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Entropy of First Return Partitions of a Markov Chain 

E.  M .  KLIMKO a n d  JAMES YACKEL * 

Summary. We consider the first return time distributions for each state in a Markov chain and show 
that finiteness of entropy of these distributions is a class property for recurrent and transient classes. 

1. Introduction 

In this note, we answer affirmatively the question raised in [2] concerning the 
finiteness of entropy for the first return time distributions of Markov chains as a 
class property. The interest of our result lies in the null recurrent and transient 
classes since it is known that the finite mean return time of a positive recurrent 
state implies that the first return distribution has finite entropy. On the other hand, 
it is easy to construct Markov chains whose first return distribution to a given 
state has infinite entropy; indeed, it is possible to construct a chain with any given 
first return distribution to a fixed state, cf. [1] p. 64. 

In Section 2, we derive some bounds on entropy which are applied in Section 3 
to prove our probabilistic result. 

2. Preliminaries 

Let (f2, ~ ,  #) be a a-finite measure space. To a partition d = {Ai}i~ o of a set A, 
g ( A ) < m ,  is associated a sequence f={f/}~=o with f~=#(Ai) i=0,  1 . . . . .  The 
entropy o f f  is the entropy of 

H ( f ) = U ( d )  = - ~f~ logf~. (1) 
i = 1  

(The base of the logarithm is usually taken to be 2; 0 l o g 0 = 0 ;  there are no diffi- 
culties in definition (1) since at most a finite number of terms can be negative.) The 

t~ 

norm If[ = ~ f i ;  the convolution of f and g is f , g ,  i.e., ( f ' g ) , =  ~ f , - i g i  and f , k  
is the k-convolution o f f  with itself, i= o 

Lemma 1. Let f g be sequences. Then there is a constant C, depending only on 
If], Igl and the base of the logarithm such that 

Max (H(f),  H(g) ) -  C < H ( f  + g) < H ( f )  + H(g), (2) 
in particular 

H ( f +  g) < oo if and only i f H ( f )  < oe and H(g) < oe. 
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Proof The function - l o g x  is decreasing and - x l o g x  is increasing for 
xe [0, 1/el. For each n, 

-(fo +g,) log(L+gn)= - f ,  log(fn + g,)-g, log(L + gO 

<= --fn 1ogs -- g, log g,, 

while for n sufficiently large, f ,  + g,e [0, 1/el and 

- m a x  (f~, g.)  log max (f~, g.)  < - (f~ + g.)  l og  (f~ + g.) .  

Lemma 2. I f  f and g are sequences, then 

max(rio H(g), &oH(f) )  - C<-_H(f*g)<=lfl H(g)+ Igl H(f) ,  (3) 

where f~o, gJo are arbitrary non zero elements o f f  g. In particular, we conclude 
H ( f . g ) <  oo if and only if H( f )<  oo and H(g)< oo. 

Proof By the monotonicity of the logarithm function, 

t (  ) U ( f * g ) = -  Efign-i log .Z f ig , - i  
n=O \ i = 0  / ~=0 

< ~ ~ _ i l o  g . - i  �9 
n=O \ i = 0  

Now interchanging the order of summation yields 
oo 

- ~ ~f~g~_i(logf~+logg,_i)=lgl H ( f ) + l f l  H(g). 
i=O  n = i  

The lower bound is obtained by noting that for io, n sufficiently large 

-- g,-i  log gn--i >=--fiiog.-iologfiog.-io 
i \ i = 0  ! 

=> - f iog , -  io log g,_ io 

which summed on n gives usfio H(g)-  C. We similarly can obtain a bound involving 
H(f). 

Lemma 3. I f  we consider the k-fold convolution off, f *k, then 

H(f*k)<= k Iflk -1 U(f). (4) 

Proof. We prove (4) by induction, noting that for k = 1 we have equality. If (4) 
holds for some positive integer k, it follows from Lemma 2 that 

H(f*  (k+ 1)) ~- H ( f  , f ,k) <= If*kl H(f)  + l f l  H ( f  *k) 

= (k + 1)Ifl k H(f) .  

Lemma 4. Iflfl  < 1, then H ( f ) <  oe implies 

, k  < 0 0 .  
H = < ( l_ l f l )2  

Proof The result follows from (2), (4) and ~ kak-l= ( 1 -  a)-2. 
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3. Main Result 

We now apply the preceeding lemmas to obtain the following proposition. 
(We follow the standard notation and terminology of [1].) 

Proposition. The finiteness of the entropy of first return distributions fkk = 
{f~k}ff= 1 is a class property for Markov chains. 

Proof Let the states i and j communicate. It is easily verified probabilistically 
that for any two states h, k 

n n n * g n  f~,k=hf;k+(kAh*Ak)(n)=hf;k+ kf~ kfhh *hfhk (n). 
k i n =  0 ! 

If H ( f . ) <  oo, our lemmas imply that (i) H(J . )<  o% (ii) H(if;3 ) < o% (iii) H( i f z )<  
and (iv) H(j f j i )< oo. Since i and j communicate, we assert that bf.l< 1. From 
Lemma 4 we conclude that 

H *m <oo.  
m=O / 

This together with (ii) and (iv) implies 

H jf~i* 2 J f / *  " *if/j < ~  
\ m =  0 / 

which together with (iii) completes the proof. 

4. Remark 

It is natural to ask whether our result can be extended to a more general 
transformation z acting on a a-finite measure space (f2, N, ~). Using the "sky- 
scraper" construction of Kakutani [3], it is easy to construct a measure space 
(f2, N', #) and an automorphism z on ~2 such that there are two sets of finite measure 
with the first return partition of one having finite entropy while the first return 
partition of the other has infinite entropy. 
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