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Stationary Regenerative Phenomena 
J. F. C. KINGMAN 

Summary. Corresponding to any p-function p, a stationary version of the associated regenerative 
phenomenon is constructed for which the underlying "probabi l i ty"  measure may have infinite total 
mass (though it will always be a-finite if p is standard). As a trivial consequence, p is a positive-definite 
function. The construction is generalised to quasi-Markov chains. 

1. The Positive-Definiteness of p-Functions 

According to Kendall [5] the transition probabilities p~j(.) of a (standard) 
continuous-time Markov chain 1 admit a Fourier integral representation which 
in the diagonal case i=j  takes the form 

Pu(t)=pn(OO)+ ~ dPi(a ) c o s a t d a ,  (1) 
0 

for a non-negative function ~b i integrable on (0, oo). The proof makes use of rather 
deep Hilbert space methods, but a more elementary proof of a special case has been 
given by Feller and Orey [3]. 

The function Pu necessarily belongs to the class N of standard p-functions 
defined in [6], and Kendall's result is there extended to this class: every p in 
admits a representation 

oo 

p(t) =p(oo)+  ~ ~b(a) cos at  da,  (2) 
0 

where ~b is non-negative and integrable (Theorem 5). 

It has been observed by Loynes [ 11] that a somewhat weaker form of Kendall's 
result could be obtained much more easily as follows. Suppose that the Markov 
chain admits an invariant measure, a collection of positive numbers mi (where i 
runs over the countable state space S) such that 

for a l l i e S  and all t>O. If also 

ms = ~, mi Pit (t) (3) 
ieS 

F~mj < oo, (4) 
j~S  

we can normalise the numbers mj to be a probability distribution over S, and then 
construct a stationary Markov chain (Xt) with 

P(Xs=i)=mi,  P(Xs+t=jlXs=i)=pi2(t ) 

1 As  usual ,  we fol low the no t a t i on  and  t e r m i n o l o g y  of C h u n g  [1].  
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for t>0 ,  i , j~S .  For any i6S,  define 

Zt = 1 if Xt = i, (6) 

=0  if Xt:~i;  

then Z is a stationary stochastic process, and 

E (Z s Z~) = m i P i lO t -  s I). (7) 

It follows that, for any real numbers t~, ~ (c~ = 1, 2 . . . .  , n), 

m i P i i ( l t ~ - t ~ l ) ~ = E  Z t ~  ~ >=0. (8) 

Since p ,  is continuous, Bochner's theorem implies the existence of a probability 
measure #i on [0, o0) such that 

pii(t) =~ cos o~t #i(do O. (9) 

This then establishes Kendall's result except for the absolute continuity of/2 on 
(0, oo), which Loynes is able to deduce from the Wold decomposition. 

Unfortunately this argument, so much simpler than those of [5] and [3], 
depends on the existence of a solution to (3) and (4), and it is known that this is 
possible only when 

Pii (oo) = lim Pii(0 > 0 .  (10) 
f ~ o 0  

for all ieS.  Loynes pointed out however that the condition (4) is not really essential, 
and that the whole argument goes through without it, except that the underlying 
measure P will not then be totally finite. This does not however affect (7) (E being 
the operator of integration with respect to P), and the rest of the argument goes 
through to establish (9). 

This important remark extends the scope of Loynes's technique to all recurrent 
chains and even to some transient ones. However; not every Markov chain admits 
an invariant measure, a necessary and sufficient condition being given by the 
celebrated theorem of Harris and Veech [14]. In this paper we show how the 
difficulty may be avoided by concentrating on Z rather than X. More precisely, it 
will be shown that a stationary version of Z may always be constructed so long as 
the underlying measure is allowed to have infinite total mass. 

It was argued in [6] and [8] that results about Markov chains which involve 
only one state z are most naturally expressed in terms of the theory of regenerative 
phenomena, and this principle will be respected. To do so has the incidental 
advantage of answering a non-trivial question in that theory (cf. [10"]); are all 
p-functions, whether standard or not, necessarily positive-definite? 

The arguments used in the next two sections are in fact of much wider appli- 
cability than will there appear, and may be used to construct stationary versions 
of many stochastic processes with a finite number of states. 

a The corresponding arguments for a finite number of states will be found in w 6. 
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2. The Construction of Stationary Regenerative Phenomena 

Let ~ denote the compact Hausdorff product space {0, 1} R, whose typical 
element is a function co: R ~  {0, 1} from the real line to the two-point set {0, 1}, 
let o denote the zero function, and write (2 = {2- {o}. Then f2 is a locally compact 
Hausdorff space. We shall write 

~2t = {co,Q; co(t)-- i} (1l) 
for t~R, and 

= U a ,  (12) 
t e A  

for A _  R. Then f2 t is both open and compact, and ~2 R = f2, so that the open sets 
Qt(t~R) cover f2. It follows that every compact K_~f2 is covered by a finite sub- 
covering, so that 

KC--OA (13) 
for some finite A. 

Following Halmos [4], the Borel sets in (2 are the members of the a-ring 
generated by the compact sets. Every Borel set is contained in a a-compact set, so 
that every Borel set B satisfies 

B~--Y2A (14) 

for some countable A. In particular, Q is not itself a Borel set. We shall construct 
regular Borel measures on Q; that is, measures 2 on the a-ring of Borel sets which 
are finite on compact sets and satisfy 

2(B) =sup {2(K); Kc_B, K compact} (15) 

for all Borel sets B. 

Theorem 1. I f  p is any p-function, there exists one and only one regular Borel 
measure 2 on f2 such that, for all n> 1 and all q < t2 <. . .  < t,, 

2{o); co(tl)=co(t2) . . . . .  co( t , )= l}=p( t2 - - t , )p ( ta - - t2 ) . . . p ( t - - t ,_ l ) "  (16) 

When n = 1, this equation is to be read as 

2{co; co(t)= 1}= 1. (17) 

Proof By the definition of p-functions [6], there is a stochastic process Z t (t > 0) 
taking the values 0 and 1 such that, for 0 = t o < t~ < . . .  < t,, 

n 

P {z,~ = l ( a =  1, 2, . . . ,  n)} = I ]  p(t - 

Hence, by the Kakutani-Nelson theorem ([13] Theorem l.1, "famili~re aux 
lecteurs de Bourbaki" [12]) there is a unique regular probability measure rc on the 
compact space A = {0, 1 }(~ ~)such that 

n {co; co (t~)= 1 (c~ = 1, 2, ..., n)} = l~I p( t~-  t~_ ~). (18) 

1" 
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Take two copies A1 and Au of A, endowed with copies rq and it 2 of 7z, and (for any 
t eR)  define a continuous function 0t: A~ x A2 --* I2t by 

( u < t ) ,  

= 1, (u = t), 

( u > t ) .  

This function maps the product measure rq x re2 into a regular Borel measure 

on f2,, and it is trivial to check, using (18), that (16) is satisfied with 2 replaced by 4t 
so long as t is included in the set {t,}. In particular, if 

s, te{q ,  t2 . . . . .  t,}, 
then n 

2~ {o); co(t,)= 1} = H p(t ,- t ,_O=2t{co; ~o(t,)= 1}, 
~ = 2  

so that, by the uniqueness assertion of the Kakutani-Nelson theorem, 

2~=2, on O~m~2,. (19) 

If B is any Borel set in I2, there is a countable set A with BC_Oa, and we can 
express B as a disjoint union 

B = U B,, (20) 
teA 

where Bt c_ ~t 

for each t EA. The decomposition (20) is not unique, but if 

B =  U B',, B'~___f2,, 
"teA' 

is another such, then 

Z 2, (B',) = Z Z 2~ (B'~ c~ Bt) 
t e A '  zeA"  t e A  

= • ~2t(B'r by (19) 
z e A '  t e A  

= y.  4,(B,) .  
t e A  

Hence the quantity 
2(B)= ~ 2 ( B 3  (21) 

t e A  

is defined independently of the decomposition chosen, and clearly defines a Borel 
measure on O, which coincides with 2, on f2,. Since 2, is regular and totally finite, 
there is for each t ea  and each integer v a compact Kt~ c_ B, such that 

2t (Kt ~) > 2t (Bt) - v- 1 2-  s, 
whence it follows easily that 

2 (B) = sup {2 ([..) K,~); v =_% 1, a c A, a finite}, 
t e a  

and thus that 2 is regular. 



Stationary Regenerative Phenomena 5 

Since 2 =At on ~2 t, we have, for tl < tz < . . .  < t,, 

). {CO; CO(t1)= r . . . . .  co(t,) = 1} =A,~ {co; c0(t~) = 1 (~ = 1, 2, ..., n)} 

=n2 {co; co( t , -  tl)-- 1 (~=2, 3, ..., n)} 
n 

= 

ct= 2 

proving (16). Conversely, any regular Borel measure 2 satisfying (16) must coincide 
with A, on (2t, and must thus satisfy (21). 

Theorem 2. I f  p is any p-function (standard or not) then, for any real numbers 
1, 2, . . . ,  n), 

p(l t~-tpl) ~ ~4>O. (22) 
~,/~=1 

Proof. The expression (20) is equal to 

The use of the Kakutani-Nelson theorem seems to be more natural in this 
problem than the more familiar DanMI-Kolmogorov construction, since the 
space Q is topologically very simple. The latter approach in effect confines attention 
to the Baire sets in f~, but can be made to yield the same results at the cost of some 
circumlocution. 

3. Extension of the Measure 

Because • is not a Borel set, it makes no sense to ask, for instance, whether A 
is totally finite, or totally a-finite. (Of course, like all Borel measures, A is a-finite 
in the sense that every Borel set is a countable union of sets of finite measure.) 
In the most important cases, however, A has a canonical extension to a larger class 
of subsets of t~, including g2 itself. 

Call a set E _  ~ a weakly Borel set if it is a Borel set in the compact space ~. 
Since ~ is open in ~ it is weakly Borel, and it is easy to check that the collection 
of weakly Borel sets is the a-algebra generated by the open sets in ~. If E is weakly 
Borel and B Borel, then E c~ B is Borel. 

Now suppose that there is a Borel set F _  g2 with the property that 

2 (~2 t -  F) = 0 for all t. 
Then 

2((2a - F ) = 0  (23) 

for all countable A _~ R, so that (14) implies that, for any Borel set B, 

A (B r )  = A (B). (24) 
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For any weakly Borel set E, 
J. (E) = 2 (E ~ F) (25) 

is well-defined since E c~ F is Borel, and (24) shows that ,~ is an extension of,k to a 
measure on the weakly Borel sets. 

Suppose if possible that .~ is another extension of 2 to the weakly Borel sets. 
Then 

so that 
2>2 .  

Thus .~ is uniquely characterised as the minimal extension of 2. In particular, ,~ does 
not depend on the choice of F. Thus, if a Borel set F can be found to satisfy (23), 
then 2 has a unique minimal extension ,~ to the weakly Borel sets (which will be 
denoted simply by 2 if no confusion can arise). 

By (14), there is a countable A with F _~ s and then 

tEA 

exhibits s as a countable union of sets of finite measure; 

(s F) = 0, 2 (s = 1. 

Hence, if r exists, the minimal extension of ,t is necessarily totally a-finite. (It 
will appear below that, if no set F exists to satisfy (23), then 2 has no totally a-finite 
extension.) 

Theorem 3. I f  p is standard, the measure 2 defined by Theorem 1 has a unique 
minimal extension to the weakly Borel sets, which is totally a-finite, and has total 
m a s s  

2(s = {limp(t)} -1 . (26) 

Proof Let Q be any countable dense subset of R, and write 

F=Qq. 

Then F is Borel, and for qeQn(t, co), 

,~,(s163 

= ;, (s  - (s s 

= 1 - p ( q -  t)-~ 0 

as q - .  t through Q~ (t, oo). Thus F satisfies (23), and from the preceding discussion 
(25) defines the unique minimal extension to the weakly Borel sets, which is 
o--finite. 

To compute the total mass of 2, take Q to be the set of dyadic rationals, i.e. 

Q = 0 M(2-m), 
m ~ l  

where 
M(h)= { .... - 2 h ,  - h ,  01 h, 2h, ...}. 
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Then by (25), 
,~ (f2) = 2 (V) = iim 2 (flu(hi), 

where the limit is taken as m ~ oo and h--2-m. Now 

r - *  

= ~ ~zl{co; co(c~h)=0(e=l ,2 . . . .  ,n+r)}  
r =  - -n  

= ~ re{co; co(~h)=0(e= 1, 2 . . . .  , k)}. 
k = 0  

Letting n -+ o% 

2(Qa~/h))= ~ re{o); co (e h) = 0 (a = 1, 2 . . . . .  k)}. 
k = 0  

(27) 

Under re, the random variables co (c~ h)(~ = 1, 2, ...) are the indicators of a recurrent 
event with (aperiodic) renewal sequence 

p(eh)=rt  {co; co(c~h)= 1}, (~=0, 1,2 . . . .  ). 

By a result of Feller ([2], XIII. 10), the right hand side of (27) is equal to 

so that for all h, 

{limp (n h)}-i = {p (c~)}- 1, 

,Z(~u~h~) = {p (oo)}- 1. 

(28) 

Setting h = 2 - "  and letting m--+ oo yields (26), and the proof is complete. 

If p(ov)> 0, the theorem shows that 

P = p ( o v ) 2  

is a probability measure on g2, with respect to which the random variables 
Zt: s {0, 1} defined by 

Z,(co) = co(t) (29) 

define a stationary stochastic process in the usual sense. This is just the equilibrium 
regenerative phenomenon defined in [7]. On the other hand, 2 has infinite total 
mass whenever p (Go) = 0. 

Although the standard case is much the most important, some interest attaches 
to non-standard p-functions. The measurable p-functions have been characterised 
in [9], from the result of which we can prove the following. 

Theorem 4. I f  p is measurable but not standard, then either (i) p (t) = a p (t), where 
0 < a < l  and ~eg~, or (ii) p(t)=O for almost all t. 
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In case (i) the conclusion of Theorem 3 is still valid, but in case (ii) 2 has no a-finite 
extension to the weakly Borel sets. 

Proof. The fact that (i) and (iO are the only possibilities is established in [9]. 

Case (i). Let Q be any countable dense subset of R, and F=f2a; we prove 
that (23) holds and then the rest of the proof goes through without change. Fix 
t~R and write S= {q-  t; q~Q, q > t}. Then 

2 (0, - F) __< 2, (O,- U O,+,) 
s~S 

=n{co; ~o(s)=0 for all s~S}. 

It is shown in [9] that this last expression is equal to 

E{(1 - a)n}, 

where N is the number of seS for which Zs = l, if Z is a standard regenerative 
phenomenon with p-function ,~. Since S is dense, P(N= ~)= i, so that 

,t. ( ~ ,  - F )  = O. 

Case (ii). Suppose that 2 has a a-finite extension ~. to the weakly Borel sets, so 
that f2 is a disjoint union 

Q= O E k  
k = l  

of weakly Borel sets E k with ~(Ek)< o0. For any Borel B~_ Ek, 

2 (B) = 2 (B) ~ 2 (Ek) 
so that 

Lk = sup {2(B); B ZEk, B Borel} 

is finite. For any integer m, there exists a Borel set Bkm ~_ E k with 

2(Bkm)> Lk--m -1, 
and therefore 

Bk---- 0 Bkm 
m = l  

is Borel and satisfies 
Bk ~-- Ek, 2 (Bk) = L k. 

For any t, the set 
Btk = B k u {(E k - Bk) ~ f2,} 

is also Bore], and B~_ E k, so that, by definition of Lk, 

L k ~ ,~ [B k u {(E k - Bk) N ~t}] 

=,~(Bk)+,~ {(Ek-- Bk) n 0,} 

= L~ + ~ ((Ek-- B~) c~ 0 , } .  
Thus 

2 {(Ek-- Bk) n g2t} = O, 
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and summing over k, 

with 
F= OBk . 

k = l  

Hence F is a Borel set satisfying (23), and we have shown that the existence of a 
a-finite extension of 2 implies that of a solution Y of (23). 

By hypothesis, the set 

N - { t ;  t=O or p(t)>O or p( - t )>O}  

has Lebesgue measure zero. Since F is Borel, there is a countable A with F _  f2 a, 
and thus the set 

A + N= {a+t; a~A, teN} 

= U (a+N)  
a6A 

has measure zero. In particular, there is a real number x with 

xCA+N.  

Then, for any aeA, x - a C N ,  so that x:l=a and 

It follows that 

and summing over aeA, 

Since F ___ Oa and F satisfies (23), 

p ( Ix -a l )=O.  

~ (o~a  ~A)=O. 

1 = ~ ( ~ ) =  ;.(~x • r) + ;~(ax- r ) = 0 .  

The contradiction shows that F cannot exist, and so that 2 has no a-finite extension 
to the weakly Borel sets. 

It is perhaps illuminating to consider the extreme case in which p (t)--0 for all 
t > 0, for which 2 may be described as follows. Define a function t/: R-* Q by 

{t/(t)} (s) = 1, if s = t, 

=0,  if s=~t. 

Then 2 is the image under t /o f  counting measure on R; 

2 (B) = number of points in I/- 1 (B). 

4. The Discrete-Time Case 

Exactly analogous arguments may be carried through for discrete-time 
regenerative phenomena (recurrent events), though without the difficulty encoun- 
tered in the last section, which is caused by the uncountable parameter space. Let 
Z be the set of (positive and negative) integers, ~D the product space {0, 1} z, and 
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f2D=O D-  {o}. Then f2 ~ is both locally compact and a-compact; it is thus a Borel 
set in itself, and all Borel measures on f2 D are a-finite. The argument used in the 
proof of Theorem 1 thus leads to the following conclusion. 

Theorem 5. To every renewal sequence (u,) there corresponds a unique regular 
Borel measure 2 o n  ~'~D such that, for integers tl < t2 < ' "  < tn, 

)c{O); 09(t~)= 1 (~= 1, 2 , . . . ,  n)} = I I  u ( t ~ - - t ~ _ l ) .  (30) 
a=2 

I f  (u,) has period d, then 
2 (g?D) = d { lim u,a}- 1. (31) 

n ~ G o  

It is a distinctive property of discrete-time regenerative phenomena that every 
renewal sequence can be realised in terms of a suitable Markov chain. More 
precisely, let (f,) be the first occurence probabilities associated with (u,) and define 

g. = 1 - f l  - f 2  . . . . .  fn-1, 

a, =L/g, ,  (a, = 0 if g, = 0). 

Construct a Markov chain on the state space {1, 2, ...} by the transition proba- 
bilities 

pi, i+l=l - -a i ,  pil=ai (32) 

all other p~j being zero. Then Chung has remarked that (u,) is the renewal sequence 
associated with the state 1' 

u, =P~)I (33) 

It will be possible to employ Loynes's argument if the chain (32) admits an 
invariant measure mi, 

mj  = 2 mi Pij (34) 
i 

It is easy to check that the only solutions of (34) are of the form 

for constants c, and then only if 

mj  = C gj  

oO 

f =  ~ f , = l  
n=l 

(35) 

Thus, Chung's construction yields a chain with invariant measure if and only if 
(u,) is recurrent. 

A chain with invariant measure may be constructed by time-reversal of the 
Chung chain. The matrix (/Sij) defined by 

Pi) = (g/gi) Pji (36) 
is substochastic; indeed 

~, p,j= 1, (j4= 1), 
j=l 

= f ,  (j = 1). 
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and it admits the invariant measure (g3. However, Loynes's argument only works 
when the chain is honest, and so once again requires recurrence. The usual device 
of adjoining an absorbing state is unhelpful, since it destroys the invariance 
of (gi). 

There is however an alternative modification of the Chung chain which 
admits an invariant measure even when f <  1. This is defined on the state space 
{ . . . , - 2 , -  1, 0, 1, 2, ...} by 

Pi,i+l = 1 (i < 0), 

= 1 - ai, (i >= 1), 

Pil =ai, (i> 1), 

(37) 

with all other Pij zero. Then it is easily checked that (33) still holds, and that the 
chain has the invariant measure 

mi = 1 - f  (i < 0), 
= g~ (i => 1). (38) 

Using this chain an alternative, though hardly simpler, proof of Theorem 5 may 
be constructed. 

The only possible difficulty with (37) is that it is not irreducible. We therefore 
pose the question whether, given any renewal sequence, there exists an honest, 
irreducible Markov chain, with invariant measure, satisfying (33). 

5. Ergodic Theory 

For any t~R,  define a continuous function 0,: f2--,f2 by 

(0t o)  (s) = co (s + t), (39) 

and note that 0,+ u = 0, 0,. Define another continuous function p: f2--+ f2 by 

(p ~) (s) = ~ ( -  s). (40) 

If 2 is the measure associated by Theorem 3 with a standard p-function, these 
functions map 2 into regular Borel measures 

20~ -1, 2p -~ 

on f2, and these satisfy (16). By the uniqueness assertions in Theorems 1 and 3, 

20~ - 1 = 2 p  - 1 = 2 ;  (41) 

2 is invariant under translations and under time-reversal. 

Theorem 6. The mappings O, and p preserve the measure 2 defined by Theorem 3. 

In particular, to each p in N is associated a dynamical system 

Zp = (f2, 2, Or). (42) 

This at once suggests questions within the purview of ergodic theory. For example, 
we may define a notion of ergodic equivalence in ~ by saying that Pl and P2 are 
ergodically equivalent if Zpl and Zp2 are weakly isomorphic. 
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Many of the known metric invariants for (irreducible) Markov shifts, such as 
different kinds of mixing, are expressible in terms of a single diagonal transition 
function Pii, and it would therefore be tempting to conjecture that the ergodic 
equivalence class of p ,  might itself be a metric invariant of the Markov shift. 
Were this to be true, it would imply the solidarity theorem that, in an irreducible 
Markov chain, the p-functions pi~ and p# must be ergodically equivalent. This is 
however false, since (26) shows that the equivalence of Pl and P2 implies that 

lim Pl (t)-- lira P2 (t), 
t ~ o o  t ~ o o  

which is certainly not in general true of p ,  and pjj. 

One might try to rescue the conjecture by weakening the equivalence relation 
to permit renormalisation of the measure 2. To show that this is no avail is rather 
more difficult, and requires the computation of the Kolmogorov-Sinai entropy 
invariant for Z~p. The problem of describing the ergodic equivalence classes in ~, 
and relating ergodic equivalence to what might be called solidarity equivalence, 
remains open. 

6. Quasi-Markov Chains 

Just as the appropriate context for results about one state of a Markov chain 
is the theory of regenerative phenomena, so that for the study of a finite number of 
states (in particular for Pij when i+-j) is the theory of quasi-Markov chains ([8], 
earlier called "linked systems of regenerative events" [7]). It is therefore of impor- 
tance to generalise the construction of w167 2, 3 to this broader setting. 

A quasi-Markov chain is a stochastic process (Zt; t >  0) taking values 0, 1, 
2, ..., N (where N is a fixed integer) and having finite-dimensional distributions 
governed by 

n 

P/o {Zt~= i~ (~= 1, 2, ..., n)}= l~Pi~_li~(t~--t~_l), (43) 
ct=l 

for 0 = t o < tl <. ."  < t, and a i ~  {1, 2, ..., N}. These are therefore determined by 
the functions Pij: (0, ~ )  ~ F0, 1], which are assembled in an (N • N)-matrix-valued 
function 

p(t) =(p~j(t); i , j =  1, 2 . . . . .  N) (44) 

called the p-matrix of the chain. This is said to be standard if 

lira p (t) = I, (45) 
t---~ oO 

(the identity matrix) and the class of standard p-matrices of order N is denoted 
by ~3 N. 

The class ~3 N is characterised in [7], where it is proved (Theorem 7) that a 
continuous (N • N)-matrix-valued function p belongs to ~ s  if and only if its 
Laplace transform is of the form 

00 

r (0) = ~ O (t) e -  o, d t = [01 + A + ~(1 - e-  0~) p (d x)] - 1 (46) 
0 

3 The subscript  on  P allows us, as it were, a choice of starting point, so long as this be not  the 
anomalous  state 0. 
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in 0 > 0, where A = (a~j) is a matrix with 

a~j < 0 (i +j),  ~+ a~j >= O, (47) 
j = l  

and/1= (p~j) is a matrix of positive measures on (0, ~) ,  with 

S ( 1 - e - X ) # u ( d x ) < o e ,  SlJij(dx)<=-aij (i=t=j). (48) 

Moreover, (46) sets up a one-to-one correspondence between ~N and the class of 
pairs (A, it) satisfying (47) and (48). 

We shall assume throughout that p is irreducible in the sense that none of the 
functions p~j is identically zero. Then, by Theorem 11 of [7], there exist positive 
numbers m~ (i = 1, 2 . . . .  , N) with 

N 

mz azj> 0, ( j=  1, 2 , . . . ,  N). (49) 
i=l 

In general, these numbers are not uniquely determined, by (49), but in the special 
case when the chain is recurrent, when 

N 

F+ % = 0 (50) 
j = l  

for all i, they are determined up to constant multiples, and satisfy (49) with equality 
for all i. The next theorem shows that any solution of (49) can be used to construct 
a stationary quasi-Markov chain, with a-finite underlying measure. 

Theorem 7. Let  pe~N be irreducible, and let mi ( i=l ,  2 . . . .  ,N )  be positive 
numbers satisfying (49). Define 

~={0 ,  1,2 . . . . .  N} R, ~ 2 = ~ -  {o}, (51) 

where o is the zero function in ~. Then there exists a unique regular Borel measure 
)+ on f2 such that, for n > l, tl < t 2 < . . . < t n and il, i2, . . . , i ,e{1,  2 . . . .  ,N}, 

n 

)~ {co; 6o (t~) = i~(o+ = 1, 2, ..., n)} = mi, 1-[ Pi~-i i~ (t~ -- t~_ 1). (52) 
a=2  

Moreover, 2 has a unique minimal extension to the weakly Borel sets, which is 
totally a-finite. 

Proof. This is for the most part a straightforward extension of the proofs of 
Theorems 1 and 3. Write 

Qt= {coeg2; co (t) =t= 0} , 

so that the f] t ( teR) form as before a covering of f] by open compact sets. Because 
of (43) there exists, for each i ,  0, a regular probability measure ~+ on Am = {0, 1, 
2, ..., N} (~ with 

n 

z~+ {co; co (t,)-- i, (c~ = 1, 2 . . . . .  n)}= [ I  Pi+_, i+ ( t . -  t~_ i) (53) 
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for 0=  to < tl < ... <e,  and is+O, io=i. By Theorem 10 of[7] the matrix p* defined 

by p* (t) =(re~m,) p~,(t) 

belongs to ~3N, and hence there exists a similar measure ~* on A1 (another copy of 
A2) satisfying (53) with re* replacing rci, p* replacing p. If Oit: A1 x A2 ~ f2t is the 
continuous function defined by 

~ .  (~ol, co2) (u) = ~o~ ( t -  u), (u < t), 

= i, (u = t), 

= o~2 ( u -  t), (u > t), 
then 

N 

2, = ~ mi(Tc* x ~i) ~i-~ 1 (54) 
i=1 

defines a finite regular Borel measure on s t. It is easy to check that 27 satisfies (52) 
when te  {t~} and thus as before 

2s=2t on Q ~ t  

and there is a unique regular Borel measure 2 on/2 with 

2=2t  on f2t, 
which satisfies (52). 

If Q is any countable dense subset of R, and 

F =  Us 
q~O 

then F is a Borel set, and for qeQ~(t ,  o~), 

N N N 

= Z m,- ~ Z m, PAq- t)-~0 
i=1 [=1 j = l  

as q--*t, since p is standard. Hence 

. ~ ( ~ , - r ) = 0 ,  

and the argument of w 3 shows that 

(E) =,~ (E • F) 

defines the unique minimal extension of 2 to the weakly Borel sets, which is 
totally o--finite. The proof is therefore complete. 

As in Theorem 6, the measure 2 is preserved by the shift Ot. The effect of the 
time-reversal mapping p is to map 2 into the measure similarly associated with 
the dual p-matrix p* given by 

p* (t) = (mj/mi) Pji (t). (55) 

The computation of the total mass of 2 requires a lemma on the asymptotic 
behaviour of Pu, which is implicit in [7]. 
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Theorem 8. I f  p in ~N is irreducible, then the limits 

pj= lim pij(t) (56) 

exist and are independent of i. Either all or none of the pj are positive and, for all j, 

N 

Pj = ~ Pi aij. (57) 
i=1 

Proof. The existence of the limits 

is guaranteed by Theorem 5 of [7]. Since 

Pij (t + a + b) > PiI (a) PIJ (t) pjj  (b), 

the Pij are either all positive or all zero. Since in the latter case (56) and (57) are 
trivial, attention may be confined to the case 

If 

then 

Because of (46), 

and letting 0 ~ 0 ,  

Likewise 

pij>O (all i,j). 

~=(Pij) 
p = lira 0 r (0). 

0~0 

0r(0) {OI+A+ ~(1-e-~ , 

o A = 0 .  

Alo =0 .  

If 1 is the column vector whose elements are all equal to 1, then 

o (A 1)-  O, 

and since p > 0 and A 1 > 0 we must have 

Hence from (47), the matrix 

A I = O .  

P - - I - c A  

(58) 

(59) 

From (48), 
aij = 0 

#ij = 0 

(i~M, j 6 M  or ir  j eM) .  

(ieM, j C M  or i6M, j eM) .  

is, for sufficiently small c, a stochastic matrix, and (58) shows that each row 
of p is a strictly positive left eigenvector for P. Thus P defines a finite Markov 
chain with invariant measure, and thus with no transient states. If P is not 
irreducible, there is thus a proper subset M of {1, 2 . . . .  , N} with 
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so that, from (46), 
r~j(O)=O (ieM, j C M  or iCM, j eM) .  

which contradicts the assumption of irreducibility of p. Thus P is irreducible, 
and thus the only solutions of P x  = x are the multiples of 1. It therefore follows 
from (59) that each column of p is constant, so that (56) is proved. Finally, (57) 
follows from (58). 

It is to be noted that (57) determines uniquely the ratios p~ : P2: ... : PN, which 
therefore depend only on A and not on p. However, the absolute values of the pj 
do depend on p. 

Theorem 9. The measure 2 defined in Theorem 7 is totally finite if and only 
if  the limits pj in (56) are non-zero. In this case the total mass of  2 is determined by 
the equations 

mj = 2 (f2) pj. (60) 

Proof The function ( j : f2~{0,  1} defined by 

belongs to La(f2, 2); indeed 

(j(co)= 1 if co(O)=j, 

= 0 if co (0) ~ j ,  

S ~J d 2 =  mj. 
I2 

Applying the Birkhoff ergodic theorem to the measure-preserving transformation 
01, we see that 

k 

(j (co) = lim k -a ~ (j(0r co) 
k ~ o o  r = l  

exists for almost all co, and ~jeLl(f2,2). Hence 

vj (B) = ~ (j d 
B 

defines a totally finite Borel measure, which is regular since v j__< 2. For ti < t2 < ' "  < t, 
and il, i2, . . . ,  i, ~ 0, take an integer m > t,, and use the dominated convergence 
theorem to show that 

n 

vj (co; co(t~)-----i~(~= 1, 2, ..., n)} = ~ 1-[ ~i~(O~co)(j(co)~(dco) 
c t = l  

S fi 
k ~ o o  r = m  ~ t = l  

k n 

=l im k -1 ~ mii IJ pi~_li~ (t - t l) p i . j ( r -  t.) 
k ~ o o  

r =  m ~ =  2 

n 

=rail Iq Pi~_li~ (t~- t~- l) pj, 
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using (56). Comparing this with (52) and using the uniqueness assertion of 
Theorem 7, we have vj = pj 2. 

Since vj is totally finite, 2 can only have infinite total mass if pj = 0. Conversely, 
if 2 is totally finite, the ergodic theorem implies that 

S ( j d 2 = ~ d 2 = m j ,  

so that pj 2(~2)= vj(f2)= rnj, and the proof is complete. 

7. Postscript 

This paper started from the positive-definite character of p-functions, proved 
in full generality in Theorem 2. Now the statement that a real function p is positive- 
definite may be expressed in determinantal form, since a necessary and sufficient 
conditions is that, for all n > 1 and all 

0 < t  I < t 2 <  --- <t , ,  (61) 

we have the inequality 

1 p(rl )  p( t2)  . . .  p(t~  

p ( t l )  1 p( t z - - t l )  ... p(tn--t l)  [ 
p. !t2). . .p.(t27yl). . " 1 . . . . . . . .p . ( t . ._ t : )>0.  (62) 

p(t,) p ( t , - h )  p ( t , - t 2 ) . . .  1 ] 

It may therefore be of interest to note that the defining inequalities for p-func- 
tions written out in w 3 of [6] may also be thrown into determinantal form. More 
precisely, a function p is a p-function if and only if, for all (61), p satisfies the 
inequalities 

1 p(tl) p(t2) ... p(t,) >0 
1 1 p(t2-ta) ... p ( t , -  q) 
! . . . .  0 . . . . . .  ) . . . . : .  p!t..-.t2.) (63) 

r l  0 0 . . .  1 

and 
p(tl) p(t2) p(t3) ... p(t,) 

1 p(ta--tO p(t3--ta) ... p(t,--tl) 
0 1 p(t3--t2). . .p(t,--t2) (-- 1)"-1>0. (64) 

0 0 0 ...p(t,--t,_O 
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