Probab. Theory Relat. Fields 105, 85-108 (1996)
Probability
Theory i..s.

© Springer-Verlag 1996

A critical case for Brownian slow points*

Richard F. Bass, Krzysztof Burdzy
Department of Mathematics, University of Washington, Seattle, WA 98195, USA

Received: 7 June 1995

Summary. Let X; be a Brownian motion and let S(c) be the set of reals » = 0
such that [X,1, — X,| € ¢/t, 0 < ¢ £ &, for some & = A(r) > 0. It is known
that S(¢) is empty if ¢ < 1 and nonempty if ¢ > 1, a.s. In this paper we prove
that S(1) is empty a.s.
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1. Introduction

Let X; be a Brownian motion and let
S(c)={r =2 0: there exists # > 0 such that [X,, —X,| £ cv1, 0 < ¢t £ h}.

S(c) is the set of “slow points” with parameter ¢. For every » € S(c), a piece
of the path of Brownian motion lies within ¢ times a square root boundary
just after ». As is well known, the law of the iterated logarithm implies that
after any fixed time  the next piece of the Brownian motion path does not lie
in any multiple of a square root boundary, almost surely. Nevertheless, slow
points exist for some values of ¢. Kahane [K1,K2] showed that S(c¢)+ 0, a.s.
provided c is sufficiently large. Dvoretzky [D] showed that S(1/4) is empty.
Independently, Davis [Da] and Greenwood and Perkins [GP] showed that S(c)
was empty if ¢ < 1 and nonempty if ¢ > 1. Davis and Perkins {DP] examined
a number of critical cases for Brownian slow points (e.g., asymmetric square
root boundaries, two-sided (in time) boundaries), but left unresolved the ques-
tion of whether S(1) is empty or not. They did show that if 5(1) is nonempty,
it must be at most countable. For additional information on slow points, see
[BP, Pl
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Our main result is the following theorem.
Theorem 1.1. With probability one S(1) = ().

The present article is motivated not only by the desire to record the solution
to an open problem about slow points but to present a new argument which
seems to be applicable to other “critical” case questions as well.

In Sect.2 we derive a number of estimates on the densities of Ornstein—
Uhlenbeck processes and on the exit probabilities from an interval. These are
all either well known or extensions of known results using standard methods.
Rather than working with square root boundaries, it is necessary for us to work
with boundaries of the form ¢ — 2 + /¢, and Sect. 3 is devoted to developing
the appropriate estimates. The method we use is an adaptation of one of
Novikov [N]. Novikov’s paper deals with moving boundaries up to but
not including the critical case /2, and our results in Sect.3 may be of in-
dependent interest. The main work is done in Sect. 4. We define approximate
slow points. If 4; represents the event that there is an approximate slow point in
the interval [,/ + 1), then we estimate IP(4x|4;) and IP(4;, NA4,14;). A stan-
dard second moment argument then tells us that IP(UZ:J. +14k|4;) is bounded
below by a constant independent of n. Unfortunately, we need that constant to
be close to 1; it is necessary to iterate the estimates, which makes the proof
considerably more complicated. Finally in Sect. 5 we show that our estimates
on approximate slow points imply that S(1) is empty.

The letter ¢ with subscripts will denote constants whose exact values are
unimportant. We begin numbering anew at each new proposition. The distri-
bution of Brownian motion starting from x will be denoted IP*. We will often
write IP for IPC,

2. Ornstein—Uhlenbeck processes

We begin by recording some known facts about Omstein—Uhlenbeck pro-
cesses and their connection with Brownian motions. Let X; be one-dimensional
Brownian motion. Let

Z, =e ’X(e") . 2.1)

Starting the Ornstein—Uhlenbeck process Z; at Zy =z is then the same thing
as starting the Brownian motion at X7 = z. The probability that the reflected
Brownian motion |X;| starting from z at time 1 lies under the curve f — +/t
on the interval [1,s] is the same as the probability that the reflected Brownian
motion |X;| starting from z at time O lies under the curve ¢ — /1 +¢ on the
interval [0,s — 1]. With these facts in mind, we see that

Pz £1L0SusD)=P(X =VI+0<t<e —1).  (22)

Integration by parts in (2.1) shows that Z, satisfies the stochastic differential
equation

| N

I3
Zl:ZO+WI“f dS, (23)
0
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where W, is another one-dimensional Brownian motion. The solution to this
SDE is unique. The law of Z; is that of the diffusion on the line with infinites-
imal generator o f(x) = (5)(f"'(x) — xf'(x)) started at Zy = X.

. . 2
</ is a symmetric operator with respect to the measure m(dx) = 2e™* /% dx.
The transition densities with respect to m for Z, killed on exiting [—b, 5] can
be written

o N
p(tx, y) = 21 e i(x)pi(y) , (2.4)
i=
where the series converges absolutely and uniformly, 0 < A; < Ay < ..., the

@; are C? and vanish at —b and b, @1 > 0 on (—b,b), (p’1(~—b) > 0, (pﬁ(b)
< 0, ffb @ (xym(dx) = 1, and A @;(x) = —A@(x). Moreover, A; =1 when
b =1. See Knight [Kn] and Perkins [P].

We will need the following estimate.

Proposition 2.1. Let ¢ > 0. There exists ty such that if b € (%,2) and t > 1,
then
p(t,x,y) |

— 1| <5 |x|,|¥y £5b.
i )01 0) bl

Proof. First, we get a lower bound on ¢{(—b) that is valid for all & € (%,2).
Note ¢ can equal 0 in (—b,5) only at local maxima; for if ¢} = 0 at xo, then

the equation . , .
Pr(x) = x@1(x) — 24191(x) (2.5)

evaluated at xo shows that ¢f(x¢) is strictly negative since 1;,¢; > 0. By
the symmetry of ./ about 0, @, is symmetric. So ¢{(0) =0 and 0 is a local
maximum. Therefore ¢} = 0 in (—5,0), hence ¢, is nondecreasing on (—b,0).
Eq. (2.5) shows that ¢{ is negative on (—b,0) and so ¢ decreases on this
interval. Using the symmetry of ¢; we have

b 0
1= fb I)m(dx) =2 [ @2(x)m(dx) < 4b] g1, .
- —b

Since
x |

1) = [@1(x) — @1(—b)| = l“l; so&(y)dy'

< 2bllot]leo = 2b91(—D),

we obtain ¢}(—b) = (166°)~12 = 1/12.

Second, we get upper bounds on ¢; and ¢!. As a function of b, 4; is smallest
when b is largest ([CH]). So there exists ¢; > 0 independent of b € (%,2) such
that 4; = 41 = ¢;. From o/ ¢; = —;¢;, we see that

o} ()] = 2]ei(x)] + 2| pi(x)] . (2.6)
Integration by parts shows that if /€ C2[~b,b] and f(—b) = f(b) = 0, then

b b
fb(f’)zdx:—fbf"fdx,
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so by the Cauchy—Schwarz inequality,
178 = 0l s

where || f]|2 denotes (ffb |f|? dx)!?. From this and (2.6) we obtain

ol < Clelz + 24l @il -
Since

oz = fb oldx < sz @im(dx) =cy,

we conclude
o3 < 2¢/ il + 224 ,

which implies ||@ill, < cgi}/ 2. Now by the Cauchy—Schwarz inequality

b
< f loNPdy < eshs,
b

lq’i(x)l = E

or
loilloo £ 5hi - 27)

Set 7= 2| flloo/lf"Noo)/* A1 and let x € [—b,b]. By the mean value
theorem on the interval [V (x — r),b A {x + r)], there exists a point x* in the
interval such that | f/(x*)| £ 2|| f)|co/r, while we also have | f'(x) — f/(x*)| =
¥l f”]|oo- Hence [[f’[[00 < 2|[f[]o<,/r + il /' |loo. With our choice of » and the
fact that (u -+ v)> < 2u® +20°, we get the inequality

02 = 8IAR? + 22 I < B oo + 160 flao X fNloo) -
From this, (2.6) and (2.7) we have

9012 < (16]19}lloo + (162 + 16)]|@illoo) | @illco < €| @illco + A7) -

Therefore
[@illoo < 1 < ca? . (2.8)

Third, we get an upper bound on |@;(x)|/@1(x). From (2.6)—(2.8), |0} |l
< ¢y. Since @[(—b) = %, then ¢j(x) = ﬁ if x +b < 5;c. Using the fact
that @, is nondecreasing on (—5,0) and using symmefry to deal with positive
x, we see then that

@1(x) = cro(d — Ix]), (29)
where c(o does not depend on b. From (2.8), we obtain
loi(x)] £ en22(b — |x]), (2.10)

and we therefore have
[0.(0)/@1(x) £ cpd? .
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Finally, to conclude the proof, note that as a function of b, each 4; is
continuous and decreases as b increases [CH]. So there exists iy independent
of b such that if i = i, then 4; > 24,. We also deduce that there exists § > 0
independent of & such that A; — 4; > & for all i. We have

g |4 S (g 91X) @i(Y) .
ptx, y) =e oi(x)pi1(y) { +i=Z%e o 210
If i £ ig, then

@i{x) @i(y) < 2 4
@1(x) @1(y) =

This goes to 0 as £ — oo. On the other hand, note from (2.4) that p(s,x,x) is
decreasing in 5. So

o~ (=21t

— (A=A 2 14—t
e T S eppdye .

i f o= @i(x) @i(y)

i=ig+1 1(x) @1(y)

A

chy e < o (Sup /14e_h/4) S e 4

Az0

JIA

cfz(lé/t)“e*‘*fl; p(t/4,x,x)m(dx) ,

which also tends to 0 as 1 — oco. O
There are a number of consequences of this proposition. For 4 > 0, let
7, =inf{r 2 0: |Z,| = b}.

Proposition 2.2. Let b c (%,2). There exist ¢y,¢2, and vy > 1 such that if
t = vy, then

crpi(x)e™™ < Py € di)dt < crpi(x)eH"

Proof. By the proof of Proposition 2.1, we have

b
P(tp > 1) = P*(|Z| < 5,0 <5 S t) = [ p(t,x, y)m(dy)
—b

e

b
e M p(x) fb @i y)m(dy) .

i=1

Differentiating with respect to z,
b
P*(tp € di)jdt = 3 e pilx) [ @i(y)m(dy) .
~b

Very similarly to the last part of the proof of Proposition 2.1, we see that the

first term, Aje ™ ¢ (x) [ @1(¥)m(dy), is the dominant term when ¢ is large.
-
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We fix for the rest of the paper a number v; > 1 which satisfies Proposi-
tion 2.2.

Proposition 2.3. Let b € (%,2). There exist ¢; and ¢; such that if t = vy, then
ci(b — |x])e ™" < P (1 > t) £ ca(b — [x|)e !,

Proof. This follows from integrating the result of Proposition 2.2 and using
(29 and 2.18) withi=1. O

Proposition 2.4. There exists ¢| such that if u 2 t 2 v; and x € (—1,1), then

P(|Z] £ 172t >u) 2 1.
Proof. By the Markov property at time ¢,

P|Z:| < 1/2,11 > u) = B [P%(1ty > u—t)11 > 4,|Z] £ 1/2]

1/2

1
/ f/ p(t,x, y)p(u — t,y,2)m(dy)m(dz) .
-1 -1/2

By Proposition 2.2, this is greater than
1172
agi@e™ [ [ o1()plu—t,y,2)m(dy)m(dz) . (2.11)
—1—1/2

Ifu—t<uv and y € [—%,%], then
1
[ plu—t,y,2ym(dz) = P¥(1; > v1) Z ¢3 2 cze” 0
4

Ifu—t=zviand y € [—%, %], then by Proposition 2.2

1 1
J pu—ty,2)m(dz) 2 cae” " Dp1(3) [ pr(e)m(dz) Z cse” 0.
-1 21
So in either case, (2.11) is greater than
12
cspi(e™ [ oi(n)e” " Imldy) 2 crpi(x)e™ . (2.12)
~1/2

On the other hand,
1
IPX(TI > M) = f p(uax5 Y)m(dy)
1

1
< e oi(x) [ gi(y)m(dy) < coeHoi(x) . (213)
21

Taking the ratio of (2.12) and (2.13) proves the proposition. [
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Proposition 2.5. Let b € ( %,2) and t < 2001. Then there exists ¢y such that

Pz, > 1) < clb\“/zfx’, x € (=bb).

Proof. Define a probability measure ® on %, by

dQ I L,
= S [ ZdW,~_ [Z2ds) | 2.14
7P exp(zg d 86[ s (2.14)

where W, is defined by (2.3) and is a Brownian motion under IP*. By the
Girsanov theorem, Z; = W; — fot Z:/2 ds is a martingale under @ with the same
quadratic variation as that of W under IP*, namely #. So by Lévy’s theorem,
Z; is a Brownian motion under @.

On the set {t, > ¢}, we have f(;Zs2 ds < th? < 2006 < 80v,. Also, using
(2.3) and It0’s lemma,

t t 1 ¢ ) ZZ_ZZ_t ] ¢ 5
[ZdW,=[Z,dZ,+ = [Z}ds="——+ = [Z2ds.  (215)
0 0 20 2 20

On the set {7, > ¢}, the right-hand side of (2.15) is bounded by (252 + ¢)/2 +
10b%v; < 4 + 50v;. Therefore the exponent in (2.14) is bounded in absolute
value by K =2 + 35¢,.

We then have

P, >t)= [ %—d@ < KQr > ).
{tp >t}

Since Z; is a Brownian motion under Q, a well-known estimate says that
Q(tp > £) £ ca(b — |x])/+/%, which completes the proof. [J

Proposition 2.6. Let b € (%,2) and 1 £t £ 20vy. There exists ¢ such that
if x € (—b,b),

P~ (sup Zy < b> Scab—x).

s<t

Proof. Let B = {Z(tp) = —b, 75, < t}. On the set B,|Z,| < b if s < 15. So as
in Proposition 2.5,

1! I
M,== [ZdW,— = [ Z2ds

is bounded in absolute value by a constant K depending only on v; when
t < 7. B is in the o-field &, hence

P*(B) = [ C;Igdag =[e™sdQ < £QB) .
B B

Under @ the process Z, is a Brownian motion, thus Q(B) is less than the
probability that a Brownian motion started at x hits —5 before b, which is
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(b — x)/2b. Since {sup,., Z; < b} C {15 > t} UB, our result follows from this
estimate together with the result of Proposition 2.5. O

Proposition 2.7. Let b & (%,2) and a € (%,b). There exists ¢y such that if
x € [—b,a] and v1 £ t; £ 200y, then

P*(z, £ 281,75 > 28) S (b —a).
Proof. By Proposition 2.3 and the strong Markov property at time 7,
Pz, £ 4,1 >20) EPY (% > ) L c(b—a). (2.16)
On the other hand, by the strong Markov property at 7, and Proposition 2.5,

2t1
P2 = 1, > 0,7 > 2t1) = [ Pt > 2t — 5)IP*(1, € ds)

f C3(b
\2H —

By Proposition 2.2, IP*(t, € ds) < cqds for s = #,. With (2.17) this shows
that

IP"(ra € ds) . (2.17)

|l

P*Q2H = 1, > 1,75 > 2t) S cs(b—a).
Adding to (2.16) proves our result. O

Remark. 2.8. For any r,s, and T,IP*(|X;| £ vr +t.s £t £ T)is largest when
x = 0. To see this, convert this to an equivalent statement about the Ornstein—
Uhlenbeck process Z;. Since Z; is symmetric about 0, this expression is easily
seen to be largest for x = 0.

Proposition 2.9. There exist ¢| and c; such that if T Z vi and x € (—%,%),
then
a/T SP(X| S VL1 St £T) ST

Proof. Let Z, be defined by (2.1). For the upper bound, by the Markov property
and Remark 2.8,

P S VL1 St S T)=FPY(X| £ VI+,0 << T-1)
SEP(X| £ VI+60<t<T—1).

By (2.2) and Proposition 2.3, this is equal to
P(|Z| £ 1,0 £ S logT) £ cze 18T = ¢y,

recalling that A; = 1 when b = 1.
For the lower bound, by the Markov property,

P(X| £ VL1 <t 2 T) 2 PP(X) S Vi1 £t S TX - Xo| < 1/4)
=E[P(X| S VI+1,0 =t < T—1)
[Xi —Xo| < 1/4]. (2.18)
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If |y| < 3/4, then
P S VI+0 St ST 1)=P(|7] £ 1,0 <1 < logT)
> cpi(y)e 180 2 e5/T

by (2.2) and Proposition 2.3. If Xy =z, |z] < 1/2 and |X; — X < 1/4, then
we have |X;| < 3/4. Therefore the right hand side of (2.18) is bigger than

(cs/TP*(1X) — X £ 1/4) Z ¢o/T. 1O
Proposition 2.10. There exist ¢; and ¢, such that if |z| < \/s/2, then
as/T S P (% SVis <t £ T) 2 asT.
Proof. This follows from Proposition 2.9 by scaling. Note

PA(X| < Vis S 1S T) = P([X| < vis,s < us < 7)
:IPZ(IXMS/\/EJ = \/aal Su s T/S)'
(2.19)

If ¥, = X,s/+/5, then Y, is another Brownian motion and the right hand side
of (2.19) equals

PV(|Y,) £ Va1l S u S Tjs).
We now apply Proposition 2.9. [

Remark. 2.11. From Proposition 2.3 we derive

V9I4+u/2; X £ V1450 <s <uw)
z P (X = vI+s0 <s <u)

PH(X|

IA

if |x| < 1 by arguments similar to those of Proposition 2.9.

3. Moving boundaries

We need some estimates on moving boundaries. We adapt a method of Novikov
[N].
Suppose f € C*[0, co) and there exists k| > 1 such that

(@) 1 £ f(1) S w, te[0,00);

®) /() -1Vt =i, t€][l,00);

©) /(O £x1, te[l,00);

@ |/ £k, 1€, 00).

(e) f = linaneighborbood of 0 . 3.1

The assumptions (3.1)(b)—(d) could be weakened, but they are good
enough for our purposes. In our applications, the value of f(¢) for ¢ € [0,1)
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will usually be immaterial, and we can change f to be smooth there and
identically 1 for ¢t < % without any loss of generality.

Proposition 3.1. (a) Suppose f satisfies (3.1). If f(t) < 1 foralltor f(t) = 1
for all t, there exist ¢y and ¢; such that for T = vy
a/T SP(X| £ fOWt,1 £t £ T) L efT.
The constants c1 and ¢; depend on f only through K.
(b) Suppose r € [1, x0), b€ [0, 2], and a € [0, %], Let
Fap (1) =min(1, b/t + /1 + v/t —ar/r/t) .
There exists c3, not depending on a, b, or r, such that
IP(LXtI = fa,b,r(t)\/'?»l <t=T)zaoT.
Proof. Let
F(t)= f(t)ex (1jl [ ! ] d ) (3.2)
= = | = —| du ) , .
P\2yul Gy
n(?) 1 d 3)
)= ———ds, 3,
=] Fey (
and
¢
=F(t)[ [F()]™' dX, . (34)
0
By the It6 product formula,
dY, =dX, + I F'(¢)dt (3.5)
t t F(t) . -

Define a new probability measure Q by

TF!(s) 1 L /F(s)
p<—0fF(S)s 5—50f< ) d>. (3.6)

Under P, ¥, — fo Y. F'(s)/F(s)ds is a martingale, so by Girsanov’s theorem, Y,
is a martingale under Q. The quadratic variation of Y; is the same under both
measures, namely (Y)r = (X)r =1, and Y, is continuous. By Lévy’s theorem,
Y, is a Brownian motion under @).

Let 4 be the event {|Y,| £ f(1)Vvt,1 <t < T}. Note

le

dp
IP(4) = Eg [lAdQ]

Later on in the proof we will bound the exponent in dQ/dIP in absolute value
by K. So then
eKQU) < P(4) £ KQ4). (37
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The law of Y; under @ is the same as the law of X, under P, hence
Q) =P(X| < f(t)We,1 £1 £ T),

the quantity we are attempting to estimate.
From (3.4) we have

P(Y,| £ fOVL1 £t £ T)
:p(’

JIF()]™"ax,
—1
Let W, = f(f @ [F(s)]"'dX,. W, is a continuous martingale that is also a

0
—1
Gaussian process. The variance of W, — W, is fhh_l((;;)[F ()] 2ds=u—1, so

W, is a Brownian motion. Let A be the inverse of 4. Then the right-hand side

of (3.8) is
P (lml < JHOWHD 4y oy o h(T)) . (39)

< SOWHF(@),1 St < T) - (38)

F(H(1))
From the definition of F we have
Fof 1
FT7 T

O
! (F@) T F@p

2
u (%) =hu)+cq.

Since both sides are 0 when u = 0, then ¢4, = 0. Taking square roots of both
sides and setting u = H(?), we have

SHO) e
Fy VO =V

By the definition of /' and (3.1)(a),(b),(e), there exist constants ¢s and ¢4
such that

which leads to

or after integrating,

cs/kl S ¢sf(¢) £ F(t) < cof (1) < K166,
hence
t/iicg < h(t) < 1qYcl .

Moreover, if f(#) = 1 for all 7, then F(z) = () = 1, so h(t) < ¢ for all ¢.
This and Proposition 2.9 implies that the right hand side of (3.9) is bounded
above by

P(IW| < V1,1 <t < Tiiicd) < eofT.
Also, if f(¢) = 1 for all #, then
PX| £ fOVEL St S T) 2 P(X| S VL1 St S T) 2 e/
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by Proposition 2.9. Similarly, if f(¢) < 1 for all ¢, then A(¢) = ¢ for all ¢ and
the right hand side of (3.9) is bounded below by

P(W,| £ V1,1 <t < Txj/c5) Z eofT .
Also, if f(z) = 1 for all ¢, then
P(X| < f(OVe1 St ST)SPX| VAl S1£T) S eofT

by Proposition 2.9.
To finish the proof of (a), it remains to bound the exponent of (3.6) on
the set 4. Using (2.3) and It6’s lemma,

T F/(S)

-I'F

IT
YdX =/
20
TFI 1T(F/)2
=—[=YdY,+= [ |—= ) Y’ds
Iprates]
T !
::_lffldaﬂ—-)+ j‘<F> Y?ds

1 F(T) F'(0) , (F'
_2( ﬁFG)+ﬁFW)+IY(F)CB

+fzd&+f<Fv de

1 L F(T) 2F'(0)
=3 < OO

F//( )
F(s)

We will show that the last expression is bounded by a constant indepen-
dent of T. The expression is continuous and equal to 0 for small T since
F(t)= f(t) =1 and F'(t) = F"(t) = 0 if ¢ is sufficiently small (see (3.1)(e)).

Let y(¢) denote the exponent in (3.2). By (3.1)(a)—(b),

FORRICIOES Iy
2(f (1))
Since f(¢) =1 for ¢ small by (3.1)(e), it follows that sup,|y()| < oo, and
hence that F is bounded above and below by positive constants. Because
i F=DUHD, S
212]‘2 tf3 ?
(3.1)(a)—(c) show that [y”(z)| < c12¢~>?2. Our estimates have to hold only on

the set A so we may assume that |Ys] £ f(s)y/s for 0 £ s < T. We have
= f'e¥ + fi'e’, so

+fﬂ

ds —l—log(F(T)/F(O))) .

W' (@) =

L F'(T)
"F(T)

1 < ens(THT ) S s
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The second term YZF'(0)/F(0) is equal to 0 because Yy = 0. Using (3.1)}(d)
and the formula

F'=flet +2fYeV + f(y'Ye! + fyet

we obtain [F”(¢)| £ c4¢t7/%. Hence

O

f ds
1 F(s)

o<
§c15f59s_5/2ds < oo,
1

where the bound is independent of 7. Finally, F has been shown to be bounded
above and below and therefore log (F(T)/F(0)) is bounded as well.

To prove (b) we proceed as in the proof of (a) above. We will only outline
the new elements of the proof. If # is the point where b + /¥ + ¢ — a\/r = /1,
a calculation shows that 7, = (9/16)r. Note f,,,(¢) =1 for ¢ < 4. Then

1

_ T b)) = 1(fas, )+ 1)
TP AR

o Y (fa 5,r(1))?

cls\fr/fz f

which is bounded independently of ¢, », b, and a. It follows that there exists
c17 such that A(t) < ¢4t for all ¢. As we saw above, A(t) = ¢. So

I

1
=il

A

(3.10)

(W] < VLh(1) St S WD) 2 P(W,| S Vi1 St S enT) 2 e/ .

F is not in C', but if we approximate F in a suitable way and take a limit,
we see that Q(4) = e XIP(4), where K is a bound for

1<_Yﬂ”av EON f S b ) — Pl

2\ TR TR * F(s)
xm+mwwwwﬂ.

Using the fact that F(¢) = f(#)=1 and F'(t) = F"(t) =0 for ¢ < t,, we
bound this by a quantity independent of a, b, and r in a manner similar to
that used in (3.10). O

Remark. 3.2. The same proof shows that if (3.1) holds, there exists ¢; such
that

P°(X| < f(OWis S ¢ £ T) < e1s/T . (3.11)
One can similarly generalize Proposition 3.1(b).

Proposition 3.3. There exists ¢; such that if 1 < s < 5s+2v, < T, then

P(X: | <24+Vs+60<t£T) < es/T.
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Proof. If s £ vy, then
P(X| <24+ Vs T80 <t <T)SP(X| 2+ Vs+ VL0t £ T)
SPIX| S24+u0+VEIStST),

and the last probability can be estimated by Proposition 3.1(a) with f(z) = 1+
(2 +wv)/Vtfort = 1.
Suppose now that s = v;. We write

P(X,| £2+Vs+1t,0<t<T)
SP(X| S2+ V25X S 24+ Vs+ts St < T)

24+/3s
[ P cdw)P( X €2+ V2s+1,0 St ST —5).
—2—3s

lIA

(3.12)
Next we have for |y| < 34/,

P(X| £2+vVs+t,s=t=T)

2435
[ PXedi)P(X| £24+V2s+0,0<t < T—5s).
—2—+/3s

IV

(3.13)
Since P7(X; € du) = (2ms)~ 2= =¥’/ gy we see there exists ¢, such that
P°(X, € du) S PY(X, €du), |y < 3vs,|ul £ 2+V3s.
So combining (3.12) and (3.13), if |y| < 3+/s,
P(X| <2+ Vs+50 St ST) S ePP(X| S2+Vs+6s <t < T).

(3.14)
Then we have
PX| <24+ V625 <t < T+5)
35
> [ PG ed)P(X| <2+ Vs+ts <t <T)
—35
35
=o' [ P edy)PU(X| 24+ Vs+1,0=5t<T)
—345
=PX| £ 2+Vs+0St S T). (3.15)

By Remark 3.2, the left hand side of (3.15) is bounded by c4s/(T +5) < cas/T.
O

Proposition 3.4. Suppose s = | and T = 4s+ 10v,. There exist c¢; and c;
such that if 0 < y £ 24+ /5, then

—2
¢ (1—%) % SP(X| S2+Vs+460 <t S T|Xr| < Vs+T1/2)
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and

PY(X| £ 2+ Vs +14,0

lIA

-2\ s
ng)gc2(1~y >?.
Proof. For the lower bound,
PY(X| £ 2+ Vs +1,0 S¢S TlXr| £ Vs +T/2)
> P <2+ 50 St < 5K S Vi/4
X| <24+ Vs+hs £t ST Xr| £ Vs+T/2)
> B[PS(|X] £ 24 V25 + 1,0 S 1 £ T —5,|Xrs| £ VT/2);
Xl £ Vs/4, X £ 245,01 55]. (3.16)
If z] £ Vs/4,
P(X| S2+VZs+14,0 St £ T —s5Xr| £ VT/2)
P(X;| £ V2s+14,0 ¢t £ T —s;|Xr_| £ VT/2)
P (X £ V2s 6,0t ST —5)
css/T 317

v IV

1\%

by scaling, Remark 2.11 and Proposition 2.3. Therefore the right hand side of
(3.16) is greater than

ez P (K| < VB/4,1X] S 24+ V50 S 1S 5).
But

2 — -2
IPy(!)(tl §2+\/§70§I§S)gcsi\/\/_—§__y:(:5<l_y\/§ ) ’

and given that |X;| remains less than 2 + /s until time s, there is positive
probability that |X;| < /s/4.
For the other inequality we have

PY(X| £24+Vs+1,0<t<T)
SPX £2+vs+1,0<L1t < 3,
X| S2+Vs+13s st <T). (3.18)

Using the Markov property at time 3s and Remark 2.8, the right hand side of
(3.18) is bounded by

P 2X £ Vst 4,0 <t £39)PU(X| £ 24+ VAs+4,0 <t <T-3s).
(3.19)

The probability that X; started at y — 2 at time O stays under the curve /s + ¢
for t € [0, 3s5] is the same as the probability that X starting at y — 2 at time s
stays under the curve /¢ for ¢ € [s, 4s]. Defining Z, by (2.1), this is the same
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as the probability that Z, starting at (y — 2)/+/s at time logs stays below 1 for
t € [log s,1log 4s]. Thus the first factor is equal to

-2
PO-DIV(Z, £ 1,0 £ ¢ < log 4) < ce <1 - %) (3:20)

by Proposition 2.6. The second factor in (3.19) is bounded by

Ay
= g

IP0(|X,|§2+\/4s+t,l§t§T—3s)§C7T_S3S -

by Proposition 3.3. Combining this with (3.20) gives the upper bound. [J

4. Approximate slow points

Let U = e'%, where v; is defined following Proposition 2.2. For 0 < j < n,
define the event

Ai={X-X|<2+t—jj+1 =1t 5 U}, (4.1)

When the event 4; occurs, we say X; has an approximate slow point at time
j. Let § > 0 be arbitrary. Our goal is to show ]P(U;;lAj) < B when n is
sufficiently large. We do that by getting a suitable estimate on IP(4; N 47, N
...N4S%). We start by using induction to construct a finite sequence of pairs
(j1,k1)s...,(j1,k;) which have some special properties and are such that j <
1<k <...<jr <k <n Let

By =45 N...0 AL . (4.2)
We will show there exists a ¢; > 0 and p € (0,1) such that
IP(AyNBiN...NB) < cip'jn. (4.3)

Let us proceed with the i = 1 case. We will also concentrate primarily on
the case j = 0 and then point out how the case of general j follows from this
special case. The right hand side of the following proposition has also been
proved in Sect. 3 of [DP].

Proposition 4.1. There exist xy and K3 such that
ro/n < P(4;) = k3/n.
Proof. We use the Markov property at time j and translation invariance to get
P(4;) = E[PY(LX, — Xo| £ 2+ V5,1 <1 < Un—j)]
=P(X| <2+V1 <t S Un—j).

The upper bound and lower bound now follow by using Proposition 3.1(a)
with f(t)=1+2/y/tfort=>1. O
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Proposition 4.2. There exists ¢; such that if k < n, then
P(do N ALY = ci/nk .

Proof. By Remark 2.11 and Proposition 2.9, if £ = vy, then

P(lX,| < Vil <t £ k and [X;|/VE < 1/2)

2 oP(X| S VL1 21 2k) 2 eafk.
If k < 1,
P(X,| £ Vi1 £t £ kand X, [/VE £ 1/2) 2 P(X| £ 1,0 S ¢ < k)
= cq = cofk .

So using the Markov property at time k, it suffices to show there exists cs
such that if |y| £ vk/2, then

PUX,| S 24+ Vi+k—|yland|X;| S VL1 St S Un—k) = cs/n. (44)

By symmetry we can assume without loss of generality that y = 0. We will

show (4.4) when y is largest, namely v/k/2; the same proof works for every
smaller y.

Suppose k = 4. The curves ¢ — 2 ++/t -k — vk/2 and t — /¢ intersect
at a point f, = 9k/16. Let f(¢) be equal to | for 0 < ¢ = # and equal to (2 +

Vk+1—kj2)/\/t for ty £t < Un—k. Our result follows by Proposition
3.1(b).

The case k£ =< 3 must be dealt with separately, but is quite easy and is left
to the reader. [J

Proposition 4.3. There exists ¢y such that if k+ p < n, then
P(4o N A N Agyp) < c1/nkp.
Proof. We have
P(do NAr N iy ) S P(X| £ 24+VE1 St < kg
X, X S24Vi—kk+1Zt < k+p;
X, = Xpsp|l S 241 =(k+ plk+ p+1
<t < Un).

By the Markov property at times k and & + p and Remark 2.8, we bound the
above probability by

P(X,| <2+ V61 <t k) xP(X| £2+VL1 <1t < p)
xP(X| £2+ V5,1 £t < Un—(k+ p)).
Using Proposition 3.1, this in turn is bounded above by
(cafk)er/ pXe2/(Un — (k+ p)) < ca/nkp. O
Let j; = 1.
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Proposition 4.4. There exists p' € (0,1) and a positive integer ki such that
P(4o N B1) < x3p0'/m,

where B, is defined in terms of ki by (4.2).
Proof. Define a new probability measure @ by

P(E N Ao)

Q(E) = IX(E|4p) = P(do)

Since IP(4y) > 0, this is a well defined measure. From Propositions 4.2 and
4.3 we have Q(4;) = ci1/k and Q4 N4,) £ or/k(p — k). Without loss of
generality we may assume ¢; < 1 and ¢ g .

Let N. = 32,1 14,. Then

EgN, = > Qdn) 2 1> 1/m = c; logr

m=1 m=1
and

EqQN? = ZQ(A )+2 z Q(An N 4p)

m, p=1
m<p

lIA

EghN, +2
@ Ep( m)

= ]EQN + 8¢y IOg r £ EgN, + 8626;2(]}5@]\’,)2
< (14 8cac] *XEgh, ) £ 9crei *(Egh, )?

< EgN, + 2¢5(1 + log r)?

as long as » 23 is big enough so that cjlog» > 2. Let &k =7 and
= 902c1_2 .
By the Cauchy—Schwarz inequality,

1+ Eq[N; N, > 1]
1 + (EqN?)?Q(N, > 1)?
1+ ¢ *(BoN,)QW, > 1),

EgN,

A HIA

IIA

SO
EoN,/2 < Y2 (EN)QW, > 1)1,

or
QW, > 1) z 1/(4cs).

Let o' = 1 — 1/(40c3). If N, > 1, then B occurs. Thus Q(B;) < p’ and using
Proposition 4.1, we get our desired estimate. [J

Remark. 4.5. Note for future reference that the proof of Proposition 4.4 shows
that if

o = 1<mf [mIP(Ag N A )/IP(A]I A T, (4.5)
= sup [m(p—mP(dgNAuNAy)/P(A)] V1, (4.6)

1Sm=p=sn
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then
p' =1—1/[4009c2c7H)] = 1 — ¢}/(360c,) .
Define

DN)={lX;—X;| £2++/t—j,j+1 =t < N}.

Proposition 4.6. Let k be given and let ¢ > 0. There exists Ny > k (not
depending on n) such that if j < k, N = Ny, and n is sufficiently large, then

IP(AO ﬂDJ(N)ﬂAj) § 8/]’1.
Proof. Let T = inf{t > j+1: [X; = Xj| > 2+ /T —j}. On D{(N)NAS,N <

T < Un. If events 4p and {N < T < n} hold, we have |X; —X;| = 2+
VT —j and |X;| £ 2+ /j. Therefore

Xr| =2 VT ~j—+/j-

PP(1X| £ 2+ +s+1,0 <t < (U— 1)n) will be largest when |y| is smallest.
If T € [2"N An, 2" N An], then

P7(X| £ 24+ VT +6,0 ¢t 2 (U—1n)
SPVIT VX £ 24 VT 440 £ £ (U~ Dn). (47)
By Proposition 3.4, the right hand side of (4.7) is bounded by

¢ (1 I -\/_7\/}.-2) % < ("IN An)) .

So using the strong Markov property at time 7 and Proposition 3.1,

P(4y, T € [2™N, 2" N])
SP(X] £2+V1 £t S2"N AT € 2"N An, 2" 'N An],
Xrael S24+VT+1,0 <t < (U - Dn)
E[P7(|X,| < 2+VT +£,0 £t < (U — a);
T € [2"N An, 2" N An],
Xl £2+V6,1 <t 2 2"N A

< a(j2MIN An)2 ey

- n 27N A n
cs\/j

n(2"N An)l/2 "

HA

If we now sum this over m from 0 to the first integer greater than (log n —
log N)/log 2,

P(4o,N £ T < n) < cVk/nVN < csVk/nvNy .

Next we look at the event 4o N {T € [n, Un]}. For this to hold, first, |X;]
must lie under the curve ¢ ~» 2 + /¢ for ¢ € [1,n]; second, |X;| must lie under
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the curve ¢ +— 2 + /¢ for t € [n, Un]; and third, for some y with |y| £ 2 ++/f
(namely, y =X;), X, hits at least one of the curves f— y = (2++/f—j)
for some ¢ € [n, Un]. We give the proof for y as small as possible, that is,
y = —2 —+/J; essentially the same proof works for every larger y. Using the
Markov property at time » and Proposition 3.1 (a) with f(¢) = 1 +2/+/¢ for
tz1,

P4y, T € [n,Un])

g(cl) sup PG| <24 vVnt 60 <t < (U~ 1n;

7 o) g2+v/m

X > /n+t—j— \/j for some ¢ € [0,(U — 1)n])

(c_7> sup P?(X; hits av/n+ ¢ for some ¢t € [0,(U — 1)n],
n7 | s24vm

but does not hit bv/n + ¢ for ¢ € [0,(U — 1)n]), (4.8)

where a = /1 — j/n— +/j/n and b =1+ 2//n. The probability on the right
hand side of (4.8) is the probability that a Brownian motion started at z at

time # hits the curve a+/7 but not b/t before time Un. Using (2.1), this is the
same as the probability that Z, started at z/\/n at time logn hits the level a
but not b before time log(Un). So

IA

P(Ao, T € [, Un]) < (cl) sup P*(z, < log U7y = log U).

7 z12h
By Proposition 2.7 and the inequality /1 — j/2n = 1 —~ j/2n,
P(4o, T € [, Un]) £ es/j/n/n.

So if we take Ny large enough, we get our result provided # is sufficiently

large. O

We are now ready to complete the induction step. We suppose we have
selected Jji,ki1,...,Ji, &k and we are to construct jii, ki1

Let Ci(N) = Di(N)UDa(N)U ... UDg(N). We will write B for By N...N
B;.

Proposition 4.7. Let i = 1. There exists p” € (0,1) independent of i such that
if N is any integer larger than 2k;, then there exist integers jiy1 and ki1 (not
depending on n) satisfying 2k; < N < jiy1 < kiy1 so that
P(4o N CSN) N BN Bisy) < p'"P(Ag 1 CE(N) M B)

for n sufficiently large.
Proof. Let

R={X| £2++11 =1t < N},

S={X;| <2+ V&N <t £ Un},

S ={X;+X| £2+Vt+N,0£t < Un—N},

A= {X + Xyl S24+t—=(G—N)j-N+1=t < Un—N}.
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Let N be any integer larger than 2k; and let j;.; = 8N. Suppose j = jii11. We
assume # is large enough so that Un > 16N.
By Proposition 3.4 there exist ¢; and ¢, such that if [y| < 2+ /N,

=2\ N _ o
— 1324
“ (1 N )T =6

ly| =2 N
§62<l— \/N>Un_N. (4.9)

To estimate PY(S’ ﬂA}) from below, notice that by translation invariance
and the Markov property, this is greater than the product of the following two
factors:

(i) the probability that a Brownian motion started at y at time N lies between
the curves =+/7 until time j with |X;| < /j/2, and

(ii) the probability that after time j, the Brownian motion lies between square
root boundaries centered at X; up until time Unr while at the same time re-
maining between £+/7.

The probability in (i) is the same as
(i") the probability that a Brownian motion started at y at time 0 lies between
the curves £/t + N until time j — N with [X;_y| < /j = N/2.

Using Proposition 3.4 this probability is bounded below by

Factor (i1) may be estimated using Proposition 3.1(b)~the lower bound here
is a constant multiple of 1/(Un — j). We see that

-2\ N 1 |y =2\ N
PS AA z e (12 > 1= =
sopza(i-07) Ayl 2 VN ) Jn
Comparing with (4.9), there exists ¢s such that
Pr(s’ ﬂA}) > sIP7(S)/j .

Note ¢s can be chosen to be independent of N. Similarly, there exists ¢4 such
that
PY(S' N A;NA) £ clP(S)/j(k — ).

Observe that C;(N)N B = C{(N) € Fy, the o-field up to time N. By the
Markov property at time N,

P(4gNBNCIN)NA) =PRNBNCIN)NSNA;)
= E[PV(S'N4));RNBNCIN)]
z B[P (S); RN BN CI(N)/j
=csP(RNBNCHN)NS)/)

=cslP(4o N BN CHN))/J -
Similarly,

P(do N BN CEN) N 4; N A4) < clP(dg N BN CEN))jCk — j) -
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Choose 7 large enough so that log » = 6 and
¥

1
>, — =logr/2.
m=ji M

Let k;,; = r. Proceeding just as in Proposition 4.4, there exists p”’ such that
P(A4y N CEN)YNBNBiy) < p'P(Ag NCI(N)YNB).
Note that p” is independent of N, j;; and %+ (cf. Remark 4.5). O

Let p = max (o', p").

Proposition 4.8. There exist ji, ki,...,Ji,ki (not depending on n) satisfying
l=j1 <k <j» <k <...<ji <k such that for n sufficiently large,

P(4gNBiN...NB;) < xk3p'/n. (4.10)

Proof. We use induction. The case i = 1 is Proposition 4.4. Suppose we have
(4.10) holding for i and we want to prove it holds for i+ 1. Write B for
Bl n...N B,‘.
Take
& = [i3p’/n — IP(4o N B))/Ak;

and choose Ny as in Proposition 4.6 with k = &;. Then if N = N,

P(4,NBNC(N)) < P (@(AO ND,(N) mAj))
i=1

< ki supP(4o ND;(N)NAS) < eki/n.  (4.11)

<k
By Proposition 4.7, taking N = max (No,2k; + 1), we can find ji1 and ki
such that
P(4g N BN B; 1 NCHN)) < pP(AoNBNC{(N))
< plP(49 N B). (4.12)

By (4.11),

P(4o VBN Bi1 NCiN)) £ plisp’/n — (4o N B))/4 . (4.13)
Adding (4.12) and (4.13) and using the induction hypothesis,

K3p'/n N 31P(4o N B)
4 4

P(A4o NBNB1) < p [ ] < k3p"n,

which is (4.10) for i +1. O
Proposition 4.9. Let § > 0. For n sufficiently large,

P (QAJ) <5
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Proof. Take I so that
PApnBN...OBy) £ B/2n. (4.14)

Let y = f/2k3. Take n large enough so that yn = 2k;. By applying translation
invariance to the estimate (4.14), we see that the proofs of Propositions 4.2—
4.8 are still valid as long as j < #(1 —y) and we obtain

P(4; NAG M. N A4y) < B/2n.
On the other hand, if j = (1 — y)n, then by Proposition 4.1 we have
P(4; NAS NNy < P(4)) < xsfn.
We then obtain

P (GAJ-) _p (L"J(A,rm;+l m...mA;))
=t j

=1

n(t=y) n

< X B2+ Y xs/n
J=1 J=n(1=y)+1

S BR+x3yn/n=p.

The proposition is proved. [

5. Slow points

In this section we prove that “critical” slow points do not exist. Let

E(n) = {there exists » € [0,n) such that |X;, — X,| < Vi —r,r <t £ 2Un}.

Proposition 5.1. If IP(S(1) # ¢) > 0, then there exists ¢y such that P(E(n)) >
e for all n.

Proof. If IP(S(1) # ¢) > 0, then there exists an integer m such that Brownian
motion has a slow point in the interval [m, m + 1) with positive probability. By
translation invariance, Brownian motion has a slow point in [0, 1) with positive
probability. There must exist a rational 4 such that the event

{there exists » € [0,1) such that [X;, - X,| < t—r,r St Zr+h}

has positive probability. As in the first two lines of this proof, there exists
¢; > 0 such that

IP(there exists » < 4/2U such that |[X, —X,| S Vi—rr <t <r+h)=c.

An easy scaling argument (cf. Proposition 2.10) shows that if X, has a slow
point at time r, then for all a, X, has one at time ar. Applying this with
a = 2Un/h, we conclude that with probability at least ¢; that there exists » < n
such that X; — X, lies within square root boundaries for a time at least 2Un.
But that event is E(n). [
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Recall the statement of our main result.
Theorem 1.1. With probability one S(1) = 0.

Proof. Suppose not. Then by Proposition 5.1 there exists ¢; > 0 such that
P(E(n)) = ¢, for all n. If @ € E(n), then there exists » < n such that X, —
X, £ t—r for r £t £ 2Un. (r, of course, depends on w.) Let j be the
first integer greater than ». Then

XX < i-rst1.

If Un =zt = j+1, then
X=X = W6 - X+ - Xl

<SVi—r+l S /I+i—j+1<2+41—/.

This means that w € 4;. So E(n) C U;=1 4;. Let B = c¢1/2. By Proposition 4.9,
the probability of E(n) must be less than ¢;/2 if » is sufficiently large, a
contradiction. Therefore we must have P(S(1) # ¢)=0. O
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