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The Necessity that a Conditional Decision Procedure
be almost everywhere Admissible *

R. H.FARRELL

1. Introduction

Theorem 1, stated below, includes a number of statistical problems in which
it may be desirable to consider conditional procedures. It is our aim to obtain a
complete class theorem covering such conditional procedures.

We will first state the assumptions needed, then Theorem 1.1. We conclude
this section with some discussion. Section 2 contains a proof of Theorem 1.1, and
Section 3 contains applications to the study of invariant tests.

We assume X and Y are complete separable metric spaces with 3y the g-algebra
of Borel subsets of X, and Jy the o-algebra of Borel subsets of Y. We assume y is
a regular totally o-finite measure on Jy, and that if weQ, 1, is a probability
measure on Jy dominated by the probability measure 1. Given is a set {f,,, weQ}
of conditional density functions on X x Y. It is assumed that if weQ then f, is
jointly measurable. It is assumed that if yeY then f, (-, y)eL,(X, Sy, n) and
§ folx, y) pldx)=1.

Of the parameter and decision spaces it is assumed that Q is a separable metric
space and that the decision space D is separable locally compact metric space.
We require that both spaces be complete in their respective metrics. Loss will be
measured by a continuous function W: D x 2 — [0, o). We assume that if weQ
then tlim Wi(t, w)=c0. We assume there exists a partition of Q into subsets

S

Q,, ..., Q; such that on each ;, the risk function

(1.1) r(w, 6, y)=[f W(t, @) 6(dt, x, y) fu,(x, y) p(dx)
is a continuous function of w, this being true for all yeY and all randomized
decision functions 4. Lastly, if r(w, 6) is defined by

(1.2) r(e, 8)=[r(w,é,y) 1,(dy),
then we suppose sup |r(w, §,) —r(w, 6,)| =0 implies

(HX/{)({(X’ y)lél(.’x7 y)#52("x7 y)}):()

Theorem 1.1. Let the above hypotheses hold. If the (randomized) decision
procedure J is admissible then for almost all y[2] the decision procedure 6(-,-, y)
is admissible for the loss function W and family of density functions { f,(-, y), veQ}.

In the case the measure 4, do not depend on w, then introduction of the variable

y is equivalent to introducing randomization before the experiment in the sense
of Wald and Wolfowitz [10]. We have
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Corollary 1.2. Given the hypotheses of Theorem 1.1, if the admissible decision
procedure O(-,+,*) involves randomization before the experiment then for almost
all y[[A] the decision procedures (- ,*, y) are admissible for the problem.

In case the conditional densities f,, (-, y) are independent of the variable y,
then introduction of the variable y is equivalent to taking another independently
distributed observation. We obtain

Corollary 1.3. Given the hypotheses of Theorem 1.1, if the decision procedure
0(+,+,*) depends on independently distributed observations x, y then for almost all
y[A]6(,+, y) is an admissible procedure depending on x.

The conclusion of Corollary 1.3 is very similar to the idea of hyperadmissibility
discussed by Hanuras [2]. J
If the family of density functions f“’d—lw is an exponential family then for a

suitable choice of w we obtain the complete class theorem of Matthes and Traux [5].

A large number of problems which arise in multivariate analysis are problems
in which a locally compact transformation group J acts on 2 x X x Y. A combi-
nation of Theorem 1.1 with assumptions about J leads to Theorem 3.1, a complete
class theorem for nonrandomized invariant tests. We apply Theorem 3.1 to the
multivariate T test.

2. Proof of Theorem 1.1.

In this section we assume & is a given statistical procedure such that A({y}5(,-,»)
is inadmissible}) > 0. Measurability of the set in question is proven in Lemma 2.2.

We have assumed D is a complete separable metric space. We let B be the
g-algebra of Borel sets of D and define C,(D, R) to be the Banach space of con-
tinuous functions on ® to IR with limits at oo, that is, if fe Co(®D, R) then there
exists a number f(o0) such that if ¢ >0, for some compact subset C =D, t¢ Cimplies
| f(0)—f(t)l<e. We write f (oo)ztlim f(#), and in this notation our hypothesis

about W states, if weQ, W(owo, w)= llim W(t, w)= 0.

Lemma 2.1. Let {w,, n=1} be a countable dense subset of Q suchthatif 1Si<k
then {w,, n=1} N Q, is dense in Q;. Given >0 there exists a compact set C< Y such
that ¢+ A(C)> A(Y) and such that the maps

y— [ W(t, w,) 6(dt, X, y) fo,(%, y) 1(dx),
nz1,
y— [ g(0)(dt, x, ) f,,(x, y) uldx),
nz1,geCy(D, R),
- [ g(t) 6(dt, %, y) h(x) u(dx),
ge Co(D,R), he L, (X, Jx, 1),
= [ h(x)(fo, (x, M) p(dx),
heL,(X, 3x, W)
are continuous maps of C to IR.

1)
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Proof. Let {g,,n=1} be a countable dense subset of C;(D, R) and {h,, n=1}
be a countable dense subset of L (X, Jx, 1) ™ L, (X, 3y, #). Then the second, third
and fourth functions in (2.1) are uniform limits of functions having the forms

kimn () =] gn(®) 6(dt, %, ) fo,,(x, ) u(dx), mnz=1.

(2.2) kamn(0)=J 8 (1) 0(dt, X, y) hy(x) n(dx), mnzl.
k3mn(y)thm(x)(fwn(xa Y))%N(dx)’ mangl-

Suppose for each pair m, n the compact set C,,, satisfies

(2.3) em+n+1)"1 270D L 2(C,)>AMY)=1,

and such that on C,,, the functions ky,,,, Ksmn: k3mn arc continuous, together
with the first functions of (2.1). Then

(2.4) M) Cun)+eZA(Y)=1,
so that the set () C,,, satisfies the conclusion of the lemma for the functions (2.2),

and by taking uniform limits, all functions (2.1).

By Lusin’s theorem, cf. Munroe [6], p. 159, closed sets C,,, satisfying (2.3)
exist. By Prohorov [7] compact sets C,,, < C,,, satisfying (2.3) exist. ||

Let {g,,n=1} and {h,, n= 1} be the dense sequences described in the preceding
proof. For any decision procedure ¢(+,+): B x X - [0, 1], we define the metric

2.5) A1 @)=, 3 (el 1127 4]+

1Jf 2:(®) by (o) (1 (dt, X) = 92 (dt, ) pu(d0)].
It is easy to show d is a metric and that on the set of decision procedures d metrizes
the weak topology. In terms of the metric d we define

(2.6) R,=set of decision procedures ¢ defined on B x X such that ¢ is as good
as o(,*, y).
R, =set of decision procedures ¢ defined on B x X such that d(g, 6(-,-, y)) = ¢
and such that peR,.

Lemma 2.2. {y|3(,*, y) is admissible} is measurable Jy.

Proof. We let {w,,n=1} be a parameter sequence such that {w,,n=1}NQ;
is dense in Q;,i=1, ..., k. We let V={v,,,m=1} be an enumeration of all finite
measures supported on finite subsets of {w,, n= 1} such that v,, assigns only rational
masses to points. If n21 we let ¥, =V such that v,,eV, if and only if v,,({w,})=1.

If m=1 we let Yx(:,+,) be a Bayes decision procedure for v,, relative to the
family of densities {f,, weQ} in L,(X X Y, Jx x Jy, £ x 2). Our hypotheses are
sufficient to guarantee ¥ exists. By the theorem of Wald and Wolfowitz [10]
there exists a family of nonrandomized procedures ¢, (-,*,*): X x Y x[0,1]-D
such that for almost all «e[0, 1] ¥,.(-,*, ) is a nonrandomized Bayes procedure.
Thus for some a€[0, 1], for almost all x, y[ux 2],

@7 JWn(x, y, @), @) [ (%, ) v (do)=inf [ WL, ©) £, (x, ) Y (d0).



60 R. H. Farrell:

By Fubini’s theorem there exists a set N, € Jy such that A(N,,)=0 and if y¢ N,, then
Y (", v, o) satisfies

§ W (x, 3, 0), @) £, (%, ¥) p(dx) vy (d )
=inf | W(t, w) @(dt, x) £, (x, y) p(dx) v,,(dw).

In the sequel we write ¥;,,(+,+): X x Y= D for a jointly measurable function satis-

fying (2.8), y¢ Ule.

We apply the necessary and sufficient condition for admissibility of Stein-
LeCam. See Farrell [1]. Because conditional risk functions are continuous, the
given randomized procedure § is admissible if and only if

(2.8)

(2.9) for all n, for all p, there exists m such that v,,e V, and
§lr(e o0, ), ) =r(@ Y (5 V), )] vm(dw)<1/p.

The notation is that introduced in (1.1). The condition just written involves a
countable number of conditions on measurable sets, so that the conclusion of
the lemma follows. ||

Lemma 2.3. Let Y,={y|6(*,*,y) is inadmissible}. Let Y, Yy, A(Y)>0, such
that Y, is compact and on Y, the maps (2.1) are continuous. If ye Y] then there exists
&(y)>0 such that R, is nonempty and compact in the weak topology on decision
procedures. There exists a compact set Y, Y, and ¢>0 such that if yeY, then
R, . is nonempty and compact.

Proof. Since lim W(t, w)= oo for all we Q, it follows that R is a weakly compact
t— o0

and a convex set. Further, if ye Y, then R, contains some i essentially distinct
from the given 4, so that for some >0, R, is nonempty. It is clear from the metric
d that if R, +0 then R,, is weakly compact.

Let >0 be fixed. We let Y; be a compact subset of Y, such that 4 (Y;)>0and
such that on ¥, (2.1) holds. We prove {y|yeY; and R +0} is a compact set by
showing every sequence in this set has a convergent subsequence. Thus, let
{yn-nz1}c{ylyeY;, and R, +0}, let {y, ,n=1} be a convergent subsequence,
and let yz}li_{lgo Van- In R, we take i, . Then

(210) j W(t’ wl) l//a"(dt’ x) fwl(x’ yan) H(dx)éj‘ W(ta 0)1) 5(dt’ X, y) fon (X, ya") ,LL(dX),

we{w,, n=1}. Since by (2.1) the numbers on the right side of inequality (2.10)
convergence, it follows that no mass escapes to co. Note that the last condition
of (2.1) implies f, (*.y,)—fo,(*,¥) in L;. Thus, {y, ,n=1} has a convergent
subsequence {y, ,n=1} converging weakly to .

By the continuity assumption following (1.1), the continuity relations (2.1),
and the definition of d given in (2.5), it follows at once that

(2.11) d(y,8)z¢ and that if we,
§ W, ) g (de, x) £, (x, y) pldw) S | W(t, ) 3(dt, x, y) fo,(x, y) u(dw).

Therefore YR, as was to be shown.
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Since Y= | ) Y, {y|R,,,+0}. it follows there exists an integer n such that

n=1
Ay Ry +903)>0. |
Lemma 2.4. There exists a compact subset Y3 Y,, an ¢>0, and a function
V(e 0)eR,,, yeYs, such that A(Y3)>0 and such that if geCy(D,R) and
he Li(X, 3x, 1) then

(2.12) [g@y'(dt, x, y) h(x) p(dx)

is a continuous function of y.

Proof. To simplify notation we let {k,, n=1} be an enumeration of the functions
{g:(*)h;(*), iz 1,j=1}. We make an induction on the subscript n. Choose ¢>0
as in Lemma 2.3 and let Y, be a compact set satisfying A(Y;)>0, Y, = {y|R, .+ 0},
and on Y, the conditions (2.1) hold. Define

(2.13) . sy () =1nf {J ky (t, x) Y (dt, x) u(dx)| yeR,,}.
The infinum is attained. If y, — y, y,€ Y,, and y,eR, ., ¥, — weakly, then
(2.14) si(y)<liminf s (y,).

The function s; is a lower semicontinuous function, therefore s, is measurable.
Since Y, is a compact set, by Lusin’s theorem we may choose Y;; < Y, a compact
set such that

(2.15) A(Y,—Y3)<(@) A(Y,) and on Y;,, s, is a continuous function.

Define
(2.16) R,.1={Y|YeR,, and s,(y)={ k; (t, x) ¥ (dt, x) u(dx)}.

Proceed inductively. Suppose R
defined. Let

(2.17) Swr1()=10f {J &, 1 (&, %) Y(dt, x) p(dx) e R,..,}

Then s, is a lower semicontinuous function defined on the compact set Y5, and
we choose a compact subset Y, 1, < Y3, such that A(Y;,— Y3,,1) <272 A(Y,)
and such that on Y;,. ;, the function s, ., is continuous.

feel

Define Y;= () Y;,. Then A(¥3)=()A(Y,). Let R,,= () R,..,. Then R,
n=1 n=1

ye1s ooos Ryen, Y312 Y3, 2---2 Y5, have been

contains exactly one element ¢, ye Y;. For if ¥} and lﬁ’zeiﬂ’; then over a dense
sequence of functions {g;(*) h;(*),i=1,j=1},

(2.18) [ &) ¥i(dt, x) hy(x) pldx)=| g:() Y2 (de, X) hy(x) u(dx), iz1, j=1.

Therefore ; and ¥, represent the same bilinear form. We let ¥/(-,-, y) be the
element of R;,. If n=1 then y/'(-, -+, y)eR,,,. Therefore s,(y)= | k, (5, x) ¥'(dt, x, y)-
i(dx) is continuous in y. Since this holds on a dense set of functions it follows that
ifge Co (D, R)and he L, (X, Iy, w)then | g(2) Y/ (dt, X, y) h(x) u(dx)is continuous. ||
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Lemma 2.5. Let Y, be a compact set and A(Y,)>0. Suppose /': Bx X x Y, —
[0, 1] satisfies

() if ye Y, then /' (-,-, y) is a conditional probability measure on B x X ;

(i) if geCo(D,R), heLy(X, Iy, p) then [g()y'(dt, x, y) h(x) u(dx) is con-
tinuous in y.

Then there exists a conditional probability measure n: © x X x Y— [0, 1] such
that if ge Co (D, R) and he L (X X Y, 3x X [y, X 1) then

(2.19)  [A@y) [g@ ¥ (dt, x, y) h(x, y) pldx)=[f g(®) =(dt, x, y) h(x, y) p(dx) A(dy).
Proof. The set of functions he L, (X x ¥, 3y x Jy, ux 4)=L, for which

ey’ (@t, x, y) h(x, y) p(dx)

is measurable in y is a monotone class of functions which is a vector space con-
taining all functions k,(x) k, (), k;e L, (X, Jx, u) and k,e L;(Y, Jy, A). Therefore
[2() [ g@)y'(de, 4, y) h(x, y) p(dx) is well defined for all ge Co (D, R), heL; and
clearly defines a continuous bilinear form b: Cy(®, R)x L;. Thus b can be re-
presented by a conditional probability measure 7: B x X x Y and = by definition
satisfies (2.19). ||

Proof of Theorem 1.1. Suppose Y,={y|¢(-,*, y) is inadmissible}.

By Lemma 2.2 the set Y, is measurable. We assume A(Y,)>0. By Lemmas 2.4
and 2.5 there exists an ¢>0 and a compact set Y; = Y, such that A(¥;)>0and a
conditional probability measure ¥: B x X x Y- [0, 1] such that if ye¥; then
¥(-,*, »)eR,,. We define a decision procedure ¢’ as follows.

(220) If yeYsthen &(v,«, )=y (*,",y);

if y¢Y; then &'(+,-, y)=0(+,", y).
Then by construction, if ye ¥, and if we, then
21) [W(t, 0) & (dt,x, ) f(x, y) pldx) S § W(t, @) 0(dL, x, ) £, (x, y) p(dx).
If both sides of (2.21) are integrated by the measure 1, we obtain, if we(?,
(2.22) r{w, §)Sr(w, d).

Since A({y|8(-,*, ) %'(,*, »)})>0, the uniqueness assumption following (1.2)
implies there exists we 2 such that r(w, 8')<r(w, 9).

3. Invariance
It is the purpose of this section to apply Theorem 1.1 to obtain a complete
class theorem for invariant tests in the presence of nusiance parameters. A general
. dA . . .
result about conditional tests when { Jo d—/{", weQ} is an exponential family has

been given by Matthes and Traux [5] but these authors do not consider the
invariance question. The question of characterizing a complete class in the pres-
ence of invariance has been considered by R. Schwartz, and our results have a



On Conditional Decision Procedure 63

relationship to the problems considered by Kiefer and Schwartz [3] and
Schwartz [8, 9].

We take a problem somewhat more general than the exponential family
problem. We let weQ have the form w=(8, 7). We suppose J is a locally compact
transformation group acting on  x X x Y by means of

t(97 T, X, y):(tl @7 tZ T, t3 X, [4}1).

We suppose each function (¢, @, 7, x, y) > t(0, 1, x, y) is jointly measurable in the
five variables. We assume also

(3.1) if MeJy, if te3J, then p(t;(M))=0if and only if u(M)=0; if Me3Jy, if teJ,
then A{t, (M))=0 if and only if A(M)=0.

(32) (O,1)eQ and teS then (¢, @, t, ).

(3.3) The hypothesis set H, and alternative set H; are invariant under the group
action.

(3.4)i) X is a finite dimensional Euclidean space and € is the collection of closed
convex subsets of X with interior together with the null set.

If C is a closed convex set we assume p (boundary C)=0.

(3.4)ii) If C, and C, are distinct closed convex sets in € then u(C,@® C,)>0,
where @ stands for symmetric set difference.

(3.4)i1)) To each prior probability measure on Q there exists a Bayes test y such
that if ye Y then {x| y(x, y)=0}eC.

(3.4)iv) If (-, y)is a admissible test for H vs H; relative to the family of density
functions {f,(, y), w€Q} then there exists Ce € such that

11 =xc ()= ¥ (x, y)| u(dx)=0.
(3.4)v) Ifte3Ithent;C=C.

Theorem 3.1. Suppose the hypotheses of Theorem 1.1 hold and that assumptions
(3.1)~(3.4) hold. Let y be an admissible invariant test. There exists a set value mapping
y— C(y)e® and an invariant test ¢ satisfying @ is nonrandomized and C(y)=
{x|o(x,y)=0} such that [|y(x,y)—o(x,y)| u(dx)i(dy)=0. If I acts singly
transitively on Y then there exists an invariant function t,; x (defined below ) and
a set CeQ such that if ¢* is defined by, t,; xe C if and only if ¢*(x, y)=0 and

@*¥ =0*, then [ly(x,y)—¢*(x, y)|u(dx)=0.

Proof. We begin by noting that an admissible test must be nonrandomized.
For, by Theorem 1.1, if v is admissible then for almost all y[4], the conditional
tests y{, y) are admissible. By hypothesis (3.4)iv) y(-, y) is nonrandomized. Thus,
for almost all y[A], {x|y(x, y)£y*(x, y)} has u measure zero. By Fubini’s theorem,
{(x, y)|7(x, y) =7 (x, y)} has u x A measure zero.

Next, if y is nonrandomized and y = weak lim y, then y= lim in measure y,. For
let heL,. We compute e e

}HE)I ('))(X, y)—yn(xs y))Z h(xv y) .u(dx) i(dY)

3.5
B3 <0 ) B, ) ) 209) =2 77 (3, 9) i, 3) ) A(dy) =O0.
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It is known that each admissible test y is a weak limit of Bayes tests y,. See
Farrell [1]. By the preceeding paragraph, and by taking a subsequence, we may
suppose

(3.6) y=1limy, with probability one.
Then there exists a set NeJy, A(N)=0, such that if y¢ N then for almost all x[u],
3.7 7, y)=lim 3, (x, y).

We may choose the representative 7, from the equivalence class of L, functions
to satisfy (3.4)ii). Thus let

(38) C,(»)={x|y.(x, y)=0}.

We know from Farrell [1] that (3.7) and (3.8) require that if y¢ N then there exists
a set C(y)eC such that C,(y)— C(y) at every interior and exterior point of C{y).
Therefore only the boundary of C(y) is in question and

{x|7(x, »)=0} = C(y),
{xly(x, =1} >X - C(y).
We redefine y as follows for y¢N.

(310) If 4(C(y))=0 then define y*(x, y)=1 for all x;
if u(C(y))>0 then y*=y*2 and C(y)={x|y*(x, y)=0}.

We show that y* is a measurable function. First let D(y)={x|y(x, y)=0}. Then
1(C(»)=u(D(y) is Jy measurable. Thus N, ={y|u(C(y))=0} is measurable. We
need not consider this case further. Suppose y¢N U N,. The problem is to take
{(x, Y)|y(x, y)=0,y¢ N UN,} and take the closure on each y-section of this set,
showing that the resulting set is Borel. Since interior C(y)=interior D(y)and C(y)>
D(y), a simple set construction shows the desired result.

Therefore we may suppose every admissible test may be represented by a
function y satisfying y=7y? and for almost all y[4], {x|y(x, y)=0}€€.

We now adapt a proof of Lehmann [41, p. 225. We suppose V is an admissible
invariant test, that y satisfies the conditions of the preceeding paragraph, and that

(3.11) Flyx, ») =7 (x, y)u(dx) 2(dy)=0.

Thus we define D(y)={x|¥(x, y)=0} and C(y)={x|y(x,y)=0}. We wish to
replace y by an invariant test & la Lehmann. First, note that for almost all y[4],

(3.9)

(312 1D ®C(y)=0.
‘We now show that for almost all y[4],
(3.13) t51 Clts y)=C(y).

Let N,={y|¢¥(-,y) is inadmissible as a conditional test or (3.11) fails}. Then if
te3, Mtz N;UN,)=0, and if y¢t;* N, UN, then p(D(t, »)® C(t, ¥))=0. Using
(B.0), u(t3 Dt Y)®13 Cty y))= (D) D13 C(t, y))=0. Since u(DHSC()
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=0, it follows that u(C(y) @53 ' C(t, ¥))=0. Assumption (3.4) ii) then implies (3.13).
And (3.13) implies that y is almost invariant.

Let dt represent a probability measure on J such that Haar measure and dt
are mutually absolutely continuous. Following Lehmann let

(3.14) X xY=Ny={(x, n)i7(x, y)=p(ts x, t, y) a.e. [dt]}.
We define a function h by

(3.15) h(x, y,0)=|[ 7t x, 1y y) dt' = y(t3 %, 14 )
and define a set A by

(3.16) A={(x, p] h(x, y,)dt=0}.
Then A is an invariant set having measure 1. We define

(p(xay):jy(t3x’ t4y)dt9 lf (X’y)EAa

(17 =0, if (x,y)¢A.

Then ¢ (x, y)=7(x, y) for almost all (x, y)[ux A].

As previously shown, if t€3J then for almost all y[4], 15 C(t, y)= C(y). Thus
we may choose N,eJy, A(N,)=0, such that y¢ N, if and only if

(3.18) for almost all s, £33, p(t3x, t4 ¥)=7(53 X, 84 V).

As in Lehmann, op. cit., the set N, is invariant. Then,

(3.19) if yéNy, @ (x, ) =] 7 (13 %, 14 ¥) dt= Y5, (83 X).

Therefore ¢ is an invariant test such that if y¢ N, then {x|¢(x, y)=0}c@. That
completes the proof of the first part.

Let then the group act in a singly transitive manner on Y. Take y,eY. Let ¢,
be the element of 3 such that (t,),(y)=y,. We define f: X x Y— X by f(x, y)=
(t;)3(x). Then f is an invariant function and f(x, y)e C(y,) if and only if xe C(y). |

Example of the T*-Problem. Let X, ..., X, be normal (£,0,), Y, ..., Y, be
normal (2, ®,) and Z,, ..., Z, be normal (Z,0). We suppose these are p+q+r
independently distributed random vectors, each [ x k. The joint density is of
exponential form. Let the transformations of the parameters be

(3.20) (0,0,,%5) > (40, A0, +a, AZ A7),

where A is a nonsingular lower triangular matrix with positive diagonal elements.
If the testing problem is to test ©; =0 against @, # 0 then the hypotheses of Theo-
rem 3.1 are satisfied. Define

q 14
y:q‘lzlyi, x=p 'Y x; and
i= i=1

(3.21) , \ )
s=:x] + Y iyl + Y izl —xxT—yyT.
i=1 i=1 =1

5 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 19
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Let s, be the uniquely determined lower triangular matrix of positive diagonal
elements such that s, s7 =s. Then the function t,5 x of the theorem may be taken
to be the maximal invariant (s,)~! x, and every admissible test invariant under the
triangular matrix group must be essentially of the form, accept H,, if and only if
(s) ' xeC, C a closed convex set, s the transpose of s,.

We continue this example and consider tests invariant under the full linear
group. Then in addition to the group of triangular matrices orthogonal trans-
formations are allowed. With @, eliminated the group acts only on X and @,
through matrix multiplication so Z—>AZA" and ©, > A46;,. Let t,; be as before
and let ¢’ correspond to transformation by 4 which is orthogonal. By Theorem 3.1
the acceptance region has the form, accept H, if and only if

(322) xe(tls t3 s)— ! C(til t4s S) = t;sl tl':i_l C(til- SO) .

Let the choice of s, be the k x k identity matrix so that ¢, so=s,. Then the test
satisfies 153,xe UC for every k x k orthogonal matrix U. Because the family of
distributions is complete, UC = C follows (C is a closed convex set).

We summarize the discussion in a corollary.

Corollary 3.2. In the T?-problem, an admissible test invariant under translations
on the nuisance parameters ©, and under multiplication of lower triangular matrices
must have essentially the form, accept Hy if and only if (s,)"'xeC, where C is a
closed convex set. In addition, if the test is invariant under the full linear group then
UC=C for all k x k orthogonal matrices U.
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