Skip to main content
Log in

Single-server queues with spatially distributed arrivals

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

Consider a queueing system where customers arrive at a circle according to a homogeneous Poisson process. After choosing their positions on the circle, according to a uniform distribution, they wait for a single server who travels on the circle. The server's movement is modelled by a Brownian motion with drift. Whenever the server encounters a customer, he stops and serves this customer. The service times are independent, but arbitrarily distributed. The model generalizes the continuous cyclic polling system (the diffusion coefficient of the Brownian motion is zero in this case) and can be interpreted as a continuous version of a Markov polling system. Using Tweedie's lemma for positive recurrence of Markov chains with general state space, we show that the system is stable if and only if the traffic intensity is less than one. Moreover, we derive a stochastic decomposition result which leads to equilibrium equations for the stationary configuration of customers on the circle. Steady-state performance characteristics are determined, in particular the expected number of customers in the system as seen by a travelling server and at an arbitrary point in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Altman and S. Foss, Polling on a graph with general arrival and service time distribution, Preprint, INRIA Centre Sophia Antipolis (1993)

  2. E. Altman, P. Konstantopoulos and Z. Liu, Stability, monotonicity and invariant quantities in general polling systems, Queueing Syst. 11 (1992) 35–57.

    Google Scholar 

  3. E. Altman and U. Yechiali, Cyclic Bernoulli polling, Zeits. Oper. Res. 38 (1993) 55–76.

    Google Scholar 

  4. E. Altman and H. Levy, Queueing in space, Preprint 4-93, Rutgers University, New Brunswick, NJ (1993).

    Google Scholar 

  5. S. Asmussen,Applied Probability and Queues (Wiley, Chichester, 1987).

    Google Scholar 

  6. K.B. Athreya and P. Ney, A new approach to the limit theory of recurrent Markov chains, Trans. Amer. Math. Soc. 245 (1978) 493–501.

    Google Scholar 

  7. I. Bardhan and K. Sigman, Rate conservation law for stationary semimartingales, Prob. Eng. Inf. Sci. 7 (1993) 1–17.

    Google Scholar 

  8. H.C.P. Berbee,Random Walks with Stationary Increments and Renewal Theory, Mathematical Centre Tracts 112 (Mathematisch Centrum, Amsterdam, 1979).

    Google Scholar 

  9. D.J. Bertsimas and G. van Ryzin, A stochastic and dynamic vehicle routing problem in the Euclidean plane, Oper. Res. 39 (1991) 601–615.

    Google Scholar 

  10. A. Borovkov and R. Schassberger, Ergodicity of a polling network, Stoch. Proc. Appl. 50 (1994) 253–262.

    Google Scholar 

  11. O.J. Boxma and W.P. Groenendijk, Pseudo-conservation laws in cyclic service systems, J. Appl. Prob. 24 (1987) 949–964.

    Google Scholar 

  12. O.J. Boxma and J.A. Weststrate, Waiting times in polling systems with Markovian server routing, in:Messung, Modellierung und Bewertung von Rechnersystemen und Netzen, eds. G. Siege and J.S. Lie, (Springer, Berlin, 1989) pp. 89–104.

    Google Scholar 

  13. E.G. Coffman, Jr. and E.N. Gilbert, Polling and greedy servers on a line, Queueing Syst. 2 (1987) 115–145.

    Google Scholar 

  14. E.G. Coffman, Jr. and A. Stolyar, Continuous polling on graphs, Prob. Eng. Inf. Sci. 7 (1993) 209–226.

    Google Scholar 

  15. R.B. Cooper and G. Murray, Queues served in cyclic order, Bell Syst. Techn. J. 48 (1969) 675–689.

    Google Scholar 

  16. D.J. Daley and D. Vere-Jones,An Introduction to the Theory of Point Processes (Springer, New York, 1980).

    Google Scholar 

  17. M. Eisenberg, Queues with periodic service and changeover times, Oper. Res. 20 (1972) 440–451.

    Google Scholar 

  18. P. Franken, D. König, U. Arndt and V. Schmidt,Queues and Point Processes (Wiley, Chichester, 1982).

    Google Scholar 

  19. C. Fricker and M.R. Jaibi, Monotonicity and stability of periodic polling models, Queueing Syst. 15 (1994) 211–238.

    Google Scholar 

  20. S.W. Fuhrmann, Symmetric queues served in cyclic order, Oper. Res. Lett 4 (1985) 139–144.

    Google Scholar 

  21. S.W. Fuhrmann and R.B. Cooper, Stochastic decomposition in theM/G/1 queue with generalized vacations, Oper. Res. 33 (1985) 1117–1129.

    Google Scholar 

  22. S.W. Fuhrmann and R.B. Cooper, Application of decomposition principle in M/G/1 vacation model to two continuum cyclic queueing models — especially token-ring LANs, AT&T Techn. J. 64 (1985) 1091–1098.

    Google Scholar 

  23. L. Georgiadis and W. Szpankowski, Stability of token passing rings, Queueing Syst. 11 (1992) 7–33.

    Google Scholar 

  24. S. Karlin and H.M. Taylor,A Second Course in Stochastic Processes (Academic Press, New York, 1981).

    Google Scholar 

  25. J. Keilson and L.D. Servi, Oscillating random walk models forGI/G1 vacation systems with Bernoulli schedules, J. Appl. Prob. 23 (1986) 790–802.

    Google Scholar 

  26. L. Kleinrock and H. Levy, The analysis of random polling systems, Oper. Res. 36 (1988) 716–732.

    Google Scholar 

  27. D. König and V. Schmidt,Random Point Processes (Teubner, Stuttgart, 1992; in German).

    Google Scholar 

  28. A.G. Koheim and B. Meister, Waiting lines and times in a system with polling, J. ACM 21 (1974) 470–490.

    Google Scholar 

  29. D.P. Kroese and V. Schmidt, A continuous polling system with general service times, Ann. Appl. Prob. 2 (1992) 906–927.

    Google Scholar 

  30. D.P. Kroese and V. Schmidt, Queueing systems on a circle, Zeits. Oper. Res. 37 (1993) 303–331.

    Google Scholar 

  31. D.P. Kroese and V. Schmidt, Light-traffic analysis for queues with spatially distributed arrivals, Math. Oper. Res., to appear.

  32. P.J. Kühn, Multiqueue systems with nonexhaustive cyclic service, Bell Syst. Techn. J. 58 (1979) 671–698.

    Google Scholar 

  33. T. Lindvall,Lectures on the Coupling Method (Wiley, New York, 1992).

    Google Scholar 

  34. K. Matthes, J. Kerstan and J. Mecke,Infinitely Divisible Point Processes (Wiley, Chichester, 1978).

    Google Scholar 

  35. R. Mazumdar, V. Badrinath, F. Guillemin and C. Rosenberg, On pathwise rate conservation for a class of semi-martingales, Stoch. Proc. Appl. 47 (1993) 119–130.

    Google Scholar 

  36. M. Miyazawa, Rate conservation laws: A survey, Queueing Syst. 15 (1994) 1–58.

    Google Scholar 

  37. E. Nummelin, A splitting technique for Harris recurrent Markov chains, Zeits. Wahrscheinlichkeitstheorie verw. Geb. 43 (1978) 309–318.

    Google Scholar 

  38. J.A.C. Resing, Polling systems and multitype branching processes, Queueing Syst. 13 (1993) 409–426.

    Google Scholar 

  39. R. Schassberger,Queues (Springer, Wien, 1973).

    Google Scholar 

  40. K. Sigman and R.W. Wolff, A review of regenerative processes, SIAM Rev. 35 (1993) 269–288.

    Google Scholar 

  41. F.M. Spieksma and R.L. Tweedie, Strengthening ergodicity to geometric ergodicity for Markov chains, Stoch. Models 10 (1994) 45–74.

    Google Scholar 

  42. H. Takagi,Analysis of Polling Systems (MIT Press, Cambridge, MA, 1986).

    Google Scholar 

  43. Tedijanto, Exact results for the cyclic service queue with a Bernoulli schedule, Perf. Eval. 11 (1990) 107–115.

    Google Scholar 

  44. H. Thorisson, Construction of a stationary regenerative process, Stoch. Proc. Appl. 42 (1992) 237–253.

    Google Scholar 

  45. R.L. Tweedie, Criteria for classifying general Markov chains, Adv. Appl. Prob. 8 (1976) 737–771.

    Google Scholar 

  46. R.L. Tweedie, The existence of moments for stationary Markov chains, J. Appl. Prob. 20 (1983) 191–196.

    Google Scholar 

  47. R.W. Wolff, Work conserving priorities, J. Appl. Prob. 7 (1970) 327–337.

    Google Scholar 

  48. R.W. Wolff, Poisson arrivals see time averages, Oper. Res. 30 (1982) 223–231.

    Google Scholar 

  49. U. Yechiali, Optimal dynamic control of polling systems, in:Queueing Performance and Control in ATM, eds. J.W. Cohen and C.D. Pack (North-Holland, 1991) pp. 205–217.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroese, D.P., Schmidt, V. Single-server queues with spatially distributed arrivals. Queueing Syst 17, 317–345 (1994). https://doi.org/10.1007/BF01158698

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01158698

Keywords

Navigation