} \lambda_{i} . \tag{2.7}
\end{equation*}
$$

Set $r=\left(2\|f\|_{\infty} /\left\|f^{\prime \prime}\right\|_{\infty}\right)^{1 / 2} \wedge 1$ and let $x \in[-b, b]$. By the mean value theorem on the interval $[-b \vee(x-r), b \wedge(x+r)]$, there exists a point x^{*} in the interval such that $\left|f^{\prime}\left(x^{*}\right)\right| \leqq 2\|f\|_{\infty} / r$, while we also have $\left|f^{\prime}(x)-f^{\prime}\left(x^{*}\right)\right| \leqq$ $r\left\|f^{\prime \prime}\right\|_{\infty}$. Hence $\left\|f^{\prime}\right\|_{\infty} \leqq 2\|f\|_{\infty} / r+r\left\|f^{\prime \prime}\right\|_{\infty}$. With our choice of r and the fact that $(u+v)^{2} \leqq 2 u^{2}+2 v^{2}$, we get the inequality

$$
\left\|f^{\prime}\right\|_{\infty}^{2} \leqq 8\|f\|_{\infty}^{2} / r^{2}+2 r^{2}\left\|f^{\prime \prime}\right\|_{\infty}^{2} \leqq\left(8\left\|f^{\prime \prime}\right\|_{\infty}+16\|f\|_{\infty}\right)\left(\|f\|_{\infty}\right)
$$

From this, (2.6) and (2.7) we have

$$
\left\|\varphi_{i}^{\prime}\right\|_{\infty}^{2} \leqq\left(16\left\|\varphi_{i}^{\prime}\right\|_{\infty}+\left(16 \lambda_{i}+16\right)\left\|\varphi_{i}\right\|_{\infty}\right)\left\|\varphi_{i}\right\|_{\infty} \leqq c_{6}\left(\left\|\varphi_{i}^{\prime}\right\|_{\infty}+\lambda_{i}^{2}\right) \lambda_{i}
$$

Therefore

$$
\begin{equation*}
\left\|\varphi_{i}^{\prime}\right\|_{\infty} \leqq c_{7} \lambda_{i}^{3 / 2} \leqq c_{8} \lambda_{i}^{2} . \tag{2.8}
\end{equation*}
$$

Third, we get an upper bound on $\left|\varphi_{i}(x)\right| / \varphi_{1}(x)$. From (2.6)-(2.8), $\left\|\varphi_{1}^{\prime \prime}\right\|_{\infty}$ $\leqq c_{9}$. Since $\varphi_{1}^{\prime}(-b) \geqq \frac{1}{12}$, then $\varphi_{1}^{\prime}(x) \geqq \frac{1}{24}$ if $x+b \leqq \frac{1}{24} c_{9}$. Using the fact that φ_{1} is nondecreasing on ($-b, 0$) and using symmetry to deal with positive x, we see then that

$$
\begin{equation*}
\varphi_{1}(x) \geqq c_{10}(b-|x|), \tag{2.9}
\end{equation*}
$$

where c_{10} does not depend on b. From (2.8), we obtain

$$
\begin{equation*}
\left|\varphi_{i}(x)\right| \leqq c_{11} \lambda_{i}^{2}(b-|x|), \tag{2.10}
\end{equation*}
$$

and we therefore have

$$
\left|\varphi_{i}(x)\right| / \varphi_{1}(x) \leqq c_{12} \lambda_{i}^{2}
$$

Finally, to conclude the proof, note that as a function of b, each λ_{i} is continuous and decreases as b increases [CH]. So there exists i_{0} independent of b such that if $i \geqq i_{0}$, then $\lambda_{i}>2 \lambda_{1}$. We also deduce that there exists $\delta>0$ independent of b such that $\lambda_{i}-\lambda_{1}>\delta$ for all i. We have

$$
p(t, x, y)=e^{-\lambda_{1} t} \varphi_{1}(x) \varphi_{1}(y)\left[1+\sum_{i=2}^{\infty} e^{-\left(\lambda_{i}-\lambda_{1}\right) t} \frac{\varphi_{i}(x)}{\varphi_{1}(x)} \frac{\varphi_{i}(y)}{\varphi_{1}(y)}\right] .
$$

If $i \leqq i_{0}$, then

$$
e^{-\left(\lambda_{i}-\lambda_{1}\right) t}\left|\frac{\varphi_{i}(x)}{\varphi_{1}(x)} \frac{\varphi_{i}(y)}{\varphi_{1}(y)}\right| \leqq c_{12}^{2} \lambda_{i}^{4} e^{-\left(\hat{\lambda}_{i}-\lambda_{1}\right) t} \leqq c_{12}^{2} \lambda_{i_{0}}^{4} e^{-\delta t}
$$

This goes to 0 as $t \rightarrow \infty$. On the other hand, note from (2.4) that $p(s, x, x)$ is decreasing in s. So

$$
\begin{aligned}
& \left|\sum_{i=i_{0}+1}^{\infty} e^{-\left(\lambda_{i}-\lambda_{1}\right) t} \frac{\varphi_{i}(x)}{\varphi_{1}(x)} \frac{\varphi_{i}(y)}{\varphi_{1}(y)}\right| \\
& \quad \leqq c_{12}^{2} \sum e^{-\lambda_{i} t / 2} \lambda_{i}^{4} \leqq c_{12}^{2}\left(\sup _{\lambda \geqq 0} \lambda^{4} e^{-\lambda t / 4}\right) \sum e^{-\lambda_{i} t / 4} \\
& \quad \leqq c_{12}^{2}(16 / t)^{4} e^{-4} \int_{-b}^{b} p(t / 4, x, x) m(d x)
\end{aligned}
$$

which also tends to 0 as $t \rightarrow \infty$.
There are a number of consequences of this proposition. For $b>0$, let

$$
\tau_{b}=\inf \left\{t \geqq 0:\left|Z_{t}\right| \geqq b\right\}
$$

Proposition 2.2. Let $b \in\left(\frac{1}{2}, 2\right)$. There exist c_{1}, c_{2}, and $v_{1}>1$ such that if $t \geqq v_{1}$, then

$$
c_{1} \varphi_{1}(x) e^{-\lambda_{1} t} \leqq \mathbb{P}^{x}\left(\tau_{b} \in d t\right) / d t \leqq c_{2} \varphi_{1}(x) e^{-\lambda_{1} t}
$$

Proof. By the proof of Proposition 2.1, we have

$$
\begin{aligned}
\mathbb{P}^{x}\left(\tau_{b}>t\right) & =\mathbb{P}^{x}\left(\left|Z_{s}\right|<b, 0 \leqq s \leqq t\right)=\int_{-b}^{b} p(t, x, y) m(d y) \\
& =\sum_{i=1}^{\infty} e^{-\lambda_{i} t} \varphi_{i}(x) \int_{-b}^{b} \varphi_{i}(y) m(d y)
\end{aligned}
$$

Differentiating with respect to t,

$$
\mathbb{P}^{x}\left(\tau_{b} \in d t\right) / d t=\sum \lambda_{i} e^{-\lambda_{i} t} \varphi_{i}(x) \int_{-b}^{b} \varphi_{i}(y) m(d y)
$$

Very similarly to the last part of the proof of Proposition 2.1 , we see that the first term, $\lambda_{1} e^{-\lambda_{1} t} \varphi_{1}(x) \int \varphi_{1}(y) m(d y)$, is the dominant term when t is large.

We fix for the rest of the paper a number $v_{1}>1$ which satisfies Proposition 2.2.
Proposition 2.3. Let $b \in\left(\frac{1}{2}, 2\right)$. There exist c_{1} and c_{2} such that if $t \geqq v_{1}$, then

$$
c_{1}(b-|x|) e^{-\lambda_{1} t} \leqq \mathbb{P}^{x}\left(\tau_{b}>t\right) \leqq c_{2}(b-|x|) e^{-\lambda_{1} t}
$$

Proof. This follows from integrating the result of Proposition 2.2 and using (2.9) and (2.10) with $i=1$.

Proposition 2.4. There exists c_{1} such that if $u \geqq t \geqq v_{1}$ and $x \in(-1,1)$, then

$$
\mathbb{P}^{x}\left(\left|Z_{t}\right| \leqq 1 / 2 \mid \tau_{1}>u\right) \geqq c_{1}
$$

Proof. By the Markov property at time t,

$$
\begin{aligned}
\mathbb{P}^{x}\left(\left|Z_{t}\right| \leqq 1 / 2, \tau_{1}>u\right) & =\mathbb{E}^{x}\left[\mathbb{P}^{Z_{t}}\left(\tau_{1}>u-t\right) ; \tau_{1}>t,\left|Z_{t}\right| \leqq 1 / 2\right] \\
& =\int_{-1}^{1} \int_{-1 / 2}^{1 / 2} p(t, x, y) p(u-t, y, z) m(d y) m(d z)
\end{aligned}
$$

By Proposition 2.2, this is greater than

$$
\begin{equation*}
c_{2} \varphi_{1}(x) e^{-t} \int_{-1}^{1} \int_{-1 / 2}^{1 / 2} \varphi_{1}(y) p(u-t, y, z) m(d y) m(d z) . \tag{2.11}
\end{equation*}
$$

If $u-t<v_{1}$ and $y \in\left[-\frac{1}{2}, \frac{1}{2}\right]$, then

$$
\int_{-1}^{1} p(u-t, y, z) m(d z) \geqq \mathbb{P}^{y}\left(\tau_{1}>v_{1}\right) \geqq c_{3} \geqq c_{3} e^{-(u-t)}
$$

If $u-t \geqq v_{1}$ and $y \in\left[-\frac{1}{2}, \frac{1}{2}\right]$, then by Proposition 2.2

$$
\int_{-1}^{1} p(u-t, y, z) m(d z) \geqq c_{4} e^{-(u-t)} \varphi_{1}(y) \int_{-1}^{1} \varphi_{1}(z) m(d z) \geqq c_{5} e^{-(u-t)}
$$

So in either case, (2.11) is greater than

$$
\begin{equation*}
c_{6} \varphi_{1}(x) e^{-t} \int_{-1 / 2}^{1 / 2} \varphi_{1}(y) e^{-\{u-t\rangle} m(d y) \geqq c_{7} \varphi_{1}(x) e^{-u} \tag{2.12}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
\mathbb{P}^{x}\left(\tau_{1}>u\right) & =\int_{-1}^{1} p(u, x, y) m(d y) \\
& \leqq c_{8} e^{-u} \varphi_{1}(x) \int_{-1}^{1} \varphi_{1}(y) m(d y) \leqq c_{9} e^{-u} \varphi_{1}(x) \tag{2.13}
\end{align*}
$$

Taking the ratio of (2.12) and (2.13) proves the proposition.

Proposition 2.5. Let $b \in\left(\frac{1}{2}, 2\right)$ and $t \leqq 20 v_{1}$. Then there exists c_{1} such that

$$
\mathbb{P}^{x}\left(\tau_{b}>t\right) \leqq c_{1} \frac{b-|x|}{\sqrt{t}}, \quad x \in(-b, b)
$$

Proof. Define a probability measure \mathbb{Q} on \mathscr{F}_{t} by

$$
\begin{equation*}
\frac{d \mathbb{Q}}{d \mathbb{P}^{x}}=\exp \left(\frac{1}{2} \int_{0}^{t} Z_{s} d W_{s}-\frac{1}{8} \int_{0}^{t} Z_{s}^{2} d s\right) \tag{2.14}
\end{equation*}
$$

where W_{t} is defined by (2.3) and is a Brownian motion under \mathbb{P}^{x}. By the Girsanov theorem, $Z_{t}=W_{t}-\int_{0}^{t} Z_{s} / 2 d s$ is a martingale under \mathbb{Q} with the same quadratic variation as that of W under \mathbb{P}^{x}, namely t. So by Lévy's theorem, Z_{t} is a Brownian motion under \mathbb{Q}.

On the set $\left\{\tau_{b}>t\right\}$, we have $\int_{0}^{t} Z_{s}^{2} d s \leqq t b^{2} \leqq 20 v_{1} b^{2} \leqq 80 v_{1}$. Also, using (2.3) and Itô's lemma,

$$
\begin{equation*}
\int_{0}^{t} Z_{s} d W_{s}=\int_{0}^{t} Z_{s} d Z_{s}+\frac{1}{2} \int_{0}^{t} Z_{s}^{2} d s=\frac{Z_{t}^{2}-Z_{0}^{2}-t}{2}+\frac{1}{2} \int_{0}^{t} Z_{s}^{2} d s \tag{2.15}
\end{equation*}
$$

On the set $\left\{\tau_{b}>t\right\}$, the right-hand side of (2.15) is bounded by $\left(2 b^{2}+t\right) / 2+$ $10 b^{2} v_{1} \leqq 4+50 v_{1}$. Therefore the exponent in (2.14) is bounded in absolute value by $K=2+35 v_{1}$.

We then have

$$
\mathbb{P}^{x}\left(\tau_{b}>t\right)=\int_{\left\{\tau_{b}>t\right\}} \frac{d \mathbb{P}^{x}}{d \mathbb{Q}} d \mathbb{Q} \leqq e^{K} \mathbb{Q}\left(\tau_{b}>t\right)
$$

Since Z_{t} is a Brownian motion under \mathbb{Q}, a well-known estimate says that $\mathbb{Q}\left(\tau_{b}>t\right) \leqq c_{2}(b-|x|) / \sqrt{t}$, which completes the proof.
Proposition 2.6. Let $b \in\left(\frac{1}{2}, 2\right)$ and $1 \leqq t \leqq 20 v_{1}$. There exists c_{1} such that if $x \in(-b, b)$,

$$
\mathbb{P}^{x}\left(\sup _{s \leqq t} Z_{s}<b\right) \leqq c_{1}(b-x)
$$

Proof. Let $B=\left\{Z\left(\tau_{b}\right)=-b, \tau_{b} \leqq t\right\}$. On the set $B,\left|Z_{s}\right| \leqq b$ if $s \leqq \tau_{b}$. So as in Proposition 2.5,

$$
M_{t}=\frac{1}{2} \int_{0}^{t} Z_{s} d W_{s}-\frac{1}{8} \int_{0}^{t} Z_{s}^{2} d s
$$

is bounded in absolute value by a constant K depending only on v_{1} when $t \leqq \tau_{b} . B$ is in the σ-field $\mathscr{F}_{\tau_{b}}$, hence

$$
\mathbb{P}^{x}(B)=\int_{B} \frac{d \mathbb{P}^{x}}{d \mathbb{Q}} d \mathbb{Q}=\int_{B} e^{-M_{\tau_{b}}} d \mathbb{Q} \leqq e^{K} \mathbb{Q}(B)
$$

Under \mathbb{Q} the process Z_{t} is a Brownian motion, thus $\mathbb{Q}(B)$ is less than the probability that a Brownian motion started at x hits $-b$ before b, which is
$(b-x) / 2 b$. Since $\left\{\sup _{s \leq t} Z_{s}<b\right\} \subseteq\left\{\tau_{b}>t\right\} \cup B$, our result follows from this estimate together with the result of Proposition 2.5.
Proposition 2.7. Let $b \in\left(\frac{1}{2}, 2\right)$ and $a \in\left(\frac{1}{2}, b\right)$. There exists c_{1} such that if $x \in[-b, a]$ and $v_{1} \leqq t_{1} \leqq 20 v_{1}$, then

$$
\mathbb{P}^{x}\left(\tau_{a} \leqq 2 t_{1}, \tau_{b}>2 t_{1}\right) \leqq c_{1}(b-a)
$$

Proof. By Proposition 2.3 and the strong Markov property at time τ_{a},

$$
\begin{equation*}
\mathbb{P}^{x}\left(\tau_{a} \leqq t_{1}, \tau_{b}>2 t_{1}\right) \leqq \mathbb{P}^{a}\left(\tau_{b}>t_{1}\right) \leqq c_{2}(b-a) \tag{2.16}
\end{equation*}
$$

On the other hand, by the strong Markov property at τ_{a} and Proposition 2.5,

$$
\begin{align*}
\mathbb{P}^{x}\left(2 t_{1} \geqq \tau_{a}>t_{1}, \tau_{b}>2 t_{1}\right) & =\int_{t_{1}}^{2 t_{1}} \mathbb{P}^{a}\left(\tau_{b}>2 t_{1}-s\right) \mathbb{P}^{x}\left(\tau_{a} \in d s\right) \\
& \leqq \int_{t_{1}}^{2 t_{1}} \frac{c_{3}(b-a)}{\sqrt{2 t_{1}-s}} \mathbb{P}^{x}\left(\tau_{a} \in d s\right) \tag{2.17}
\end{align*}
$$

By Proposition $2.2, \mathbb{P}^{x}\left(\tau_{a} \in d s\right) \leqq c_{4} d s$ for $s \geqq t_{1}$. With (2.17) this shows that

$$
\mathbb{P}^{x}\left(2 t_{1} \geqq \tau_{a}>t_{1}, \tau_{b}>2 t_{1}\right) \leqq c_{5}(b-a)
$$

Adding to (2.16) proves our result,
Remark. 2.8. For any r, s, and $T, \mathbb{P}^{x}\left(\left|X_{t}\right| \leqq \sqrt{r+t}, s \leqq t \leqq T\right)$ is largest when $x=0$. To see this, convert this to an equivalent statement about the OrnsteinUhlenbeck process Z_{t}. Since Z_{t} is symmetric about 0 , this expression is easily seen to be largest for $x=0$.
Proposition 2.9. There exist c_{1} and c_{2} such that if $T \geqq v_{1}$ and $x \in\left(-\frac{1}{2}, \frac{1}{2}\right)$, then

$$
c_{1} / T \leqq \mathbb{P}^{x}\left(\left|X_{t}\right| \leqq \sqrt{t}, 1 \leqq t \leqq T\right) \leqq c_{2} / \bar{T} .
$$

Proof. Let Z_{t} be defined by (2.1). For the upper bound, by the Markov property and Remark 2.8,

$$
\begin{aligned}
\mathbb{P}^{z}\left(\left|X_{t}\right| \leqq \sqrt{t}, 1 \leqq t \leqq T\right) & =\mathbb{E}^{z} \mathbb{P}^{X_{1}}\left(\left|X_{t}\right| \leqq \sqrt{1+t}, 0 \leqq t \leqq T-1\right) \\
& \leqq \mathbb{E}^{z} \mathbb{P}^{0}\left(\left|X_{t}\right| \leqq \sqrt{1+t}, 0 \leqq t \leqq T-1\right)
\end{aligned}
$$

By (2.2) and Proposition 2.3, this is equal to

$$
\mathbb{P}^{0}\left(\left|Z_{t}\right| \leqq 1,0 \leqq t \leqq \log T\right) \leqq c_{3} e^{-\lambda_{1} \log T}=c_{3} / T
$$

recalling that $\lambda_{1}=1$ when $b=1$.
For the lower bound, by the Markov property,

$$
\begin{gather*}
\mathbb{P}^{z}\left(\left|X_{t}\right| \leqq \sqrt{t}, 1 \leqq t \leqq T\right) \geqq \mathbb{P}^{z}\left(\left|X_{t}\right| \leqq \sqrt{t}, 1 \leqq t \leqq T,\left|X_{1}-X_{0}\right| \leqq 1 / 4\right) \\
=\mathbb{E}^{z}\left[\mathbb{P}^{X_{1}}\left(\left|X_{t}\right| \leqq \sqrt{1+t}, 0 \leqq t \leqq T-1\right)\right. \\
\left.\left|X_{1}-X_{0}\right| \leqq 1 / 4\right] \tag{2.18}
\end{gather*}
$$

If $|y| \leqq 3 / 4$, then

$$
\begin{aligned}
\mathbb{P}^{y}\left(\left|X_{t}\right| \leqq \sqrt{1+t}, 0 \leqq t \leqq T-1\right) & =\mathbb{P}^{y}\left(\left|Z_{t}\right| \leqq 1,0 \leqq t \leqq \log T\right) \\
& \geqq c_{4} \varphi_{1}(y) e^{-\lambda_{1} \log T} \geqq c_{5} / T
\end{aligned}
$$

by (2.2) and Proposition 2.3. If $X_{0}=z,|z| \leqq 1 / 2$ and $\left|X_{1}-X_{0}\right| \leqq 1 / 4$, then we have $\left|X_{1}\right| \leqq 3 / 4$. Therefore the right hand side of (2.18) is bigger than

$$
\left(c_{5} / T\right) \mid \mathbb{P}^{z}\left(\left|X_{1}-X_{0}\right| \leqq 1 / 4\right) \geqq c_{6} / T .
$$

Proposition 2.10. There exist c_{1} and c_{2} such that if $|z| \leqq \sqrt{s} / 2$, then

$$
c_{1} s / T \leqq \mathbb{P}^{z}\left(\left|X_{t}\right| \leqq \sqrt{t}, s \leqq t \leqq T\right) \leqq c_{2} s / T
$$

Proof. This follows from Proposition 2.9 by scaling. Note

$$
\begin{align*}
\mathbb{P}^{z}\left(\left|X_{t}\right| \leqq \sqrt{t}, s \leqq t \leqq T\right) & =\mathbb{P}^{z}\left(\left|X_{u s}\right| \leqq \sqrt{u s}, s \leqq u s \leqq T\right) \\
& =\mathbb{P}^{z}\left(\left|X_{u s} / \sqrt{s}\right| \leqq \sqrt{u}, 1 \leqq u \leqq T / s\right) \tag{2.19}
\end{align*}
$$

If $Y_{u}=X_{u s} / \sqrt{s}$, then Y_{u} is another Brownian motion and the right hand side of (2.19) equals

$$
\mathbb{P}^{z / \sqrt{s}}\left(\left|Y_{u}\right| \leqq \sqrt{u}, 1 \leqq u \leqq T / s\right)
$$

We now apply Proposition 2.9.
Remark. 2.11. From Proposition 2.3 we derive

$$
\begin{aligned}
\mathbb{P}^{x}\left(\left|X_{u}\right|\right. & \left.\leqq \sqrt{1+u} / 2 ;\left|X_{s}\right| \leqq \sqrt{1+s}, 0<s<u\right) \\
& \geqq c_{1} \mathbb{P}^{x}\left(\left|X_{s}\right| \leqq \sqrt{1+s}, 0<s<u\right)
\end{aligned}
$$

if $|x|<1$ by arguments similar to those of Proposition 2.9.

3. Moving boundaries

We need some estimates on moving boundaries. We adapt a method of Novikov [N].
Suppose $f \in C^{2}[0, \infty)$ and there exists $\kappa_{1}>1$ such that
(a) $\kappa_{1}^{-1} \leqq f(t) \leqq \kappa_{1}, \quad t \in[0, \infty)$;
(b) $|f(t)-1| \sqrt{t} \leqq \kappa_{1}, \quad t \in[1, \infty)$;
(c) $\left|f^{\prime}(t) t^{3 / 2}\right| \leqq \kappa_{1}, \quad t \in[1, \infty)$;
(d) $\left|f^{\prime \prime}(t) t^{5 / 2}\right| \leqq \kappa_{1}, \quad t \in[1, \infty)$.
(e) $f=1$ in a neighborbood of 0 .

The assumptions (3.1)(b)-(d) could be weakened, but they are good enough for our purposes. In our applications, the value of $f(t)$ for $t \in[0,1)$
will usually be immaterial, and we can change f to be smooth there and identically 1 for $t \leqq \frac{1}{2}$ without any loss of generality.

Proposition 3.1. (a) Suppose f satisfies (3.1). If $f(t) \leqq 1$ for all t or $f(t) \geqq 1$ for all t, there exist c_{1} and c_{2} such that for $T \geqq v_{1}$

$$
c_{1} / T \leqq \mathbb{P}\left(\left|X_{t}\right| \leqq f(t) \sqrt{t}, 1 \leqq t \leqq T\right) \leqq c_{2} / T
$$

The constants c_{1} and c_{2} depend on f only through κ_{1}.
(b) Suppose $r \in[1, \infty), b \in[0,2]$, and $a \in\left[0, \frac{1}{2}\right]$. Let

$$
f_{a, b, r}(t)=\min (1, b / \sqrt{t}+\sqrt{1+r / t}-a \sqrt{r / t}) .
$$

There exists c_{3}, not depending on a, b, or r, such that

$$
\mathbb{P}\left(\left|X_{t}\right| \leqq f_{a, b, r}(t) \sqrt{t}, 1 \leqq t \leqq T\right) \geqq c_{3} / T
$$

Proof. Let

$$
\begin{gather*}
F(t)=f(t) \exp \left(\frac{1}{2} \int_{0}^{t} \frac{1}{u}\left[1-\frac{1}{(f(u))^{2}}\right] d u\right), \tag{3.2}\\
h(t)=\int_{0}^{t} \frac{1}{(F(s))^{2}} d s \tag{3.3}
\end{gather*}
$$

and

$$
\begin{equation*}
Y_{t}=F(t) \int_{0}^{t}[F(s)]^{-i} d X_{s} \tag{3.4}
\end{equation*}
$$

By the Itô product formula,

$$
\begin{equation*}
d Y_{t}=d X_{t}+\frac{Y_{t}}{F(t)} F^{\prime}(t) d t \tag{3.5}
\end{equation*}
$$

Define a new probability measure \mathbb{Q} by

$$
\begin{equation*}
\left.\frac{d \mathbb{Q}}{d \mathbb{P}}\right|_{\mathscr{F}_{T}}=\exp \left(-\int_{0}^{T} \frac{F^{\prime}(s)}{F(s)} Y_{s} d X_{s}-\frac{1}{2} \int_{0}^{T}\left(\frac{F^{\prime}(s)}{F(s)}\right)^{2} Y_{s}^{2} d s\right) \tag{3.6}
\end{equation*}
$$

Under $\mathbb{P}, Y_{t}-\int_{0}^{t} Y_{s} F^{\prime}(s) / F(s) d s$ is a martingale, so by Girsanov's theorem, Y_{t} is a martingale under \mathbb{Q}. The quadratic variation of Y_{t} is the same under both measures, namely $\langle Y\rangle_{T}=\langle X\rangle_{T}=t$, and Y_{t} is continuous. By Lévy's theorem, Y_{t} is a Brownian motion under \mathbb{Q}.

Let A be the event $\left\{\left|Y_{t}\right| \leqq f(t) \sqrt{t}, 1 \leqq t \leqq T\right\}$. Note

$$
\mathbb{P}(A)=\mathbb{E}_{\mathbb{Q}}\left[1_{A} \frac{d \mathbb{P}}{d \mathbb{Q}}\right]
$$

Later on in the proof we will bound the exponent in $d \mathbb{Q} / d \mathbb{P}$ in absolute value by K. So then

$$
\begin{equation*}
e^{-K} \mathbb{Q}(A) \leqq \mathbb{P}(A) \leqq e^{K} \mathbb{Q}(A) \tag{3.7}
\end{equation*}
$$

The law of Y_{t} under \mathbb{Q} is the same as the law of X_{t} under \mathbb{P}, hence

$$
\mathbb{Q}(A)=\mathbb{P}\left(\left|X_{t}\right| \leqq f(t) \sqrt{t}, 1 \leqq t \leqq T\right),
$$

the quantity we are attempting to estimate.
From (3.4) we have

$$
\begin{align*}
\mathbb{P}\left(\left|Y_{t}\right|\right. & \leqq f(t) \sqrt{t}, 1 \leqq t \leqq T) \\
& =\mathbb{P}\left(\left|\int_{0}^{t}[F(s)]^{-1} d X_{s}\right| \leqq f(t) \sqrt{t} / F(t), 1 \leqq t \leqq T\right) \tag{3.8}
\end{align*}
$$

Let $W_{t}=\int_{0}^{h^{-1}(t)}[F(s)]^{-1} d X_{s} . W_{t}$ is a continuous martingale that is also a Gaussian process. The variance of $W_{u}-W_{t}$ is $\int_{h^{-1}(t)}^{h^{-1}(u)}[F(s)]^{-2} d s=u-t$, so W_{t} is a Brownian motion. Let H be the inverse of h. Then the right-hand side of (3.8) is

$$
\begin{equation*}
\mathbb{P}\left(\left|W_{t}\right| \leqq \frac{f(H(t)) \sqrt{H(t)}}{F(H(t))}, h(1) \leqq t \leqq h(T)\right) \tag{3.9}
\end{equation*}
$$

From the definition of F we have

$$
\frac{F^{\prime}}{F}=\frac{f^{\prime}}{f}+\frac{1}{2 u}-\frac{1}{2 u f^{2}}
$$

which leads to

$$
\left[u\left(\frac{f(u)}{F(u)}\right)^{2}\right]^{\prime}=\frac{1}{F(u)^{2}}
$$

or after integrating,

$$
u\left(\frac{f(u)}{F(u)}\right)^{2}=h(u)+c_{4}
$$

Since both sides are 0 when $u=0$, then $c_{4}=0$. Taking square roots of both sides and setting $u=H(t)$, we have

$$
\frac{f(H(t))}{F(H(t))} \sqrt{H(t)}=\sqrt{t} .
$$

By the definition of F and (3.1)(a),(b), (e), there exist constants c_{5} and c_{6} such that

$$
c_{5} / \kappa_{1} \leqq c_{5} f(t) \leqq F(t) \leqq c_{6} f(t) \leqq \kappa_{1} c_{6}
$$

hence

$$
t / \kappa_{1}^{2} c_{6}^{2} \leqq h(t) \leqq \kappa_{1}^{2} t / c_{5}^{2}
$$

Moreover, if $f(t) \geqq 1$ for all t, then $F(t) \geqq f(t) \geqq 1$, so $h(t) \leqq t$ for all t. This and Proposition 2.9 implies that the right hand side of (3.9) is bounded above by

$$
\mathbb{P}\left(\left|W_{t}\right| \leqq \sqrt{t}, 1 \leqq t \leqq T / \kappa_{1}^{2} c_{6}^{2}\right) \leqq c_{7} / T
$$

Also, if $f(t) \geqq 1$ for all t, then

$$
\mathbb{P}\left(\left|X_{t}\right| \leqq f(t) \sqrt{t}, 1 \leqq t \leqq T\right) \geqq \mathbb{P}\left(\left|X_{t}\right| \leqq \sqrt{t}, 1 \leqq t \leqq T\right) \geqq c_{8} / T
$$

by Proposition 2.9. Similarly, if $f(t) \leqq 1$ for all t, then $h(t) \geqq t$ for all t and the right hand side of (3.9) is bounded below by

$$
\mathbb{P}\left(\left|W_{t}\right| \leqq \sqrt{t}, 1 \leqq t \leqq T \kappa_{1}^{2} / c_{5}^{2}\right) \geqq c_{9} / T
$$

Also, if $f(t) \leqq 1$ for all t, then

$$
\mathbb{P}\left(\left|X_{t}\right| \leqq f(t) \sqrt{t}, 1 \leqq t \leqq T\right) \leqq \mathbb{P}\left(\left|X_{t}\right| \leqq \sqrt{t}, 1 \leqq t \leqq T\right) \leqq c_{10} / T
$$

by Proposition 2.9.
To finish the proof of (a), it remains to bound the exponent of (3.6) on the set A. Using (2.3) and Itô's lemma,

$$
\begin{aligned}
& -\int_{0}^{T} \frac{F^{\prime}(s)}{F(s)} Y_{s} d X_{s}-\frac{1}{2} \int_{0}^{T}\left(\frac{F^{\prime}}{F}\right)^{2} Y_{s}^{2} d s \\
& =-\quad \int_{0}^{T} \frac{F^{\prime}}{F} Y_{s} d Y_{s}+\frac{1}{2} \int_{0}^{T}\left(\frac{F^{\prime}}{F}\right)^{2} Y_{s}^{2} d s \\
& = \\
& =-\frac{1}{2} \int_{0}^{T} \frac{F^{\prime}}{F} d\left(Y_{s}^{2}-s\right)+\frac{1}{2} \int_{0}^{T}\left(\frac{F^{\prime}}{F}\right)^{2} Y_{s}^{2} d s \\
& = \\
& \frac{1}{2}\left(-Y_{T}^{2} \frac{F^{\prime}(T)}{F(T)}+Y_{0}^{2} \frac{F^{\prime}(0)}{F(0)}+\int_{0}^{T} Y_{s}^{2}\left(\frac{F^{\prime}}{F}\right)^{\prime} d s\right. \\
& \left.\quad \quad+\int_{0}^{T} \frac{F^{\prime}}{F} d s+\int_{0}^{T}\left(\frac{F^{\prime}}{F}\right)^{2} Y_{s}^{2} d s\right) \\
& = \\
& \frac{1}{2}\left(-Y_{T}^{2} \frac{F^{\prime}(T)}{F(T)}+Y_{0}^{2} \frac{F^{\prime}(0)}{F(0)}+\int_{0}^{T} Y_{s}^{2} \frac{F^{\prime \prime}(s)}{F(s)} d s+\log (F(T) / F(0))\right)
\end{aligned}
$$

We will show that the last expression is bounded by a constant independent of T. The expression is continuous and equal to 0 for small T since $F(t)=f(t)=1$ and $F^{\prime}(t)=F^{\prime \prime}(t)=0$ if t is sufficiently small (see (3.1)(e)).

Let $\psi(t)$ denote the exponent in (3.2). By (3.1)(a)-(b),

$$
\left|\psi^{\prime}(t)\right|=\frac{|f(t)-1|(f(t)+1)}{2 t(f(t))^{2}} \leqq c_{11} t^{-3 / 2}
$$

Since $f(t)=1$ for t small by (3.1)(e), it follows that $\sup _{t}|\psi(t)|<\infty$, and hence that F is bounded above and below by positive constants. Because

$$
\psi^{\prime \prime}=-\frac{(f-1)(f+1)}{2 t^{2} f^{2}}+\frac{f^{\prime}}{t f^{3}}
$$

(3.1)(a)-(c) show that $\left|\psi^{\prime \prime}(t)\right| \leqq c_{12} t^{-5 / 2}$. Our estimates have to hold only on the set A so we may assume that $\left|Y_{s}\right| \leqq f(s) \sqrt{s}$ for $0 \leqq s \leqq T$. We have $F^{\prime}=f^{\prime} e^{\psi}+f \psi^{\prime} e^{\psi}$, so

$$
\left|Y_{T}^{2} \frac{F^{\prime}(T)}{F(T)}\right| \leqq c_{13}(T)\left(T^{-3 / 2}\right) \leqq c_{13}
$$

The second term $Y_{0}^{2} F^{\prime}(0) / F(0)$ is equal to 0 because $Y_{0}=0$. Using (3.1)(d) and the formula

$$
F^{\prime \prime}=f^{\prime \prime} e^{\psi}+2 f^{\prime} \psi^{\prime} e^{\psi}+f\left(\psi^{\prime}\right)^{2} e^{\psi}+f \psi^{\prime \prime} e^{\psi}
$$

we obtain $\left|F^{\prime \prime}(t)\right| \leqq c_{14} t^{-5 / 2}$. Hence

$$
\left|\int_{1}^{T} Y_{s}^{2} \frac{F^{\prime \prime}(s)}{F(s)} d s\right| \leqq c_{15} \int_{1}^{\infty} s \cdot s^{-5 / 2} d s<\infty
$$

where the bound is independent of T. Finally, F has been shown to be bounded above and below and therefore $\log (F(T) / F(0))$ is bounded as well.

To prove (b) we proceed as in the proof of (a) above. We will only outline the new elements of the proof. If t_{0} is the point where $b+\sqrt{r+t}-a \sqrt{r}=\sqrt{t}$, a calculation shows that $t_{0} \geqq(9 / 16) r$. Note $f_{a, b, r}(t)=1$ for $t \leqq t_{0}$. Then

$$
\begin{align*}
\int_{0}^{t} \frac{1}{u}\left|1-\frac{1}{\left(f_{a, b, r}(u)\right)^{2}}\right| d u & \leqq \int_{t_{0}}^{\infty} \frac{1}{u} \frac{\left|f_{a, b, r}(u)-1\right|\left(f_{a, b, r}(u)+1\right)}{\left(f_{a, b, r}(u)\right)^{2}} d u \\
& \leqq c_{16} \sqrt{r} \int_{r / 2}^{\infty} \frac{1}{u} \frac{1}{\sqrt{u}} d u \tag{3.10}
\end{align*}
$$

which is bounded independently of t, r, b, and a. It follows that there exists c_{17} such that $h(t) \leqq c_{17} t$ for all t. As we saw above, $h(t) \geqq t$. So

$$
\mathbb{P}\left(\left|W_{t}\right| \leqq \sqrt{t}, h(1) \leqq t \leqq h(T)\right) \geqq \mathbb{P}\left(\left|W_{t}\right| \leqq \sqrt{t}, 1 \leqq t \leqq c_{17} T\right) \geqq c_{18} / T
$$

F is not in C^{1}, but if we approximate F in a suitable way and take a limit, we see that $\mathbb{Q}(A) \geqq e^{-K} \mathbb{P}(A)$, where K is a bound for

$$
\begin{aligned}
& \frac{1}{2}\left(-Y_{T}^{2} \frac{F^{\prime}(T)}{F(T)}+Y_{0}^{2} \frac{F^{\prime}(0)}{F(0)}+\int_{t_{0}}^{T} Y_{s}^{2} \frac{F^{\prime \prime}(s)}{F(s)} d s+\left[F^{\prime}\left(t_{0}+\right)-F^{\prime}\left(t_{0}-\right)\right]\right. \\
& \left.\quad \times Y_{t_{0}}^{2}+\log (F(T) / F(0))\right)
\end{aligned}
$$

Using the fact that $F(t)=f(t)=1$ and $F^{\prime}(t)=F^{\prime \prime}(t)=0$ for $t<t_{0}$, we bound this by a quantity independent of a, b, and r in a manner similar to that used in (3.10).

Remark. 3.2. The same proof shows that if (3.1) holds, there exists c_{1} such that

$$
\begin{equation*}
\mathbb{P}^{0}\left(\left|X_{t}\right| \leqq f(t) \sqrt{t}, s \leqq t \leqq T\right) \leqq c_{1} s / T \tag{3.11}
\end{equation*}
$$

One can similarly generalize Proposition 3.1(b).
Proposition 3.3. There exists c_{1} such that if $1 \leqq s \leqq 5 s+2 v_{1} \leqq T$, then

$$
\mathbb{P}\left(\left|X_{t}\right| \leqq 2+\sqrt{s+t}, 0 \leqq t \leqq T\right) \leqq c_{1} s / T .
$$

Proof. If $s \leqq v_{1}$, then

$$
\begin{aligned}
\mathbb{P}\left(\left|X_{t}\right| \leqq 2+\sqrt{s+t}, 0 \leqq t \leqq T\right) & \leqq \mathbb{P}\left(\left|X_{t}\right| \leqq 2+\sqrt{s}+\sqrt{t}, 0 \leqq t \leqq T\right) \\
& \leqq \mathbb{P}\left(\left|X_{t}\right| \leqq 2+v_{1}+\sqrt{t}, 1 \leqq t \leqq T\right)
\end{aligned}
$$

and the last probability can be estimated by Proposition 3.1(a) with $f(t)=1+$ $\left(2+v_{1}\right) / \sqrt{t}$ for $t \geqq 1$.

Suppose now that $s \geqq v_{1}$. We write

$$
\begin{align*}
\mathbb{P}\left(\left|X_{t}\right|\right. & \leqq 2+\sqrt{s+t}, 0 \leqq t \leqq T) \\
& \leqq \mathbb{P}\left(\left|X_{s}\right| \leqq 2+\sqrt{2 s} ;\left|X_{t}\right| \leqq 2+\sqrt{s+t}, s \leqq t \leqq T\right) \\
& \leqq \int_{-2-\sqrt{3 s}}^{2+\sqrt{3 s}} \mathbb{P}^{0}\left(X_{s} \in d u\right) \mathbb{P}^{u}\left(\left|X_{t}\right| \leqq 2+\sqrt{2 s+t}, 0 \leqq t \leqq T-s\right) \tag{3.12}
\end{align*}
$$

Next we have for $|y| \leqq 3 \sqrt{s}$,

$$
\begin{align*}
\mathbb{P}^{y}\left(\left|X_{t}\right|\right. & \leqq 2+\sqrt{s+t}, s \leqq t \leqq T) \\
& \geqq \int_{-2-\sqrt{3 s}}^{2+\sqrt{3 s}} \mathbb{P}^{y}\left(X_{s} \in d u\right) \mathbb{P}^{u}\left(\left|X_{t}\right| \leqq 2+\sqrt{2 s+t}, 0 \leqq t \leqq T-s\right) . \tag{3.13}
\end{align*}
$$

Since $\mathbb{P}^{y}\left(X_{s} \in d u\right)=(2 \pi s)^{-1 / 2} e^{-(u-y)^{2} / 2 s} d u$, we see there exists c_{2} such that

$$
\mathbb{P}^{0}\left(X_{s} \in d u\right) \leqq c_{2} \mathbb{P}^{y}\left(X_{s} \in d u\right), \quad|y| \leqq 3 \sqrt{s},|u| \leqq 2+\sqrt{3 s} .
$$

So combining (3.12) and (3.13), if $|y| \leqq 3 \sqrt{s}$,

$$
\begin{equation*}
\mathbb{P}\left(\left|X_{t}\right| \leqq 2+\sqrt{s+t}, 0 \leqq t \leqq T\right) \leqq c_{2} \mathbb{P}^{y}\left(\left|X_{t}\right| \leqq 2+\sqrt{s+t}, s \leqq t \leqq T\right) \tag{3.14}
\end{equation*}
$$

Then we have

$$
\begin{align*}
\mathbb{P}^{0}\left(\left|X_{t}\right|\right. & \leqq 2+\sqrt{t}, 2 s \leqq t \leqq T+s) \\
& \geqq \int_{-3 \sqrt{s}}^{3 \sqrt{s}} \mathbb{P}^{0}\left(X_{s} \in d y\right) \mathbb{P}^{y}\left(\left|X_{t}\right| \leqq 2+\sqrt{s+t}, s \leqq t \leqq T\right) \\
& \geqq c_{2}^{-1} \int_{-3 \sqrt{s}}^{3 \sqrt{s}} \mathbb{P}^{0}\left(X_{s} \in d y\right) \mathbb{P}^{0}\left(\left|X_{t}\right| \leqq 2+\sqrt{s+t}, 0 \leqq t \leqq T\right) \\
& =c_{3} \mathbb{P}^{0}\left(\left|X_{t}\right| \leqq 2+\sqrt{s+t}, 0 \leqq t \leqq T\right) \tag{3.15}
\end{align*}
$$

By Remark 3.2, the left hand side of (3.15) is bounded by $c_{4} s /(T+s) \leqq c_{4} s / T$.

Proposition 3.4. Suppose $s \geqq 1$ and $T \geqq 4 s+10 v_{1}$. There exist c_{1} and c_{2} such that if $0 \leqq y \leqq 2+\sqrt{s}$, then

$$
c_{1}\left(1-\frac{y-2}{\sqrt{s}}\right) \frac{s}{T} \leqq \mathbb{P}^{y}\left(\left|X_{t}\right| \leqq 2+\sqrt{s+t}, 0 \leqq t \leqq T,\left|X_{T}\right| \leqq \sqrt{s+T} / 2\right)
$$

and

$$
\mathbb{P}^{y}\left(\left|X_{t}\right| \leqq 2+\sqrt{s+t}, 0 \leqq t \leqq T\right) \leqq c_{2}\left(1-\frac{y-2}{\sqrt{s}}\right) \frac{s}{T}
$$

Proof. For the lower bound,

$$
\begin{align*}
& \mathbb{P}^{y}\left(\left|X_{t}\right|\right.\left.\leqq 2+\sqrt{s+t}, 0 \leqq t \leqq T,\left|X_{T}\right| \leqq \sqrt{s+T} / 2\right) \\
& \geqq \mathbb{P}^{y}\left(\left|X_{t}\right| \leqq 2+\sqrt{s}, 0 \leqq t \leqq s,\left|X_{s}\right| \leqq \sqrt{s} / 4 ;\right. \\
&\left.\quad\left|X_{t}\right| \leqq 2+\sqrt{s+t}, s \leqq t \leqq T,\left|X_{T}\right| \leqq \sqrt{s+T} / 2\right) \\
& \geqq \mathbb{E}^{y}\left[\mathbb{P}^{X_{s}}\left(\left|X_{t}\right| \leqq 2+\sqrt{2 s+t}, 0 \leqq t \leqq T-s,\left|X_{T-s}\right| \leqq \sqrt{T} / 2\right)\right. \\
&\left.\quad\left|X_{s}\right| \leqq \sqrt{s} / 4,\left|X_{t}\right| \leqq 2+\sqrt{s}, 0 \leqq t \leqq s\right] \tag{3.16}
\end{align*}
$$

If $|z| \leqq \sqrt{s} / 4$,

$$
\begin{align*}
\mathbb{P}^{z}\left(\left|X_{t}\right| \leqq\right. & \left.2+\sqrt{2 s+t}, 0 \leqq t \leqq T-s ;\left|X_{T-s}\right| \leqq \sqrt{T} / 2\right) \\
& \geqq \mathbb{P}^{z}\left(\left|X_{t}\right| \leqq \sqrt{2 s+t}, 0 \leqq t \leqq T-s ;\left|X_{T-s}\right| \leqq \sqrt{T} / 2\right) \\
& \geqq c_{3} \mathbb{P}^{z}\left(\left|X_{t}\right| \leqq \sqrt{2 s+t}, 0 \leqq t \leqq T-s\right) \\
& \geqq c_{4} s / T \tag{3.17}
\end{align*}
$$

by scaling, Remark 2.11 and Proposition 2.3. Therefore the right hand side of (3.16) is greater than

$$
c_{4} \frac{s}{T} \mathbb{P}^{y}\left(\left|X_{s}\right| \leqq \sqrt{s} / 4,\left|X_{i}\right| \leqq 2+\sqrt{s}, 0 \leqq t \leqq s\right)
$$

But

$$
\mathbb{P}^{y}\left(\left|X_{t}\right| \leqq 2+\sqrt{s}, 0 \leqq t \leqq s\right) \geqq c_{5} \frac{2+\sqrt{s}-y}{\sqrt{s}}=c_{5}\left(1-\frac{y-2}{\sqrt{s}}\right)
$$

and given that $\left|X_{t}\right|$ remains less than $2+\sqrt{s}$ until time s, there is positive probability that $\left|X_{S}\right| \leqq \sqrt{s} / 4$.

For the other inequality we have

$$
\begin{align*}
\mathbb{P}^{y}\left(\left|X_{t}\right|\right. & \leqq 2+\sqrt{s+t}, 0 \leqq t \leqq T) \\
& \leqq \mathbb{P}^{y}\left(X_{t} \leqq 2+\sqrt{s+t}, 0 \leqq t \leqq 3 s\right. \\
\left|X_{t}\right| & \leqq 2+\sqrt{s+t}, 3 s \leqq t \leqq T) \tag{3.18}
\end{align*}
$$

Using the Markov property at time $3 s$ and Remark 2.8, the right hand side of (3.18) is bounded by

$$
\begin{equation*}
\mathbb{P}^{y-2}\left(X_{t} \leqq \sqrt{s+t}, 0 \leqq t \leqq 3 s\right) \mathbb{P}^{0}\left(\left|X_{t}\right| \leqq 2+\sqrt{4 s+t}, 0 \leqq t \leqq T-3 s\right) \tag{3.19}
\end{equation*}
$$

The probability that X_{t} started at $y-2$ at time 0 stays under the curve $\sqrt{s+t}$ for $t \in[0,3 s]$ is the same as the probability that X_{t} starting at $y-2$ at time s stays under the curve \sqrt{t} for $t \in[s, 4 s]$. Defining Z_{t} by (2.1), this is the same
as the probability that Z_{t} starting at $(y-2) / \sqrt{s}$ at time $\log s$ stays below 1 for $t \in[\log s, \log 4 s]$. Thus the first factor is equal to

$$
\begin{equation*}
\mathbb{P}^{(y-2) / \sqrt{s}}\left(Z_{t} \leqq 1,0 \leqq t \leqq \log 4\right) \leqq c_{6}\left(1-\frac{y-2}{\sqrt{s}}\right) \tag{3.20}
\end{equation*}
$$

by Proposition 2.6. The second factor in (3.19) is bounded by

$$
\mathbb{P}^{0}\left(\left|X_{t}\right| \leqq 2+\sqrt{4 s+t}, 1 \leqq t \leqq T-3 s\right) \leqq c_{7} \frac{4 s}{T-3 s} \leqq c_{8} \frac{s}{T}
$$

by Proposition 3.3. Combining this with (3.20) gives the upper bound.

4. Approximate slow points

Let $U=e^{10 v_{1}}$, where v_{1} is defined following Proposition 2.2. For $0 \leqq j \leqq n$, define the event

$$
\begin{equation*}
A_{j}=\left\{\left|X_{t}-X_{j}\right| \leqq 2+\sqrt{t-j}, j+1 \leqq t \leqq U_{n}\right\} \tag{4.1}
\end{equation*}
$$

When the event A_{j} occurs, we say X_{t} has an approximate slow point at time j. Let $\beta>0$ be arbitrary. Our goal is to show $\mathbb{P}\left(\bigcup_{j=1}^{n} A_{j}\right) \leqq \beta$ when n is sufficiently large. We do that by getting a suitable estimate on $\mathbb{P}\left(A_{j} \cap A_{j+1}^{c} \cap\right.$ $\ldots \cap A_{n}^{c}$). We start by using induction to construct a finite sequence of pairs $\left(j_{1}, k_{1}\right), \ldots,\left(j_{I}, k_{I}\right)$ which have some special properties and are such that $j<$ $j_{1}<k_{1}<\ldots<j_{I}<k_{I}<n$. Let

$$
\begin{equation*}
B_{i}=A_{j_{i}}^{c} \cap \ldots \cap A_{k_{i}}^{c} . \tag{4.2}
\end{equation*}
$$

We will show there exists a $c_{1}>0$ and $\rho \in(0,1)$ such that

$$
\begin{equation*}
\mathbb{P}\left(A_{0} \cap B_{1} \cap \ldots \cap B_{i}\right) \leqq c_{1} \rho^{i} / n \tag{4.3}
\end{equation*}
$$

Let us proceed with the $i=1$ case. We will also concentrate primarily on the case $j=0$ and then point out how the case of general j follows from this special case. The right hand side of the following proposition has also been proved in Sect. 3 of [DP].

Proposition 4.1. There exist κ_{2} and κ_{3} such that

$$
\kappa_{2} / n \leqq \mathbb{P}\left(A_{j}\right) \leqq \kappa_{3} / n
$$

Proof. We use the Markov property at time j and translation invariance to get

$$
\begin{aligned}
\mathbb{P}\left(A_{j}\right) & =\mathbb{E}\left[\mathbb{P}^{X_{j}}\left(\left|X_{t}-X_{0}\right| \leqq 2+\sqrt{t}, 1 \leqq t \leqq U n-j\right)\right] \\
& =\mathbb{P}\left(\left|X_{t}\right| \leqq 2+\sqrt{t}, 1 \leqq t \leqq U n-j\right)
\end{aligned}
$$

The upper bound and lower bound now follow by using Proposition 3.1(a) with $f(t)=1+2 / \sqrt{t}$ for $t \geqq 1$.

Proposition 4.2. There exists c_{1} such that if $k<n$, then

$$
\mathbb{P}\left(A_{0} \cap A_{k}\right) \geqq c_{1} / n k
$$

Proof. By Remark 2.11 and Proposition 2.9, if $k \geqq v_{1}$, then

$$
\begin{aligned}
\mathbb{P}\left(\left|X_{t}\right| \leqq \sqrt{t}, 1\right. & \left.\leqq t \leqq k, \text { and }\left|X_{k}\right| / \sqrt{k} \leqq 1 / 2\right) \\
& \geqq c_{2} \mathbb{P}\left(\left|X_{t}\right| \leqq \sqrt{t}, 1 \leqq t \leqq k\right) \geqq c_{3} / k
\end{aligned}
$$

If $k<v_{1}$,

$$
\begin{aligned}
\mathbb{P}\left(\left|X_{t}\right|\right. & \left.\leqq \sqrt{t}, 1 \leqq t \leqq k, \text { and }\left|X_{k}\right| / \sqrt{k} \leqq 1 / 2\right) \geqq \mathbb{P}\left(\left|X_{t}\right| \leqq 1,0 \leqq t \leqq k\right) \\
& \geqq c_{4} \geqq c_{4} / k
\end{aligned}
$$

So using the Markov property at time k, it suffices to show there exists c_{5} such that if $|y| \leqq \sqrt{k} / 2$, then

$$
\begin{equation*}
\mathbb{P}^{0}\left(\left|X_{t}\right| \leqq 2+\sqrt{t+k}-|y| \text { and }\left|X_{t}\right| \leqq \sqrt{t}, 1 \leqq t \leqq U n-k\right) \geqq c_{5} / n \tag{4.4}
\end{equation*}
$$

By symmetry we can assume without loss of generality that $y \geqq 0$. We will show (4.4) when y is largest, namely $\sqrt{k} / 2$; the same proof works for every smaller y.

Suppose $k \geqq 4$. The curves $t \mapsto 2+\sqrt{t+k}-\sqrt{k} / 2$ and $t \mapsto \sqrt{t}$ intersect at a point $t_{0} \geqq 9 k / 16$. Let $f(t)$ be equal to 1 for $0 \leqq t \leqq t_{0}$ and equal to $(2+$ $\sqrt{k+t}-\sqrt{k} / 2) / \sqrt{t}$ for $t_{0} \leqq t \leqq U n-k$. Our result follows by Proposition $3.1(b)$.

The case $k \leqq 3$ must be dealt with separately, but is quite easy and is left to the reader.

Proposition 4.3. There exists c_{1} such that if $k+p \leqq n$, then

$$
\mathbb{P}\left(A_{0} \cap A_{k} \cap A_{k+p}\right) \leqq c_{1} / n k p
$$

Proof. We have

$$
\begin{gathered}
\mathbb{P}\left(A_{0} \cap A_{k} \cap A_{k+p}\right) \leqq \mathbb{P}\left(\left|X_{t}\right| \leqq 2+\sqrt{t}, 1 \leqq t \leqq k ;\right. \\
\left|X_{t}-X_{k}\right| \leqq 2+\sqrt{t-k}, k+1 \leqq t \leqq k+p ; \\
\left|X_{t}-X_{k+p}\right| \leqq 2+\sqrt{t-(k+p)}, k+p+1 \\
\leqq t \leqq U n) .
\end{gathered}
$$

By the Markov property at times k and $k+p$ and Remark 2.8, we bound the above probability by

$$
\begin{aligned}
\mathbb{P}\left(\left|X_{t}\right| \leqq 2+\sqrt{t}, 1 \leqq t\right. & t \leqq k) \times \mathbb{P}\left(\left|X_{t}\right| \leqq 2+\sqrt{t}, 1 \leqq t \leqq p\right) \\
& \times \mathbb{P}\left(\left|X_{t}\right| \leqq 2+\sqrt{t}, 1 \leqq t \leqq U n-(k+p)\right)
\end{aligned}
$$

Using Proposition 3.1, this in turn is bounded above by

$$
\left(c_{2} / k\right)\left(c_{2} / p\right)\left(c_{2} /(U n-(k+p)) \leqq c_{3} / n k p\right.
$$

Let $j_{1}=1$.

Proposition 4.4. There exists $\rho^{\prime} \in(0,1)$ and a positive integer k_{1} such that

$$
\mathbb{P}\left(A_{0} \cap B_{1}\right)<\kappa_{3} \rho^{\prime} / n
$$

where B_{1} is defined in terms of k_{1} by (4.2).
Proof. Define a new probability measure © by

$$
\mathbb{Q}(E)=\mathbb{P}\left(E \mid A_{0}\right)=\frac{\mathbb{P}\left(E \cap A_{0}\right)}{\mathbb{P}\left(A_{0}\right)}
$$

Since $\mathbb{P}\left(A_{0}\right)>0$, this is a well defined measure. From Propositions 4.2 and 4.3 we have $\mathbb{Q}\left(A_{k}\right) \geqq c_{1} / k$ and $\mathbb{Q}\left(A_{k} \cap A_{p}\right) \leqq c_{2} / k(p-k)$. Without loss of generality we may assume $c_{1} \leqq 1$ and $c_{2} \geqq 1$.

Let $N_{r}=\sum_{m=1}^{r} 1_{A_{m}}$. Then

$$
\mathbb{E}_{\mathbb{Q}} N_{r}=\sum_{m=1}^{r} \mathbb{Q}\left(A_{m}\right) \geqq c_{1} \sum_{m=1}^{r} 1 / m \geqq c_{1} \log r
$$

and

$$
\begin{aligned}
\mathbb{E}_{\mathbb{Q}} N_{r}^{2} & =\sum_{m=1}^{r} \mathbb{Q}\left(A_{m}\right)+2 \sum_{\substack{m, p=1 \\
m<p}}^{r} \mathbb{Q}\left(A_{m} \cap A_{p}\right) \\
& \leqq \mathbb{E}_{\mathbb{Q}} N_{r}+2 \sum_{m<p} \frac{c_{2}}{m(p-m)} \leqq \mathbb{E}_{\mathbb{Q}} N_{r}+2 c_{2}(1+\log r)^{2} \\
& \leqq \mathbb{E}_{\mathbb{Q}} N_{r}+8 c_{2} \log ^{2} r \leqq \mathbb{E}_{\mathbb{Q}} N_{r}+8 c_{2} c_{1}^{-2}\left(\mathbb{E}_{\mathbb{Q}} N_{r}\right)^{2} \\
& \leqq\left(1+8 c_{2} c_{1}^{-2}\right)\left(\mathbb{E}_{\mathbb{Q}} N_{r}\right)^{2} \leqq 9 c_{2} c_{1}^{-2}\left(\mathbb{E}_{\mathbb{Q}} N_{r}\right)^{2}
\end{aligned}
$$

as long as $r \geqq 3$ is big enough so that $c_{1} \log r>2$. Let $k_{1}=r$ and $c_{3}=9 c_{2} c_{1}^{-2}$.

By the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\mathbb{E}_{\mathbb{Q}} N_{r} & \leqq 1+\mathbb{E}_{\mathbb{Q}}\left[N_{r} ; N_{r}>1\right] \\
& \leqq 1+\left(\mathbb{E}_{\mathbb{Q}} N_{r}^{2}\right)^{1 / 2} \mathbb{Q}\left(N_{r}>1\right)^{1 / 2} \\
& \leqq 1+c_{3}^{1 / 2}\left(\mathbb{E}_{\mathbb{Q}} N_{r}\right) \mathbb{Q}\left(N_{r}>1\right)^{1 / 2}
\end{aligned}
$$

so

$$
\mathbb{E}_{\mathbb{Q}} N_{r} / 2 \leqq c_{3}^{1 / 2}\left(\mathbb{E}_{\mathbb{Q}} N_{r}\right) \mathbb{Q}\left(N_{r}>1\right)^{1 / 2}
$$

or

$$
\mathbb{Q}\left(N_{r}>1\right) \geqq 1 /\left(4 c_{3}\right) .
$$

Let $\rho^{\prime}=1-1 /\left(40 c_{3}\right)$. If $N_{r}>1$, then B_{1}^{c} occurs. Thus $\mathbb{Q}\left(B_{1}\right)<\rho^{\prime}$ and using Proposition 4.1, we get our desired estimate.
Remark. 4.5. Note for future reference that the proof of Proposition 4.4 shows that if

$$
\begin{gather*}
c_{1}=\inf _{1 \leqq m \leqq n}\left[m \mathbb{P}\left(A_{0} \cap A_{m}\right) / \mathbb{P}\left(A_{0}\right)\right] \wedge 1 \tag{4.5}\\
c_{2}=\sup _{1 \leqq m \leqq p \leqq n}\left[m(p-m) \mathbb{P}\left(A_{0} \cap A_{m} \cap A_{p}\right) / \mathbb{P}\left(A_{0}\right)\right] \vee 1 \tag{4.6}
\end{gather*}
$$

then

$$
\rho^{\prime}=1-1 /\left[40\left(9 c_{2} c_{1}^{-2}\right)\right]=1-c_{1}^{2} /\left(360 c_{2}\right)
$$

Define

$$
D_{j}(N)=\left\{\left|X_{t}-X_{j}\right| \leqq 2+\sqrt{t-j}, j+1 \leqq t \leqq N\right\}
$$

Proposition 4.6. Let k be given and let $\varepsilon>0$. There exists $N_{0}>k$ (not depending on n) such that if $j \leqq k, N \geqq N_{0}$, and n is sufficiently large, then

$$
\mathbb{P}\left(A_{0} \cap D_{j}(N) \cap A_{j}^{c}\right) \leqq \varepsilon / n
$$

Proof. Let $T=\inf \left\{t>j+1:\left|X_{t}-X_{j}\right|>2+\sqrt{t-j}\right\}$. On $D_{j}(N) \cap A_{j}^{c}, N \leqq$ $T \leqq U n$. If events A_{0} and $\{N \leqq T \leqq n\}$ hold, we have $\left|X_{T}-X_{j}\right| \geqq 2+$ $\sqrt{T-j}$ and $\left|X_{j}\right| \leqq 2+\sqrt{j}$. Therefore

$$
\left|X_{T}\right| \geqq \sqrt{T-j}-\sqrt{j}
$$

$\mathbb{P}^{y}\left(\left|X_{t}\right| \leqq 2+\sqrt{s+t}, 0 \leqq t \leqq(U-1) n\right)$ will be largest when $|y|$ is smallest. If $T \in\left[2^{m} N \wedge n, 2^{m+1} N \wedge n\right]$, then

$$
\begin{align*}
\mathbb{P}^{X_{T}}\left(\left|X_{t}\right|\right. & \leqq 2+\sqrt{T+t}, 0 \leqq t \leqq(U-1) n) \\
& \leqq \mathbb{P}^{\sqrt{T-j}-\sqrt{j}}\left(\left|X_{t}\right| \leqq 2+\sqrt{T+t}, 0 \leqq t \leqq(U-1) n\right) \tag{4.7}
\end{align*}
$$

By Proposition 3.4, the right hand side of (4.7) is bounded by

$$
c_{2}\left(1-\frac{\sqrt{T-j}-\sqrt{j}-2}{\sqrt{T}}\right) \frac{T}{n} \leqq c_{3}\left(j\left(2^{m+1} N \wedge n\right)\right)^{1 / 2} / n
$$

So using the strong Markov property at time T and Proposition 3.1,

$$
\begin{aligned}
\mathbb{P}\left(A_{0}, T \in\right. & {\left.\left[2^{m} N, 2^{m+1} N\right]\right) } \\
\leqq & \mathbb{P}\left(\left|X_{t}\right| \leqq 2+\sqrt{t}, 1 \leqq t \leqq 2^{m} N \wedge n, T \in\left[2^{m} N \wedge n, 2^{m+1} N \wedge n\right]\right. \\
& \left.\left|X_{T+t}\right| \leqq 2+\sqrt{T+t}, 0 \leqq t \leqq(U-1) n\right) \\
\leqq & \mathbb{E}\left[\mathbb{P}^{X_{T}}\left(\left|X_{t}\right| \leqq 2+\sqrt{T+t}, 0 \leqq t \leqq(U-1) n\right)\right. \\
& T \in\left[2^{m} N \wedge n, 2^{m+1} N \wedge n\right] \\
& \left.\left|X_{t}\right| \leqq 2+\sqrt{t}, 1 \leqq t \leqq 2^{m} N \wedge n\right] \\
\leqq & \frac{c_{3}\left(j\left(2^{m+1} N \wedge n\right)\right)^{1 / 2}}{n} \frac{c_{4}}{2^{m} N \wedge n} \\
= & \frac{c_{5} \sqrt{j}}{n\left(2^{m} N \wedge n\right)^{1 / 2}} .
\end{aligned}
$$

If we now sum this over m from 0 to the first integer greater than $(\log n-$ $\log N) / \log 2$,

$$
\mathbb{P}\left(A_{0}, N \leqq T \leqq n\right) \leqq c_{6} \sqrt{k} / n \sqrt{N} \leqq c_{6} \sqrt{k} / n \sqrt{N_{0}} .
$$

Next we look at the event $A_{0} \cap\{T \in[n, U n]\}$. For this to hold, first, $\left|X_{t}\right|$ must lie under the curve $t \mapsto 2+\sqrt{t}$ for $t \in[1, n]$; second, $\left|X_{t}\right|$ must lie under
the curve $t \mapsto 2+\sqrt{t}$ for $t \in[n, U n]$; and third, for some y with $|y| \leqq 2+\sqrt{j}$ (namely, $y=X_{j}$), X_{t} hits at least one of the curves $t \mapsto y \pm(2+\sqrt{t-j})$ for some $t \in[n, U n]$. We give the proof for y as small as possible, that is, $y=-2-\sqrt{j}$; essentially the same proof works for every larger y. Using the Markov property at time n and Proposition 3.1 (a) with $f(t)=1+2 / \sqrt{t}$ for $t \geqq 1$,

$$
\begin{aligned}
& \mathbb{P}\left(A_{0}, T \in[n, U n]\right) \\
& \quad \leqq\left(\frac{c_{7}}{n}\right)_{|z| \leqq 2+\sqrt{n}} \sup ^{z}\left(\left|X_{t}\right| \leqq 2+\sqrt{n+t}, 0 \leqq t \leqq(U-1) n\right. \\
& \left.\quad X_{t}>\sqrt{n+t-j}-\sqrt{j} \text { for some } t \in[0,(U-1) n]\right) \\
& \quad \leqq\left(\frac{c_{7}}{n}\right)_{|z| \leqq 2+\sqrt{n}} \sup \mathbb{P}^{z}\left(X_{t} \text { hits } a \sqrt{n+t} \text { for some } t \in[0,(U-1) n],\right.
\end{aligned}
$$

$$
\begin{equation*}
\text { but does not hit } b \sqrt{n+t} \text { for } t \in[0,(U-1) n]) \tag{4.8}
\end{equation*}
$$

where $a=\sqrt{1-j / n}-\sqrt{j / n}$ and $b=1+2 / \sqrt{n}$. The probability on the right hand side of (4.8) is the probability that a Brownian motion started at z at time n bits the curve $a \sqrt{t}$ but not $b \sqrt{t}$ before time Un. Using (2.1), this is the same as the probability that Z_{t} started at z / \sqrt{n} at time $\log n$ hits the level a but not b before time $\log (U n)$. So

$$
\mathbb{P}\left(A_{0}, T \in[n, U n]\right) \leqq\left(\frac{c_{7}}{n}\right) \sup _{|z| \leqq b} \mathbb{P}^{z}\left(\tau_{a} \leqq \log U, \tau_{b} \geqq \log U\right)
$$

By Proposition 2.7 and the inequality $\sqrt{1-j / 2 n} \geqq 1-j / 2 n$,

$$
\mathbb{P}\left(A_{0}, T \in[n, U n]\right) \leqq c_{8} \sqrt{j} / n \sqrt{n}
$$

So if we take N_{0} large enough, we get our result provided n is sufficiently large.

We are now ready to complete the induction step. We suppose we have selected $j_{1}, k_{1}, \ldots, j_{i}, k_{i}$ and we are to construct j_{i+1}, k_{i+1}.

Let $C_{i}(N)=D_{1}(N) \cup D_{2}(N) \cup \ldots \cup D_{k_{i}}(N)$. We will write B for $B_{1} \cap \ldots \cap$ B_{i}.

Proposition 4.7. Let $i \geqq 1$. There exists $\rho^{\prime \prime} \in(0,1)$ independent of i such that if N is any integer larger than $2 k_{i}$, then there exist integers j_{i+1} and k_{i+1} (not depending on n) satisfying $2 k_{i}<N<j_{i+1}<k_{i+1}$ so that

$$
\mathbb{P}\left(A_{0} \cap C_{i}^{c}(N) \cap B \cap B_{i+1}\right)<\rho^{\prime \prime} \mathbb{P}\left(A_{0} \cap C_{i}^{c}(N) \cap B\right)
$$

for n sufficiently large.
Proof. Let

$$
\begin{aligned}
R & =\left\{\left|X_{t}\right| \leqq 2+\sqrt{t}, 1 \leqq t \leqq N\right\} \\
S & =\left\{\left|X_{t}\right| \leqq 2+\sqrt{t}, N \leqq t \leqq U n\right\} \\
S^{\prime} & =\left\{\left|X_{t}+X_{0}\right| \leqq 2+\sqrt{t+N}, 0 \leqq t \leqq U n-N\right\} \\
A_{j}^{\prime} & =\left\{\left|X_{t}+X_{j-N}\right| \leqq 2+\sqrt{t-(j-N)}, j-N+1 \leqq t \leqq U n-N\right\}
\end{aligned}
$$

Let N be any integer larger than $2 k_{i}$ and let $j_{i+1}=8 N$. Suppose $j \geqq j_{i+1}$. We assume n is large enough so that $U n>16 N$.

By Proposition 3.4 there exist c_{1} and c_{2} such that if $|y| \leqq 2+\sqrt{N}$,

$$
\begin{align*}
& c_{1}\left(1-\frac{|y|-2}{\sqrt{N}}\right) \frac{N}{U n-N} \leqq \mathbb{P}^{y}\left(S^{\prime}\right) \\
& \quad \leqq c_{2}\left(1-\frac{|y|-2}{\sqrt{N}}\right) \frac{N}{U n-N} \tag{4.9}
\end{align*}
$$

To estimate $\mathbb{P}^{y}\left(S^{\prime} \cap A_{j}^{\prime}\right)$ from below, notice that by translation invariance and the Markov property, this is greater than the product of the following two factors:
(i) the probability that a Brownian motion started at y at time N lies between the curves $\pm \sqrt{t}$ until time j with $\left|X_{j}\right| \leqq \sqrt{j} / 2$, and
(ii) the probability that after time j, the Brownian motion lies between square root boundaries centered at X_{j} up until time $U n$ while at the same time remaining between $\pm \sqrt{t}$.

The probability in (i) is the same as
(i^{\prime}) the probability that a Brownian motion started at y at time 0 lies between the curves $\pm \sqrt{t+N}$ until time $j-N$ with $\left|X_{j-N}\right| \leqq \sqrt{j-N} / 2$.
Using Proposition 3.4 this probability is bounded below by

$$
c_{3}\left(1-\frac{|y|-2}{\sqrt{N}}\right) \frac{N}{j-N} .
$$

Factor (ii) may be estimated using Proposition 3.1(b)-the lower bound here is a constant multiple of $1 /(U n-j)$. We see that

$$
\mathbb{P}^{y}\left(S^{\prime} \cap A_{j}^{\prime}\right) \geqq c_{4}\left(1-\frac{|y|-2}{\sqrt{N}}\right) \frac{N}{j-N} \times \frac{1}{U n-j} \geqq c_{4}\left(1-\frac{|y|-2}{\sqrt{N}}\right) \frac{N}{j n}
$$

Comparing with (4.9), there exists c_{5} such that

$$
\mathbb{P}^{y}\left(S^{\prime} \cap A_{j}^{\prime}\right) \geqq c_{5} \mathbb{P}^{y}\left(S^{\prime}\right) / j
$$

Note c_{5} can be chosen to be independent of N. Similarly, there exists c_{6} such that

$$
\mathbb{P}^{y}\left(S^{\prime} \cap A_{j}^{\prime} \cap A_{k}^{\prime}\right) \leqq c_{6} \mathbb{P}^{y}\left(S^{\prime}\right) / j(k-j)
$$

Observe that $C_{i}^{c}(N) \cap B=C_{i}^{c}(N) \in \mathscr{F}_{N}$, the σ-field up to time N. By the Markov property at time N,

$$
\begin{aligned}
\mathbb{P}\left(A_{0} \cap B \cap C_{i}^{c}(N) \cap A_{j}\right) & =\mathbb{P}\left(R \cap B \cap C_{i}^{c}(N) \cap S \cap A_{j}\right) \\
& =\mathbb{E}\left[\mathbb{P}^{X_{N}}\left(S^{\prime} \cap A_{j}^{\prime}\right) ; R \cap B \cap C_{i}^{c}(N)\right] \\
& \geqq c_{5} \mathbb{E}\left[\mathbb{P}^{X_{N}}\left(S^{\prime}\right) ; R \cap B \cap C_{i}^{c}(N)\right] / j \\
& =c_{5} \mathbb{P}\left(R \cap B \cap C_{i}^{c}(N) \cap S\right) / j \\
& =c_{5} \mathbb{P}\left(A_{0} \cap B \cap C_{i}^{c}(N)\right) / j
\end{aligned}
$$

Similarly,

$$
\mathbb{P}\left(A_{0} \cap B \cap C_{i}^{c}(N) \cap A_{j} \cap A_{k}\right) \leqq c_{6} \mathbb{P}\left(A_{0} \cap B \cap C_{i}^{C}(N)\right) / j(k-j)
$$

Choose r large enough so that $\log r \geqq 6$ and

$$
\sum_{m=j_{i+1}}^{r} \frac{1}{m} \geqq \log r / 2
$$

Let $k_{i+1}=r$. Proceeding just as in Proposition 4.4, there exists $\rho^{\prime \prime}$ such that

$$
\mathbb{P}\left(A_{0} \cap C_{i}^{c}(N) \cap B \cap B_{i+1}\right)<\rho^{\prime \prime} \mathbb{P}\left(A_{0} \cap C_{i}^{c}(N) \cap B\right)
$$

Note that $\rho^{\prime \prime}$ is independent of N, j_{i+1} and k_{i+1} (cf. Remark 4.5).
Let $\rho=\max \left(\rho^{\prime}, \rho^{\prime \prime}\right)$.
Proposition 4.8. There exist $j_{1}, k_{1}, \ldots, j_{i}, k_{i}$ (not depending on n) satisfying $1=j_{1}<k_{1}<j_{2}<k_{2}<\ldots<j_{i}<k_{i}$ such that for n sufficiently large,

$$
\begin{equation*}
\mathbb{P}\left(A_{0} \cap B_{1} \cap \ldots \cap B_{i}\right)<\kappa_{3} \rho^{i} / n . \tag{4.10}
\end{equation*}
$$

Proof. We use induction. The case $i=1$ is Proposition 4.4. Suppose we have (4.10) holding for i and we want to prove it holds for $i+1$. Write B for $B_{1} \cap \ldots \cap B_{i}$.

Take

$$
\varepsilon=\left[\kappa_{3} \rho^{i} / n-\mathbb{P}\left(A_{0} \cap B\right)\right] / 4 k_{i}
$$

and choose N_{0} as in Proposition 4.6 with $k=k_{i}$. Then if $N \geqq N_{0}$,

$$
\begin{align*}
\mathbb{P}\left(A_{0} \cap B \cap C_{i}(N)\right) & \leqq \mathbb{P}\left(\bigcup_{j=1}^{k_{i}}\left(A_{0} \cap D_{j}(N) \cap A_{j}^{c}\right)\right) \\
& \leqq k_{i} \sup _{j \leqq k_{i}} \mathbb{P}\left(A_{0} \cap D_{j}(N) \cap A_{j}^{c}\right) \leqq \varepsilon k_{i} / n . \tag{4.11}
\end{align*}
$$

By Proposition 4.7, taking $N=\max \left(N_{0}, 2 k_{i}+1\right)$, we can find j_{i+1} and k_{i+1} such that

$$
\begin{align*}
\mathbb{P}\left(A_{0} \cap B \cap B_{i+1} \cap C_{i}^{c}(N)\right) & <\rho \mathbb{P}\left(A_{0} \cap B \cap C_{i}^{c}(N)\right) \\
& \leqq \rho \mathbb{P}\left(A_{0} \cap B\right) \tag{4.12}
\end{align*}
$$

By (4.11),

$$
\begin{equation*}
\mathbb{P}\left(A_{0} \cap B \cap B_{i+1} \cap C_{i}(N)\right) \leqq \rho\left[\kappa_{3} \rho^{i} / n-\mathbb{P}\left(A_{0} \cap B\right)\right] / 4 \tag{4.13}
\end{equation*}
$$

Adding (4.12) and (4.13) and using the induction hypothesis,

$$
\mathbb{P}\left(A_{0} \cap B \cap B_{i+1}\right)<\rho\left[\frac{\kappa_{3} \rho^{i} / n}{4}+\frac{3 \mathbb{P}\left(A_{0} \cap B\right)}{4}\right]<\kappa_{3} \rho^{i+1} / n
$$

which is (4.10) for $i+1$.
Proposition 4.9. Let $\beta>0$. For n sufficiently large,

$$
\mathbb{P}\left(\bigcup_{j=1}^{n} A_{j}\right) \leqq \beta
$$

Proof. Take I so that

$$
\begin{equation*}
\mathbb{P}\left(A_{0} \cap B_{1} \cap \ldots \cap B_{I}\right) \leqq \beta / 2 n \tag{4.14}
\end{equation*}
$$

Let $\gamma=\beta / 2 \kappa_{3}$. Take n large enough so that $\gamma n \geqq 2 k_{I}$. By applying translation invariance to the estimate (4.14), we see that the proofs of Propositions 4.24.8 are still valid as long as $j \leqq n(1-\gamma)$ and we obtain

$$
\mathbb{P}\left(A_{j} \cap A_{j+1}^{c} \cap \ldots \cap A_{n}^{c}\right) \leqq \beta / 2 n
$$

On the other hand, if $j \geqq(1-\gamma) n$, then by Proposition 4.1 we have

$$
\mathbb{P}\left(A_{j} \cap A_{j+1}^{c} \cap \ldots \cap A_{n}^{c}\right) \leqq \mathbb{P}\left(A_{j}\right) \leqq \kappa_{3} / n
$$

We then obtain

$$
\begin{aligned}
\mathbb{P}\left(\bigcup_{j=1}^{n} A_{j}\right) & =\mathbb{P}\left(\bigcup_{j=1}^{n}\left(A_{j} \cap A_{j+1}^{c} \cap \ldots \cap A_{n}^{c}\right)\right) \\
& \leqq \sum_{j=1}^{n(1-\gamma)} \beta / 2 n+\sum_{j=n(1-\gamma)+1}^{n} \kappa_{3} / n \\
& \leqq \beta / 2+\kappa_{3} \gamma n / n=\beta .
\end{aligned}
$$

The proposition is proved.

5. Slow points

In this section we prove that "critical" slow points do not exist. Let

$$
E(n)=\left\{\text { there exists } r \in[0, n) \text { such that }\left|X_{t}-X_{r}\right| \leqq \sqrt{t-r}, r \leqq t \leqq 2 U n\right\} .
$$

Proposition 5.1. If $\mathbb{P}(S(1) \neq \phi)>0$, then there exists c_{1} such that $\mathbb{P}(E(n))>$ c_{1} for all n.
Proof. If $\mathbb{P}(S(1) \neq \phi)>0$, then there exists an integer m such that Brownian motion has a slow point in the interval $[m, m+1$) with positive probability. By translation invariance, Brownian motion has a slow point in $[0,1)$ with positive probability. There must exist a rational h such that the event
$\left\{\right.$ there exists $r \in[0,1)$ such that $\left.\left|X_{t}-X_{r}\right| \leqq \sqrt{t-r}, r \leqq t \leqq r+h\right\}$
has positive probability. As in the first two lines of this proof, there exists $c_{1}>0$ such that
$\mathbb{P}\left(\right.$ there exists $r<h / 2 U$ such that $\left.\left|X_{t}-X_{r}\right| \leqq \sqrt{t-r}, r \leqq t<r+h\right) \geqq c_{1}$.
An easy scaling argument (cf. Proposition 2.10) shows that if X_{t} has a slow point at time r, then for all $a, X_{a t}$ has one at time $a r$. Applying this with $a=2 U n / h$, we conclude that with probability at least c_{1} that there exists $r<n$ such that $X_{t}-X_{r}$ lies within square root boundaries for a time at least $2 U n$. But that event is $E(n)$.

Recall the statement of our main result.
Theorem 1.1. With probability one $S(1)=\emptyset$.
Proof. Suppose not. Then by Proposition 5.1 there exists $c_{1}>0$ such that $\mathbb{P}(E(n)) \geqq c_{1}$ for all n. If $\omega \in E(n)$, then there exists $r<n$ such that $\mid X_{t}-$ $X_{r} \mid \leqq \sqrt{t-r}$ for $r \leqq t \leqq 2 U n$. (r, of course, depends on ω.) Let j be the first integer greater than r. Then

$$
\left|X_{j}-X_{r}\right| \leqq \sqrt{j-r} \leqq 1
$$

If $U n \geqq t \geqq j+1$, then

$$
\begin{aligned}
\left|X_{t}-X_{j}\right| & \leqq\left|X_{t}-X_{r}\right|+\left|X_{r}-X_{j}\right| \\
& \leqq \sqrt{t-r}+1 \leqq \sqrt{1+t-j}+1 \leqq 2+\sqrt{t-j}
\end{aligned}
$$

This means that $\omega \in A_{j}$. So $E(n) \subseteq \bigcup_{j=1}^{n} A_{j}$. Let $\beta=c_{1} / 2$. By Proposition 4.9, the probability of $E(n)$ must be less than $c_{1} / 2$ if n is sufficiently large, a contradiction. Therefore we must have $\mathbb{P}(S(1) \neq \phi)=0$.

References

[BP] M.T. Barlow, E.A. Perkins: Brownian motion at a slow point. Trans. Amer. Math. Soc. 296, 741-775 (1986)
[CH] R. Courant, D. Hilbert: Methods of mathematical physics, Vol. 1. Interscience: New York, 1953
[Da] B. Davis: On Brownian slow points. Z. Wahrsch. Verw. Geb. 64, 359-367 (1983)
[DP] B. Davis, E.A. Perkins: Brownian slow points: the critical case. Ann. Probab. 13, 779-803 (1985)
[D] A. Dvoretzky: On the oscillation of the Brownian motion process. Isr. J. Math. 1, 212-214 (1963)
[GP] P. Greenwood, E.A. Perkins: A conditioned limit theorems for random walk and Brownian local time on square root boundaries. Ann. Probab. 11, 227-261 (1983)
[K1] J.-P. Kahane: Sur l'irregularité locale du mouvement Brownien. C.R. Acad. Sci. Paris 278, 331-333 (1974)
[K2] J.-P. Kahane: Sur les zéros et les instants de relantissement du mouvement Brownien. C.R. Acad. Sci. Paris 282, 431-433 (1976)
[Kn] F.B. Knight: Essentials of Brownian motion and diffusion. Amer. Math. Soc.: Providence, 1981
[N] A.A. Novikov: On estimates and the asymptotic behavior of nonexit probabilities of a Wiener process to a moving boundary. Math. USSR Sbornik 38, 495-505 (1981)
[P] E.A. Perkins: On the Hausdorff dimension of the Brownian slow points. Z. Wahrsch. Verw. Geb. 64, 369-399 (1983)

[^0]: * This research was partially supported by NSF Grant 9322689.

