Skip to main content
Log in

Development of long-lived high-performance zinc-calcium/nickel oxide cells

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The addition of Ca(OH)2 to the zinc electrode of Zn/KOH/NiOOH cells was investigated in order to determine its effect on the rate of zinc active material redistribution (shape change) and cell cycle-life performance. Cells of equal mass and capacity, and therefore the same specific energy, containing 0, 10, 25, and 40 mol% Ca(OH)2 in their zinc electrodes were constructed and tested. The Ca(OH)2 and Zn(OH) 2−4 -supersaturated KOH solution formed a calcium-zincate complex during the discharge half-cycle. The solubility of this complex is less than that of ZnO, and the lower zinc species solubility leads to a slower rate of Zn redistribution, thereby extending the cell cycle life. The best cells tested were those with 25%-Ca(OH)2 electrodes, which lost capacity at a rate of 0.13%/cycle, compared to 0.47%/cycle in calcium-free control cells constructed in the same manner. Also, zinc active material utilization in the calcium-containing electrodes showed a dramatic improvement, compared to the calcium-free zinc electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. R. McLarnon and E. J. Cairns,J. Electrochem. Soc. 138 (1991) 645.

    Google Scholar 

  2. V. V. Romanoff,J. Appl. Chem. (USSR) 35 (1962) 1246.

    Google Scholar 

  3. N. A. Zhulidov and F. I. Efremov,Vest. Elektroprom. 34 (1971) 74.

    Google Scholar 

  4. W. J. van der Grinten, Abstract No. 38, p. 96, The Electrochemical Society Extended Abstracts, Oct. 15–20 (1967).

  5. W. van der Grinten (General Electric Co.),U.S. Patent 3 516 862 (1970).

  6. Y. Maki, M. Fujita, H. Takahashi and T. Ino (Hitachi, Ltd. and Tokyo Electric Power Co.,U.S. Patent 3 816 178 (1974).

  7. R. A. Jones (General Motors Corporation),U.S. Patent 4 358 517 (1982).

  8. G. Kawamura and Y. Maki,Denki Kagaku 48 (1980) 592.

    Google Scholar 

  9. W. Schwick, R. Diehl and C. D. Carpentier,Nature (Lond.), Phys. Sci. 229 (1971) 184.

    Google Scholar 

  10. M. Yamanaka, H. Morishchi and K. Furuya (Mitsubishi Mining and Cement Co., Ltd.),Japanese Patent 52 139 134 (1977).

  11. O. Ohhara and T. Fujii (Kuraray Co., Ltd.),Japanese Patent 50 109 229 (1975).

  12. R. A. Sharma,J. Electrochem. Soc. 133 (1986) 2215.

    Google Scholar 

  13. F. Liebau and A. Amel-Zadeh,Kristall und Technik 7 (1972) 221.

    Google Scholar 

  14. ‘International Centre for Diffraction Data Handbook’ (1980) pp. 24–222.

  15. M. K. Traore,C. R. Acad. Sc. Paris, Ser. C 278 (1974) 1429.

    Google Scholar 

  16. M. Inasaki and Y. Yamashita,Yosyo Kyokaishi 95 (1987) 363.

    Google Scholar 

  17. E. G. Gagnon,J. Electrochem. Soc. 133 (1986) 1989.

    Google Scholar 

  18. Y. Maki, Y. Fujita, M. Kikuchi and T. Kamimura, ‘Battery Research and New Batteries in Japan’, Vol. 2, paper no. 29, The Electrochemical Society of Japan (Cleveland Office), 1972.

  19. E. G. Gagnon and Y.-M. Wang,J. Electrochem. Soc. 134 (1987) 2091.

    Google Scholar 

  20. , ‘Prog. Batteries Sol. Cells’, Vol. 7, p. 380, The Electrochemical Society of Japan (Cleveland Office), 1988.

    Google Scholar 

  21. G. Kucera, H. G. Plust and C. Schneider, Paper No. 750 147 presented at the Automotive Engineering Congress and Exposition, Society of Automotive Engineers, Detroit, MI, Feb. 24–28 (1975).

  22. E. H. Hietbrink, R. W. Boak, R. L. Corbin, R. A. Jones and L. P. Atkins, Abstract No. 16, p. 26, The Electrochemical Society Extended Abstracts, Vol. 82-2, Oct. 17–21 (1982).

  23. R. A. Sharma,J. Electrochem. Soc. 135 (1988) 1875.

    Google Scholar 

  24. Y.-M. Wang and G. Wainwright,133 (1986) 1869.

    Google Scholar 

  25. E. G. Gagnon,138 (1991) 3173.

    Google Scholar 

  26. Y.-M. Wang,137 (1990) 2800.

    Google Scholar 

  27. Y. Sato, M. Kanda, H. Niki, M. Ueno, K. Murata, T. Shirogami and T. Takamura,J. Power Sources 9 (1983) 147.

    Google Scholar 

  28. T. C. Adler, F. R. McLarnon and E. J. Cairns, Proc. 22nd Intersoc. Energy Conv. Eng. Conf., p. 1097, American Institute of Aeronautics and Astronautics, New York (1987).

    Google Scholar 

  29. D. M. MacArthur, proc. 20th Intersoc. Energy Convers. Eng. Conf., p. 2.27, Society of Automotive Engineers, Warrendale, PA (1985).

    Google Scholar 

  30. J. McBreen, Brookhaven National Laboratory Report No. BNL-51370 (1980).

  31. R. Jain, F. R. McLarnon and E. J. Cairns, Lawrence Berkeley Laboratory Report No. LBL-25332 (1989).

  32. J. T. Nichols, F. R. McLarnon and E. J. Cairns,Chem. Eng. Comm. 37 (1985) 355.

    Google Scholar 

  33. M. H. Katz, J. T. Nichols, F. R. McLarnon, E. J. Cairns and J. E. Katz,J. Power Sources 10 (1983) 149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, R., Adler, T.C., McLarnon, F.R. et al. Development of long-lived high-performance zinc-calcium/nickel oxide cells. J Appl Electrochem 22, 1039–1048 (1992). https://doi.org/10.1007/BF01029582

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029582

Keywords

Navigation