The Necessity that a Conditional Decision Procedure be almost everywhere Admissible*

R. H. FARRELL

1. Introduction

Theorem 1, stated below, includes a number of statistical problems in which it may be desirable to consider conditional procedures. It is our aim to obtain a complete class theorem covering such conditional procedures.

We will first state the assumptions needed, then Theorem 1.1. We conclude this section with some discussion. Section 2 contains a proof of Theorem 1.1, and Section 3 contains applications to the study of invariant tests.

We assume X and Y are complete separable metric spaces with \mathfrak{J}_X the σ -algebra of Borel subsets of X, and \mathfrak{J}_Y the σ -algebra of Borel subsets of Y. We assume μ is a regular totally σ -finite measure on \mathfrak{J}_X , and that if $\omega \in \Omega$, λ_{ω} is a probability measure on \mathfrak{J}_Y dominated by the probability measure λ . Given is a set $\{f_{\omega}, \omega \in \Omega\}$ of conditional density functions on $X \times Y$. It is assumed that if $\omega \in \Omega$ then f_{ω} is jointly measurable. It is assumed that if $y \in Y$ then $f_{\omega}(\cdot, y) \in L_1(X, \mathfrak{J}_X, \mu)$ and $\int f_{\omega}(x, y) \mu(dx) = 1$.

Of the parameter and decision spaces it is assumed that Ω is a separable metric space and that the decision space \mathfrak{D} is separable locally compact metric space. We require that both spaces be complete in their respective metrics. Loss will be measured by a continuous function $W: \mathfrak{D} \times \Omega \to [0, \infty)$. We assume that if $\omega \in \Omega$ then $\lim_{t \to \infty} W(t, \omega) = \infty$. We assume there exists a partition of Ω into subsets $\Omega_1, \ldots, \Omega_k$ such that on each Ω_i , the risk function

(1.1)
$$r(\omega, \delta, y) = \iint W(t, \omega) \,\delta(dt, x, y) \,f_{\omega}(x, y) \,\mu(dx)$$

is a continuous function of ω , this being true for all $y \in Y$ and all randomized decision functions δ . Lastly, if $r(\omega, \delta)$ is defined by

(1.2)
$$r(\omega, \delta) = \int r(\omega, \delta, y) \lambda_{\omega}(dy),$$

then we suppose $\sup_{\omega} |r(\omega, \delta_1) - r(\omega, \delta_2)| = 0$ implies

$$(\mu \times \lambda)(\{(x, y) | \delta_1(\cdot, x, y) \neq \delta_2(\cdot, x, y)\}) = 0.$$

Theorem 1.1. Let the above hypotheses hold. If the (randomized) decision procedure δ is admissible then for almost all $y[\lambda]$ the decision procedure $\delta(\cdot, \cdot, y)$ is admissible for the loss function W and family of density functions $\{f_{\omega}(\cdot, y), \omega \in \Omega\}$.

In the case the measure λ_{ω} do not depend on ω , then introduction of the variable y is equivalent to introducing randomization before the experiment in the sense of Wald and Wolfowitz [10]. We have

^{*} The research supported in part by the National Science Foundation under Contract GP9297.

Corollary 1.2. Given the hypotheses of Theorem 1.1, if the admissible decision procedure $\delta(\cdot, \cdot, \cdot)$ involves randomization before the experiment then for almost all $y[\lambda]$ the decision procedures $\delta(\cdot, \cdot, y)$ are admissible for the problem.

In case the conditional densities $f_{\omega}(\cdot, y)$ are independent of the variable y, then introduction of the variable y is equivalent to taking another independently distributed observation. We obtain

Corollary 1.3. Given the hypotheses of Theorem 1.1, if the decision procedure $\delta(\cdot, \cdot, \cdot)$ depends on independently distributed observations x, y then for almost all $y[\lambda] \delta(\cdot, \cdot, y)$ is an admissible procedure depending on x.

The conclusion of Corollary 1.3 is very similar to the idea of hyperadmissibility discussed by Hanuras [2].

If the family of density functions $f_{\omega} \frac{d\lambda_{\omega}}{d\lambda}$ is an exponential family then for a suitable choice of ω we obtain the complete class theorem of Matthes and Traux [5].

A large number of problems which arise in multivariate analysis are problems in which a locally compact transformation group \mathcal{T} acts on $\Omega \times X \times X$ A combi

in which a locally compact transformation group \mathfrak{I} acts on $\Omega \times X \times Y$. A combination of Theorem 1.1 with assumptions about \mathfrak{I} leads to Theorem 3.1, a complete class theorem for nonrandomized invariant tests. We apply Theorem 3.1 to the multivariate T^2 test.

2. Proof of Theorem 1.1.

In this section we assume δ is a given statistical procedure such that $\lambda(\{y | \delta(\cdot, \cdot, y)$ is inadmissible})>0. Measurability of the set in question is proven in Lemma 2.2.

We have assumed \mathfrak{D} is a complete separable metric space. We let \mathfrak{B} be the σ -algebra of Borel sets of \mathfrak{D} and define $C_0(\mathfrak{D}, \mathbb{R})$ to be the Banach space of continuous functions on \mathfrak{D} to \mathbb{R} with limits at ∞ , that is, if $f \in C_0(\mathfrak{D}, \mathbb{R})$ then there exists a number $f(\infty)$ such that if $\varepsilon > 0$, for some compact subset $C \subset \mathfrak{D}$, $t \notin C$ implies $|f(\infty) - f(t)| < \varepsilon$. We write $f(\infty) = \lim_{t \to \infty} f(t)$, and in this notation our hypothesis about W states, if $\omega \in \Omega$, $W(\infty, \omega) = \lim_{t \to \infty} W(t, \omega) = \infty$.

Lemma 2.1. Let $\{\omega_n, n \ge 1\}$ be a countable dense subset of Ω such that if $1 \le i \le k$ then $\{\omega_n, n \ge 1\} \cap \Omega_i$ is dense in Ω_i . Given $\varepsilon > 0$ there exists a compact set $C \subset Y$ such that $\varepsilon + \lambda(C) > \lambda(Y)$ and such that the maps

$$y \to \int W(t, \omega_n) \,\delta(dt, x, y) \, f_{\omega_n}(x, y) \,\mu(dx),$$

$$n \ge 1,$$

$$y \to \int g(t) \,\delta(dt, x, y) \, f_{\omega_n}(x, y) \,\mu(dx),$$

$$n \ge 1, g \in C_0(\mathfrak{D}, \mathbb{R}),$$

$$y \to \int g(t) \,\delta(dt, x, y) \,h(x) \,\mu(dx),$$

$$g \in C_0(\mathfrak{D}, \mathbb{R}), h \in L_1(X, \mathfrak{J}_X, \mu),$$

$$y \to \int h(x) (f_{\omega_n}(x, y))^{\frac{1}{2}} \,\mu(dx),$$

$$h \in L_2(X, \mathfrak{J}_X, \mu),$$

are continuous maps of C to \mathbb{R} .

(2.1)

Proof. Let $\{g_n, n \ge 1\}$ be a countable dense subset of $C_0(\mathfrak{D}, \mathbb{R})$ and $\{h_n, n \ge 1\}$ be a countable dense subset of $L_1(X, \mathfrak{J}_X, \mu) \cap L_2(X, \mathfrak{J}_X, \mu)$. Then the second, third and fourth functions in (2.1) are uniform limits of functions having the forms

$$k_{1mn}(y) = \int g_m(t) \,\delta(dt, x, y) \, f_{\omega_n}(x, y) \,\mu(dx), \quad m, n \ge 1.$$

(2.2)
$$k_{2mn}(y) = \int g_m(t) \,\delta(dt, x, y) \,h_n(x) \,\mu(dx), \qquad m, n \ge 1.$$

$$k_{3mn}(y) = \int h_m(x) (f_{\omega_n}(x, y))^{\frac{1}{2}} \mu(dx), \qquad m, n \ge 1.$$

Suppose for each pair m, n the compact set C_{mn} satisfies

(2.3)
$$\varepsilon(m+n+1)^{-1} 2^{-(m+n+1)} + \lambda(C_{mn}) > \lambda(Y) = 1,$$

and such that on C_{mn} the functions k_{1mn} , k_{2mn} , k_{3mn} are continuous, together with the first functions of (2.1). Then

(2.4)
$$\lambda(\bigcap_{m,n} C_{mn}) + \varepsilon \ge \lambda(Y) = 1,$$

so that the set $\bigcap_{mn} C_{mn}$ satisfies the conclusion of the lemma for the functions (2.2), and by taking uniform limits, all functions (2.1).

By Lusin's theorem, cf. Munroe [6], p. 159, closed sets C_{mn} satisfying (2.3) exist. By Prohorov [7] compact sets $C'_{mn} \subset C_{mn}$ satisfying (2.3) exist.

Let $\{g_n, n \ge 1\}$ and $\{h_n, n \ge 1\}$ be the dense sequences described in the preceding proof. For any decision procedure $\varphi(\cdot, \cdot): \mathfrak{B} \times X \to [0, 1]$, we define the metric

(2.5)
$$d(\varphi_1, \varphi_2) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (\|g_i\| \|h_i\|)^{-1} 2^{-(i+j+1)} (i+j+1)^{-1} \cdot |\iint g_i(t) h_j(x) (\varphi_1(dt, x) - \varphi_2(dt, x)) \mu(dx)|.$$

It is easy to show d is a metric and that on the set of decision procedures d metrizes the weak topology. In terms of the metric d we define

- (2.6) $\Re_y = \text{set of decision procedures } \varphi \text{ defined on } \mathfrak{B} \times X \text{ such that } \varphi \text{ is as good as } \delta(\cdot, \cdot, y).$
 - $\mathfrak{R}_{y\varepsilon} =$ set of decision procedures φ defined on $\mathfrak{B} \times X$ such that $d(\varphi, \delta(\cdot, \cdot, y)) \ge \varepsilon$ and such that $\varphi \in \mathfrak{R}_{y}$.

Lemma 2.2. $\{y | \delta(\cdot, \cdot, y) \text{ is admissible}\}$ is measurable \mathfrak{J}_Y .

Proof. We let $\{\omega_n, n \ge 1\}$ be a parameter sequence such that $\{\omega_n, n \ge 1\} \cap \Omega_i$ is dense in $\Omega_i, i=1, ..., k$. We let $V = \{v_m, m \ge 1\}$ be an enumeration of all finite measures supported on finite subsets of $\{\omega_n, n \ge 1\}$ such that v_m assigns only rational masses to points. If $n \ge 1$ we let $V_n \subset V$ such that $v_m \in V_n$ if and only if $v_m(\{\omega_n\}) = 1$.

If $m \ge 1$ we let $\psi_m^*(\cdot, \cdot, \cdot)$ be a Bayes decision procedure for v_m relative to the family of densities $\{f_{\omega}, \omega \in \Omega\}$ in $L_1(X \times Y, \mathfrak{J}_X \times \mathfrak{J}_Y, \mu \times \lambda)$. Our hypotheses are sufficient to guarantee ψ_m^* exists. By the theorem of Wald and Wolfowitz [10] there exists a family of nonrandomized procedures $\psi_m(\cdot, \cdot, \cdot): X \times Y \times [0, 1] \to \mathfrak{D}$ such that for almost all $\alpha \in [0, 1] \psi_m(\cdot, \cdot, \alpha)$ is a nonrandomized Bayes procedure. Thus for some $\alpha \in [0, 1]$, for almost all $x, y [\mu \times \lambda]$,

(2.7)
$$\int W(\psi_m(x, y, \alpha), \omega) f_{\omega}(x, y) v_m(d\omega) = \inf_t \int W(t, \omega) f_{\omega}(x, y) v_m(d\omega).$$

R. H. Farrell:

By Fubini's theorem there exists a set $N_m \in \mathfrak{J}_Y$ such that $\lambda(N_m) = 0$ and if $y \notin N_m$ then $\psi_m(\cdot, y, \alpha)$ satisfies

(2.8)
$$\int W(\psi_m(x, y, \alpha), \omega) f_\omega(x, y) \mu(dx) v_m(d\omega) = \inf_{\omega} \int W(t, \omega) \varphi(dt, x) f_\omega(x, y) \mu(dx) v_m(d\omega).$$

In the sequel we write $\psi_m(\cdot, \cdot): X \times Y \to \mathfrak{D}$ for a jointly measurable function satisfying (2.8), $y \notin \bigcup_{m=1}^{\infty} N_m$.

We apply the necessary and sufficient condition for admissibility of Stein-LeCam. See Farrell [1]. Because conditional risk functions are continuous, the given randomized procedure δ is admissible if and only if

(2.9) for all n, for all p, there exists m such that $v_m \in V_n$ and

$$\int \left[r(\omega, \delta(\cdot, \cdot, y), y) - r(\omega, \psi_m(\cdot, y), y) \right] v_m(d\omega) < 1/p.$$

The notation is that introduced in (1.1). The condition just written involves a countable number of conditions on measurable sets, so that the conclusion of the lemma follows. \parallel

Lemma 2.3. Let $Y_0 = \{y | \delta(\cdot, \cdot, y) \text{ is inadmissible}\}$. Let $Y_1 \subset Y_0, \lambda(Y_1) > 0$, such that Y_1 is compact and on Y_1 the maps (2.1) are continuous. If $y \in Y_1$ then there exists $\varepsilon(y) > 0$ such that $\Re_{y\varepsilon(y)}$ is nonempty and compact in the weak topology on decision procedures. There exists a compact set $Y_2 \subset Y_1$ and $\varepsilon > 0$ such that if $y \in Y_2$ then $\Re_{y\varepsilon}$ is nonempty and compact.

Proof. Since $\lim_{t\to\infty} W(t, \omega) = \infty$ for all $\omega \in \Omega$, it follows that \Re_y is a weakly compact and a convex set. Further, if $y \in Y_0$ then \Re_y contains some ψ essentially distinct from the given δ , so that for some $\varepsilon > 0$, $\Re_{y_{\varepsilon}}$ is nonempty. It is clear from the metric d that if $\Re_{y_{\varepsilon}} \neq \emptyset$ then $\Re_{y_{\varepsilon}}$ is weakly compact.

Let $\varepsilon > 0$ be fixed. We let Y_1 be a compact subset of Y_0 such that $\lambda(Y_1) > 0$ and such that on Y_1 (2.1) holds. We prove $\{y | y \in Y_1 \text{ and } \Re_{y_\varepsilon} \neq \emptyset\}$ is a compact set by showing every sequence in this set has a convergent subsequence. Thus, let $\{y_n, n \ge 1\} \subset \{y | y \in Y_1 \text{ and } \Re_{y_\varepsilon} \neq \emptyset\}$, let $\{y_{a_n}, n \ge 1\}$ be a convergent subsequence, and let $y = \lim_{n \to \infty} y_{a_n}$. In $\Re_{y_{a_n}\varepsilon}$ we take ψ_{a_n} . Then

$$(2.10) \quad \int W(t,\omega_1) \,\psi_{a_n}(dt,x) \, f_{\omega_1}(x,y_{a_n}) \,\mu(dx) \leq \int W(t,\omega_1) \,\delta(dt,x,y) \, f_{\omega_1}(x,y_{a_n}) \,\mu(dx),$$

 $\omega_1 \in \{\omega_n, n \ge 1\}$. Since by (2.1) the numbers on the right side of inequality (2.10) convergence, it follows that no mass escapes to ∞ . Note that the last condition of (2.1) implies $f_{\omega_1}(\cdot, y_{a_n}) \rightarrow f_{\omega_1}(\cdot, y)$ in L_1 . Thus, $\{\psi_{a_n}, n \ge 1\}$ has a convergent subsequence $\{\psi_{b_n}, n \ge 1\}$ converging weakly to ψ .

By the continuity assumption following (1.1), the continuity relations (2.1), and the definition of d given in (2.5), it follows at once that

(2.11)
$$d(\psi, \delta) \ge \varepsilon$$
 and that if $\omega \in \Omega$,

$$\int W(t,\omega)\,\psi(dt,x)\,f_{\omega}(x,y)\,\mu(d\omega) \leq \int W(t,\omega)\,\delta(dt,x,y)\,f_{\omega}(x,y)\,\mu(d\omega).$$

Therefore $\psi \in \Re_{v\varepsilon}$ as was to be shown.

Since $Y_1 = \bigcup_{n=1}^{\infty} Y_1 \cap \{y | \Re_{y1/n} \neq \emptyset\}$, it follows there exists an integer *n* such that $\lambda(\{y | \Re_{y1/n} \neq \emptyset\}) > 0$.

Lemma 2.4. There exists a compact subset $Y_3 \subset Y_2$, an $\varepsilon > 0$, and a function $\psi'(\cdot, \cdot, y) \in \Re_{y\varepsilon}$, $y \in Y_3$, such that $\lambda(Y_3) > 0$ and such that if $g \in C_0(\mathfrak{D}, R)$ and $h \in L_1(X, \mathfrak{J}_X, \mu)$ then

(2.12)
$$\int g(t) \psi'(dt, x, y) h(x) \mu(dx)$$

is a continuous function of y.

Proof. To simplify notation we let $\{k_n, n \ge 1\}$ be an enumeration of the functions $\{g_i(\cdot), i \ge 1, j \ge 1\}$. We make an induction on the subscript *n*. Choose $\varepsilon > 0$ as in Lemma 2.3 and let Y_2 be a compact set satisfying $\lambda(Y_2) > 0$, $Y_2 \subset \{y | \mathfrak{R}_{y\varepsilon} \neq \emptyset\}$, and on Y_2 the conditions (2.1) hold. Define

(2.13)
$$s_1(y) = \inf \{ \int k_1(t, x) \, \psi(dt, x) \, \mu(dx) | \, \psi \in \mathfrak{R}_{y_{\mathcal{E}}} \}.$$

The infinum is attained. If $y_n \to y$, $y_n \in Y_2$, and $\psi_n \in \Re_{y_n \varepsilon}$, $\psi_n \to \psi$ weakly, then

(2.14)
$$s_1(y) \leq \liminf_{n \to \infty} s_1(y_n)$$

The function s_1 is a lower semicontinuous function, therefore s_1 is measurable. Since Y_2 is a compact set, by Lusin's theorem we may choose $Y_{31} \subset Y_2$ a compact set such that

(2.15) $\lambda(Y_2 - Y_{31}) < (\frac{1}{4}) \lambda(Y_2)$ and on Y_{31} , s_1 is a continuous function.

Define

(2.16)
$$\Re_{y\varepsilon_1} = \{ \psi | \psi \in \Re_{y\varepsilon} \text{ and } s_1(y) = \int k_1(t, x) \psi(dt, x) \mu(dx) \}.$$

Proceed inductively. Suppose $\Re_{y\epsilon_1}, \ldots, \Re_{y\epsilon_n}, Y_{31} \supset Y_{32} \supset \cdots \supset Y_{3n}$ have been defined. Let

(2.17)
$$s_{n+1}(y) = \inf \{ \int k_{n+1}(t, x) \, \psi(dt, x) \, \mu(dx) | \, \psi \in \Re_{y \in n} \}.$$

Then s_{n+1} is a lower semicontinuous function defined on the compact set Y_{3n} and we choose a compact subset $Y_{3(n+1)} \subset Y_{3n}$ such that $\lambda(Y_{3n} - Y_{3(n+1)}) < 2^{-(n+2)} \lambda(Y_2)$ and such that on $Y_{3(n+1)}$ the function s_{n+1} is continuous.

Define $Y_3 = \bigcap_{n=1}^{\infty} Y_{3n}$. Then $\lambda(Y_3) \ge (\frac{1}{2}) \lambda(Y_2)$. Let $\mathfrak{R}'_{y\varepsilon} = \bigcap_{n=1}^{\infty} \mathfrak{R}_{y\varepsilon n}$. Then $\mathfrak{R}'_{y\varepsilon}$ contains exactly one element $\psi', y \in Y_3$. For if ψ'_1 and $\psi'_2 \in \mathfrak{R}'_{y\varepsilon}$ then over a dense sequence of functions $\{g_i(\cdot) h_j(\cdot), i \ge 1, j \ge 1\}$,

$$(2.18) \quad \int g_i(t) \,\psi_1'(dt, x) \,h_j(x) \,\mu(dx) = \int g_i(t) \,\psi_2'(dt, x) \,h_j(x) \,\mu(dx), \qquad i \ge 1, \ j \ge 1.$$

Therefore ψ'_1 and ψ'_2 represent the same bilinear form. We let $\psi'(\cdot, \cdot, y)$ be the element of $\Re'_{y_{\mathcal{E}}}$. If $n \ge 1$ then $\psi'(\cdot, \cdot, y) \in \Re_{y_{\mathcal{E}}n}$. Therefore $s_n(y) = \int k_n(t, x) \psi'(dt, x, y) \cdot \mu(dx)$ is continuous in y. Since this holds on a dense set of functions it follows that if $g \in C_0(\mathfrak{D}, \mathbb{R})$ and $h \in L_1(X, \mathfrak{J}_X, \mu)$ then $\int g(t) \psi'(dt, x, y) h(x) \mu(dx)$ is continuous.

R. H. Farrell:

Lemma 2.5. Let Y_4 be a compact set and $\lambda(Y_4) > 0$. Suppose $\psi' : \mathfrak{B} \times X \times Y_4 \rightarrow [0, 1]$ satisfies

(i) if $y \in Y_4$ then $\psi'(\cdot, \cdot, y)$ is a conditional probability measure on $\mathfrak{B} \times X$;

(ii) if $g \in C_0(\mathfrak{D}, \mathbb{R})$, $h \in L_1(X, \mathfrak{J}_X, \mu)$ then $\int g(t) \psi'(dt, x, y) h(x) \mu(dx)$ is continuous in y.

Then there exists a conditional probability measure $\pi: \mathfrak{D} \times X \times Y \rightarrow [0, 1]$ such that if $g \in C_0(\mathfrak{D}, \mathbb{R})$ and $h \in L_1(X \times Y, \mathfrak{J}_X \times \mathfrak{J}_Y, \mu \times \lambda)$ then

(2.19)
$$\int \lambda(dy) \int g(t) \psi'(dt, x, y) h(x, y) \mu(dx) = \iint g(t) \pi(dt, x, y) h(x, y) \mu(dx) \lambda(dy).$$

Proof. The set of functions $h \in L_1(X \times Y, \mathfrak{J}_X \times \mathfrak{J}_Y, \mu \times \lambda) = L_1$ for which

$$\int g(t) \psi'(dt, x, y) h(x, y) \mu(dx)$$

is measurable in y is a monotone class of functions which is a vector space containing all functions $k_1(x) k_2(y)$, $k_1 \in L_1(X, \mathfrak{J}_X, \mu)$ and $k_2 \in L_1(Y, \mathfrak{J}_Y, \lambda)$. Therefore $\int \lambda(y) \int g(t) \psi'(dt, \lambda, y) h(x, y) \mu(dx)$ is well defined for all $g \in C_0(\mathfrak{D}, \mathbb{R})$, $h \in L_1$ and clearly defines a continuous bilinear form b: $C_0(\mathfrak{D}, \mathbb{R}) \times L_1$. Thus b can be represented by a conditional probability measure $\pi: \mathfrak{B} \times X \times Y$ and π by definition satisfies (2.19). \parallel

Proof of Theorem 1.1. Suppose $Y_0 = \{y | \varphi(\cdot, \cdot, y) \text{ is inadmissible}\}.$

By Lemma 2.2 the set Y_0 is measurable. We assume $\lambda(Y_0) > 0$. By Lemmas 2.4 and 2.5 there exists an $\varepsilon > 0$ and a compact set $Y_3 \subset Y_0$ such that $\lambda(Y_3) > 0$ and a conditional probability measure $\psi: \mathfrak{B} \times X \times Y \to [0, 1]$ such that if $y \in Y_3$ then $\psi(\cdot, \cdot, y) \in \mathfrak{R}_{v\varepsilon}$. We define a decision procedure δ' as follows.

(2.20) If $y \in Y_3$ then $\delta'(\cdot, \cdot, y) = \psi(\cdot, \cdot, y)$; if $y \notin Y_3$ then $\delta'(\cdot, \cdot, y) = \delta(\cdot, \cdot, y)$.

Then by construction, if $y \in Y$, and if $\omega \in \Omega$, then

$$(2.21) \quad \int W(t,\omega)\,\delta'(dt,x,y)\,f_{\omega}(x,y)\,\mu(dx) \leq \int W(t,\omega)\,\delta(dt,x,y)\,f_{\omega}(x,y)\,\mu(dx).$$

If both sides of (2.21) are integrated by the measure λ_{ω} we obtain, if $\omega \in \Omega$,

(2.22)
$$r(\omega, \delta') \leq r(\omega, \delta).$$

Since $\lambda(\{y | \delta(\cdot, \cdot, y) \neq \delta'(\cdot, \cdot, y)\}) > 0$, the uniqueness assumption following (1.2) implies there exists $\omega \in \Omega$ such that $r(\omega, \delta') < r(\omega, \delta)$.

3. Invariance

It is the purpose of this section to apply Theorem 1.1 to obtain a complete class theorem for invariant tests in the presence of nusiance parameters. A general result about conditional tests when $\left\{f_{\omega}\frac{d\lambda_{\omega}}{d\lambda}, \omega \in \Omega\right\}$ is an exponential family has been given by Matthes and Traux [5] but these authors do not consider the invariance question. The question of characterizing a complete class in the presence of invariance has been considered by R. Schwartz, and our results have a

relationship to the problems considered by Kiefer and Schwartz [3] and Schwartz [8, 9].

We take a problem somewhat more general than the exponential family problem. We let $\omega \in \Omega$ have the form $\omega = (\Theta, \tau)$. We suppose \Im is a locally compact transformation group acting on $\Omega \times X \times Y$ by means of

$$t(\Theta, \tau, x, y) = (t_1 \Theta, t_2 \tau, t_3 x, t_4 y).$$

We suppose each function $(t, \Theta, \tau, x, y) \rightarrow t(\Theta, \tau, x, y)$ is jointly measurable in the five variables. We assume also

(3.1) if $M \in \mathfrak{J}_X$, if $t \in \mathfrak{I}$, then $\mu(t_3(M)) = 0$ if and only if $\mu(M) = 0$; if $M \in \mathfrak{J}_Y$, if $t \in \mathfrak{I}$, then $\lambda(t_4(M)) = 0$ if and only if $\lambda(M) = 0$.

(3.2) $(\Theta, t) \in \Omega$ and $t \in \mathfrak{I}$ then $(t_1 \Theta, t_2 \tau) \in \Omega$.

(3.3) The hypothesis set H_0 and alternative set H_1 are invariant under the group action.

(3.4)i) X is a finite dimensional Euclidean space and \mathfrak{C} is the collection of closed convex subsets of X with interior together with the null set.

If C is a closed convex set we assume μ (boundary C)=0.

(3.4)ii) If C_1 and C_2 are distinct closed convex sets in \mathfrak{C} then $\mu(C_1 \oplus C_2) > 0$, where \oplus stands for symmetric set difference.

(3.4)iii) To each prior probability measure on Ω there exists a Bayes test γ such that if $y \in Y$ then $\{x \mid \gamma(x, y) = 0\} \in \mathfrak{C}$.

(3.4)iv) If $\psi(\cdot, y)$ is a admissible test for $H_0 v s H_1$ relative to the family of density functions $\{f_{\omega}(\cdot, y), \omega \in \Omega\}$ then there exists $C \in \mathfrak{C}$ such that

$$\int |1 - \chi_{C}(x) - \psi(x, y)| \, \mu(dx) = 0.$$

(3.4)v) If $t \in \mathfrak{I}$ then $t_3 \mathfrak{C} = \mathfrak{C}$.

Theorem 3.1. Suppose the hypotheses of Theorem 1.1 hold and that assumptions (3.1)–(3.4) hold. Let γ be an admissible invariant test. There exists a set value mapping $y \rightarrow C(y) \in \mathbb{C}$ and an invariant test φ satisfying φ is nonrandomized and $C(y) = \{x | \varphi(x, y) = 0\}$ such that $\int |\gamma(x, y) - \varphi(x, y)| \mu(dx) \lambda(dy) = 0$. If \mathfrak{T} acts singly transitively on Y then there exists an invariant function $t_{y3}x$ (defined below) and a set $C \in \mathbb{C}$ such that if φ^* is defined by, $t_{y3}x \in C$ if and only if $\varphi^*(x, y) = 0$ and

$$\varphi^{*2} = \varphi^{*}$$
, then $\int |\gamma(x, y) - \varphi^{*}(x, y)| \mu(dx) = 0$

Proof. We begin by noting that an admissible test must be nonrandomized. For, by Theorem 1.1, if γ is admissible then for almost all $y[\lambda]$, the conditional tests $\gamma(\cdot, y)$ are admissible. By hypothesis (3.4) iv) $\gamma(\cdot, y)$ is nonrandomized. Thus, for almost all $y[\lambda]$, $\{x|\gamma(x, y) \neq \gamma^2(x, y)\}$ has μ measure zero. By Fubini's theorem, $\{(x, y)|\gamma(x, y) \neq \gamma^2(x, y)\}$ has $\mu \times \lambda$ measure zero.

Next, if γ is nonrandomized and $\gamma = \operatorname{weak}_{n \to \infty} \lim_{n \to \infty} \gamma_n$ then $\gamma = \lim_{n \to \infty} \lim_{n$

(3.5)
$$\lim_{n \to \infty} \int (\gamma(x, y) - \gamma_n(x, y))^2 h(x, y) \mu(dx) \lambda(dy) \\ \leq 2 \int \gamma(x, y) h(x, y) \mu(dx) \lambda(dy) - 2 \int \gamma^2(x, y) h(x, y) \mu(dx) \lambda(dy) = 0.$$

It is known that each admissible test γ is a weak limit of Bayes tests γ_n . See Farrell [1]. By the preceeding paragraph, and by taking a subsequence, we may suppose

(3.6)
$$\gamma = \lim_{n \to \infty} \gamma_n$$
 with probability one.

Then there exists a set $N \in \mathfrak{J}_Y$, $\lambda(N) = 0$, such that if $y \notin N$ then for almost all $x[\mu]$,

(3.7)
$$\gamma(x, y) = \lim_{n \to \infty} \gamma_n(x, y).$$

We may choose the representative γ_n from the equivalence class of L_{∞} functions to satisfy (3.4) iii). Thus let

(3.8)
$$C_n(y) = \{x | y_n(x, y) = 0\}.$$

We know from Farrell [1] that (3.7) and (3.8) require that if $y \notin N$ then there exists a set $C(y) \in \mathfrak{C}$ such that $C_n(y) \to C(y)$ at every interior and exterior point of C(y). Therefore only the boundary of C(y) is in question and

(3.9)
$$\{x | \gamma(x, y) = 0\} \subset C(y), \\ \{x | \gamma(x, y) = 1\} \supset X - C(y).$$

We redefine γ as follows for $y \notin N$.

(3.10) If
$$\mu(C(y)) = 0$$
 then define $\gamma^*(x, y) = 1$ for all x;
if $\mu(C(y)) > 0$ then $\gamma^* = \gamma^{*2}$ and $C(y) = \{x | \gamma^*(x, y) = 0\}$.

We show that γ^* is a measurable function. First let $D(y) = \{x | \gamma(x, y) = 0\}$. Then $\mu(C(y)) = \mu(D(y))$ is \mathfrak{I}_Y measurable. Thus $N_1 = \{y | \mu(C(y)) = 0\}$ is measurable. We need not consider this case further. Suppose $y \notin N \cup N_1$. The problem is to take $\{(x, y) | \gamma(x, y) = 0, y \notin N \cup N_1\}$ and take the closure on each y-section of this set, showing that the resulting set is Borel. Since interior C(y) =interior D(y) and $C(y) \supset D(y)$, a simple set construction shows the desired result.

Therefore we may suppose every admissible test may be represented by a function γ satisfying $\gamma = \gamma^2$ and for almost all $y[\lambda]$, $\{x | \gamma(x, y) = 0\} \in \mathbb{C}$.

We now adapt a proof of Lehmann [4], p. 225. We suppose ψ is an admissible invariant test, that γ satisfies the conditions of the preceding paragraph, and that

(3.11)
$$\int |\psi(x, y) - \gamma(x, y)| \mu(dx) \lambda(dy) = 0.$$

Thus we define $D(y) = \{x | \psi(x, y) = 0\}$ and $C(y) = \{x | \gamma(x, y) = 0\}$. We wish to replace γ by an invariant test à la Lehmann. First, note that for almost all $y[\lambda]$,

$$(3.12) \qquad \qquad \mu(D(y)\oplus C(y))=0.$$

We now show that for almost all $y[\lambda]$,

(3.13)
$$t_3^{-1} C(t_4 y) = C(y).$$

Let $N_2 = \{y | \psi(\cdot, y) \text{ is inadmissible as a conditional test or (3.11) fails}\}$. Then if $t \in \mathfrak{I}, \lambda(t_4^{-1} N_2 \cup N_2) = 0$, and if $y \notin t_4^{-1} N_2 \cup N_2$ then $\mu(D(t_4 y) \oplus C(t_4 y)) = 0$. Using (3.1), $\mu(t_3^{-1} D(t_4 y) \oplus t_3^{-1} C(t_4 y)) = \mu(D(y) \oplus t_3^{-1} C(t_4 y)) = 0$. Since $\mu(D(y) \oplus C(y))$

=0, it follows that $\mu(C(y) \oplus t_3^{-1} C(t_4 y)) = 0$. Assumption (3.4) ii) then implies (3.13). And (3.13) implies that γ is almost invariant.

Let dt represent a probability measure on \Im such that Haar measure and dt are mutually absolutely continuous. Following Lehmann let

(3.14)
$$X \times Y - N_3 = \{(x, y) | \gamma(x, y) = \gamma(t_3 x, t_4 y) \text{ a.e. } [dt] \}.$$

We define a function *h* by

(3.15)
$$h(x, y, t) = \left| \int \gamma(t_3' x, t_4' y) dt' = \gamma(t_3 x, t_4' y) \right|$$

and define a set A by

(3.16)
$$A = \{(x, y) | \int h(x, y, t) dt = 0 \}.$$

Then A is an invariant set having measure 1. We define

(3.17)
$$\begin{aligned} \varphi(x, y) &= \int \gamma(t_3 x, t_4 y) \, dt, & \text{if } (x, y) \in A, \\ &= 0, & \text{if } (x, y) \notin A. \end{aligned}$$

Then $\varphi(x, y) = \gamma(x, y)$ for almost all $(x, y) [\mu \times \lambda]$.

As previously shown, if $t \in \mathfrak{I}$ then for almost all $y[\lambda]$, $t_3^{-1} C(t_4 y) = C(y)$. Thus we may choose $N_4 \in \mathfrak{J}_Y$, $\lambda(N_4) = 0$, such that $y \notin N_4$ if and only if

(3.18) for almost all $s, t \in \mathfrak{I}, \gamma(t_3 x, t_4 y) = \gamma(s_3 x, s_4 y)$.

As in Lehmann, op. cit., the set N_4 is invariant. Then,

(3.19) if
$$y \notin N_4$$
, $\varphi(x, y) = \int \gamma(t_3 x, t_4 y) dt = \chi_{C(s_4 y)}(s_3 x)$.

Therefore φ is an invariant test such that if $y \notin N_4$ then $\{x | \varphi(x, y) = 0\} \in \mathfrak{C}$. That completes the proof of the first part.

Let then the group act in a singly transitive manner on Y. Take $y_0 \in Y$. Let t_y be the element of \mathfrak{I} such that $(t_y)_4(y) = y_0$. We define $f: X \times Y \to X$ by $f(x, y) = (t_y)_3(x)$. Then f is an invariant function and $f(x, y) \in C(y_0)$ if and only if $x \in C(y)$.

Example of the T^2 -Problem. Let X_1, \ldots, X_p be normal $(\Sigma, \Theta_1), Y_1, \ldots, Y_q$ be normal (Σ, Θ_2) and Z_1, \ldots, Z_r be normal $(\Sigma, 0)$. We suppose these are p+q+r independently distributed random vectors, each $1 \times k$. The joint density is of exponential form. Let the transformations of the parameters be

$$(3.20) \qquad \qquad (\Theta_1, \Theta_2, \Sigma) \to (A \Theta_1, A \Theta_2 + a, A \Sigma A^T),$$

where A is a nonsingular lower triangular matrix with positive diagonal elements. If the testing problem is to test $\Theta_1 = 0$ against $\Theta_1 \neq 0$ then the hypotheses of Theorem 3.1 are satisfied. Define

(3.21)
$$y = q^{-1} \sum_{i=1}^{q} y_i, \qquad x = p^{-1} \sum_{i=1}^{p} x_i \text{ and}$$
$$s = \sum_{i=1}^{p} x_i x_i^T + \sum_{i=1}^{q} y_i y_i^T + \sum_{i=1}^{r} z_i z_i^T - x x^T - y y^T.$$

5 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 19

Let s_{τ} be the uniquely determined lower triangular matrix of positive diagonal elements such that $s_{\tau} s_{\tau}^{T} = s$. Then the function $t_{y3} x$ of the theorem may be taken to be the maximal invariant $(s_{\tau})^{-1} x$, and every admissible test invariant under the triangular matrix group must be essentially of the form, accept H_0 if and only if $(s_{\tau})^{-1} x \in C$, C a closed convex set, s_{τ}^{T} the transpose of s_{τ} .

We continue this example and consider tests invariant under the full linear group. Then in addition to the group of triangular matrices orthogonal transformations are allowed. With Θ_2 eliminated the group acts only on Σ and Θ_1 through matrix multiplication so $\Sigma \rightarrow A\Sigma A^T$ and $\Theta_1 \rightarrow A\Theta_1$. Let t_{y3} be as before and let t' correspond to transformation by A which is orthogonal. By Theorem 3.1 the acceptance region has the form, accept H_0 if and only if

$$(3.22) x \in (t'_3 t_{3s})^{-1} C(t'_4 t_{4s} s) = t_{3s}^{-1} t'_3^{-1} C(t'_4 s_0).$$

Let the choice of s_0 be the $k \times k$ identity matrix so that $t'_4 s_0 = s_0$. Then the test satisfies $t_{3s} x \in UC$ for every $k \times k$ orthogonal matrix U. Because the family of distributions is complete, UC = C follows (C is a closed convex set).

We summarize the discussion in a corollary.

Corollary 3.2. In the T^2 -problem, an admissible test invariant under translations on the nuisance parameters Θ_2 and under multiplication of lower triangular matrices must have essentially the form, accept H_0 if and only if $(s_\tau)^{-1} x \in C$, where C is a closed convex set. In addition, if the test is invariant under the full linear group then UC = C for all $k \times k$ orthogonal matrices U.

References

- 1. Farrell, R.H.: Towards a theory of generalized Bayes tests. Ann. math. Statistics 39, 1-22 (1968).
- Hanuras, T.V.: Hyper-admissibility and optimal estimators for sampling finite populations. Ann. math. Statistics 39, 621-641 (1968).
- Kiefer, J., Schwartz, R.: Admissible character of T², R² and other fully invariant tests for classical multivariate normal problems. Ann. math. Statistics 36, 747–770 (1965).
- 4. Lehmann, E.L.: Testing statistical hypotheses. New York: John Wiley and Sons, Inc. 1959.
- 5. Matthes, T.K., Traux, D.R.: Tests of composite hypotheses for the multivariate exponential family. Ann. math. Statistics 38, 681-697 (1967).
- 6. Munroe, M.E.: Introduction to measure and integration. Reading: Addison-Wesley Publishing Company, Inc. 1953.
- Prohorov, Y.V.: Convergence of random processes and limit theorems in probability. Theor. Probab. Appl. 1, 157-214 (1956).
- Schwartz, R.: Admissible tests in multivariate analysis of variance. Ann. math. Statistics 38, 698-710 (1967).
- 9. Invariant proper Bayes tests for exponential families. Ann. math. Statistics 40, 270-283 (1969).
- Wald, A., Wolfowitz, J.: Two methods of randomization in statistics and the theory of games. Ann. of Math. II. Ser., 53, 581-586 (1951).

R.H. Farrell Department of Mathematics Cornell University Ithaca, N.Y. 14850 USA

(Received January 21, 1970)