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be a l m o s t  e v e r y w h e r e  A d m i s s i b l e *  

R. H. FARRELL 

1. Introduction 
Theorem 1, stated below, includes a number of statistical problems in which 

it may be desirable to consider conditional procedures. It is our aim to obtain a 
complete class theorem covering such conditional procedures. 

We will first state the assumptions needed, then Theorem 1.1. We conclude 
this section with some discussion. Section 2 contains a proof of Theorem 1.1, and 
Section 3 contains applications to the study of invariant tests. 

We assume X and Yare complete separable metric spaces with .~x the a-algebra 
of Borel subsets of X, and ,~r the a-algebra of Borel subsets of Y. We assume/~ is 
a regular totally a-finite measure on .~x, and that if coE(2, 2o, is a probability 
measure on ,~r dominated by the probability measure 2. Given is a set {fo, co~(2} 
of conditional density functions on X x Y. It is assumed that if co~2 then fo is 
jointly measurable. It is assumed that if y~ Y then fo(., y)~LI(X, ~x, #) and 
~ f~(x, y) #(dx)= 1. 

Of the parameter and decision spaces it is assumed that (2 is a separable metric 
space and that the decision space ~) is separable locally compact metric space. 
We require that both spaces be complete in their respective metrics. Loss will be 
measured by a continuous function W: ~ x f2--* [0, oe). We assume that if coEf2 
then lim W(t, co)= oc. We assume there exists a partition of f2 into subsets 

~21, ..., f2 k such that on each f2 i, the risk function 

(1.1) r(co, 6, y ) = ~  W(t, co) 6(dt, x, y) f~(x, y) I~(dx) 

is a continuous function of co, this being true for all ye  Y and all randomized 
decision functions 3. Lastly, if r (co, 3) is defined by 

(1.2) r(co, 3)=~ r(co, b, y) 2,~(dy), 

then we suppose sup l r (co, 61)-  r(co, 62)1= 0 implies 
r 

• 2)({(x, y) 161(., x, y) + 62 (., x, y)}) = 0. 

Theorem 1.1. Let the above hypotheses hold. I f  the (randomized) decision 
procedure 6 is admissible then for almost all y [2] the decision procedure 6 (', ", y) 
is admissible for the loss function W and family of density functions { f~ (., y), co e (2}. 

In the case the measure 2,0 do not depend on co, then introduction of the variable 
y is equivalent to introducing randomization before the experiment in the sense 
of Wald and Wolfowitz [10]. We have 
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Corollary 1.2. Given the hypotheses of Theorem 1.1, if the admissible decision 
procedure 6( . , . , . )  involves randomization before the experiment then for almost 
all y [2] the decision procedures 6 (. , . ,  y) are admissible for the problem. 

In case the conditional densities f~(.,  y) are independent of the variable y, 
then introduction of the variable y is equivalent to taking another independently 
distributed observation. We obtain 

Corollary 1.3. Given the hypotheses of Theorem 1.1, if the decision procedure 
( . , . , . )  depends on independently distributed observations x, y then for almost all 

y [23 3(.,., y) is an admissible procedure depending on x. 

The conclusion of Corollary 1.3 is very similar to the idea of hyperadmissibility 
discussed by Hanuras [23. 

d2o~ 
If the family of density functions f,~ ~ -  is an exponential family then for a 

suitable choice of co we obtain the complete class theorem of Matthes and Traux [53. 

A large number of problems which arise in multivariate analysis are problems 
in which a locally compact transformation group ,~ acts on ~2 x X x Y. A combi- 
nation of Theorem 1.1 with assumptions about ~ leads to Theorem 3.1, a complete 
class theorem for nonrandomized invariant tests. We apply Theorem 3.1 to the 
multivariate T 2 test. 

2. Proof of Theorem 1.1. 

In this section we assume 3 is a given statistical procedure such that 2 ({y16(',', y) 
is inadmissible})> 0. Measurability of the set in question is proven in Lemma 2.2. 

We have assumed D is a complete separable metric space. We let ~3 be the 
G-algebra of Borel sets of D and define Co(D, ]R) to be the Banach space of con- 
tinuous functions on D to N with limits at oo, that is, i f f e  Co (D, IR) then there 
exists a number f(oo) such that ife > 0, for some compact subset C c D, t6 C implies 
I f (oo ) - f ( t ) l<e .  We write f ( o o )= l im f ( t ) ,  and in this notation our hypothesis 

t ~ o O  

about W states, if coe~2, W(c~, co)= lim W(t, co) = oo. 
t--+ OO 

Lemma 2.1. Let {co,, n > 1 } be a countable dense subset of f2 such that if 1 < i < k 
then {co,, n > 1 } ~ Y21 is dense in (2 i. Given e > 0 there exists a compact set C c Y such 
that e+2(C)>2(Y)  and such that the maps 

y ~ ~ W(t, co.) b(dt, x, y) f~.(x, y) #(dx), 

n>=l, 

y ~ ~ g (t) 3 (dt, x, y) f~. (x, y) # (dx), 

n> 1, ge Co(D, IR), 
(2.1) 

y ~ g(t) c~(dt, x, y) h(x) 12(dx), 

g ~ Co(53, IR), h~ Ll (X , 3x ,  #), 

y --~ ~ h(x)(f~.(x, y))~ #(dx), 

h~L2(X,  ~x,  #), 

are continuous maps of C to JR. 
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Proof Let {g,, n>  1} be a countable dense subset of Co(T, IR) and {h,, n>  1} 
be a countable dense subset of L1 (X, ,3x, #) c~ L 2 (X, ~x,  #). Then the second, third 
and fourth functions in (2.1) are uniform limits of functions having the forms 

kam,(y)=Sg,,(t)fi(dt, x,y)fo~.(x,y)#(dx), re, n>1.  

(2.2) k2 ~, (y)= ~ g~ (t) c5 (dt, x, y) h, (x) I~ (dx), m, n > 1. 

ka,. .(y)= ~ h,.(x)(f~.(x, y)) #(dx), m, n>  1. 

Suppose for each pair m, n the compact set C,.. satisfies 

(2.3) e(m+ n + 1)-1 2-(m+n+l)_f_ ),(Cmn ) > 2(Y) = 1, 

and such that on C,,, the functions kiT,,, k2,.,, k3,,, are continuous, together 
with the first functions of (2.1). Then 

(2.4) 2 ( ~  Cm.)+~=>2(Y) = 1, 
m , n  

so that the set N C~, satisfies the conclusion of the lemma for the functions (2.2), 
m n  

and by taking uniform limits, all functions (2.1). 

By Lusin's theorem, cf. Munroe [6], p. 159, closed sets C,,, satisfying (2.3) 
exist. By Prohorov [7] compact sets C ' ,  = C,,, satisfying (2.3) exist. H 

Let {g,, n > 1 } and {h,, n > 1 } be the dense sequences described in the preceding 
proof. For any decision procedure q)(., .): ~3 • X ~ [0, 1], we define the metric 

oo 

d((pl, (P2) = ~ ~(llgir[ J[hi[I)-lZ-(i+J+l)(i+j+l) -1 
(2.5) i=1 j=l 

"[~S gi(t) hj(x)(cPl (dt, x ) -  (p2 (dr, x)) #(dx)[ . 

It is easy to show d is a metric and that on the set of decision procedures d metrizes 
the weak topology. In terms of the metric d we define 

(2.6) 9ty = set of decision procedures cp defined on ~3 x X such that (p is as good 
as 6(. , . ,  y). 

9~y, = set of decision procedures (p defined on ~3 x X such that d(~0, ~(.,., y)) >_ e 
and such that q)e Oly. 

Lemma 2.2. {Yl ~ ( ' , ' ,  Y) is admissible} is measurable ~r. 

Proof We let {co,, n>  1} be a parameter sequence such that {co,, n>  1} c~(2 i 
is dense in f2i, i=  1 . . . . .  k. We let V= {Vm, m> 1} be an enumeration of all finite 
measures supported on finite subsets of {co,, n > 1 } such that v,, assigns only rational 
masses to points. If n>_ 1 we let V,c  V such that v,,e V, if and only if v,,({co,})= 1. 

If m> 1 we let ~,,( , , .) be a Bayes decision procedure for vm relative to the 
family of densities {f~,, coE~2} in La(X x Y, ,3x x ,3r, # x 2). Our hypotheses are 
sufficient to guarantee ~* exists. By the theorem of Wald and Wolfowitz [10] 
there exists a family of nonrandomized procedures Ore(', ", "): X x Yx [0, 1 ] - ,  ~3 
such that for almost all ~e [0, 1] 0m(', ", c~) is a nonrandomized Bayes procedure. 
Thus for some c~E [0, 1], for almost all x, y [# x 2], 

(2.7) ~ W(Om(x, y, ~), co)fo~(x, y) vm(dco) =inf~ W(t, co)f~(x, y) vm(dco). 
t 
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By Fubini's theorem there exists a set N,,e~y such that 2(Nm)-=0 and ify~,N m then 
~,,(., y, ~) satisfies 

w( m(x, y, c0)L(x, y)  (dx) vm (dco) 
(2.8) = i n f j  W(t, co) q)(dt, x) f~(x, y) ll(dx) v,,(dco). 

cp 

In the sequel we write ~,,,(., .): X x Y ~  ~ for a jointly measurable function satis- 

fying (2.8), y$ ~) N,,. 
r n = l  

We apply the necessary and sufficient condition for admissibility of Stein- 
LeCam. See Farrell [1]. Because conditional risk functions are continuous, the 
given randomized procedure 3 is admissible if and only if 

(2.9) for all n, for all p, there exists m such that v,,~ V, and 

S [r (co, y), y)-r(co, Y), Y)] v (dco)< 1/p. 

The notation is that introduced in (1.1). The condition just written involves a 
countable number of conditions on measurable sets, so that the conclusion of 
the lemma follows. 1t 

Lemma 2.3. Let Yo={yi3( ' , ' , y )  is inadmissible}. Let Yac Yo,2(Y0>0, such 
that Y1 is compact and on Y1 the maps (2.1) are continuous. I f  y~ I11 then there exists 
e(y) > 0 such that ~By~(y) is nonempty and compact in the weak topology on decision 
procedures. There exists a compact set Y2cY1 and e > 0  such that if Y6 Y2 then 
9ty~ is nonempty and compact. 

Proof Since lira W(t, co) = oo for all coe f2, it follows that 9ty is a weakly compact 
t--* oo 

and a convex set. Further, if y~ Yo then Ot x contains some ~ essentially distinct 
from the given 6, so that for some e > 0, ~Ry~ is nonempty. It is clear from the metric 
d that if 9ty~ 4:0 then ~Ry~ is weakly compact. 

Let e > 0 be fixed. We let Y1 be a compact subset of Yo such that 2 (I11) > 0 and 
such that on Y1 (2.1) holds. We prove {Y[YeY1 and 9ty~+0} is a compact set by 
showing every sequence in this set has a convergent subsequence. Thus, let 
{Yn, n >= 1 } ~ {Yl YE }71 and 9ty~:l = 0}, let {y~,, n > 1 } be a convergent subsequence, 
and let y = ! i m j , .  In 9ty~,~ we take ~ .  Then 

(2.10) j W(t, col) ~ ,  (d t, x) f~, (x, y,,) # (dx) <= j W(t, col) 6 (d t, x, y) f ~  (x, y,,) li (dx), 

cole {co,, n_> 1}. Since by (2.1) the numbers on the right side of inequality (2.10) 
convergence, it follows that no mass escapes to oo. Note  that the last condition 
of (2.1) implies fo,~(.,y~,)~f,o~(' ,y)in L 1. Thus, { ~ . , n > - l }  has a convergent 
subsequence {~gb,, n >  1} converging weakly to 0- 

By the continuity assumption following (1.1), the continuity relations (2.1), 
and the definition of d given in (2.5), it follows at once that 

(2.11) d(~, 3)>e and that if co~f2, 

W(t, co) Ip(dt, x) fo(x, y) #(dco)< j W(t, co) b(dt, x, y) f~,(x, y) lt(dco). 

Therefore ip6 9ty~ as was to be shown. 



On Conditional Decision Procedure 61 

Since I11 = U Y1 ~ {Y[ ~ly~/,4= 0}, it follows there exists an integer n such that 
n = l  

,~({yl ~1,1/. 4:0})>0. II 
Lemma 2.4. There exists a compact subset Y3 ~ Y2, an e>O, and a function 

4 ' ( ' ,  .,y)effl~,~, YeY3, such that 2(II3)>0 and such that if g~Co(~D,R ) and 
hELl(X, ~x,  #) then 

(2.12) ~ g(t) 4'(dr, x, y) h(x) #(dx) 

is a continuous function of y. 

Proof To simplify notation we let {k,, n = 1 } be an enumeration of the functions 
{gi(') hi('), i=> 1,j_>_ 1}. We make an induction on the subscript n. Choose e > 0  
as in Lemma 2.3 and let I72 be a compact set satisfying 2(Y2)>0, Yz ~ {y[91y~4: 0}, 
and on Y2 the conditions (2.1) hold. Define 

(2.13) sa (y) =inf{S kl (t, x) 4 (dt, x) #(dx)[ 4 e  9ty~}. 

The infinum is attained. If y, ~ y, y, e I12, and 4, ~ ~fly.~, 4, ~ 4 weakly, then 

(2.14) sl (y) < lim inf sl (y,). 
n ~ o o  

The function Sx is a lower semicontinuous function, therefore s~ is measurable. 
Since Y2 is a compact set, by Lusin's theorem we may choose Y31 c I72 a compact 
set such that 

(2.15) 2 ( Y : -  Y30<(�88 2(Y2) and on Y31, Sl is a continuous function. 

Define 

(2.16) !fly,l= {414e!Ry, and sl(y)=~k~(t,x) 4(dt, x)#(dx)}. 

Proceed inductively. Suppose !Ily~l . . . . .  9ty~,, Y31 = Y32 ~""  ~ Y3, have been 
defined. Let 

(2.17) S,+ a(y)= inf {~ kn+ a (t, x) 4(dt, x) #(dx)] 4 e  9ty,,}. 

Then s.+l is a lower semicontinuous function defined on the compact set Y3, and 
we choose a compact subset Y3(,+1) c I13, such that 2 (Y3, -  Y3~,+1))< 2-(n+2))~ (Y2) 
and such that on Y3(,+~) the function S,+l is continuous. 

Define Y3=(~Ya, .  Then 2(Y3)__>(�89 Let 9t ' ,~=(~9l,~,.  Then Ot',, 
n = l  n = l  

contains exactly one element 4', ye  Y3. For if 4[ and 4~Ot'y~ then over a dense 
sequence of functions {gi(') hi('), i>  1 , j>  1}, 

(2.18) ~g,(t)41(dt, x)hj(x)#(dx)=jg~(t)41(dt,  x)hj(x)p(dx), i>1, j > l .  

Therefore 4; and 4; represent the same bilinear form. We let 4 ' ( ' ,  ", Y) be the 
element of 91'y,. If n > 1 then 4 ' ( ' ,  ", Y) e 9ty~n. Therefore s, (y) = S k, (t, x) 4'(dt, x, y). 
#(dx) is continuous in y. Since this holds on a dense set of functions it follows that 
ifge Co (:~, IR)and h e g 1 (X, ~x, #)then S g (t) 4' (dr, x, y) h (x) # (dx)is continuous. [1 
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Lemma 2.5. Let I14 be a compact set and 2(I14)>0. Suppose ~9': ~3 x X x  I14 ~ 
[0, 1] satisfies 

(i) if ye I14 then ~' ( . , . ,  y) is a conditional probability measure on ~ x X;  
(ii) if ge Co(53, lR), h e L l ( X  , 3x,  ~) then ~ g(t) ~9'(dt, x, y) h(x) It(dx) is con- 

tinuous in y. 
Then there exists a conditional probability measure n: 7~ x X x Y-~ [0, 1] such 

that i fge Co(T, IR) and h e L l ( X  x Y, 3x  x ~y, # x Z) then 

(2.19) ~ 2(dy) ~ g(t) O' (dt, x, y) h(x, y) # ( d x ) = ~  g(t) ~(dt, x, y) h(x, y) #(dx) 2(dy). 

Proof The set of functions h e L i ( X  x Y, ,~x x ,~r, P x 2 ) = L  1 for which 

g(t) ~,' (dt, x, y) h(x, y) I~(dx) 

is measurable in y is a monotone class of functions which is a vector space con- 
taining all functions kl(x) kz(y), k leLi (X ,  3x,  I~) and k2eLl (E  J r ,  2). Therefore 

2(y) ~ g(t) ~,'(dt, 2, y) h(x, y) #(dx) is well defined for all ge Co(T, ~,), heLl  and 
clearly defines a continuous bilinear form b: Co(~, lR)x Lx. Thus b can be re- 
presented by a conditional probability measure rr: ~ x X x Y and lr by definition 
satisfies (2.19). II 

Proof of Theorem 1.1. Suppose I1o = {Yl q~(', ", Y) is inadmissible}. 

By Lemma 2.2 the set Yo is measurable. We assume 2(Iio)>0. By Lemmas 2.4 
and 2.5 there exists an e > 0  and a compact set I13 c Yo such that 2(II3)>0 and a 
conditional probability measure ~,: ~3 x X x Y ~  [0, 1] such that if ye  I13 then 
~'(.,., y)e 9ty,. We define a decision procedure 6' as follows. 

(2.20) IfyeY3 then 6 ' ( ' , ' , y ) = ~ , ( ' , ' , y ) ;  

if yr I13 then 6 ' ( ' , ' ,  y) = 8(- , ' ,  y). 

Then by construction, if ye  Y, and if coet2, then 

(2.21) ~ W(t, oo) 6'(dr, x, y) f~(x, y) ii(dx) < ~ W(t, e)) 6(dr, x, y) f~(x, y) #(dx). 

If both sides of (2.21) are integrated by the measure 2,0 we obtain, if met2, 

(2.22) r((o, 6') < r(oo, 6). 

Since 2({yl 6 (., . ,  y) 4= ~'(', ", Y)}) > 0, the uniqueness assumption following (1.2) 
implies there exists met2 such that r(co, 6')<r(co, 6). 

3. Invariance 

It is the purpose of this section to apply Theorem 1.1 to obtain a complete 
class theorem for invariant tests in the presence of nusiance parameters. A general 

result about  conditional tests when f,~ ~ - ,  o~et2 is an exponential family has 

been given by Matthes and Traux [5] but these authors do not consider the 
invariance question. The question of characterizing a complete class in the pres- 
ence of invariance has been considered by R. Schwartz, and our results have a 
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relationship to the problems considered by Kiefer and Schwartz [-3] and 
Schwartz [8, 9]. 

We take a problem somewhat more general than the exponential family 
problem. We let co ~ g2 have the form co = (O, ~). We suppose .3 is a locally compact 
transformation group acting on Q x X x Y by means of 

t(O, ~, x, y)=(q  O, t 2 "C, t 3 X, t 4 y  ) . 

We suppose each function (t, O, ~, x, y) ~ t(O, r, x, y) is jointly measurable in the 
five variables. We assume also 

(3.1) i f M ~ x ,  if ts,~, then ~(t3(M))=0 if and only i f# (M)=0;  i f M ~ r ,  if t~,~, 
then 2(t4 (M)) = 0 if and only if 2 (M) = 0. 

(3.2) (O, t)~f2 and t~,3 then (q O, t2 r)E(2. 

(3.3) The hypothesis set H o and alternative set H 1 are invariant under the group 
action. 

(3.4) i) X is a finite dimensional Euclidean space and ~ is the collection of closed 
convex subsets of X with interior together with the null set. 

If C is a closed convex set we assume/~ (boundary C)=0. 

(3.4)ii) If C1 and C2 are distinct closed convex sets in ff then #(C~|  
where G stands for symmetric set difference. 

(3.4)iii) To each prior probability measure on f2 there exists a Bayes test 7 such 
that if y E Y then {xl 7 (x, y) = 0} ~ ~. 

(3.4)iv) If ~ (', y) is a admissible test for H o v s H~ relative to the family of density 
functions {f,o(', Y), coe(2} then there exists C e E  such that 

11 - zc  ( x ) -  r (x, y)[ ~ (dx) = 0. 

(3.4)v) If re.3 then t3 E = E .  

Theorem 3.1. Suppose the hypotheses of Theorem 1.1 hold and that assumptions 
(3.1)-(3.4) hold. Let y be an admissible invariant test. There exists a set value mapping 
y ~  C(y)e~ and an invariant test q) satisfying q) is nonrandomized and C(y)= 
{x[q)(x,y)=O} such that ~]y(x,y)-q~(x,y)l#(dx)2(dy)=O. I f  ~ acts singly 
transitively on Y then there exists an invariant function ty a x (defined below) and 
a set C e E  such that if q~* is defined by, t y3xeC if and only if q~*(x,y)=0 and 

(p*2=~0*, then S ly(x, y)-q~*(x, y)[ #(dx)=O. 

Proof. We begin by noting that an admissible test must be nonrandomized. 
For, by Theorem 1.1, if 7 is admissible then for almost all y[-2], the conditional 
tests 7(', Y) are admissible. By hypothesis (3.4) iv) 7(', Y) is nonrandomized. Thus, 
for almost all y [-2], {x IV (x, y)4= 7 2 (x, y)} has # measure zero. By Fubini's theorem, 
{(x, y)[7(x, y) 4=7 2 (x, y)} has # x 2 measure zero. 

Next, if y is nonrandomized and 7 = weak lim 7, then ,/= lim in measure ~,. For 
n ~ o o  

let h~L~. We compute " ~  

(3.5) linaS (7(x, y ) -  y,(x, y))Z h(x, y)#(dx)2(dy) 

< 2 ~ 7 (x, y) h (x, y) p (dx) 2 (dy) -  2 ~ 7 2 (x, y) h (x, y) p (dx) 2 (dy) = O. 
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It is known that each admissible test 7 is a weak limit of Bayes tests 7.. See 
Farrell [1]. By the preceeding paragraph, and by taking a subsequence, we may 
suppose 

(3.6) 7 = lim 7, with probability one. 
n ~ o o  

Then there exists a set N%3r,  2 (N)= 0, such that if yr N then for almost all x [/~], 

(3.7) 7(x, y)= lim 7,(x, y). 
n ~  oo 

We may choose the representative 7,, from the equivalence class of L| functions 
to satisfy (3.4)iii). Thus let 

(3.8) C,(y) = {x 17,(x, y)=0}.  

We know from Farrell [1] that (3.7) and (3.8) require that ifyq~N then there exists 
a set C(y)E~ such that C,(y)-+ C(y) at every interior and exterior point of C(y). 
Therefore only the boundary of C(y) is in question and 

{x17 (x, y) = 0} ~ C(y), 
(3.9) 

{xlT(x, y)= 1} = X -  C(y). 

We redefine 7 as follows for yeN. 

(3.10) I f# (C(y) )=0  then define 7*(x, y)= 1 for all x; 

ifbt(C(y))>0 then y*=7  *2 and C(y)={x]7*(x,y)=O}. 

We show that 7" is a measurable function. First let D(y)= {xlT(x, y)= 0}. Then 
#(C(y)) =/,(D(y)) is ,3v measurable. Thus N, = {yl ~t(C(y))= 0} is measurable. We 
need not consider this case further. Suppose yq}N u N 1. The problem is to take 
{(x, y)[y(x,y)=O, yg~NuN1} and take the closure on each y-section of this set, 
showing that the resulting set is Borel. Since interior C(y) = interior D (y) and C(y) > 
D (y), a simple set construction shows the desired result. 

Therefore we may suppose every admissible test may be represented by a 
function 7 satisfying 7 = 72 and for almost all y [2], {x 17 (x, y) = 0} e g. 

We now adapt a proof of Lehmann [4], p. 225. We suppose #J is an admissible 
invariant test, that 7 satisfies the conditions of the preceeding paragraph, and that 

(3.11) S I ~b (x, y ) -7 (x ,  y)l#(dx) 2(dy)=O. 

Thus we define D(y)={xl~(x,y)=O} and C(y)={XlT(x,y)=O}. We wish to 
replace 7 by an invariant test ~ la Lehmann. First, note that for almost all y [2], 

(3.12) U (D (y) @ C (y)) = 0. 

We now show that for almost all y [2], 

(3.13) tg ~ C(ta y)= C(y). 

Let Nz={yl~(',y) is inadmissible as a conditional test or (3.11) fails}. Then if 
t ~,~, 2 (t2 ~ N2 u ?42) = 0, and if y r t2 ~ N2 w N2 then # (D (t4 y) @ C (t 4 y)) = 0. Using 
(3.1), #(t3 ~ D(t4y)~t~ ~ C(t4y))=#(D(y)O)ta ~ C(t,y))=O. Since #(D(y)@ C(y)) 
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= 0, it follows that # (C(y) G t3 ~ C(t4 y)) = 0. Assumption (3.4) ii) then implies (3.13). 
And (3.13) implies that ? is almost invariant. 

Let dt represent a probability measure on .3 such that Haar measure and dt 
are mutually absolutely continuous. Following Lehmann let 

(3.14) X x Y - N  3 = {(x, y)l?(x, y)=?(t3 x, t4Y) a.e. [dt]}. 

We define a function h by 

(3.15) h (x, y, 0 -- I~ ~ (t; x, t~, y) d t' = y (t3 x, t 4 Y) I 

and define a set A by 

(3.16) A = {(x, Y)I f h(x, y, t) dt =0}. 

Then A is an invariant set having measure 1. We define 

q)(x,y)=~/(tax, t4y)dt , if (x,y)eA, 
(3.17) 

=0 ,  if (x, y)(EA. 

Then (p (x, y) = 7 (x, y) for almost all (x, y) [# x 2]. 

As previously shown, if tc.~ then for almost all y [2], t f  I C(t 4 y)= C(y). Thus 
we may choose N4e,~v, 2(N4)=0 , such that yf~N 4 if and only if 

(3.18) for almost all s, tE-~, 7(t3 x, t4y)=7(s3 x, s4y). 

As in Lehmann, op. cit., the set N 4 is invariant. Then, 

(3.19) if yeN4, q)(x, y)=~ y(t3 x, t4y ) dt=)~C(s4y)(s 3 X). 

Therefore (# is an invariant test such that if y e n  4 then {x[q)(x, y )=0}eg .  That 
completes the proof of the first part. 

Let then the group act in a singly transitive manner on Y. Take Yo e Y. Let ty 
be the element of ,~ such that (tr)4(y)=yo. We define f :  X x Y-+X by f(x, y)= 
(ty)3 (X). Then f is an invariant function and f(x, y)e C(yo) if and only i fxe  C(y). Ir 

Example of the T2-Problem. Let X1, ..., X v be normal (S, 01), Y1 . . . . .  Yq be 
normal (2;, 02) and Z1, ..., Z,  be normal (2;, 0). We suppose these are p+q+r 
independently distributed random vectors, each I x k. The joint density is of 
exponential form. Let the transformations of the parameters be 

(3.20) (01, 02, S)-*(AO~, AOz +a, AS  Ar), 

where A is a nonsingular lower triangular matrix with positive diagonal elements. 
If the testing problem is to test O 1 = 0 against O1 + 0 then the hypotheses of Theo- 
rem 3.1 are satisfied. Define 

q p 

y = q - l ~ y ~ ,  x = p - l ~ x i  and 
i = 1  i = 1  

(3.21) 
p q r 

Ex x + Eyi/+ Ez, 7-xx -y/. 
i = 1  i = l  i = 1  
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Let s t be the uniquely determined lower triangular matrix of positive diagonal 
elements such that st s~ r =  s. Then the function ty3 x of the theorem may be taken 
to be the maximal invariant (s3-  ~ x, and every admissible test invariant under the 
triangular matrix group must be essentially of the form, accept H 0 if and only if 
(s~) -1 x~  C, C a closed convex set, s~ r the transpose of st. 

We continue this example and consider tests invariant under the full linear 
group. Then in addition to the group of triangular matrices orthogonal trans- 
formations are allowed. With 02 eliminated the group acts only on Z and O~ 
through matrix multiplication so Z - ~ A Z A  r and 01 ~ AOa. Let tr3 be as before 
and let t' correspond to transformation by A which is orthogonal. By Theorem 3.1 
the acceptance region has the form, accept H o if and only if 

(3.22) x ~ ( t ;  t 3 s ) -  1 C( t~  t4s s) = t3s 1 t3-1 C( t4  So). 

Let the choice of So be the k x k identity matrix so that t~, s o = s o . Then the test 
satisfies tasx~ UC for every k x k orthogonal matrix U. Because the family of 
distributions is complete, UC = C follows (C is a closed convex set). 

We summarize the discussion in a corollary. 

Corollary 3.2. In the T2-problem, an admissible test invariant under translations 
on the nuisance parameters 02 and under multiplication of lower triangular matrices 
must have essentially the form, accept H o if and only if (s~)-lx~ C, where C is a 
closed convex set. In addition, if the test is invariant under the full linear group then 
U C = C for all k x k orthogonal matrices U. 
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