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Summary. Let Xt be a Brownian motion and let S(c) be the set o f  reals r > O 
such that IX~+t - X r [  < cvZ/, 0 < t N h, for some h = h(r) > 0. It is known 
that S(c) is empty if  c < 1 and nonempty if c > 1, a.s. In this paper we prove 
that S(1)  is empty a.s. 
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1. Introduction 

Let Xt be a Brownian motion and let 

S(c) = {r > 0: there exists h > 0 such that [X~+t -X~[  < cv~, 0 _< t _< h}. 

S(c) is the set o f  "slow points" with parameter c. For every r E S(c), a piece 
of  the path of  Brownian motion lies within c times a square root boundary 
just after r. As is well known, the law of  the iterated logarithm implies that 
after any fixed time r the next piece o f  the Brownian motion path does not lie 
in any multiple of  a square root boundary, almost surely~ Nevertheless, slow 
points exist for some values of  e. Kahane [K1,K2] showed that S(c):~ ~, a.s. 
provided e is sufficiently large. Dvoretzky [D] showed that S(1/4)  is empty. 
Independently, Davis [Da] and Greenwood and Perkins [GP] showed that S(c) 
was empty if  c < 1 and nonempty if e > 1. Davis and Perkins [DP] examined 
a number of  critical cases for Brownian slow points (e.g., asymmetric square 
root boundaries, two-sided (in t ime) boundaries), but left unresolved the ques- 
tion of  whether S(1 ) is empty or not. They did show that i f  S(1 ) is nonempty, 
it must be at most countable. For additional information on slow points, see 
[BP, e]. 

* This research was partially supported by NSF Grant 9322689. 
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Our main result is the following theorem. 

Theorem 1.1. With probability one S(1)  = ~). 

The present article is motivated not only by the desire to record the solution 
to an open problem about slow points but to present a new argument which 
seems to be applicable to other "critical" case questions as well. 

In Sect. 2 we derive a number of  estimates on the densities of  Ornstein- 
Uhlenbeck processes and on the exit probabilities from an interval. These are 
all either well known or extensions of known results using standard methods. 
Rather than working with square root boundaries, it is necessary for us to work 
with boundaries of the form t H 2 + vr/, and Sect. 3 is devoted to developing 
the appropriate estimates. The method we use is an adaptation of one of 
Novikov [N]. Novikov's paper deals with moving boundaries up to but 
not including the critical case t 1/2, and our results in Sect. 3 may be of in- 
dependent interest. The main work is done in Sect. 4. We define approximate 
slow points. I f  Aj represents the event that there is an approximate slow point in 
the interval [ j , j  + 1), then we estimate IP(AklAj) and IP(Ak NAptAj) .  A stan- 
dard second moment argument then tells us that 1P(U~=j+ 1AklAj) is bounded 
below by a constant independent of  n. Unfortunately, we need that constant to 
be close to 1; it is necessary to iterate the estimates, which makes the proof 
considerably more complicated. Finally in Sect. 5 we show that our estimates 
on approximate slow points imply that S(1) is empty. 

The letter c with subscripts will denote constants whose exact values are 
unimportant. We begin numbering anew at each new proposition. The distri- 
bution of Brownian motion starting from x will be denoted IP x. We will often 
write IP for IP ~ 

2. Ornstein-Uhlenbeck processes 

We begin by recording some known facts about Ornstein-Uhlenbeck pro- 
cesses and their connection with Brownian motions. Let Xt be one-dimensional 
Brownian motion. Let 

Z, = e-t /2X(et)  . (2.1) 

Starting the Ornstein-Uhlenbeck process Zt at Z0 = z is then the same thing 
as starting the Brownian motion at X1 = z. The probability that the reflected 
Brownian motion IX, I starting from z at time 1 lies under the curve t H v~ 
on the interval [1,s] is the same as the probability that the reflected Brownian 
motion IXtl starting from z at time 0 lies under the curve t H ~ + t on the 
interval [ 0 , s -  1]. With these facts in mind, we see that 

lPz(IZul < 1 , O < u < T ) = ] P z ( I X t [  < = ~ / l + t , O < t < _ e r - 1 ) .  (2.2) 

Integration by parts in (2.1) shows that Zt satisfies the stochastic differential 
equation 

z,  = z0 + w, - 5- d s ,  (2.3) 
0 
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where Wt is another one-dimensional Brownian motion. The solution to this 
SDE is unique. The law of  Zt is that of  the diffusion on the line with infinites- 
imal generator sd f ( x )  = ( �89  - x S ( x ) )  started at Z0 = )(1. 

.~r is a symmetric operator with respect to the measure m(dx) = 2e -x2/2 dx. 
The transition densities with respect to m for Zt killed on exiting [ -b ,  b] can 
be written 

OO 
p(t,x, y) = ~ e-;~it q)i(x)qoi(y) , (2.4) 

i=1 

where the series converges absolutely and uniformly, 0 < 2i < 22 < . . . ,  the 
qoi are C 2 and vanish at - b  and b, (Pl > 0 on ( - b , b ) ,  ~o~1(-b) > 0, qo](b) 

0 b < ,f~ b (p~(x)m(dx)= 1, and sr Moreover, )q = 1 when 
b = 1. See Knight [Kn] and Perkins [P]. 

We will need the following estimate. 

Proposition 2.1. Let e > O. There exists to such that if  b E (�89 and t > to, 
then 

p(t,x,y) 
e _ , ~ l ~ l ( y  ) - 1 < e, [xl, lYl --- b .  

Proof. First, we get a lower bound on ~o~(-b) that is valid for all b E (�89 
Note opt1 can equal 0 in ( - b ,  b) only at local maxima; for if (p~ = 0 at x0, then 
the equation 

(P"lt(X) = X(Ptl (X) - -  2-~1 (pl(X)  ( 2 . 5 )  

evaluated at x0 shows that qJl~(X0) is strictly negative since )~I,(PI > 0. By 
the symmetry of  sd about 0, qol is symmetric. So qo~l(0)= 0 and 0 is a local 
maximum. Therefore q~I > 0 in ( - b ,  0), hence Pl is nondecreasing on ( - b ,  0). 
Eq. (2.5) shows that q0~ ~ is negative on ( - b , 0 )  and so qo~ decreases on this 
interval. Using the symmetry of  (Ol we have 

b 0 
1 =  f (p2(x)m(dx)= 2 f ~o~(x)m(dx) < 4bll~ox]t~. 

- b  - b  

Since 
I X 

l~l(x)l = I~o~(x)- ~Ol(-b)[ = f qoll(y)dy 

2blt~O'l[[~ ~ 2b~o'l(-b), 

we obtain ~o~(-b) > (16b3) -1/2 > 1/12. 
Second, we get upper bounds on (Pi and (p;. As a function of  b, 21 is smallest 

when b is largest ([CH]). So there exists el > 0 independent o f b  E (1 ,2)  such 
that 2i > 21 > Cl. From ~4(pi = -2iqoi, we see that 

Iq)~'(x)l = 2lcp~(x)l + 22il~oi(x)!. (2.6) 

Integration by parts shows that if f C C2[-b,b] and f ( - b ) =  f ( b ) =  0, then 

b b 
f ( S ) 2 d x  = - f  f ' f d x ,  

b --b 
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so by the Cauchy-Schwarz inequality, 

t 2 
tlf Itz < Ilf"{[z{{f{{z, 

where [[fH2 denotes (f_b b [fl 2 dx) 1/2. From this and (2.6) we obtain 

r 2 
II~oijja ~ (2]1q~112 + 2~illq?ill2)lI(Pijl2 �9 

Since 

we conclude 

b b 
I1~o,11~ = f ~ dx ~ c2 f ,p~m(ax)= c2, 

- b  - b  

t 2 1/2 l 
//qOi//2 ~ 2 c  2 //qOill2 q- 2c2)-i , 

which implies II~o~ll~ < c32~/~-. Now by the Cauchy-Schwarz inequality 

or  

b 

- b  

IIr <- c52i. (2,7) 

Set r = (2}}f}}~o/[tf"l]oo)~/2A1 and let x ~ [-b,b]. By the mean value 
theorem on the interval [ - b  V (x - r), b A (x + r)], there exists a point x* in the 
interval such that tfr(x*)l < 2tlf t l~/r,  while we also have If ' (x)  - f ' (x*)} <= 
rll f"[l~.  Hence [[f'[l~ < 2{[fll~/r + r l l f " l l~ .  With our choice of r and the 
fact that (u + v) 2 < 2u 2 ~- 2w, we get the inequality 

tlfrlI~ < 811fll~/ra + 2rallfnlt~ < (811f"lloo + 16IIf{l~)([If[[o~) - 

From this, (2.6) and (2.7) we have 

/ ' 2  ]lq)itl~ -<- (16llq)lll~ + (162i + a6)ll~0ill~)ll~,ll~ ~ c6(llq~i}]~ + 2p)~,. 

Therefore 
Ilp'i[Ic~ < c72ff 2 <= e82/2. (2.8) 

Third, we get an upper bound on Iq)~(x)l/qol(x). From (2.6)-(2.8), Iloi'll~ 
=< c9. Since (p~(-b) > 6 ,  then q)~(x) > ~ if x + b ~ ~c9. Using the fact 
that q)l is nondecreasing on ( -b ,0 )  and using symmetry to deal with positive 
x, we see then that 

cpl(x) > elo(b - t x t ) ,  (2.9) 

where cm does not depend on b. From (2.8), we obtain 

t~oi(x)l _-_ cax~(b -Ixl), (2.10) 

and we therefore have 
I~o,(x)[/~ol(x) <- c12X~. 
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Finally, to conclude the proof, note that as a function of  b, each 2i is 
continuous and decreases as b increases [CH]. So there exists i0 independent 
of  b such that if  i > i0, then 2i > 2)q. We also deduce that there exists 3 > 0 
independent of  b such that 2i - 2l > (5 for all i. We have 

p(t,x, y)  = e-:~at (ol(x)rpl(y) I1 + ~ e -(~i-;~Ot r qoi(y) ] 
i=2 @1(x) @ l ~ ) ]  " 

If i < io, then 

e_(Xi_;.0t ~oi(x) (Pi(Y) < c2224e_(;~i_~l)t < c12 ~io e 2 44 --6t 
~l (x )  ~ = = " 

This goes to 0 as t --~ oc. On the other hand, note fi'om (2.4) that p(s,x,x) is 
decreasing in s. So 

t i ~ ,  1 = ~  e_(Xi_~)t ~oi(x) opt(y) 
(PI(x)  (Pl(Y) 

~ C~2 ~ e-2it/2l~ 4 ~-~ 6"22 (sup/]4e--2t/4 1 ~ e-2it/4 
V.>=o / 

b 
<= c22(16/t)4e -4 f p(t /4,x,x)m(dx),  

-b 

which also tends to 0 as t -+ vc. [] 

There are a number of  consequences of  this proposition. For b > 0, let 

~ b = i n f { t  > O ]Zt > b}.  

Proposit ion 2.2. Let b E (�89 There exist c1,c2, and vl > 1 such that if  
t > v~, then 

clcpl(x)e -)V < Ipx(% C dt)/dt <= c2q)l(x)e -;~lt . 

Proof By the proof of  Proposition 2.1, we have 

b 
~PX(~b > t) = ~ ( I z ~ l  < b,O <_ s <_ t) = f p ( t , x , y )m(dy )  

- b  

oo b 
= E e - ~ i ( x ) f  (pi(y)m(dy). 

i=1 - b  

Differentiating with respect to t, 

b 
lpx('cb E dt)/dt = ~ )cie-'litqoi(x) f (pi(y)m(dy). 

-b 

Very similarly to the last part of  the proof  of  Proposition 2.1, we see that the 
first term, 21e-;qtqOl(X)fqol(y)m(dy), is the dominant term when t is large. 

v~ 
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We fix for the rest o f  the paper a number 1) 1 > 1 which satisfies Proposi- 
tion 2.2. 

Proposi t ion 2.3. Let b C ( 1 ~,2). There exist cl and c2 such that i f  t > vl, then 

e~(b- Ixl)e )~1, <= l~'(Zb > t) < c 2 ( b -  j x l ) e  -21t  �9 

Proof This follows from integrating the result o f  Proposition 2.2 and using 
(2.9) and (2.10) with i--- 1. [] 

Proposit ion 2.4. There exists cl such that i f  u > t > vl and x E ( - 1 ,  1), then 

IW(IZe[ < 1/21zl > u) > c 1 . 

Proof By the Markov property at time t, 

 (Iztl =< 1/2,21 > u) = ]EX[]pzt(-E1 > u - t ) ; - c 1  > t, Iz, I _-< 1/2] 

i 1/2 
= f f p( t ,x ,y)p(u-  t,y,z)m(dy)m(dz). 

- - I  --1/2 

By Proposition 2.2, this is greater than 

1 1/2 
e2qh(x)e-t f f ~o l (y )p (u -  t ,y , z )m(dy)m(dz) .  (2.11) 

-1 -1/2 

I f  u -  t < vl and y C [ - � 89  then 

1 

f p ( u -  t ,y ,z)m(dz)  > IPY(~1 > Vl) > c3 > c3e - ( u - 0  �9 
-1 

I f  u - t > vl and y E [ - �89  1], then by Proposition 2.2 

1 1 

f p ( u -  t ,y ,z)m(dz)  > c4e-(~-t)cpl(y)f  q~l(z)m(dz) > cse -("-t) . 
-1 -1 

So in either case, (2.11) is greater than 

1/2 
c6~p1(x)e -t  f ~ol(y)e-(U-t)m(dy) >= c7(#l(x)e -u . (2.12) 

--1/2 

On the other hand, 

1 
Ipx(zl > u ) =  f p(u,x ,y)m(dy)  

- 1  

1 

< c a e - u p l ( x ) f  p l (y)m(dy)  < cge-~qol(x). (2.13) 
-1 

Taking the ratio of  (2.12) and (2.13) proves the proposition. [] 
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Proposition 2.5. Let  b ~ (�89 and t < 20Vl. Then there ex&ts cl such that 

IN(~b > t) <= c ~ - -  h - Ix l  

v~ , 
x ~ ( -b ,  b).  

P r o o f  Define a probability measure Q on ~ by 

dR _ exp f Z s d W ~  - 
dlpx o o 

(2.14) 

where Wt is defined by (2.3) and is a Brownian motion under IPL By the 
Girsanov theorem, Zt = Wt - fo Z~/2 ds is a martingale under Q with the same 
quadratic variation as that of W under 1P x, namely t. So by L6vy's theorem, 
Zt is a Brownian motion under I1~. 

t 2 On the set {% > t}, we have fo Z; ds < tb 2 < 20rib 2 < 80vl. Also, using 
(2.3) and It6's lemma, 

0 0 o 

1 t 
+ ~ f z ~ d ~ .  (2.15) 

On the set {% > t}, the right-hand side of (2.15) is bounded by (2b 2 + t) /2 + 
1062vl < 4 + 50vl. Therefore the exponent in (2.14) is bounded in absolute 
value by K = 2 + 35Vl. 

We then have 

d i n  
IN(% > t ) =  f dQ < eXQ(% > t ) .  

Since Zt is a Brownian motion under Q, a well-known estimate says that 
ff).(zb > t) <--_ c2(b - l x ] ) / v ~ ,  which completes the proof. [] 

Proposition 2.6. Let  b E (1,2) and 1 <_ t <_<_ 20vb There exists cl such that 
i f  x c ( -b ,b) ,  

IN (sup < b )  < C l ( b - x ) .  

Proo f  Let B = {Z(vb) = - b , %  < t}. On the set B, IzsI <= b i f s  < zb. So as 
in Proposition 2.5, 

1)z,d - f gds Mr=z0  o 

is bounded in absolute value by a constant K depending only on vl when 
t < zb. B is in the a-field ~ b ,  hence 

dip x 
IN(e) = f -~-dQ = f e-M~b d~? =< e~Q(B). 

B B 

Under ~ the process Zt is a Browuian motion, thus ~(B) is less than the 
probability that a Brownian motion started at x hits - b  before b, which is 
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(b - x)/2b. Since {sups_< t Zs < b} C_ {Zb > t} t3 B, our result follows from this 
estimate together with t-he result of Proposition 2.5. [] 

Proposition 2.7. Let b ~ (�89 and a E (�89 There exists Cl such that i f  
x E [-b,a] and vl <<_ tl < 20vl, then 

IW(% < 2tl,zb > 2tl) < c l ( b - a ) .  

Proof By Proposition 2.3 and the strong Markov property at time z,, 

IW(z~ __< fi,vb > 2q) < ]Pa('c b > t l )  ~ c 2 ( b - a ) .  (2.16) 

On the other hand, by the strong Markov property at Za and Proposition 2.5, 

2t 1 

]W(2fi _> "ca > tl,Zb > 2t~)= f lW(zb > 2 h -  S)]W(Z~ E ds) 
tl 

2t 1 

__<f 
tl 

By Proposition 2.2, IPX('ca E ds) < c4 ds 
that 

lpx(2tl >= "Ca > tl,Zb > 

Adding to (2.16) proves our result. [] 

e3(b - a),,~, 
- ~ t t ( - - s ~ [ z a  E ds) .  (2.17) 

for s => tl. With (2.17) this shows 

2tl) < c s ( b - a ) .  

Remark. 2.8. For any r,s, and LIpx(Ixt[ < V'r + t,s <_ t < T) is largest when 
x = 0. To see this, convert this to an equivalent statement about the Ornstein- 
Uhlenbeck process Zt. Since Zt is symmetric about 0, this expression is easily 
seen to be largest for x = 0. 

Proposition 2.9. There exist cl and C 2 such that if  T > vl and x E (-�89 �89 
then 

cx/T <= IW(]Xtl < v/t, 1 < t < T) <= c2/T. 

Proof Let Zt be defined by (2.1). For the upper bound, by the Markov property 
and Remark 2.8, 

]pz(Ixt I <= v/t, 1 N t <_ T) = ]E~]Px'(]Xt] < x/1 + t , 0  _< t <-- T - 1 )  

__< IEz]P~ _< x/T+ t, 0 -< t -< r -  1). 

By (2.2) and Proposition 2.3, this is equal to 

]P~ < 1,0 < t _ logT) < c3e -;~l~ = c 3 / T ,  

recalling that 2i = 1 when b = 1. 
For the lower bound, by the Markov property, 

]Pz(lXtl ~ ~ , 1  ~ t ~ T) ~ ]PZ(lXt I ~_ ~v/t, 1 ~ t ~ t,  lXl -Xol ~ 1/4) 

- -  E~ [ I pX ' ( l x ,  l < x / l + t , 0  < t _< T - l ) ;  

Ix1-x0l =< 1/4]. (2.18) 
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If lY/ < 3/4, then 

�9 y(Ix~t <= , / l + t , o  <_ t <_ r - 1 ) = ~ ' Y ( I Z ~ !  <= 1,0 _< t __-logT) 

>= c4~ol(y)e-;, t log/" ~ c5/T 

by (2.2) and Proposition 2.3. If X0 =z ,  ]z[ < 1/2 and IX1 -X01 < 1/4, then 
we have ]XI] =< 3/4. Therefore the right hand side of (2.18) is bigger than 

(e5/T)IP~(IX1 --)201 < 1/4) > c 6 / r .  [] 

Proposition 2.10. There exist Cl and c2 such that i f  ]z[ < x/~/2, then 

ClS/r <__ ~'z(lXtt <= ,A,s  <_ t <_ T) <= e2s/T. 

Proof. This follows from Proposition 2.9 by scaling. Note 

lPZ(IXtl < x//,s -< t < T ) =  ~,z(lX~sl <= ,,#~,s <= us <-5 T) 

= ~(Ix~s /v~l  < ,/~, 1 < u < r/s)  

(2.19) 

If Yu = Xus/v G, then Y~ is another Brownian motion and the right hand side 
of (2.19) equals 

IPZ/'/~(IY~ [ < v/~, 1 <_ u < T/s) .  

We now apply Proposition 2.9. [] 

Remark. 2.11. Fl:om Proposition 2.3 we derive 

~( tx~ l  -< " / 1 +  u/X;lX~l _-< ~/]-+s00 < s < u) 

_-> Cl~(IX~l _-< 41 + s , 0  < s < u) 

if [xl < 1 by arguments similar to those of Proposition 2.9. 

3. Moving boundaries 

We need some estimates on moving boundaries. We adapt a method of Novikov 
[N]. 
Suppose f c C2[0, oc) and there exists K1 > 1 such that 

(a) 1r ~ f ( t )  < ~1, t C [0, OC); 

(b) [ f ( t ) - l l v ~  =< KI, t E [ 1 , e c ) ;  

(c) [ f ' ( t ) t  3/2[ <= tel, t E [1, oe) ;  

(d) I f " ( t ) t  5/21 < K1, t E [1, oc) .  

(e) f = 1 inaneighborboodof  O. (3.1) 

The assumptions (3.1)(b)-(d)  could be weakened, but they are good 
enough for our purposes. In our applications, the value of f ( t )  for t E [0, 1) 
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will usualty be immaterial, and we can change f to be smooth there and 
identically 1 for t < 1 without any loss of generality. 

Proposition 3,1. (a) Suppose f satisfies (3.1). I f  f ( t )  < l for all t or f ( t )  > 1 
for all t, there exist cl and c2 such that for T > va 

cl /T <=  '(IXtl _-< f ( t )x / t ,  1 < t <_ T) <= c2/T. 

The constants Cl and ca depend on f only through ~:1. 
(b) Suppose r C [1, ec), b E [0, 2], and a E [0, �89 Let 

fa, b,r(t) = min(1, b/vFt + V/1 + r/t - a V ~  ) . 

There exists c3, not depending on a, b, or r, such that 

�9 (IX l = fa, b,r(t)V~, 1 <~ t < T) >= c3/T. 

Proof  Let 

and 

F ( t ) : f ( t ) e x p  ( ~ ? 1  [ -u - --(f(u)) 2 1  1 )du  

t 1 
h(t) = f ~ ds ,  

0 

(3.2) 

(3.3) 

t 
Yt = F ( t ) f  IF(s)]-1 dX~ . (3-4) 

0 

By the It6 product formula, 

dYt = dXt + _Yt .F ' ( t )d t  . (3_5) 
~( t )  

Define a new probability measure ~ by 

d--~ ~ -~Y~dX~  - 5 o \ F ( s )  ] y2ds  (3.6) 

Under IP, Yt - fo Y~F'(s)/F(s) ds is a martingale, so by Girsanov's theorem, Yt 
is a martingale under Q. The quadratic variation of Yt is the same under both 
measures, namely (Y)r = (X)r = t, and Yt is continuous. By L6vy's theorem, 
Yt is a Brownian motion under ~ .  

Let A be the event {]Ytl < f ( t )V~ ,  1 <- t <_ T}. Note 

IP(A) = IE~ 1A �9 

Later on in the proof we will bound the exponent in dll)/dlP in absolute value 
by K. So then 

e - K ~ ( A )  < IP(A) <= eKQ(A). (3.7) 
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The law of  Yt under Q is the same as the law of  Xt under IP, hence 

II~(A) = IP(IXt I < f ( t )x / t ,  1 <_ t <_ T) ,  

the quantity we are attempting to estimate. 
From (3.4) we have 

IP(tYt [ < f(t)'v/t, 1 <_ t <- T) 

= l P ( i [ F ( s ) ] - l d X  s < f ( t ) v ~ / F ( t ) , l  <<_t <_ T)  . (3.8) 

Let Wt = foh-~(t)[F(s)] -1 dX~. Wt is a continuous martingale that is also a 

Gaussian process. The variance of  W~ - Wt is 1 

Wt is a Brownian motion. Let H be the inverse of  h. Then the right-hand side 
of (3.8) is 

IP (]Wt] < f ( H ( t ) ) ~  h(1) < < h ( T ) )  = ~ , , , _ t _ 

From the definition of  F we have 

F / f /  1 1 
- -  + 

F f 2u 2 u f  2 ' 

which leads to 

or after integrating, 

(3.9) 

E 1 
U \ F ( u ) j  J - - F ( u )  2 ' 

( f ( u ) ~  2 
U \ F ( u ) J  = h(u) +c4 .  

Since both sides are 0 when u = 0, then c4 = 0. Taking square roots of  both 
sides and setting u = H(t), we have 

f ( H ( t ) )  ~ = v/7 
F(H(t))  

By the definition of  F and (3.1) (a), (b), (e), there exist constants c5 and c6 
such that 

cs/~l <= cs f ( t )  ~ F(t) <= c6f( t)  <= ~1c6, 
hence 

<__ h( t )  <__ 

Moreover, if  f ( t )  > 1 for all t, then F(t) > f ( t )  > 1, so h(t) < t for all t. 
This and Proposition 2.9 implies that the right hand side of  (3.9) is bounded 
above by 

P(twtl  <= v~, l  <- t <_ T/,z~c 2) < CT/T. 

Also, if  f ( t )  > 1 for all t, then 

IP(IXtl < f ( t)~fi ,  1 <_ t <_ T) > IP(IXt I <= ,~/t, 1 <_ t <_ T) > cs/T 
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by Proposition 2.9. Similarly, if f ( t )  < 1 for all t, then h(t) > t for all t and 
the right hand side of (3.9) is bounded below by 

n'(lW, I <= v i i ,  1 <_ t <_ Ttc~/cg) > c9/T .  

Also, if f ( t )  __< 1 for all t, then 

n'(lX, I _-< f ( t )x /7 ,  1 <_ t <- T)  <= P(IXt{ -<_ v~, 1 -< t < T) < Clo/T 

by Proposition 2.9. 
To finish the proof of (a), it remains to bound the exponent of (3.6) on 

the set A. Using (2.3) and ItS's lemma, 

- y r - -~rxdx ,  - 5 r:d~ 
0 0 

r F '  1 ~ ( ~ )  2 
= - f - r ~ d r ~ +  ~ o f r~d~ 

o F 

l r F '  1 r ( _ ~ )  2 

= 0 + 2 

+0 f T ~ + f0 V ~ 

! 

ds 

= ~ ~ _ y ~ + l /  2Ft(T) y'2F'(0)~ ofY~F'(s) ds+l~ " F ( s )  

We will show that the last expression is bounded by a constant indepen- 
dent of T. The expression is continuous and equal to 0 for small T since 
F( t )  = f ( t )  = 1 and F' ( t )  = Fn( t )  = 0 if t is sufficiently small (see (3.1)(e)). 

Let r denote the exponent in (3.2). By (3.1)(a)-(b), 

{O'(t)[ = I f ( t ) -  l l ( f ( t )  + 1) < Cllt_3/2 
2 t ( f ( t ) ) 2  = �9 

Since f ( t ) =  1 for t small by (3.1)(e), it follows that suptlO(t){ < oo, and 
hence that F is bounded above and below by positive constants. Because 

~ , , =  ( f - 1 ) ( f + l )  f' 
2tzf2 + t f ~  , 

(3.1)(a)-(c) show that [0n(t)[ < c12t -5/2. Our estimates have to hold only on 
the set A so we may assume that IYsI _-__ f ( s ) v ~  for 0 _ s _< r .  We have 
F ~ = f ' e ~  + f~feO, so 

Y, 2F ' (T )  < Cl3(T)(T 3/2) < c13. 
r F ( T )  = = 
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The second term y2F'(O)/F(O) is equal to 0 because I10 = 0. Using (3 . t ) (d)  
and the formula 

F" = f " e  ~ + 2f 'O'e  ~ + f ( t f ) 2 e  ~' + f ~ " e  4' , 

we obtain [F"(t)[ < el4t -5/2. Hence 

i Ftlgs'~ I y 2 ~ d s  ~ c lS f  s"  s-5/2ds < oo, 
1 

where the bound is independent o f  T. Finally, F has been shown to be bounded 
above and below and therefore log (F(T)/F(O)) is bounded as well. 

To prove (b) we proceed as in the proof  of  (a) above. We will only outline 
the new elements of  the proof. I f  to is the point where b + x/r  + t - ax/7 = x//, 
a calculation shows that to > (9/16)r.  Note fa, b,~(t) = 1 for t < to. Then 

?1  1 1 
o zl ( f a ,  b,r(U)) 2 

du < ~j l [f~'b'~(u)- l[( f ( ~_~,~,b,~,u~ + 1 ) d u  
,o u ( f~ ,b , /u ) )  2 

~ 1  1 
C16~/7 f ; - ~  d/A, 

~/2 
(3.10) 

which is bounded independently of  t, r, b, and a. It follows that there exists 
c17 such that h(t) < c17t for all t. As we saw above, h(t) > t. So 

IP(lWtl ~ v~,h(1) ~ t ~ h(T)) ~ IP(IW, i ~ ~Z, 1 ~ t ~ c,7T) ~ cI8/T. 

F is not in C 1, but i f  we approximate F in a suitable way and take a limit, 
we see that @(A) > e-KIP(A), where K is a bound for 

~ ~F(V) + o ~ + , o  S"(~) 

• Yt20 + log (F(T)/F(O))) . 

ds + [F ' ( t0+)  - F l ( t 0 - ) ]  

Using the fact that F ( t ) = f ( t ) =  1 and F l ( t ) = F l ' ( t ) = O  for t < to, we 
bound this by a quantity independent of  a, b, and r in a manner similar to 
that used in (3.10). [] 

Remark. 3.2. The same proof  shows that if  (3.1) holds, there exists cl such 
that 

Ip0(p~[ =< f ( t ) ~ i , ~  <_ t <_ T)  <__ e l~ /T .  (3.11) 

One can similarly generalize Proposition 3.1(b). 

Proposi t ion 3.3. There exists cl such that i f  1 <_ s <_ 5s + 2vj <= T, then 

�9 (IX~l ~ 2+,,/s+ t,o <_ t <_ T) <= e ls /T .  
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Proof If s _-__ vi, then 

~'(Ix, I _-< 2 + , / s + t , o  <_ t <_ T) <= ~'(Ix~l -<_ 2 +  v ~ +  ~ , 0  <_ t _< T) 

_-__ u'(IXtl _-< 2+Vl  + v/t,1 < t -< T) ,  

and the last probability can be estimated by Proposition 3. l(a) with f ( t )  = 1 + 
(2 + vl)/v/t for t > 1. 

Suppose now that s > vl. We write 

IP(IXt [ __< 2 +  v / s + t , 0  _< t _< T) 

< IP(IX, I < 2 +  v ~ ; l ~ l  < 2 + ~ t , s  < t <_ T) 

2+v~ 
< f D~ E du)IPU(lX,l < 2 + ~ +  t,0 < t _< T - s ) .  

-2-x/57 
(3.12) 

Next we have for l Y[ < 3 v @, 

IPY(IX* I < 2 + x/s + t,s < t < T) 

2+v/~ 
>-_ f IPY(X* E du)IW(IXtI < 2 + V ~  + t,O < t < T -  s) . 

_2_ v/~ 
(3.13) 

Since IPY(X~ E du) = (2~zs)-1/2e -(u-y)2/2s du, we see there exists c2 such that 

IP~ �9 du) < c2]PY(Xs E du), lY] --< 3v~, lul _-< 2 + , / ~ .  

So combining (3.12) and (3.13), if tyl < 3v~, 

~'(IX~l _-< 2 +  v / s + t , o  -< t _< T) __< c2IeY(IX~l _-< 2 + x / s + t , s  <_ t <_ T ) .  

(3.14) 
Then we have 

IP~ __< 2 + v/t,2s < t < T + s )  

3x/~ 
> f IP~ E dy)IPY(lXt I < 2 + x/s + t,s <_ t <_ T) 

-3v~ 
3~  

>= C2 1 f ]p0(x* E dy)~'~ I _-< 2 +  ~ , 0  -< t < T) 
-3,/5 

= c3I~0( [Xt [  ~ 2 + X/7~t,  0 < t < T) .  (3.15) 

By Remark 3.2, the left hand side of (3.15) is bounded by c4s/(T + s) <= c4s/T. 
[] 

Proposition 3.4. Suppose s > 1 and T >= 4s + 10vl. There exist cl and c2 
such that i f  0 < y < 2 + x/~, then 

( Y ~ s s 2 )  s cl 1 ~ < IPY(IXt[ < 2 + x / s + t , 0  -< t _< T, IXr[ < x / s + T / 2 )  
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and 
y - 2  s 

~'Y(IX~I __< 2 + , / s + t , 0 _ <  t_< T) 5-c2 1 7 ) T 

P r o o f  For the lower bound, 

~'y(Ix,[ ____ 2 + x/U45,0 _< t _ r, lXrl _-< ~ / 2 )  

> IPY(IXt I < 2 + -v/~,0 < t < s, IX~l _-< v~/4 ; 

Ixtl < 2 + x/s + t,s <_ t <__ r, lxrl _-< Vs + Z/2) 

__> ~y[Us( lx ,  l = 2 + , / ~ + 1 , 0  <_ t <_ Z - s ,  IXr-sl <-_ x/-T/2) ; 

]X,l < v/~/4, ]Xtt < 2 +  v~,0 <- t _< s].  (3.16) 

If ]z] __< x/~/4, 

1Pz([Xtl __< 2 + v ~ + t ,  0 <- t <_ T - s ; t X r _ s l  < ~ f / 2 )  

>__ IPz([x,[ __< g 2 s + t , O  <_ t <- T - s ; l X r - s [  <= v/-T/2) 

>__ c31P~(lX~l _-< v ~ + t , 0  -< t _< T - s )  

>= c4s/T (3.17) 

by scaling, Remark 2.11 and Proposition 2.3. Therefore the right hand side of 
(3.16) is greater than 

S . 
c4~IPY(lXsl < v~/4, tx~ I __< 2 + x/~,0 -< t _< s ) .  

But 

IPY(IXt[ < 2 + v~,O < t <_ s) > c5 x~ ~ - c5 1 

and given that IXt] remains less than 2 + x/~ until time s, there is positive 
probability that [Xs[ < ,r 

For the other inequality we have 

IPY([Xtl < 2 + v / s + t , O  -< t _< T) 

< IPY(Xt < 2 + , , / s + t ,  0 < t < 3s; 

[Xt] < 2 + g s  + t, 3s < t < T)  . (3.18) 

Using the Markov property at time 3s and Remark 2.8, the right hand side of 
(3.18) is bounded by 

] p y - 2 ( X  t <7 V / s +  1,0 < t ~ 3s)lp0([~l < 2 +  xflas+t ,0 <_ t < T - 3 s ) .  

(3.19) 

The probability that Xt started at y - 2 at time 0 stays under the curve x/s + i 
for t E [0, 3s] is the same as the probability that Xt starting at y - 2 at time s 
stays under the curve v~ for t E [s, 4s]. Defining Zt by (2.1), this is the same 
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as the probability that Zt starting at (y  - 2)/x/~ at time logs  stays below I for 
t E [log s, log 4@ Thus the first factor is equal to 

IP(y-2)/'f~(Z t • 1,0 < t < log 4) < c6 1 (3.20) 

by Proposition 2.6. The second factor in (3.19) is bounded by 

4s < s 
IP~ I =< 2 +  x / ~ - + t , 1  < t < T - 3 s )  < C 7 r _ 3 s  c s ~  

by Proposition 3.3. Combining this with (3.20) gives the upper bound. [] 

4. Approximate slow points 

Let U = e 1~ where vl is defined following Proposition 2.2. For 0 < j < n, 
define the event 

Aj = {IXt - Xjl <= 2 + v / t  - j , j  + 1 <_ t <_ Un} . (4.1) 

When the event Aj occurs, we say Xt has an approximate slow point at time 
IP n j .  Let /3 > 0 be arbitrary. Our goal is to show (U~=IAj)  < /3 when n is 

sufficiently large. We do that by getting a suitable estimate on ]P(Aj 7~ A~+ 1 N 
.. .  NA,~). We start by using induction to construct a finite sequence of  pairs 
( j l , k l )  . . . .  , ( j i ,  k i)  which have some special properties and are such that j < 
j l  < kl < . . .  < j i  < k1 < n. Let 

B i  = A c 71 . N A c 
J i  " " k i  " 

We will show there exists a cl > 0 and p E (0, 1) such that 

IP(Ao 71 B1 N . . .  rl Bi) <= c lp i /n .  

(4.2) 

(4.3) 

Let us proceed with the i = 1 case. We will also concentrate primarily on 
the case j = 0 and then point out how the case of  general j follows from this 
special case. The right hand side of  the following proposition has also been 
proved in Sect. 3 of  [DP]. 

Proposition 4.1. There exist  ~2 and K 3 such that 

~c2/ft <= ]P(Aj) <= tc3/n. 

P r o o f  We use the Markov property at time j and translation invariance to get 

lP(Aj)_- IE[I~(IXt -X01 < 2 + v / t ,  1 < t <_ g n - j ) ]  

= IP(IXt I = 2 + x / t ,  1 <- t <_ U n - j ) .  

The upper bound and lower bound now follow by using Proposition 3.1(a) 
with f ( t )  = 1 + 2 / v ~  for t > 1. [] 



Brownian slow points 101 

Proposition 4.2. There exists cl such that i f  k < n, then 

IP(Ao NAk)  > c l / nk .  

Proo f  By Remark 2.11 and Proposition 2.9, if k > vl, then 

IP(IXt I <= ,/7,1 <_ t <_ k, and IXk[/~/-s <= 1/2) 

>= c2~(Ix, l <= ,/i,  1 <_ t <_ k) >__ c3/~. 

I f k  < vl, 

]P(IX, I < .~ ,1  <_ t < k, and[Xkl/x/k < 1/2) _> P(IX, I _-< 1,0 _< t _< k) 

~ c4 ~ c4/k.  

So using the Markov property at time k, it suffices to show there exists c5 
such that if  lY4 < v'-k/2, then 

~'~ I __< 2 + ~/t + k - lyl and IXtl < x/t, 1 <_ t <_ Un - k)  >_ cs/n.  (4.4) 

By symmetry we can assume without loss of  generality that y => 0. We will 
show (4.4) when y is largest, namely x/k/2; the same proof works for every 
smaller y. 

Suppose k >__ 4. The curves t ~ 2 + ~ - x/k/2 and t ~-+ v ' t  intersect 
at a point to > 9k/16. Let f ( t )  be equal to 1 for 0 < t < to and equal to (2 + 
v/k + t -  v ~ / 2 ) / x f /  for to < t <_ U n -  k. Our result follows by Proposition 
3.1(b). 

The case k < 3 must be dealt with separately, but is quite easy and is left 
to the reader. [] 

Proposition 4.3. There exists cl such that i f  k + p < n, then 

IP(Ao NAk f-lAk+p) <= c i /nkp .  

Proof  We have 

IP(AoNA/~AAk+p) <-_ IP([Xt[ =< 2 +  ~/t, 1 --- t _< k ;  

IXt -- Xk ] < 2 + ~/ t - k, k + l <_ t <_ k + p ; 

IX t -Xk+pl  < 2 + ~ / t - ( k  + p ) , k  + p +  l 

< t <_ Un).  

By the Markov property at times k and k + p and Remark 2.8, we bound the 
above probability by 

n'(IX, I _-< 2 + ~ , 1  _<t _< k ) •  ~'(1~1 = 2 +- , / t ,  1 _< t _< p)  

x IP(IXt I < 2 +  v~ , l  <- t <_ U n - ( k + p ) ) .  

Using Proposition 3.1, this in turn is bounded above by 

(c2/k)(cz/p)(cz/(Un - (k § p ) )  <= c3/nkp.  [] 

Let j l  = 1. 
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Proposi t ion 4.4. There ex&ts pl E (0, 1) and a positive integer kl such that 

IP(Ao N B1) < ~r 

where B1 is defined in terms of  kl by (4.2). 

Proof Define a new probability measure Q by 

Q(E) = IP(EIA0) - IP(E C~A0) 
~(A0) 

Since IP(A0) > 0, this is a well defined measure. From Propositions 4.2 and 
4.3 we have II)(Ak) > el/k and Q(Ak fqAp) < c2 /k (p -k ) .  Without loss o f  
generality we may  assume cl < 1 and c2 > 1. 

Let N~ = ~m=lr 1A,n. Then 

IEc~Nr ---- ~ Q(Am) >= cl ~ 1/m > cl log r 
m=l m=l 

and 

]E~N 2 = ~ ( l ) ( A m ) + 2  ~ ~(Am f3Ap) 
m=l m, p=l 

m<p 

< IEQNr + 2 ~ c2 < IEa~Nr + 2c2(1 + log r )  2 
re<pro(P-m) = 

=< lEaNt + 8c2 log 2 r < IEQNr + 8c2c~2(IEc~Nr) 2 

= < (1  q - 8 r  2 = < 9CzC12(]Ef f2Nr)  2 

as long as r > 3 is big 
C3 = 9C2Cl 2. 

By the Cauchy-Schwarz 

IEQN~ < 

_< 

< 

SO 

IEQN~/2 

o r  

enough so that c l l o g r  > 2. Let kl = r  and 

inequality, 

I+IEe[N~;N,. > 1] 

1 + (IEeN2)V2C~(N~ > i) ~/2 

1 + ~ /2(~eN~)C~(Nr  > t )  ~/2 , 

<= c~/2(~N,.)C~(N~ > 1)1/2 , 

Q(Nr > 1) _= 1/(4e3). 

Let p~ -= 1 - 1/(40c3). I f N r  > 1, then B~ occurs. Thus (D(B1) < pt and using 
Proposition 4.1, we get our desired estimate. [] 

Remark. 4.5. Note for future reference that the proof  of  Proposition 4.4 shows 
that i f  

r = inf  [mlP(Ao NAm)/IP(Ao)] A 1, (4.5) 
l < m < n  

c2 = sup [m(p - m)IP(Ao NAm AAp)/IP(Ao)] V 1, (4.6) 
l <m< p < n  
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then 
p ' =  1 - 1/[40(9c2c~2)] = 1-c~/ (360c2) .  

Define 

D;(N) = { t ~ - X j l  < 2 + x/t - j , j  + l <_ t <_ N}  . 

Proposit ion 4.6. Let k be given and let e > O. There exists No > k (not 
depending on n) such that i f  j < k, N > No, and n is sufficiently large, then 

IP(Ao A D j ( N )  ~A~) < e/n. 

Proof  Let T = inf{t > j +  1: ]Xt -Xj-! > 2 +  t ,  Mx/T~-j}. O n D j ( N ) N A ~ , N  < 
T < Un. I f  events A0 and {N < T < n} hold, we have I X r - X ; I  > 2 +  
Tv/T2]- j " and IXj[ < 2 + x/]. Therefore 

IX l_>_ j - , / ) .  

 'y(lX, I _-< 2 + ~/s + t ,o < t _< ( u  - 1)n) will be largest when [Yl is smallest. 
I f  T E [2ran A n, 2m+lN An], then 

UT(IX, I ___ 2 +  x / - f + t ,  0 < t -< ( g -  l )n)  

< IP rvffz]-J-vg(IXtl < 2 + T ~ , 0  < t < ( U -  1)n).  (4.7) 

By Proposition 3.4, the right hand side of  (4.7) is bounded by 

c2 ( 1 _  x / T - J -  v f J - 2 )  T <= c3(j(2m+lN An))l/2/n 
, # f  n 

So using the strong Markov property at time T and Proposition 3.1, 

IP(Ao, T C [2mN, 2m+lN]) 

< lP(IXt ] =< 2 + x/t, 1 <- t < 2mNAn,  T E [2mNAn, 2m+lNAn],  

IXr+tl < 2 +  v / T + t , O  <_ t < ( U - 1 ) n )  

_-< m[UT(IX,[ __< 2 + - ~ / T + t , 0  _< t < ( U -  1)n); 

T E [2mN An ,2m+lNAn] ,  

[Xtl =< 2 + x / t ,  1 < t <_ 2mN An] 

<= c3(j(2m+lN An) )  1/2 c4 

n 2mN A n 
c s x/] 

n(2mN A n) 1/2 ' 

If  we now sum this over m from 0 to the first integer greater than (log n - 
log N) / log  2, 

IP(Ao, N < T < n) < c6v/k/nx/N < e6~fk/n~/No 

Next we look at the event Ao (] {T E [n, Un]}. For this to hold, first, iXt[ 
must lie under the curve t ~-~ 2 + v/t for t c [1,n]; second, IXt] must lie under 
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the curve t ~-+ 2 + x/t for t E [n, Un]; and third, for some y with l Yl < 2 + , /~ 
(namely, y =Xj-) ,  Xt hits at least one of  the curves t H y - 4 - ( 2 + v / t - j )  
for some t E [n, Un]. We give the proof  for y as small as possible, that is, 
y = - 2  - v/i;  essentially the same proof  works for every larger y. Using the 
Markov property at time n and Proposition 3.1 (a) with f ( t )  = 1 + 2/v/ t  for 
t__>l,  

IP(Ao, T E [n, Un]) 

sup 
Izl <2+,/~ 

Xt > ~/n + t - j - V~ for some t C [0, (U  - 1 )n]) 

< ( ~ )  sup IW(Xt hits a v ~ §  for some t E [ 0 , ( U - 1 ) n ] ,  
Izl __<2+,/~ 

but does not hit b ~ t  for t E [ 0 , ( U -  1)n]) ,  (4.8) 

where a = X/1 - j / n -  V ~  and b = 1 § 2/V~. The probability on the right 
hand side of  (4.8) is the probability that a Brownian motion started at z at 
time n hits the curve a v ~  but not bv~  before time Un. Using (2.1), this is the 
same as the probability that Zt started at z / v ~  at time log n hits the level a 
but not b before time log(Un).  So 

E[n, gn]) < ( ~ )  sup IPZ(z, < l o g g , %  > log U ) .  IP(Ao, T 
I~I<=b 

By Proposition 2.7 and the inequality ~ -  j/2n > 1 - j / 2 n ,  

~P(A0, r e [n, Cln]) =< csv@n,/~. 

So if we take No large enough, we get our result provided n is sufficiently 
large. [] 

We are now ready to complete the induction step. We suppose we have 
selected j l , k l  . . . . .  ji, ki and we are to construct ji+bki+l. 

Let C/(N) = DI(N) t_J D2(N) U . . .  U D~i(N). We will write B for B1 A . . .  A 
Bi. 

Proposi t ion 4.7. Let i > 1. There exists p" E (0, 1) independent of  i such that 
i f  N is any integer larger than 2hi, then there exist integers ji+l and ki+l (not 
depending on n) satisfying 2[ci < N < ji+l < ki+l so that 

IP(Ao N C,f(N) N B N Bi+l ) < p"lP(Ao N CO(N) A B) 

for n sufficiently large. 

Proof Let 

R =  {IXtl <= 2 + ~ , 1  <_ t <_ N } ,  

S = ( I X t l  <= 2 + v~ ,N <-- t <- Sn} ,  

s '_-  {Ix~+x0t __< 2 + , / T T f f , 0  <_ t <_ g n - N } ,  
t - -  - -  Aj = {IXt @ Xj-NI ~ 2@ 4t - -  ( j  - N ) , j  - N + 1 < t < Un - N}  . 
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Let N be any integer larger than 2ki and let ji+I = 8N. Suppose j > ji+l. We 
assume n is large enough so that Un > 16N. 

By Proposition 3.4 there exist Cl and c2 such that if lY[ < 2 + v/N, 

C l (1  [Y-~N 2 ) - -  u n N - N  =< ]PY(S') 

=<c2(1 'Y-~N 2 )  u n N - N  " (4.9) 

To estimate IPY(S~ N Aj.) from below, notice that by translation invariance 
and the Markov property, this is greater than the product of the following two 
factors: 
(i) the probability, that a Brownian motion started at y at time N lies between 
the curves •  until time j with IXsl ____ 4]/2 ,  and 
(ii) the probability that after time j ,  the Brownian motion lies between square 
root boundaries centered at X; up until time Un while at the same time re- 
maining between • 

The probability in (i) is the same as 
(i ~) the probability that a Brownian motion started at y at time 0 lies between 
the curves • until time j -  N with IXj-NI _--< j47-~;-  N/2. 
Using Proposition 3.4 this probability is bounded below by 

j - N  

Factor (ii) may be estimated using Proposition 3.1(b)-the lower bound here 
is a constant multiple of 1 / ( U n - j ) .  We see that 

= •  > c 4  1 . 
j - N Un - j = jn  

Comparing with (4.9), there exists c5 such that 

IPY(S ' NA}) => c5]Ps(S') / j .  

Note c5 can be chosen to be independent of N. Similarly, there exists c6 such 
that 

]PY(S' NAj. NAt) =< c6IPY(S')/j(k - j ) .  

Observe that C/C(N)N B = CC(N) E Y N ,  the a-field up to time N. By the 
Markov property at time N, 

1P(Ao N B N CC(N) N A i ) = IP(R N B N CC(N) N S N Aj )  

= ]E[I~N(S ' NA~);R N B N C,C(X)] 

c5]E[IpXN ( S'); R N B n CC(N)]/J 

= csIP(R N B N C~(N) n S ) / j  

= csIP(Ao N B n CC(N)) / j .  
Similarly, 

IP(Ao N B n C[ (N)  N Aj  N Ak ) <-- c6IP(Ao A B N C~(N) ) / j (k  - j ) . 



106 R.F. Bass, K. Burdzy 

Choose r large enough so that log r > 6 and 

> log r/2. 
1 

m=ji+l m 

Let ki+l = r. Proceeding just as in Proposition 4.4, there exists p" such that 

IP(Ao O Cf(N) O B O Bi+l) < p"lP(Ao O C[(N) O B) .  

Note that p~/ is independent of N, j i+l  and ki+l (cf. Remark 4.5). [] 

Let p = max ( y ,  p"). 

Proposition 4.8. There exist j l ,  ka,... ,ji, ki (not dependin9 on n) satisfying 
1 = jl  < kl < j2 < k2 < ... < ji < ki such that for n sufficiently large, 

IP(Ao N B1 N. . .  O Bi) < ~3pi/n. (4.10) 

Proof We use induction. The case i = 1 is Proposition 4.4. Suppose we have 
(4.10) holding for i and we want to prove it holds for i + 1. Write B for 
B1 N...NBi. 

Take 
a = [~c3pi/n - IP(Ao N B)]/4ki 

and choose No as in Proposition 4.6 with k = ki. Then if N > No, 

IP(AoNBNCi(N))  < IP (AoNDj(N)  NA~) 

< kisuplP(AoND2(N) NA~) <= eki/n. (4.11) 
j<ki 

By Proposition 4.7, taking N = max (No, 2ki + 1), we can find ji+l and ki+l 
such that 

IP(Ao N B N Bi+l N C~.(N)) < plP(Ao n B N C~(N)) 

< plP(Ao NB).  (4.12) 

By (4.1 l), 

IP(Ao N B N Bi+l O Ci(N)) < p[~c3pi/n - IP(A0 N B)]/4.  (4.13) 

Adding (4.12) and (4.13) and using the induction hypothesis, 

31P(A0 NB) < tc3pi+l/n 
IP(A0 N B N Bi+I ) < p + 4 

which is (4.10) for i +  1. [] 

Proposition 4.9. Let ~ > O. For n sufficiently large, 
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Proof Take I so that 

]P(Ao ["I BI n . . .  N BI ) <= fi/2n . (4.14) 

Let ? = fi/2~3. Take n large enough so that 7 n > 2kr. By applying translation 
invariance to the estimate (4.14), we see that the proofs of  Propositions 4 .2 -  
4.8 are still valid as tong as j _< n(1 - ?) and we obtain 

]P(Aj NA~+ 1 N . . . N A  c) <= fl/Zn. 

On the other hand, i f j  > (1 - 7)n, then by Proposition 4.1 we have 

�9 (AinA~+ ~ n . . . e A ~ )  <= ~(Aj) <__ ~3/~. 

We then obtain 

= IP (jOl(Aj NA~+I N. . .NAC) ) 

,z(1-~) 
< E ~/2n + ~ tC3/n 

j=l j=n(l--?)+l 

< p/2 + ~37n/n = ~. 

The proposition is proved. [] 

5. Slow points 

In this section we prove that "critical" slow points do not exist. Let 

E(n) = {there exists r E [0,n) such that [Xt - Xr[ < x/t - r,r < t < 2Un} . 

Proposi t ion 5.1. IflP(S(1) r 4)) > O, then there exists c~ such that 1P(E(n)) > 
cl for all n. 

Proof I f  IP(S(1) r 4)) > 0, then there exists an integer m such that Brownian 
motion has a slow point in the interval [m, m + 1) with positive probability. By 
translation invariance, Brownian motion has a slow point in [0, 1 ) with positive 
probability. There must exist a rational h such that the event 

{there exists r E [0,1) such that I X t - X r [  _-< ~ / t - r , r  <__ t <_ r + h }  

has positive probability. As in the first two lines of  this proof, there exists 
cl > 0 such that 

IP(there exists r < h/2U such that [ X t - X r [  =< x / t - r , r  <= t < r + h) >= cl .  

An easy scaling argument (cf. Proposition 2.10) shows that if  Xt has a slow 
point at time r, then for all a, Xat has one at time ar. Applying this with 
a = 2Un/h, we conclude that with probability at least cl that there exists r < n 
such that Xt - X , .  lies within square root boundaries for a time at least 2Un. 
But that event is E(n). 
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Recall the statement of our main result. 

Theorem 1.1. With probability one S(1) = 0. 

Proof Suppose not. Then by Proposition 5.1 there exists Cl > 0 such that 
IP(E(n)) > cl for all n. If  co E E(n) ,  then there exists r < n such that IXt - 
Xr[ _-< x / t -  r for r <- t < 2Un. (r, of  course, depends on co.) Let j be the 
first integer greater than r. Then 

IXj-x l _-<  /j-r __< 1. 

I f U n  >- t >_ j + l, then 

-x j l  _-__ -x l + -xA 

__< t e T : - r + l _ _ < x A - + t - j + l < _ - 2 +  tv/V:j-j. 
n 

This means that co E Aj. So E(n) C Uj=1Aj. Let fl = Cl/2. By Proposition 4.9, 

the probability of E(n) must be less than cl/2 i f  n is sufficiently large, a 
contradiction. Therefore we must have IP(S(1) ~ ~b) = 0. [] 
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