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Some Ratio Limit Theorems 
for a General State Space Markov Process* 

MICHAEL LEONARD LEVITAN 

Summary. Consider a discrete time parameter Markov Process with stationary probability 
functions, a general state space X and the Harris recurrence condition. This then implies the existence 
and essential uniqueness of a sigma-finite stationary measure 7z. It is also assumed that the class of 
measurable sets M contains single point sets. Let P(m)(x, S) denote the m-step transition probability 
from x to S ~  and pC~'~(x, .), the component of P(m)(x, ") which is absolutely continuous with respect 
to ~t. Let 5P= {C: C~N, for some n inf p~")(x, y)>0} and J =  {n: inf p(")(x, y)>0, CeSe}. The paper 

x, y~C x, y~C 

here presented contains theorems of which the following is typical: Theorem: Let S~9  ~ with 7z(S)>0, 
measurable BcS,  ~(U)>0 and q~U with lirn~f(x)n("+~)(y, dx)/n(~)(q,U)=~f(x)Tt(dx)/~z(B) 

~ B B 

uniformly in y, y e B for all non-negative measurable f Then for all measurable A c S with 7r(A)> 0, 
k=0,  _+1, _+2 . . . .  limP(~+k~(x,A)/P(m)(q,B)=Tr(A)/Tz(B) in measure zt on S. If the g.c.d. ( J ) = l  and 

m ~ o o  

)z'~ z with 7z' (X)< o9 then the above limit holds in measure ~z' on X. 

1. Introduction 

The questions which we shall study are concerned with Markov Processes 
with a discrete time parameter, stationary transition probability functions and 
a general state space. In addition, we shall impose the recurrence condition 
assumed by Harris I-6], referred to as condition C: There exists a sigma-finite 
measure # defined on the space X and separable class of measurable sets ~ with 
#(X) > 0 for which #(S)> 0 implies that 

191,Visiting S at some time I Starting from x] = 1 

for all x ~ X ,  where P is the underlying probability measure. This then implies the 
existence of a unique (up to a constant factor) sigma-finite measure 7z on (X, ~)  
which will be discussed further in the next section. 

In the ergodic theory of these processes, the convergence properties of p(m)(x, A), 
i.e., the m-step transition probability from x to A, have been investigated to quite 
an extent. The situation in which 7z (X) < ~ is known through the works of Orey 1-14], 
and Jamison and Orey [12]. In these papers it has been shown that there exists a 
partition of X into measurable sets Co, C1 . . . . .  Cd_l, F where d>= 1 such that 
7c(F)=0 and for x~ Ci, P(x, Ci+0= 1 where the subscripts are modulo d. Further- 
more, if zk(A) = rc(A n Ck) for 0_< k < d -  1 and if for any initial probability distribu- 
tion q~ we write 

a~(~0)= lim ~ PImd)(X, Ci) (p(dx), O<_i<d- 1 
r n ~  x 

* This research was partially supported by National Science Foundation Grant Gp-3906. 
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then 
d - I  

lim 
m ~ o o  i = 0  

uniformly in sets A where the subscripts are integers modulo d, 0 < k_< d -  1. 

The most recent results deal with the difficult case when re(X)= c~. Under 
this assumption, Jain [10] has shown that P(m)(x,A)~O if rt(A)< oo. It is then 
only natural to consider the limit of the ratio of the probabilities. 

In the context of a discrete space, Orey [15] considered the limit of 

P(m+k)(w, x) 

p(m) (y, z) 

for all finite k and proved that it tended to ~ (x)/Tr (z) under the assumption that 

p(m + 1) (q, q) 
p(m) (q, q) 

This strong ratio limit property was discussed by Folkman and Port [3] who found 
equivalent conditions under which it held. 

In Section 3 we prove a strong ratio limit theorem for a general state space, 
in particular, our results yield sufficient conditions for which 

lim P("+k)(x'A) -- 7z(A) in measure rr' 
m-~ ~ p(m)(q, B) u (B) 

where re' ~ rc and ~' (X) < oo. In the countable case, we find that our results strengthen 
those of Orey [15]. 

2. Definitions and Preliminary Results 

X is taken to be a general state space and shall always be considered as such 
throughout the entire paper unless explicitly designated otherwise. Let N = N (X) 
be a separable (countably generated) Borel field of subsets of X which contains 
single point sets. For SeN, let N(S)= {T: T=Sc~B for some BEN}. 

Let the sequence {Xk, k>0} be a discrete parameter Markov Process with 
the stationary transition probability function P(', ") on the state space (X, N). 

For m > 0  

P [Going from x to S in m steps without visiting T] = rP (") (x, S). 

Note that T P(k) (X, S)= p(k)(X, S) for k = 0, 1 while for m > 1 

TP(~)(X, S)= J (~'7"1) j P(x, dxOP(xl ,dx2). . .  P(x,,_l, S) 
X - T  X - - T  

oo 

P [Ever reaching S starting from x] = ~ s P(k) (x, S). 
k = l  
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In [7-1, Harris proved the following 

Theorem. Let condition (C) hold. Then there exists a unique (up to a constant 
factor) sigma-finite measure rc on (X, N) such that 

(1) # ~ n ,  i.e., n (S)=0  implies # (S)=0  

(2) n(S)= S P('n)(x, S) n(dx) for all SeN,  m>0.  
X 

Furthermore 

(3) n (S)>0  implies ~, sP(k)(x, S)= 1 for all x e X .  
k=l 

This theorem permits us to replace/1 in condition (C) by n. n shall always 
refer to the "stationary" measure of this theorem whenever mentioned in this 
paper. 

For m> 1, let the absolutely continuous and singular component of P(m)(x, .) 
with respect to n be denoted by p(')(x, .) and Po (") (x, .) respectively. As is justified 
in Doob [2], we can assume that p(m)(., .) is measurable in (x, y) on (X x X, N x N) 
and that for all integers m > 1 and k > 1 

p('+k)(x, y)>= ~ p(')(X, Z) p(k)(z, y) n(dz) 
X 

for all x e X  and for all yeX.  Thus we may write for all S e N  and m> 1 

Let 

and 

p(~(x, s) = ~ p(~(x, y) ~ (dy) +/'o ~ (x, S). 
S 

5e={C:  CeN,  inf p(")(x,y)>O forsomen}  
x~C, y~C 

J ( C ) - - { n :  inf p(")(x,y)>O, CeSP}. 
xeC, yeC 

Whenever we refer to d in this paper, we shall mean the greatest common 
divisor of J (C) .  (Further on in this section, we show that d is independent of C.) 

We use the notation 

fm(x) ~ s f ( X )  

if f ro (x )~f (x ) in  measure n on S. 

Proposition 2.1. I f  S e N with n (S) > O, then there exists C e ~ such that n (C) > 0 
and CoS .  

Proof See Theorem 2.1 of Orey [14]. 

Proposition 2.2. There exists a unique integer d such that whenever C~9 ~ with 
n ( C ) > 0  then J ( C )  4=0, d is the greatest common divisor of J ( C) and all sufficiently 
large multiples of d belong to J(C). Moreover, d is independent of C. 

Proof This is done in Theorem 1 of Jain and Jamison [11] via Doob  [2]. 
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Theorem 2.1. There exist sets C i s~  i= l,2 .... such that n ( X -  @ C~) =O. 
\ i = 1  

Proof. Assume n ( X ) < ~ .  Let ~ = { C :  n(Cc~X~)>0, CeS~} where X,=X,  
i - 1  

Xi = X -  U Ck for i=  2, 3 . . . .  where {Ck} will be determined later. Choose arbitrary 

~>0. Let ~ ,=sup  {n(C): C e ~ } .  Then there exists C , e ~  such that cq>n(C0>cq  

2 " For k-- 2, 3, ... use the following procedure: if n X -  C~ = 0, let aj = 0 
1 

and C~=0 for a l l j > k ;  i fn  Ci >0, then for ek=sup{n(CC~Xk): C e ~ }  

there exists C ~ e ~  such that C~k>n(Ck)>e~--~/-. Since Cic~ Cj=O for all i+j 
by construction, 

7[, C i = 2 7 r ( C i ) >  2 0:i--~ 2 2 -i. 
i= i=1 i = i  i = i  

 0 0foral, , 
i = 1  

i= i = i  

Therefore 

~ . ~ < n ( X ) + ~ <  oo. 
i = 1  

LetX~ = X -  C~andSPo~bedefinedaccordingly. Ifn(Xo~)=n(X)-n C~ >0, 
i = i  i 

then there exists a set C ' ~ ,  i.e., n(C'c~X~)>O. However, ~ i ~ 0  implying that 
sup {n(C c~ X~o)" CEllo} =0, a contradiction. Therefore 

If n(X)= oo, we may choose a measure no such that no(X)< oo and for S e ~ ,  

n (S)=0i fand  onlyifno(S)=0. Using noin the above argument, no ( X -  0 Ci)=0 
implying i= 1 

i = 1  
L 

Theorem 2.2. Let CIE~ with n(Ci)>O, i= 1, 2 ..... Then if d = 1, U ci asp for 
all finite L > O. i= 1 

Proof Without loss of generality, we just have to show that Ct u C 2 ~ .  d =  1 
implies that there exists k i such that neJ(Ci) for all n > ki, i = 1, 2. Let k = max (kl, k2). 
Let ~ e  C i and qi ~ Ci for i=  1, 2. Then there exists ei>0 such that 

inf p(k)(~i, ~]i)> ~i. 
~iECi, qi~Ci 

We may choose integers M and N such that P(M)(x,, C2)>~, for all x, eA~ for 
some Ate~(C~) with n ( A 0 > 0  and P(m(x 2, C0>~2 for all x2eA2 for some 
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AEe~(C2) with n(A2)>0, for some 6i>0. Without loss of generality, let M>=N, 
hence, let Q = 2 k + M .  (If N > M ,  let Q = 2 k + N . )  

P(e)(th,q2)> ~ ~ P(k)(rh, xl)p(M)(xx, dx2)p(k)(x2,t12)n(dxl)>ex~261~(A1), 
x2~C2 xI~AI 

P(e)(qz,qO> j J P(k)(tl2,x2)P(U)(x2,dxl)p(k+M-m(xl, th)n(dx2) 
2r x2~A2 

> 8 1  82 62 7c(A2), 

P(Q)(~i, rh )=p(2k+M)(~ i ,  Ili)>g,i,  i= 1, 2.  

Therefore inf p(Q) (~, q) > 0 implying that 
~eCl w Ca, rlsC1 u C2 

C~ u Ca~Sq. 

3. An Individual Ratio Limit Theorem 

The principal result of this section is Theorem 3.3 which represents the gener- 
alization of Orey's Theorem for discrete spaces ([15], Lemma 1). The techniques 
employed in order to prove Theorem 3.3 stem from the method used by Orey. 
The major part of this proof consisted of demonstrating the convergence of 

• p(m-k) (q, q) qp(k)(q, x) 
A m (x) = p(m)(q, x) k= 1 

p(m) (q, q) p(.O (q, q) 

= Bs, m (x) + CN,., (x) 

N 

k = l  k = N + l  

where q eX, x ~X and m > N > 1. In order to do this, it followed that lim lim CN, m (X) 
N ~  m---} oo 

had to be shown to exist. This situation was handled by finding x E X  with x + q  
and j > 0 such that qP(J)(x, q)> 0 implying that 

qp(k ) ( q , X) N qp(k + j) ( q, q) 
qP(J) (x, q) 

(,) 

for all k > 1. This then enabled him to show the required existence. 

The main difficulty in generalizing this theorem was encountered with find- 
ing an appropriate analogy to (*). This difficulty was overcome with the establish- 
ing of the propositions and lemmas preceding Theorem 3.1. 

Proposition 3.1. Let  S ~  with n(S)>0 and for  some ~>0 inf p<")(x,y)>=e. 
Then n(S)< oo. x~s, y~s- 

Proof. For x e S ,  

1 > P(")(x, S) = S P(")(x, dy) > ~ p(")(x, y) n (dy) > e ~ n (dy) = ~ n (S). 
S S S 

Therefore 
1 

n(s)__<--. 
8 

3 Z.Wahrscheinlichkeitstheorie verw. Geb., Bd. 15 
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Proposition3.2. Let SeN  with 7z(S)>0 and for some e>0 inf p(n)(x,y)>e. 
xeS ,  y e S  n 

Then for all BeN(S) with re(B)>0 and for all xeS  ~ Bp(m)(x, B)>e re(B). 
m = l  

Proof 
n--1 

P~n)(x, B)= ~ ~ nP(m)(x, dy) p(n-m)(y, B)+Bp(n)(x, B) 
m = l  B 

< ~ BP(m)(x, B). 
m = l  

Hence 

i BP(m)( x' B)>P(n)( x' B)> ~ pIn)(x, y) ~z(dy)>e ~(B). 
m = l  B 

Proposition3.3. Let S e ~  with n(S)>0 and for some e>0 inf p(n)(x,y)>e. 
xeS ,  y e S  For any BeM(S) with rc(B)>O,/f 

and 

Sl={X:xeS,  Bp(1)(x,B) > erc2B)}, 

Si = x" x e S -  U S j, BP (i) (x, B) > for i = 2, 3 .... , n 
j = l  

then it follows that: 

1) S~c~Sj=O for all i4=j, 

2) 0 Si=S, 
i = 1  

3) for all Ae~(S)  with re(A)> 0, for all xeS, 

t/ 

n y, p(m+ii(x,B ) forall m>0. sP(m)(x, A)<__ e re(B) i=o 

Proos 1. Obvious. 

2. 0 Sic S. For x e S, there exists a smallest k, 1 _ k_< n such that 
i = l  

e ~(B) ~p(k) (X, B) >= 
n 

by Proposition 3.2. Therefore, XeSk implying that S c  [~ S~. 
i = 1  

3. Let A ' = A - B .  

~BP~"+i)(x,B)~ ~ ~. BP(m)(x, dy)Bp(i)(y,B) 
i = 1  i = 1  A'r~Si 

e ~ (B) ~ - -  Z BPtm)( x' A' n Si)-  e ~z(B) Bp(ra)(X ' A'). 
n 

n i = 1  /7, 
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BP (") (x, B) > BP (m) (x, A ~ B) > e ~ (B) Bp(m )(x, A c~ B) since 1 > e ~z (B)__> e ~z (B) by 
Proposition 3.2. n n 

B P(m) (X, A) = BP (") (x, A') + BP (m) (x, A m B) 
n 

B n < e ~(B)n i=~BP(~+i)(x' )+ ~ BP('~ 

Proposition3A. Let S r  with re(S)>0 and for some e > 0  inf p t ' ) (x ,y)>~.  
x~S, y e S -  

For all A ~ ( S )  with n(A)>0,  for all BeN(S) with n(B)>0,  for all xeS 

~ Bp(m)(x,A)< - n(n+ 1) 
m = l  - -  e~(B) " 

n n 

Proof. BP (ml (x, A) N e ~ (B~ i=~o BP(m + 0 (x, B) for all m > 0 by Proposition 3.3. 

BP(m)(x, A)< - - n  ~ BP(m+O(x, B) 
m = l  - -  e re(B) m = l  i = 0  

n i ~ lBp(~  ) n ~o n(n+l )  < - -  (x, B)= 1 - 
= a n(B) i=o - e re(B) i= e re(B) 

Definition. Wj,8~(z) = {x: Bpt~)(z, x)>e, x~B} where B r  

Remark. By ~1+ (X, N, z0, we shall mean the space of all non-negative, extended 
real-valued, 7r-integrable functions. 

Lemma3.1. Let B'r and zc(wj,B~(z))>0 for some j > 0 ,  e > 0  and zr Let 
Ve ~)(VVjB~ (z)) with zc(V)> O. I f  p is a probability measure on X such that p ~ re, and 
furthermore, if the Radon-Nikodym derivative of p with respect to ~z is bounded a.e. 
rr on V, say by Q, then for all m > 0 and for all f r Lf ~- (X, ~, r 0 

~ f(y) B,p(m)(x, dy) p(dx)<=~ ~f(y)~3,P(m+J)(z, dy). 
x ~ V  y e X  o X 

Proof. Let g be the Radon-Nikodym derivative of p with respect to re. Thus, 
g < Q  a.e. ~ on v 

Q j f(y) B,p(m +j)(z, dy) > Q ~ f(y) ~ B,p O) (z, x) ~,P(")(x, dy) ~ (dx) 
X y~X x ~ V  

>eQ ~ f(Y) ~ n,P(~)(x, dy)u(dx) 
y~X x e V  

>=e ~ j f(y)n,P(m)(x, dy)g(x)z:(dx) 
x ~ V  y~X 

>=e ~ ~ f(y)n,P(m)(x, dy)p(dx). 
x e V  yuX 

Lemma 3.2. Let A 6 ~  with u(A)>0.  Then for all z~X, there exists m~>0 and 
A* ~ ( A )  with zc(A*)> 0 such that 

P("')(z, A*)= ~ p(m~)(Z, x) ~t(dx)>0. 
a*, 

3* 
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Proof For any z e X ,  suppose that for all m, p~ x)=0  a.e. xEA. Then 

pCm) (z, A) = Pro m) (z, A) + ~ p(m)(z, x) rc (dx) = Po (m) (z, A). 
A 

Thus there exists Am (z)e N(A)with ~z (Am (z))= 0 such that Po (") (z, A)= Pcm)(z, Am(z)). 

This is true for all m, hence P(") ( z , A -  (-J A~(z))=O for all m. Since we h a v e a  
\ - -  ] i = 1  

Harris Process and ~ A -  ~ Ai(z =~(A)>0,  there exists some m > 0  such that 
i = l  

pCm) z , A -  U Ai(z) >0  which is a contradiction. Thus there exists m~>0 and 
i = 1  

A *e~(A)  with ~(A*)>0 such that 

p(mz) (z, A*) = ~ p(mz)(z, x) 7r (dx) > O. 
A*~ 

Lemma 3.3. Let A ~  with ~(A)>0 and ~ ( X - A ) > 0 .  Then for all B ~ J 3 ( X -  A) 
with ~ (B) > O, there exists z o ~ B and there exists B' ~ ~ (B) with n (B') > O, j > 0 and 
e > 0 such that 

~(A ~ W~ (Zo)) > O. 

Proof. For any z~B, Lemma3.2 implies that there exists A*r  with 
n (A*) > 0 and mz > 0 such that 

P(mz)(z,A*)= ~ p(m~)(z, x) ~(dx)>0.  
A* 

Assume that for all z~B, for all m, for all B'~J3(B) with ~(B')> 0 that B,p(m)(z, X)= 0 
a.e. x~A. 

For any B ' ~ ( B )  with =(B')>0, z~B, k__> 1 we have 

p(k) (Z, B') = ~ p(k)(z, X) ~ (dx) + Po (k) (z, S'). 
B' 

Therefore, there exists Bk(Z)~(B '  ) with g(Bk(Z))=O such that po~k)(z,B')= 
n(k)(z, Sk (z)). Hence 

P(k)(Z, B ' -  Bk(Z))= [. p(k)(z, X) 7c(dx). 
B' 

We may thus choose B * e N  B ' -  Bi(z) with ~(B*)>0 and B* as small as 

we like, the size to be determined later. We thus have 

W)(z, B*)= ~ p(k)(z, x) rc(dx) 
e*~ 

for k =  1,2, ..., m~-  1. 
m ~ - i  

pCmo) (Z, A*) = .~e(m~)(z, .4") + ~ ~ p(~)(z, x) .~p(m~- ~)(x, A*) rc (dx) 
k = l  B* 

B**P cm~) (z, A~*) = ~ B,p cm*) (z, x) ~z (dx) = 0 by assumption. 
A* 
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Therefore 
m = - I  

P("~)(z, A*)= ~ ~ p(k)(z, X) ,.=P(m~-k)(x, A*) rr(dx). 

m= - :i. 

If B ' -  (._) Bi(z) has at least one atom, let us choose it for B*, say b. (Note: 
i = 1  

D is an atom if r~(D)>0 and EeN(D) implies that ~z(E)=0 or r e ( E - D ) = 0 .  Since 
~3 is separable, it has a countable number of generators, say {Bi}. Consider the 

oo 

non-empty distinct sets of the form (~ 3i where B/= B~ or B~. Then, D ~ (~ 3~ for 
i = 1  ( ~  i = 1  

some (Bi}. Since point sets are measurable, Bi = {x}. For  some ~> 0, re(D)= ~. 
i = 1  

Thus for some 3/, i=  1, 2 . . . . .  n rc D c~ Bi = ~ for all n. This implies that 
\ i = 1  / J  

7c({x})= ~, i.e., the measure of an atom is concentrated at one point, the measure 
of the remaining points being zero. Hence we may think of an atom as essentially 
that one point.) Therefore 

m= - 1 

n("')(z, A*)= ~ P(k)(z, b) bP(mz-k)(b, A*) 
k = 1  

D ( m z - k ) f L ,  A * ~ , - -  D ( m z - k ) { l a  A * ~ •  b-- w , ~ : - b - o  w,~J~ ~ bP("=-k)(b,Y)~z(dY) 
A* 

- -  b'D("~-k)'O w, ~a*~ by assumption. 

Thus there exists Ak(b)~I(A*) such that rC(Ak(b))=O and 

Hence 
bPo(mZ - k)(b, A*) = bP (mz- k)(b, A k (b)). 

bPt,,= - k)(b, A* - Ak (b)) = O, 

m z  - 1 \ 

O<P("~)(z,A*)=P ("~) z,A*~- i~=1 Ai(b)) 

m = - - i  

= ~, p(k) (z, b)" 0 = O, 
k = l  

a contradiction. 
mz-- 1 

If B ' -  U B/(z) has no atoms, then we may choose B* sufficiently small with 
i = 1  

~(B*) > 0 such that 
m = - I  

(. p(k)(z, X) rc(dx)< p(m')(z, A*). 
k=i B* 

(Note: Our definition of separability and Theorem D, p. 56 of [5] imply the 
definition of separability of [16], p. 264 and hence the completeness of the sub- 

/ m = -  1 \ 

sequent metric space. We may choose a set S ~  (n'- U U/(z)} with 0 < 7:(S)< 
' ,  i = 1  / 
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since the measure is sigma-finite. Thus, the theorem on p. 264 of [16] applies 
implying the existence of a set B* e N (S) of arbitrarily small measure and re(B*)> 0.) 

mz-1 
p(m.) (z, A*) = ~ S p(k)(Z, X) B.P (mz- k)(X, A*) n (dx) < p(m~)(z, A*), 

k = l  B* 

a contradiction. Note that B.P(m~-k)(x, A*)< 1. 
Hence, in either case, there exists some j > 0, some B' e N(B) with rc(B')> 0 and 

Zo e B such that we have B,p t~) (Zo, x)> 0 over a set A'e N (A) with 0 < n (A')< c~. 

We may choose e > 0 sufficiently small such that 

B,p(J)(Zo, x) 7z(dx) > e rc(A'), 
A' 

i.e., ~ [R,p(J)(Zo, x ) - e ]  rc(dx)>0. 
A' 

Let R = {x" x cA', ~,p(J) (Zo, x) > e} = A' c~ Wj,B~ (Zo). If rc(R) = 0, then 

[ B , p ( J ) ( Z o , X ) - - 8 ]  ~ ( d x ) =  ~ -k- ~ = ~ [ B , p ( J ) ( z o , X ) - 8 ]  7 c ( d x ) ~ O  
A' R A" - R  A ' - R  

which is a contradiction. 

Remark. If there are no atoms in B, then the result of Lemma 3.3 can be changed 
as follows: for all z e B, there exists B'e N (B) with ~ (B')> 0, j > 0 and e > 0 such that 

Wj"  (z))> 0. 

Lemma 3.4. Let A e N with ~ (A)> 0 and r e ( X - A ) >  O. Then for all B e N ( X -  A) 
with n(B)>0, for i= 1, 2, ... there exists BIeN(B) with 7c(Bi)>0 and there exists 

z ieB, j i>O,  e i>O such that ~z A - U W i  =0 where B~ Wi= Wj,,~,(zi)c~Ai, AI= A 
j - 1  i=1 I 

and A t = A - U w k for j = 2, 3 . . . . .  
k=l  

Proof Let J ~ =  {W~,B~(z): ~(W~,B~(z)c~A~)>0 where j > 0 ,  e>0,  zeS ,  B'eN(B), 
~(B')>0}. ~/i#:O by Lemma 3.3 as long as ;z(Ai)>0. Choose arbitrary 6>0. Let 
fik = sup { ~ (Wj~' (z) n Ak): Wj~" (z) e JE k }. This proof now follows that of Theorem 2.1 
letting 6, J//k, Wk play an analogous role to e, ~ ,  Ck respectively. 

Theorem 3.1. Let S e N  with ~r(S)>0 and for some e > 0  ~s,infy~s p(")(x, y)>_e. Let 
there exist BeN(S )  with )z(B)> 0 and qeB for which 

lim p(r~+l)(y, B) _ 1 
,.~| W~(q ,B )  

uniformly in y, y e B. Let p be a probability measure on X such that p ~ ~z, and further- 
more, let the Radon-Nikodym derivative of p with respect to ~z be bounded a.e. ~z on 
S. For ~ ( S - B ) > 0 ,  let ~={I/Vj,B~,(z): rc[VVjB,'~,(z)n(S-B)]>O where j > 0 ,  e '>0,  

/ L \ 
zeB, B'eN(B), For W;e  with i=1,2,.., let WeNIU W3 

I M \ \ = 1  i / 

with ,   Oa~ 
\ l / i =  
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M > 0 .  Then fork=O, +_1, +_2 .... 

P(m+k)(x'B) 1 p(dx)=O. 

P(m+k)(x, B) 1 
(b) l i rn  j P(")(q,B) p(dx)=O. 

(c) -P(m +k)(x, B) P , 1. 
P(~) (q, B) s 

P("+k)(X, B) p(dx) 
(d) lim w _ p(W) 

m~oo [, p(m)(y,S)p(dy ) p(W') 
W" 

(e) For B i ~ ( B  ) with p(Bi)>O, i=  1, 2 

P(m+k)(X, B) p(dx) 
lira B~ p(BO 
m-~o~ ~ p(m)(y,B)p(dy) p(B:)" 

B2 

Proof. (a) Let V1 = W n  W1 
i - 1  

and Vi = Wc~ Wi- ~ VVk for i=  2, 3 . . . . .  L. Thus 
k = l  

lim ~w-P("+k'(x'B) 1 L ~ p,m+k)(x,B) 1 
,,~o~ P(")(q,B) p(dx)= ~ lim p(dx). 

i= 1 "~~ i P(")(q, B) 

Without loss of generality, we must show that 

limo~ ~ 1 p(dx)=O. 
, P(") (q, B) 

V/c Wi= Wj,~, (z) for some j>O, d>O, z~B, S ' ~ ( U ) ,  ~(U')> O. 
For x~S, fixed k and re>N>>_ 1 we have 

P(") (x, B) " -  ' B,P (v) (X, dy) P("- ~) (y, B) B,P (') (X, B) 
A,,,k(X)= p ~ ~ )  -- ~=1 ~ P("-k'(q,B) + P'"-k'(q,B) 

=~+ 
v = l  v ~ N + I  

= B~vl m,k  (X )  -'}- c B I  m , k  ( X ) ,  

lim S[Am, k(X)-- 11 p(dx)= lim lim S [B~',m,k(x)+ C~'m,k(X ) -  II p(dx) 
r n ~  V~ N ~ o  m~oo  V~ 

=< lim lim ~ IB~v'm,k(x)--l] p(dx) 
N---, o~ m ~ ov Vi 

+ lira lim ~ C~I m, k(x) p(dx). 
N ~  r n ~  Vi 
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Since qsB, we may set y=q in the hypothesis to get that 

lim p(m+l)(q, B) p(m+k)(q, B) 
- 1 implying lim - 1 for all k. 

m-~ ~ p(m)(q, B) ,.~ o0 p(") (q, B) 

N n,P (~) (x, dy) p(m-0 (y, B) 
lim limB~',m,k(X)= lim lim ~ 

N . . . .  ~ N~oo m--,~ ~=t n' P(m-k)(q, B) 

= ~ ~ B,P(V)(X, dy)= B,P(~)(X, B')= 1 
v = l  B" v = l  

for all x e S. For  fixed N, there exists mo (N) such that for all m > mo 

p(m- i)(y, B) 
_<2 p(,.- k) (q, B) -- 

for all yeB,  i=  1, 2, ..., N. For  m>mo, 

N 

n' - 1 1 ~ 2  IBs, m,k(X) ~B,P(O(x,B')+I-<3. 
V = I  

Also 
N 

lira B B' N, ,., k(X)= ~ B,P(O)(X, B'). 

Since p(V~)<oo, we may apply the Dominated Convergence Theorem twice to 
get that 

lira lim I [Bfe',.,k(X)-- 11 p(dx)= I lim fimIB~im, k(X ) -  1] p(dx)=O. 
N ~ o o  m ~ o ~  Vi Vi N ~ o ~  

lim Am, k(Z)----1 for all z~B since 
m---~ oo 

P(m)(z, B) P(m)(z, B) p(.,-1)(q, B) 
lim - lim m ~  p(,.-k)(q,B) ,,--,~ p(m-1)(q,B) p(m-k)(q,B) -1 .  

Therefore lim lim C~',m,k(X)=O for all zeB, for all B'e~(B) with ~(B' )>0.  
N ~  m-..~ oo 

I C~',m,k(x) p(dx)= ~ ~ n'P(~)(x'dy)p(m-~)(Y'B) 
v, v, v=N+l B' p(,,-k)(q,B) -~ 

< e [ ~1  ,,p(v+j)(z, dy)p(m-v)(y,B ) 
= e~- v=N+l ~ p(m-k)(q,B) 

n,P(m)(x, B) ] p(dx) 
p(,. - k) (q, B) 

B,p(m+J)(Z, B) 
p(m- k) (q, B) ] 

for some Q > 0, applying Lemma 3.1. 
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For m sufficiently large, 

p(m+j-k)(q, B) 
p(m- k) (q, B) ~ 1 + 5  

given arbitrary 6 > 0 in which case 

• C B' N, ,,,, k(x) p(dx) 
vi 

< Q(le,+5) [ ,,+~-1 J 8,p(v)(z, dy)P(,,+j-v)(y,B). 
= v=N+j+l ," p(m+j-k)(q, B) 

Q(1 +6) ,, 
5 e '  C s + j ,  m + j ,  k ( Z )  �9 

uP(m+J)(z, B) ] 

Hence lim lim ~ C s' N, m, k(X) p(dx) = 0 implying that 
N-~ oe m...* oo Vi 

lim j ]Am, k(X)-- 1[ p(dx)=O. 
m--~ co V/ 

P("+k)(x'B) 1 p(dx)= l im  P("+k)(x'B) 1 p(dx)=O. 
(b) l i rn  ~ p(m,(q,B ) ~ p(m,(q,B ) 

L 

(c) Choose the Wia~/as  defined in Lemma 3.4. Let W= W'=  ~J W i. (a) implies 
P("+k)(x, B) i=l 

P(m+k)(x, B) P ~ 1. (b) implies P ~ 1. Lemma 3.4 implies that that p(m)(q, B) w P(")(q, B) B 
V 

we may choose L sufficiently large such that for arbitrary v > 0, 7 : ( S - B -  W ) < ~ -  
implying that p ( S -  B - W) =< (2 n ( S -  B -  W) < v. Therefore 

P("+k)(x,B) o , 1. 
P(") (q, B) s 

p(m + k)(x, B) 
(d) (a)implies thatlimo~ ~ p(,,)(q, B) p(dx)=p(W). 

P(m+k)(X, B) p(dx) 
lim w 

m~ co ~. p(m)(y, B) p (dy) 
W'  

j p(m +1,)(x, B) p (dx) p(m) (q, B) 
= lim w 

m ~  0o p(m) (q, B) 
p(W) 

n(m)(y, B) p(dy) p(W') " 
W' 

(e) 

P(m+k)(x, B) p(dx) ~ P(m+k)(x, B) 
lim ~ = lim B~ P(m-1)(q, B) p(dx) _ p(B1) 
m~oo j P(m)(y,B)p(dy) ,n~  p(m)(y,B) p(U2) ' j p(ay) 

B2 p ( m -  1) ( q ,  B) 
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Remark. The hypothesis of Theorem 3.1 may be further generalized by assuming 
that q e X and 

instead of qeB. 

lira p(m+l)(q, B) _ 1 
~ o  P{m)(q,B) 

Corollary 3.1. Let there exist B e 5  P with n(B)> 0 and q s B  for which 

lira p(m+~)(y, B) _ 1 
, , -~  P(m)(q,B) 

uniformly in y, y~B. In addition, let d= 1. Let p be a probability measure on X such 
that p ~ n, and furthermore, let the Radon-Nikodym derivative of p with respect 
to n be bounded a.e. n on X. For n ( X - B ) > 0 ,  let ~={VVj,B~,(z): n[WjB~,(z)c~ 
(C-B) ]>0  where C~5 ~ with n(C-B)>O,j>O, g>0, z~B, B%N(B), n(B')>0}. For 

L 

with p(W')>0 for any finite L>0,  any finite M>0.  Then for k=0, _1,  _+2 ... .  

P{"+k)(x,B) 1 p(dx)=O. 
(a) limbo w~ p{m)(q,B ) 

P("+k)(x, B) ~, 
(b) p(m)(q, B) x ) 1 for any n' such that n' ~ n, n'(X) < oe. 

P(m+k)(x, B) p(d x) 
p(W) 

(c) lira w 
m-,~ ~p(m)(y,B)p(dy) p(W')" 

W' 

Proof (a) and (c) Theorem 2.2 implies that Ww W' u B~S r and hence Theo- 
rem 3.1 applies. 

(b) Theorem 2.1 and (c) of Theorem 3.1 yield the desired result. 

Theorem 3.2. Let S ~  with n(S)>0 and for some ~>0 inf p(n)(x, y)>a  I f  
xES, y~S 

there exists B6~(S )  with ~z(B)>0 and q~S for which 

lira ~ f(x)P(m+l)(q, dx) [ f (x )n(dx)  
-~ oo B p(m) (q, B) [~ n (B) 

for all f 6 ~  (B, ~(B), n) then for all A e ~ ( S )  with n(A)>0, for all C ~ ( S )  with 
n(C)>O,k=O, +_1, ++_2 . . . .  

p(m+k)(q, A) n(A) 
limo~ n(.O(q, C) - n(C) " 

Proof Without loss of generality (cf. Theorem 3.1), we just have to show that 

lim P{m)(q'A) - n(A) 
m~o~ p(m)(q, B) ~z(B) " 
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For m>N>l  we have 

Am(A)= p(m)(q,A) m - 1  p(m-v)(q, dx)Bp(,)(x,A) 
p(m)(q, B) -- ~=1 ~ , ~ p(m)(q, B) 

= E + =DN, m(A)+EN, m(A), 
v = l  v = N + I  

N 

lira limDum(A)= lira lim ~ ~P( . . . .  )(q'dx)BP(~)(x'A) 
N . . . . . .  ' N . . . . .  ~= 1 B p(m) (q, B) ' 

oo ,P(~)(x, A) 7:(dx) 
lim ,~imDN, m(A)= ~1 , 

N - .  ~ .(B) 

I E 
B v = l  

- -  < o ( 3  

re(B) 

Bp(m) (q, A) 
p(m) (q, B) 

by Proposition 3.4. Therefore Am(A) converges if and only if lim lim EN, m(A) 
N ~ o O  m ~ c o  

exists. Am(B)= 1 and lira lira DN re(B)= 1 implies that lim lim EN re(B)=0. 
N ~ o o  r n ~ c o  ' N ~ o c  m ~ o c  ' 

m - 1  EN, m(A)= ~ ~ P(m-~)(q'dx)sP(~)(x'A) BP(m)(q,A) 
,,=N+~. P(m)(q, B) ~ p(ml(q, B) 

m-~ [ n i ~ P(m-~)(q, dx).P(~+O(x,B)] 
< Z ~ rc (B) p(m)(q, B) 

v = N + l  i = 0  

n i BP(m+i)(q' B) 

+ e u (B~ P(") (q, B) i = 0  

by Proposition 3.3. For m sufficiently large, 

p(m + i)(q, B) 
p(m)(q, B) __<(1 +3) 

given arbitrary 6 > 0, i= 0, 1 . . . . .  n, in which case 

e re(B) p(m+i)(q, B) i = 0  v = N + i + l  B 

p(m+~-V)(q, dx) BP(~)(x, B) 8P(m+O(q, B) ] 
p(m+i)(q, B) J 

tl 

n(1 +~) ~=oEN+i,m+i(B ) i.e., EN, m(A)~ e~(B~ .= 

Hence lim lim EN re(A)=0. Therefore 

lim Am(A)- • v=l 
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It has been shown in Harris [7] that 

hence, 

j ~ BP(')(x,A) ~(dx)=rc(A) 
B v = l  

p(m)(q,A) __ 7r(A) 
limoo p(m)(q, B) 7r (B)" 

Corollary 3.2. Let S e N  with n(S)>O and for some 5>0 inf x~s,y~sp(")(x, y)>~. 
Also, let the probability measure be absolutely continuous. I f  there exists BeN(S)  
with ~(B)>O, qeS  and r~B for which 

lim p(,,+ l)(q, x) _ 1 
m.-.oo p(m)(q,r) 

uniformly in x, x e B, then for all A e N (S) with rc (A) > O, for all C ~ N (S) with rc (C) > O, 
k=0, +1, __2 ....  

lim 
m--~ oo 

Proof. The results follow if 

p(,, + k)(q, A) zc (A) 
p(m)(q, C) 7~(C) " 

lim f f(x)p(m+l)(q'dx) 
m--~ oo ~ p(m) (q, B) 

for all fe. .~+(S, N(B), 7r). 

f(x) n (dx) 
.(B) 

I f ( x )  p(m+l)(q, x) ~(dx) 
f(x)  ptm+l)(q, dx) B p(m)(q, r) p(m)(q, r) 

lira f = lim 
. . . . . .  ~ P(m)(q,B) p(m)(q,x) n(dx) p(~-l)(q,r) 

~ p(m- 1) (q, r) 

f (x) 7z (dx) 
B - lira p(m)(q,r) = f  f(x)rr(dx) 

I (dx) m ~  oo p ( m -  1) (q, r) ~ ~ (B) 
B 

Theorem3.3. Let S e N  with ~r(S)>0 and for some e>0  inf p(")(x, y)>e. Let 
there exist BeN(S)  with n(B)>0 and qeB for which x~s,y~s 

f (x)  P(m+l)(y, dx) f(x)rc(dx) 
l im ~ p(m,(q,B ) ~ Tr(B) 

uniformly in y, ye B, for all f e  s (B, N (B), ~r). Let p be a probability measure on X 
such that p ~ re, and furthermore, let the Radon-Nikodym derivative of p with respect 
to rc be bounded a.e. 7r on S. For ~(S-B)>0 ,  let J///=(WjB~,(z):Tr[Wj,8~,(z)c~ 
( S - B ) ] > 0  where j > 0 ,  e'>0, zeB,  B' eN(B), ~z(B')>0}. For WieJ/l, Wi' e~/g with 

i=1 ,2  .... let W e N  W~ withp(W)>Oand W ' e N  W/ wi thp(W')>Ofor 
i -  \ i = 1  
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any finite L > O, any finite M > O. Then for all A ~ ~ (S) with ~z (A) > O, for all C ~ ~ (S) 
with T:(C)>O, k=O, +_1, +_2,... 

P(m+k)(x, A) re(A) 
(a) lim ~ p(m)(q,B ) u(B) p(dx)=O. 

m ~ o o  W 

P(m+k)(x, A) re(A) 
(b) lirnoo J p(m)(q, B) It(B) p (dx) = O. 

P(m+k)(x, A) 7:(A) 
(c) p(m)(q, B) ~ ' n (B) " 

j P(m+k)(x, A) p(dx) 
p(w) 7:(A) 

(d) lim w 
m ~  ~ p(m)(y, C)p(dy) p(W')~z(C)" 

W" 

(e) For B i ~ ( B  ) with p(Bi)>O, i= 1, 2 

P(m+k)(x, A)p(dx) 
lim B1 _ p (B0 u (A) 

m-~o ~ p(m)(y, C) p(dy) p(B2) n(C)"  
B2 

i - 1  

Proof. (a) Let V~ = Wc~ W1 and Vii = Wc~ W/ -  [9 ~ for i =  2, 3, . . . ,  L. Without  
k=l 

lOSS of generality (cf. Theorem 3.1) we just have to show that  

j P(m+k)(x,A) 7:(A) p(dx)=O. 
limoo , p(m) (q, B) zr (B) 

V/c Wi = WjB~,(z) for some j > 0 ,  e '>0 ,  zeB, B'e~(B),  7:(B')>0. 

For  yeS,  fixed k and m > N > l  we have 

Am,, (y, A)=  p(m)(y, A) m-1 p(m-v)(y, dx) 8P (v) (x, A) BP (m) (y,  A )  

n(m-k)(q, B) -- ~=1~ ~' S n(m-k)(q,S ) + p(m-k)(q,B ) 

N 

= ~ + =DN, m,k(y,A)+EN, m,k(y,A), 
v=l v=N+l 

N P(~-~)(y, dx) BP(~)(x, A) 
lim lim 2 I lira limDN ,. k(y,A)= N . . . . . .  ~=1B N . . . . .  ' " P(m-k)(q,B) 

Z, ~' lim p(m-~)(y, dx) P( . . . .  1)(q, B) I BP(V) (x, A) 
v=a m-.o~ B p( . . . .  1)(q, B) p(m-k)(q, B) 

,P(~)(X, A) 7:(dx) _ 7:(A) 
S v=i/" B 7:(B) 7:(B) 

uniformly in y, y~B (cf. Theorem 3.2). 

lira Am k(Y, B)= lim f p(m)(y, dx) 
m~ ~ ' , ~  ~o ~ p ( m -  1) (q, B)  

p(z - a) (q, B) 
- 1  p(m- k) (q, B) 
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uniformly in y, y E B. Therefore lim lim EN, ,,, k(Y, B) = 0 uniformly in y, y e B. 
N ~  m ~  

it 

EN, m,k(Y, A)< n(1 +6) ~ EN+i, m+i,k(Y, B) 
= ere(B)i=o 

(cf. Theorem 3.2) for m sufficiently large, given arbitrary 8 > 0. Therefore 

lim limEN, m,k(y , A)=0 
N--+~  m - - , ~  

uniformly in y, yeB. We finally have that 

2imAm. , k(Y, A)= 
uniformly in y, yeB. 

For yeS, fixed k and re>N> 1 we have 

.(A) 
re(B) 

lim 

m - 1  A,.,k(y,A)= ~ ~ ..P(~)(y, dx)P("-')(x,A) .,P(")(y,A) 
v = 1 B' p(m- *) (q, B) ~ p ( , . -  k) (q, B) 

= ~N + ~ --Un'N,m,k(Y,A)+C~'m, ,k(y,A), 
v = l  v = N + l  

lim ~ Am, k ( y , A ) - ~  p(dy) 

= lim lim ~ B~',m,k(y,A)+C B', k ( y , A ) - - ~  p(dy) 

, ,, ~z(A) p(dy)+ l~m !, CN, m,k(y,A)p(dy) < lim BBIm, k(y,A)--~(B) lim lim ~ n' 
r n ~  . N ~  m ~ o o  

N ,,p(~)(y, dx)P(~-~)(x, J4) p(m_,)(q,B ) 
lim B~'m k(Y, A)= lim lim E 

" ' N - .  0o m ~  oo v = 1 B '  p(m-  ~)(q, B) p(m- k)(q, B) 

-- rc(B)TC(A) .=1 ~' B'~u'P(')(y'dx)= re(B) 

for all y e S. For fixed N, there exists m0 (N) such that for all m > mo 

P(m-i)(x,A) < 7:(A) 
p(m- k) (q, B) = rc (B) 

+1 

for all xeB, i= 1, 2, ..., N. For m>mo, 

N,m, ~ /re(A))  N re(A) 
B ~' g(y,A)- = < [ ~ - + 1  v~=IB,P(~)(y,B')+ n(B) 

Also 

limB~v',m,k(y,A)- re(A) ~=1 m~ ~ 7: (B)  , B'P(~) (y'  B ' ) .  

u(A) , 
__<2 ~ - +  1. 
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Since p(V~)< ~ ,  we may apply the Dominated Convergence Theorem twice to 
get that 

lim l i m  J B~v'm, " "" u(A) l N-~ ., k(Y, A ) - - ~  p(dy) 

= ~ lira lim B~',m,k(y,A)-~(~, p(dy)=O. 
vi N ~ o  , n ~  ~Z( ) 

,, u(A) 
Since limAm, k(Z,A)=-~-~-~, for all zeB, then lira lira C~'m k(Z,A)=O for all 

m ~ o o  ~ N ~  m ~  ' ' 

zeB, for all B'e~(B) with 7~(B') >0. 

C~',m,k(Y,A) p(dy)< Q(1+5) ,, C~, + ~, m +~, k( z, A) 
vii r 

(cf. Theorem 1) for some Q > 0, applying Lemma 3.1, for m sufficiently large, given 
arbitrary 5 > 0. 

Hence lira lira ~ B' CN, m, k(Y, A) p (dy) = 0 implying that 
N~oo m~oo Vi 

lim v( Am'k(y 'A)--~ B)) p(dy)=O. 
m ~ (~o i 

.]P(m+k)(x,A) u(A) p(dx)=f lim P(m+U)(x'A) 7~(A) 
(b) limo ~-  P ( " ~ , B )  re(B) ~ m-~ p(m)(q,B) u(B) p(dx)=O. 

L 

(c) Choose the W / e J  as defined in Lemma3.4. Let W=W'= 0 Wi. (a) 
i = 1  

P ( m + k ) ( x ,  A) re(A) P(m+k)(x, A) p ~(A) 
implies that p(m)(q, B) ~-~ ~(~- .  (b) implies that p(m)(q, B) " ' n(B) " 

Lemma 3.4 implies that we may choose L sufficiently large such that for arbitrary 
V 

v > 0, n ( S -  B -  W) < ~ implying that p ( S -  B -  W) < Q ~z(S - B - W) < v. Therefore 

P(m+k)(x,A) p ~z(A) 
p(m)(q, B) s 7r(B) 

(d) (a) implies that 
P(m+k)(x, A) 

lmip~ ~W P(m)(q, B) 

[ P(m+k)(x, A) p(dx) 
lira w 

m-, co ~ p(m)(y, C) p (dy) 
W' 

P(m+k)(x, A) p(dx) 
= lira w 

m-~ ~ p(m) (q, B) 

.(A) 
p(dx )=p(W)- -  ,(B) 

p(m)(q, B) p (W)  Tg(A) 

p(m)(y, C) p(dy) p(W') re(C)" 
W' 
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P(m+k)(x, A) p(dx) 

(e) lim n~ 
,,-*~ ~ P('~)(y, C) p(dy) 

B2 

p(m + k) (X, A) 
p(dx) 

= lim ~' P(m-a)(q'B) _ p(B~)n(A) 
m-~oo ~ n(~)(y, C) p(dy) p(U2)~(C) " 

B~ p(m_ i) (q, B) 

Remark. The hypothesis of Theorem 3.3 may be further generalized by as- 
suming that q e X and 

pIm + 1)(q, B) 
lira p(m)(q, B) - 1 

m--* oo 

instead of q e B. 

Corollary 3.3. Let S e N  with re(S)>0 and for some e>0 inf p(')(x,y)>e. 
xeS, y e S  

Also, let the probability measure be absolutely continuous. I f  there exists BeN(S) 
with n(B)>0, qeB and feB for which 

lim p(m+i)(y, x) _ 1 
,,-~| p(m)(q,r) 

uniformly in x and y, xEB, yeB, then the results of Theorem 3.3 follow. 

Proof. The results follow if 

lim f f(x)p(m+l)(y, dx)_=f f(x)n(dx) 
m-. | ~ P(~) (q, B) ~ T~ (B) 

uniformly in y, ysB, for all f e ~  + (B, N(B), ~). Let 

f(x)P("+l)(y, dx) ~ f(x)~(dx) ~j,f(x) P("+i)(y'x) 1 [~(dx). 
Ira(y) = 

p(m)(q, B) B n(B) <=B "1 p(m)(q, B) n(B) 

p(m + 1) (y, x) 

lim p(,,+i)(y, x) lim p(m-i)(q, r) _ 1 
,,-~oo P(")(q,B) =-,,-~oo ~ p(m)(q,z) ~(dz) ~(B) 

B p(m-1)(q, r) 

uniformly in x and y, x~B, y~B. 

Since ~ f(x) rc(dx) ~(B) < 0% we have that lirnoo Im(Y)=0 uniformly in y, yeB, for 
B 

all f e  s176 (S, N (B), n). 

Corollary 3.4. Let there exist BeSP with x(B)>0 and qeB for which 

lim f f(x) p(,.+l)(y, dx) = [ f(x) rc(dx) 
m -  o0 ~ p(m) (q, B) ~ ~ (S) 

uniformly in y, yeB, for all f e ~ - ( B ,  ~(B), 7c). In addition, let d= 1. Let p be a 
probability measure on X such that p ~ ~, and furthermore, let the Radon-Nikodym 
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derivative of p with respect to 7: be bounded a.e. 7r on X. For 7: (X-B)>0 ,  let J~ = 
{ wj;;, (z): ~ [ wj;;, (z) ~ ( c -  B)] > 0 where C ~ :  with ~ ( C -  B) > O, j > O, ~' > O, z ~ B, 

K 

with 
\ 1  / / i =  M \ 

p(W)>O and W' ~.~ { U wi') with p(w')>o for any finite L>O, any finite M>O. 
\ = l i  ! 

Then for all A6Sf  with ~(A)>0, for all Ce5 f with ~(C)>0,  k=0,  _+ l, _+2 . . . .  

P(m+k)(x,A) u(A) p(dx)=O. (a) limo~ 

P("+k)(x,A) ,, 7:(A) : 7:, 
(b) p(m)(q, B) x ) ~ -  jor any such that 7:' ~ 7:, rc'(X) < oo. 

P("+k)(x, A) p(dx) 
p ( w )  ~ (A) 

(c) lira w 
m~o ~ p(m)(y, C)p(dy) p(W')7:(C)" 

W" 

Proof (a) and (c) Theorem 2.2 implies that W u  W ' u  B~S f and hence Theo- 
rem 3.3 applies. 

(b) Theorem 2.1 and (c) of Theorem 3.3 yield the desired result. 

Corollary 3.5. Let X be a discrete space and p(m)(i, j) be the m-step transition 
probabilities of a recurrent, irreducible, aperiodic (d= 1) Markov chain. I f  there 
exists q~X  for which 

lira p(,,+l)(q, q) _ 1 ~,_~ p(,O(q,q) 

then for all A~Sf  with re(A)>0, for all C~Sf with 7:(C)>0 we have that for all 
x~X,  for al ly~X,  k=0,  _+1, _+2, ... 

lim P(~+k)(x'A) - u (A)  
m-~oo p(m)(y, C) 7c(C) 

Proof Theorem 2.1 states that 7: ( X -  0 Ci) =0. Since 7:({x})>0 for all x e X ,  
\ i=l 

X =  0 Ci. (There are no non-empty null sets.) Therefore, for each x~X,  x~ Ci 
i = 1  

for some i. Letting p - n  and B = {q} in Corollary 3.4, we get the desired results 
from (c). This follows since for any x~X,  qP(J)(q, x)>~ for some j > 0 ,  e > 0  as we 

/ql have a Harris Process and ~({x})>0, i.e., x~Wj,~ (q). 

P(m+k)(z, A) 7:(dz) P("~+k)(x, A) ~({x}) ~({x}) ~(A) 
lira (~} = lira - 

m ~  (. P(m)(z, C)~(dz)  m ~  p(m)(y, C)~({y})  ~({y})7:(C)" 
{y} 

The author would like to convey his appreciation to Professor Steven Orey for his invaluable 
guidance, advice and encouragement. 

4 Z. Wahrscheiniiehkeitstheorie verw. Geb., Bd. 15 
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